Top Banner
Sahar Sadat Tavalla ID 90082 i References Andrighettoni, M. and Mantegazza, P., “Multi-input/multi-output adaptive active flutter suppression for a wing model”, Journal of Aircraft, Vol. 3, pp 462-469, 1998. Akella, M.R. and Junkins, J.L., “Structured model reference adaptive control with actuator saturation limits”, AIAA paper 98-4472, 1998. Albano, E. and Rodden, W.P., “A doublet-lattice method for calculating lifting disturbances on oscillating surfaces in subsonic flows”, AIAA Journal, Vol. 7, pp 279-285, 1969. Antony Jameson, “Aerodynamic design via control theory”, Journal of Scientific Computing, pp 233-260, 1988. Arkun Y., Manousiothakis B., and Putz P., “Robust Nyquist array methodology: a new theoretical framework for analysis and design of robust multivariable feedback design, International Journal of Control 40, Vol. 4, pp 603- 629, 1984. Borglund, D. and Kuttenkeuler, J., “Active wing flutter suppression using a trailing- edge flap”, Journal of Fluids and Structures, Vol. 3, pp 271294, 2002. Benjamin C. Kuo, and Farid Golnaraghi, “Automatic Control Systems”, 8 th edition, pp 511. Burnside, Joseph E., "VNE revisited: A recent article on never-exceed speed and aerodynamic flutter may have confused read", Aviation Safety, May 2011 Issue. Barzegari, Mohammad M., Morteza Dardel, Alireza Fathi, and Mojtaba Ghadimi. "Aeroelastic characteristics of cantilever wing with embedded shape memory alloys", Acta Astronautica, 2012.
13

Faculty of Engineering MSc in Systems Engineering and Appe… · aerodynamic flutter may have confused read", Aviation Safety, May 2011 Issue. Barzegari, Mohammad M., Morteza Dardel,

Oct 22, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Sahar Sadat Tavalla ID 90082 i

    References

    Andrighettoni, M. and Mantegazza, P., “Multi-input/multi-output adaptive active

    flutter suppression for a wing model”, Journal of Aircraft, Vol. 3, pp 462-469, 1998.

    Akella, M.R. and Junkins, J.L., “Structured model reference adaptive control with

    actuator saturation limits”, AIAA paper 98-4472, 1998.

    Albano, E. and Rodden, W.P., “A doublet-lattice method for calculating lifting

    disturbances on oscillating surfaces in subsonic flows”, AIAA Journal, Vol. 7, pp

    279-285, 1969.

    Antony Jameson, “Aerodynamic design via control theory”, Journal of Scientific

    Computing, pp 233-260, 1988.

    Arkun Y., Manousiothakis B., and Putz P., “Robust Nyquist array methodology: a

    new theoretical framework for analysis and design of robust multivariable feedback

    design”, International Journal of Control 40, Vol. 4, pp 603- 629, 1984.

    Borglund, D. and Kuttenkeuler, J., “Active wing flutter suppression using a trailing-

    edge flap”, Journal of Fluids and Structures, Vol. 3, pp 271–294, 2002.

    Benjamin C. Kuo, and Farid Golnaraghi, “Automatic Control Systems”, 8th

    edition,

    pp 511.

    Burnside, Joseph E., "VNE revisited: A recent article on never-exceed speed and

    aerodynamic flutter may have confused read", Aviation Safety, May 2011 Issue.

    Barzegari, Mohammad M., Morteza Dardel, Alireza Fathi, and Mojtaba Ghadimi.

    "Aeroelastic characteristics of cantilever wing with embedded shape memory alloys",

    Acta Astronautica, 2012.

    file:///C:/viewGale.aspfile:///C:/viewGale.asphttp://dx.doi.org/10.1016/j.actaastro.2012.04.023http://dx.doi.org/10.1016/j.actaastro.2012.04.023http://dx.doi.org/10.1016/j.actaastro.2012.04.023

  • Sahar Sadat Tavalla ID 90082 ii

    Collar, A. R., and Simpson, A., “Matrices and Engineering Dynamics”, (Ellis

    Horwood, Chichester), 1987.

    Chad Hebert, Dave Cowan, Attar Peter J, and Carol D. Weiseman, “Aerodynamic

    Flutter”, NASA Langley Research Center, 2011.

    Cooper J E., “Parameter estimation methods for flight flutter testing”, Proceedings of

    the 80th AGARD Structures and Materials Panel, AGARD CP-566, 1995.

    Collar, A. R. and Simpson, A., “Matrices and Engineering Dynamics”, Ellis

    Horwood, Chichester, 1987.

    Drof., R. and Bishop R., “MODERN CONTROL SYSTEMS”, USA, Pearson Prentice

    Hall, 2001.

    Daochun Li, Jinwu Xiang, and Shijun Guo, “Adaptive control of a nonlinear aeroelastic

    system”, Aerospace Science and Technology, Vol 15, pp 343 – 352, 2011.

    Dejan D. Ivezic´, and Trajko B. Petrovic´, “New approach to milling circuit

    control—robust inverse Nyquist array design”, Int. J. Miner. Process, Vol 70, pp 171

    – 182, 2003.

    Fanson, J.L., and Caughey, T.K., “Positive Position Feedback Control for Large

    Space Structures”, AIAA Journal, 1990.

    Frazer, R. A., Duncan, W. J., and Collar, A. R., “Elementary Matrices”, Cambridge

    University Press, 1963.

    Grujic´ M., “Intelligent control of Majdanpek flotation plant”, Minerals Engineering

    7, Vol. 14, pp 689– 704, 1995.

  • Sahar Sadat Tavalla ID 90082 iii

    Gerschgorin, S., “Uber die Abgrenzung der Eigenwerteeiner Matrix”,

    Izv.Akad.Nauk.USSR Otd.Fiz.-Mat. Nauk 7, pp 749-754, 1931.

    Goh, C.J. ,and Caughey, T.K., ‘‘On the Stability Problem Caused by Finite Actuator

    Dynamics in the Collocated Control of Large Space Structures’’, International

    Journal of Control, pp 787-802, 1985.

    H. Haddadpour, and R.D. Firouz-Abadi, "Evaluation of quasi-steady aerodynamic

    modeling for flutter prediction of aircraft wings in incompressible flow", Thin-Walled

    Structures, 2006.

    Hawkins, D.J. and McMorran, P.D., “Determination of stability regions with the

    inverse Nyquist array”, Proc.IEE, Vol. 120, No. 11, pp 1445-1448,1972.

    Han, J.H. and Tani, J., “Active flutter suppression of a lifting surface using piezo

    electric actuation and modern control theory”, Journal of Sound and Vibration 291,

    pp 706-722, 2006.

    Hu, Q., ‘‘Adaptive Output Feedback Sliding-mode Manoeuvring and Vibration

    Control of Flexible Spacecraft with Input Saturation’’, IET Control Theory

    Application, pp 467-478, 2008.

    John J. Burken, Gurbux S. Alag, and Glenn B. Gilyard, “Aeroelastic Control of

    Oblique-Wing Aircraft”, NASA Technical Memorandum, California, June 1986.

    Jeffrey M. Barker, Gary J. Balast, and Paul A. Bluet, “Active Flutter Suppression via

    Gain-Scheduled Linear Fractional Control”, University of Minnesota, June 1999.

    Jeang-Lin Chang, "Robust Output Feedback Disturbance Rejection Control by

    Simultaneously Estimating State and Disturbance", Journal of Control Science and

    Engineering, 2011.

    http://www.sciencedirect.com/science/article/pii/S0263823106001431http://www.sciencedirect.com/science/article/pii/S0263823106001431http://dx.doi.org/10.1016/j.tws.2006.08.020http://dx.doi.org/10.1016/j.tws.2006.08.020http://dx.doi.org/10.1016/j.tws.2006.08.020http://dx.doi.org/10.1155/2011/568379http://dx.doi.org/10.1155/2011/568379http://dx.doi.org/10.1155/2011/568379

  • Sahar Sadat Tavalla ID 90082 iv

    Kalman, R.E., “On the General Theory of Control Systems”, In Proceedings of the

    First IFAC Congress on Automatic Control, Moscow, Vol 1, pp 481–

    492, 1960.

    Koudstaal J., Hulbert D.G., Braae, M., and Gossman G.I., “The application of a

    multivariable controller to an industrial grinding circuit”, Proceedings of the 8th

    Triennial World Congress, Control Science and Technology for the Progress of

    Society, Vol. 22 (104– 110). IFAC, Kyoto, pp 204– 215, 1981.

    Karthik Palaniappan, Pradipta Sahu, Juan Alonso, and Antony Jameson, “Active

    Flutter Control using an Adjoint Method”, 44th AIAA Aerospace Sciences Meeting

    and Exhibit, Reno, Nevada, Jan 2006.

    Ko, J., Strganac, T.W. and Kurdila, A.J., “Stability and control of a structurally

    nonlinear aeroelastic system”, Journal of Guidance, Control, and Dynamics, pp 718-

    725, 1998.

    Kanai K., “Trend of Active Control Technology”, 23rd

    Aircraft Symposium (in

    Japanese), pp 16, 1985.

    Karpouzian, G. and Librescu, L., “Comprehensive model of anisotropic composite

    aircraft wings suitable for aeroelastic analyses”, Journal Aircr, Vol. 3, pp 703-12,

    1994.

    Kehoe, M. W., “A Historical Overview of Flight Flutter Testing Proceedings of

    Advanced Aeroservoelastic Testing and Data Analysis”, AGARD-CP-566, Nov

    1995.

    Karpouzian, G. and Librescu, L., “Non-classical effects on divergence and flutter of

    anisotropic swept aircraft wings”, AIAA Journal, Vol. 4, pp 786-94, 1996.

  • Sahar Sadat Tavalla ID 90082 v

    Librescu, L. and Marzocca, P., “Advances in the linear/nonlinear control of

    aeroelastic structural systems”, Acta Mechanica, pp 147-186, 2002.

    Munro, N., “Multivariable systems design using the inverse Nyquist array”, UMIST,

    Manchester, 1972.

    Milic R. Stojic., "Design of PI controller for multivariable feedback control system

    using the inverse-Nyquist-array method", International Journal of Systems Science,

    1979.

    Mees, A.I., “Achieving diagonal dominance”, Systems and Control Letters, Vol. 1,

    pp 155–158, 1981.

    Mingli Yu, and Haiyan Hu, "Flutter control based on ultrasonic motor for a two-

    dimensional airfoil section", Journal of Fluids and Structures, 2012.

    Nima Mahmoodi, S., M. Ahmadian, and D. J. Inman. "Adaptive Modified Positive

    Position Feedback for Active Vibration Control of Structures", Journal of Intelligent

    Material Systems and Structures, 2010.

    Rao, S. S., “Mechanical Vibrations”, Addison-Wesley Reading, Massachusetts,

    1986.

    Rosenbrock, H.H., “Reduction of System Matrices”, Electronic Letters, No. 8, pp

    368, 1967.

    Rosenbrock, H.H., “Approximate Between Transient and Frequency Response”,

    Journal Brit.I.R.E, pp 57-64, 1958.

    Rosenbrock, H.H., “Design of multivariable control systems using the inverse

    Nyquist array”, No.11, pp 1929-1936, 1969.

    http://dx.doi.org/10.1080/00207727908941651http://dx.doi.org/10.1080/00207727908941651http://dx.doi.org/10.1080/00207727908941651http://www.sciencedirect.com/science/article/pii/S0889974611001472http://dx.doi.org/10.1177/1045389X10361631http://dx.doi.org/10.1177/1045389X10361631http://dx.doi.org/10.1177/1045389X10361631

  • Sahar Sadat Tavalla ID 90082 vi

    Siva Nadarajah, “The Discrete Adjoint Approach to Aerodynamic Shape

    Optimization”, PhD thesis, Stanford University, 2003.

    Sahar Tavalla, “Multivariable Systems and Control 2 sys-1508”, assignment

    submitted to BUiD, 2011.

    Theodorsen, T., “General Theory of Aerodynamic Instability and the Mechanism of

    Flutter”, NACA, pp 496, 1935.

    Tang Wei, Shi Zhongke, and Chen Jie, “Aircraft Flutter Modal Parameter

    Identification Using a Numerically Robust Least-squares Estimator in Frequency

    Domain”, College of Automation, Northwestern Polytechnical University, 2008.

    Trendafilova I., “An Investigation on Vibration-based Damage Detection in an

    Aircraft Wing Scaled Model”, Department of Mechanical Engineering, University of

    Strathclyde, Key Engineering Materials Vols. 293-294, pp 321-328, 2005.

    Theodorsen, T and Garrick, I. E., “Mechanism of flutter, a theoretical and

    experimental investigation of the flutter problem”, Technical report, N.A.C.A.

    Report, pp 685, 1940.

    Tseng, Y. W. and Yedavalli, R. K., “Control designs of the generalized state space

    system with state derivative measurement and the reciprocal state space system”, to

    be submitted to IEEE Transactions on Automatic Control.

    Taher Khalifa, “A Design Study for Multivariable Feedback Control System

    Regulation for Aircraft Turbo-Jet Engines”, Dissertation submitted to BUiD, 2012.

    Whalley, R, “Spectral Factorisation of the Transfer Matrix”, I.Mech.E. Proceedings

    Vol 11, No.9, 1987.

  • Sahar Sadat Tavalla ID 90082 vii

    Whalley, R and Ebrahimi, M, “Vibration and control of aircraft wings”, Proc.

    IMechE, Part G: Journal of Aerospace Engineering, Vol 212, pp 353 - 365, 1998.

    Whalley, R and Ebrahimi, M, "The impedance matrix in series", Mechanical Systems

    and Signal Processing, 1999.

    Whalley, R and Ebrahimi, M, “Multivariable System Regulation with Minimum

    Control Effort”, Proc. IMechE, Part I: Journal of Mechanical Engineering Science,

    Vol 213, No.16, pp 505 – 514, 1999.

    Whalley, R and Ebrahimi, M, "Process control with minimum control effort",

    Proceedings of the Institution of Mechanical Engineers Part E Journal of Process

    Mechanical Engineering, 1999.

    Whalley, R and Ebrahimi, M, "Process system regulation with minimum control

    effort", Proceedings of the Institution of Mechanical Engineers Part E Journal of

    Process Mechanical Engineering, 2000.

    Whalley, R and Ebrahimi, M, "Optimum wind tunnel regulation", Proceedings of the

    Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2001.

    Whalley, R and Ebrahimi, M, "Multivariable System Regulation", Proceedings of the

    Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering

    Science, Vol 220, No.5, pp 653 – 667, 2006.

    Whalley, R and Ebrahimi, M, "Closed-loop system disturbance recovery",

    Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical

    Engineering Science, 2003.

    http://dx.doi.org/10.1243/0954408991529889http://dx.doi.org/10.1243/0954408991529889http://dx.doi.org/10.1243/0954408991529889http://dx.doi.org/10.1243/0954408001530092http://dx.doi.org/10.1243/0954408001530092http://dx.doi.org/10.1243/0954408001530092http://dx.doi.org/10.1243/0954410011533220http://dx.doi.org/10.1243/0954410011533220http://dx.doi.org/10.1243/095440603321919563http://dx.doi.org/10.1243/095440603321919563http://dx.doi.org/10.1243/095440603321919563

  • Sahar Sadat Tavalla ID 90082 viii

    Whalley, R and Ebrahimi, M, "Optimum Multivariable Wind Tunnel System Control",

    Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and

    Control Engineering, 2005.

    Whalley, R and A. Abdul-Ameer, "Warship propulsion system control", Proceedings

    of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering

    Science, 2012.

    Waszak, M.R. and Fung, J., “Parameter Estimation and Analysis of Actuators for the

    BACT Wind-Tunnel Model”, AIAA Paper No. 96-3362. 1996.

    Yuan-Wei Tseng, and Rama K. Yedavalli, “Vibration Control of a Wing Box via

    Reciprocal State Space Framework”, Department of Aerospace Engineering, Applied

    Mechanics and Aviation, Ohio State University, Proceedings of the 1997 IEEE

    International Conference on Control Applications CCA-97, October 1997.

    Zhao, Y.H., “Flutter suppression of a high aspect-ratio wing with multiple control

    surfaces”, Institute of Vibration Engineering Research, Nanjing University of

    Aeronautics and Astronautics, Journal of Sound and Vibration, April 2009.

    http://dx.doi.org/10.1243/095965105X33590http://dx.doi.org/10.1243/095965105X33590http://dx.doi.org/10.1243/095965105X33590http://dx.doi.org/10.1177/0954406211434389http://dx.doi.org/10.1177/0954406211434389http://dx.doi.org/10.1177/0954406211434389

  • Sahar Sadat Tavalla ID 90082 ix

    Appendix

    Least Effort Control Strategy

    fl

    ft

    5.443s +29s+2502.72

    17.365s +238.86s +2.372e4s +5.46e4s+3.345e64 3 2

    g22

    -2.907s +9s+614.72

    17.365s +238.86s +2.372e4s +5.46e4s+3.345e64 3 2

    g21

    -2.907s +9s+614.72

    17.365s +238.86s +2.372e4s +5.46e4s+3.345e64 3 2

    g12

    4.743s +9s+1487.72

    17.365s +238.86s +2.372e4s +5.46e4s+3.345e64 3 2

    g11

    q2

    q1

    29s+2502.7

    17.365s +238.86s +2.372e4s +5.46e4s+3.345e64 3 2

    g22

    9s+614.7

    17.365s +238.86s +2.372e4s +5.46e4s+3.345e64 3 2

    g21

    9s+614.7

    17.365s +238.86s +2.372e4s +5.46e4s+3.345e64 3 2

    g12

    9s+1487.7

    17.365s +238.86s +2.372e4s +5.46e4s+3.345e64 3 2

    g11

    ft

    fl

    q2

    q1

    Figure A.1, General Open Loop Simulation Model (At zero velocity)

    Figure A.2, Reduced Open Loop Simulation Model (At zero velocity)

  • Sahar Sadat Tavalla ID 90082 x

    q2

    trail ing edge

    deflection

    q1

    leading edge

    deflection

    0.3521

    k2

    1

    k1

    93.9313*0.01

    h2

    79.5066*0.01

    h1

    29s+2502.7

    17.365s +238.86s +2.372e4s +5.46e4s+3.345e64 3 2

    g22(s)

    9s+614.7

    17.365s +238.86s +2.372e4s +5.46e4s+3.345e64 3 2

    g21(s)

    9s+614.7

    17.365s +238.86s +2.372e4s +5.46e4s+3.345e64 3 2

    g12(s)

    9s+1487.7

    17.365s +238.86s +2.372e4s +5.46e4s+3.345e64 3 2

    g11(s)

    Step

    s +.895s+161.52

    s +25.5s+162.52

    C(s)

    0.3521

    k2

    1

    k1

    93.9313*0.01

    h2

    79.5066*0.01

    h1

    29s+2502.7

    den(s)

    g22

    9s+614.7

    den(s)

    g21

    s +.895s+161.52

    s +25.5s+162.52

    g2

    9s+614.7

    den(s)

    g12

    9s+1487.7

    den(s)

    g11

    s +.895s+161.52

    s +25.5s+162.52

    g1

    ft

    fl

    0.55

    f2

    0.55

    f1

    q2

    T.disp

    Step

    -K-

    P22

    -K-

    P21

    -K-

    P12

    -K-

    P11q1

    L.disp

    Figure A.3, Inner loop system block diagram with compensator Simulation

    Model (At zero velocity)

    Figure A.4, Outer loop system block diagram with compensator Simulation

    Model (At zero velocity)

  • Sahar Sadat Tavalla ID 90082 xi

    Nyquist Array Method

    0.1

    k2

    0.1

    k1

    11

    k

    29s+2502.7

    den(s)

    g22

    9s+614.7

    den(s)

    g21

    9s+614.7

    den(s)

    g12

    9s+1487.7

    den(s)

    g11

    ft

    fl

    q2

    q1

    614.7

    614.7

    2502.7

    1487.7

    0.1

    k2

    0.1

    k1

    11

    k

    37.932s+2.2495e3

    den(s)

    g22

    15.912s+577.1

    den(s)

    g21

    -9.152s+361.5

    den(s)

    g12

    25.128s+1.5453e3

    den(s)

    g11

    ft

    fl

    q2

    q1

    614.7

    614.7

    2502.7

    1487.7

    Figure A.5, Closed Loop by Nyquist Array Method Simulation Model

    (At zero velocity)

    Figure A.6, Closed Loop by Nyquist Array Method Simulation Model

    (At m/s)

  • Sahar Sadat Tavalla ID 90082 xii

    0.1

    k2

    0.1

    k1

    11

    k

    29s+2502.7

    den(s)

    g22

    9s+614.7

    den(s)

    g21

    9s+614.7

    den(s)

    g12

    9s+1487.7

    den(s)

    g11

    ft

    fl

    q2

    q1

    Step1

    Step

    614.7

    614.7

    2502.7

    1487.7

    0.1

    k2

    0.1

    k1

    11

    k

    37.932s+2.2495e3

    den(s)

    g22

    15.912s+577.1

    den(s)

    g21

    -9.152s+361.5

    den(s)

    g12

    25.128s+1.5453e3

    den(s)

    g11

    ft

    fl

    q2

    q1

    Step1

    Step

    614.7

    614.7

    2502.7

    1487.7

    Figure A.7, Closed Loop by Nyquist Array Method Simulation Model for

    computing disturbance rejection (At zero velocity)

    Figure A.8, Closed Loop by Nyquist Array Method Simulation Model for

    computing disturbance rejection (At m/s)

  • Sahar Sadat Tavalla ID 90082 xiii

    0.1

    k2

    0.1

    k1

    11

    k

    29s+2502.7

    den(s)

    g22

    9s+614.7

    den(s)

    g21

    9s+614.7

    den(s)

    g12

    9s+1487.7

    den(s)

    g11

    ft

    fl

    E

    q2

    q1

    Random

    Number1

    Random

    Number

    1

    s

    Integrator

    614.7

    614.7

    2502.7

    1487.7

    u^2

    u^2

    u^2

    u^2

    Figure A.9, Closed Loop by Nyquist Array Method Simulation Model for

    computing energy dissipation