Top Banner
Numerical analysis of a locking-free mixed fem for a bending moment formulation of Reissner-Mindlin plates L OURENC ¸ O B EIR ˜ AO DA V EIGA 1 ,DAVID M ORA 2 ,RODOLFO RODR ´ IGUEZ 3 1 Dipartimento di Matematica, Universit ` a degli Studi di Milano. 2 Departamento de Matem ´ atica, Universidad del B´ ıo B´ ıo. 3 Departamento de Ingenier´ ıa Matem ´ atica, Universidad de Concepci ´ on. Sesi ´ on Especial de An ´ alisis Num ´ erico XX Congreso de Matem ´ atica Capricornio COMCA 2010 Universidad de Tarapac ´ a, Arica, Chile 4–6 de Agosto de 2010.
27
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Expo

Numerical analysis of a locking-free mixedfem for a bending moment formulation of

Reissner-Mindlin plates

LOURENCO BEIRAO DA VEIGA1 , DAVID MORA2 , RODOLFO RODRIGUEZ3

1 Dipartimento di Matematica, Universit a degli Studi di Milano.2 Departamento de Matem atica, Universidad del Bıo Bıo.

3 Departamento de Ingenierıa Matem atica, Universidad de Concepci on.

Sesi on Especial de An alisis Num erico

XX Congreso de Matem atica Capricornio COMCA 2010

Universidad de Tarapac a, Arica, Chile

4–6 de Agosto de 2010.

Page 2: Expo

Contents

• The model problem

• The continuous formulation

• Galerkin formulation

• Numerical tests

Mixed FEM for Reissner-Mindlin plates. – 2 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 3: Expo

The model problem.

Given g ∈ L2(Ω), find β, γ and w

−div(C(ε(β))) − γ = 0 in Ω,

−div γ = g in Ω,

γ =κ

t2(∇w − β) in Ω,

w = 0, β = 0 on ∂Ω,

• w is the transverse displacement ,

• β = (β1, β2) are the rotations ,

• γ is the shear stress ,

• t is the thickness,

• κ := Ek/2(1 + ν) is the shear modulus (k is a correction factor),

• Cτ := E12(1−ν2) ((1 − ν)τ + νtr(τ )I) ,

• we restrict our analysis to convex plates.

Mixed FEM for Reissner-Mindlin plates. – 3 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 4: Expo

The model problem. (cont.)

We introduce as a new unknown the bending moment σ = (σij)1≤i,j≤2, defined by

σ := C(ε(β)).

• C−1τ :=

12(1 − ν2)

E

(1

(1 − ν)τ −

ν

(1 − ν2)tr(τ )I

).

We rewrite the equation above as:

C−1σ = ∇β −

1

2(∇β − (∇β)t) = ∇β − rJ,

• r := − 12 rotβ,

• J :=

0 1

−1 0

.

Mixed FEM for Reissner-Mindlin plates. – 4 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 5: Expo

The continuous formulation.

Continuous mixed problem

Find ((σ, γ), (β, r, w)) ∈ H × Q such that

Ω

C−1σ : τ +

t2

κ

Ω

γ · ξ +

Ω

β · (div τ + ξ) +

Ω

r(τ12 − τ21) +

Ω

wdiv ξ = 0

Ω

η · (div σ + γ) +

Ω

s(σ12 − σ21) +

Ω

vdiv γ = −

Ω

gv,

for all ((τ , ξ), (η, s, v)) ∈ H × Q, where

H := H(div; Ω) × H(div ; Ω),

Q := [L2(Ω)]2 × L2(Ω) × L2(Ω),

with

H(div; Ω) := τ ∈ [L2(Ω)]2×2 : div τ ∈ [L2(Ω)]2,

and

H(div ; Ω) := ξ ∈ [L2(Ω)]2 : div ξ ∈ L2(Ω).

Mixed FEM for Reissner-Mindlin plates. – 5 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 6: Expo

The continuous formulation. (cont.)

Continuous mixed problem

a((σ, γ), (τ , ξ)) + b((τ , ξ), (β, r, w)) = 0 ∀(τ , ξ) ∈ H,

b((σ, γ), (η, s, v)) = −

Ω

gv ∀(η, s, v) ∈ Q,

where

a((σ, γ), (τ , ξ)) :=

Ω

C−1σ : τ +

t2

κ

Ω

γ · ξ,

b((τ , ξ), (η, s, v)) :=

Ω

η · (div τ + ξ) +

Ω

s(τ12 − τ21) +

Ω

vdiv ξ.

In the analysis we will utilize the following t-dependent norm for the space H

‖(τ , ξ)‖H := ‖τ‖0,Ω + ‖div τ + ξ‖0,Ω + t‖ξ‖0,Ω + ‖div ξ‖0,Ω,

while for the space Q, we will use

‖(η, s, v)‖Q := ‖η‖0,Ω + ‖s‖0,Ω + ‖v‖0,Ω.

Mixed FEM for Reissner-Mindlin plates. – 6 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 7: Expo

The continuous formulation. (cont.)

Additional regularity

Proposition 1 Suppose that Ω is a convex polygon and g ∈ L2(Ω). Then, there

exists a constant C , independent of t and g, such that a

‖w‖2,Ω+‖β‖2,Ω+‖γ‖H(div ;Ω)+t‖γ‖1,Ω+‖σ‖1,Ω+t‖div σ‖1,Ω+‖r‖1,Ω ≤ C‖g‖0,Ω.

aD. N. ARNOLD AND R. S. FALK, A uniformly accurate finite element method for the Reissner-Mindlin plate,

SIAM J. Numer. Anal., 26 (1989) 1276–1290.

Mixed FEM for Reissner-Mindlin plates. – 7 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 8: Expo

The continuous formulation. (cont.)

Ellipticity in the kernel

V := (τ , ξ) ∈ H : ξ + div τ = 0, τ = τt and div ξ = 0 in Ω.

Lemma 1 There exists C > 0, independent of t, such that

a((τ , ξ), (τ , ξ)) ≥ C‖(τ , ξ)‖2H ∀(τ , ξ) ∈ V.

Proof . Given (τ , ξ) ∈ V , using tr(τ )2 ≤ 2(τ : τ ) ∀τ ∈ [L2(Ω)]2×2, we obtain

a((τ , ξ), (τ , ξ)) ≥12(1 − ν)

E‖τ‖2

0,Ω +t2

κ‖ξ‖2

0,Ω.

Since ‖div τ + ξ‖0,Ω = 0 and ‖div ξ‖0,Ω = 0, we get

a((τ , ξ), (τ , ξ)) ≥ C(‖τ‖2

0,Ω + ‖div τ + ξ‖20,Ω + t2‖ξ‖2

0,Ω + ‖div ξ‖20,Ω

),

⇒ a((τ , ξ), (τ , ξ)) ≥ C‖(τ , ξ)‖2H,

Mixed FEM for Reissner-Mindlin plates. – 8 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 9: Expo

The continuous formulation. (cont.)

Inf-Sup condition

Lemma 2 There exists C > 0, independent of t, such that

sup(τ ,ξ)∈H(τ ,ξ) 6=0

|b((τ , ξ), (η, s, v))|

‖(τ , ξ)‖H≥ C‖(η, s, v)‖Q ∀(η, s, v) ∈ Q.

Well-posedness

Theorem 2 There exists a unique ((σ, γ), (β, r, w)) ∈ H × Q solution of the

continuous mixed problem and

‖((σ, γ), (β, r, w))‖H×Q ≤ C‖g‖0,Ω,

where C is independent of t.

Mixed FEM for Reissner-Mindlin plates. – 9 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 10: Expo

Galerkin formulation.

• Thh>0: regular family of triangulations of the polygonal region Ω.

• hT : diameter of the triangle T ∈ Th.

• h := maxhT : T ∈ Th.

• Ω =⋃T : T ∈ Th.

Finite elements subspaces

Hγh := ξh ∈ H(div ; Ω) : ξh|T ∈ RT0(T ), ∀T ∈ Th,

Qwh := vh ∈ L2(Ω) : vh|T ∈ P0(T ), ∀T ∈ Th,

Mixed FEM for Reissner-Mindlin plates. – 10 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 11: Expo

Galerkin formulation. (cont.)

We consider the unique polynomial bT ∈ P3(T ) that vanishes on ∂T and is

normalized by∫

TbT = 1.

B(Th) := τ ∈ H(div ; Ω) : (τi1, τi2)|T ∈ spancurl(bT ), i = 1, 2,∀T ∈ Th ,

where curl v := (∂2v,−∂1v).

h := τh ∈ H(div ; Ω) : τh|T ∈ [RT0(T )t]2, ∀T ∈ Th ⊕ B(Th),

Qβh := ηh ∈ [L2(Ω)]2 : ηh|T ∈ [P0(T )]2, ∀T ∈ Th,

Qrh :=

sh ∈ H1(Ω) : sh|T ∈ P1(T ), ∀T ∈ Th

,

Note that Hσ

h × Qβh × Qr

h correspond to the PEERSa finite elements.aD. N. ARNOLD, F. BREZZI AND J. DOUGLAS, PEERS: A new mixed finite element for the plane elasticity,

Japan J. Appl. Math., 1 (1984) 347–367.

Mixed FEM for Reissner-Mindlin plates. – 11 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 12: Expo

Galerkin formulation. (cont.)

Discrete mixed problem:

Find ((σh, γh), (βh, rh, wh)) ∈ Hh × Qh such that

a((σh, γh), (τh, ξh)) + b((τh, ξh), (βh, rh, wh)) = 0 ∀(τh, ξh) ∈ Hh,

b((σh, γh), (ηh, sh, vh)) = −

Ω

gvh ∀(ηh, sh, vh) ∈ Qh.

Hh := Hσ

h × Hγh ,

Qh := Qβh × Qr

h × Qwh .

Mixed FEM for Reissner-Mindlin plates. – 12 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 13: Expo

Galerkin formulation. (cont.)

Discrete kernel

Vh :=

(τh, ξh) ∈ Hh :

Ω

ηh · (div τh + ξh) +

Ω

sh(τ12h − τ21h)

+

Ω

vhdiv ξh = 0 ∀(ηh, sh, vh) ∈ Qh

.

Let (τh, ξh) ∈ Vh. Taking (0, 0, vh) ∈ Qh and using that (div ξh)|T is a constant,

since vh|T is also a constant, we conclude that div ξh = 0 in Ω.

Now, taking (ηh, 0, 0) ∈ Qh, since div τh = 0 in Ω ∀τh ∈ B(Th), we have that

(div τh)|T is a constant vector. Since div ξh = 0, we have that ξh|T is also a

constant vector. Therefore, since ηh|T is also a constant vector, we conclude that

(div τh + ξh) = 0 in Ω. Thus, we obtain

Vh =

(τh, ξh) ∈ Hh : ξh + div τh = 0,

Ω

sh(τ12h − τ21h) = 0 ∀sh ∈ Qrh

and div ξh = 0 in Ω

.

Mixed FEM for Reissner-Mindlin plates. – 13 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 14: Expo

Galerkin formulation. (cont.)

Ellipticity in the discrete kernel

Lemma 3 There exists C > 0 such that

a((τh, ξh), (τh, ξh)) ≥ C‖(τh, ξh)‖2H ∀(τh, ξh) ∈ Vh,

where the constant C is independent of h and t.

Discrete inf-Sup condition

Lemma 4 There exists C > 0, independent of h and t, such that

sup(τh,ξh)∈Hh

(τh,ξh) 6=0

|b((τh, ξh), (ηh, sh, vh))|

‖(τh, ξh)‖H≥ C‖(ηh, sh, vh)‖Q ∀(ηh, sh, vh) ∈ Qh.

Mixed FEM for Reissner-Mindlin plates. – 14 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 15: Expo

Galerkin formulation. (cont.)

Theorem 3 There exists a unique ((σh, γh), (βh, rh, wh)) ∈ Hh × Qh solution of

the discrete mixed problem. Moreover, there exist C, C > 0, independent of h and t,

such that

‖((σh, γh), (βh, rh, wh))‖H×Q ≤ C‖g‖0,Ω,

and

‖((σ, γ), (β, r, w)) − ((σh, γh), (βh,rh, wh))‖H×Q

≤ C inf(τh,ξh)∈Hh

(ηh,sh,vh)∈Qh

‖((σ, γ),(β, r, w)) − ((τh, ξh), (ηh, sh, vh))‖H×Q,

where ((σ, γ), (β, r, w)) ∈ H × Q is the unique solution of the continuous mixed

problem.

Mixed FEM for Reissner-Mindlin plates. – 15 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 16: Expo

Galerkin formulation. (cont.)

Rate of convergence

Theorem 4 Let ((σ, γ), (β, r, w)) ∈ H × Q and

((σh, γh), (βh, rh, wh)) ∈ Hh ×Qh be the unique solutions of the continuous and

discrete mixed problem, respectively. If g ∈ H1(Ω), then,

‖((σ, γ), (β, r, w)) − ((σh, γh), (βh, rh, wh))‖H×Q ≤ Ch‖g‖1,Ω.

Mixed FEM for Reissner-Mindlin plates. – 16 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 17: Expo

Numerical tests.

• Isotropic and homogeneous plate.

• Ω := (0, 1) × (0, 1).

• t = 0.001.

• E = 1, ν = 0.30 and k = 5/6.

Figure 1: Square plate: uniform meshes.

Mixed FEM for Reissner-Mindlin plates. – 17 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 18: Expo

Numerical tests. (cont.)

Choosing the load g as:

g(x, y) =E

12(1 − ν2)

[12y(y − 1)(5x2 − 5x + 1)

(2y2(y − 1)2

+x(x − 1)(5y2 − 5y + 1))

+ 12x(x − 1)(5y2 − 5y + 1)(2x2(x − 1)2

+y(y − 1)(5x2 − 5x + 1))]

,

so that

w(x, y) =1

3x3(x − 1)3y3(y − 1)3

−2t2

5(1 − ν)

[y3(y − 1)3x(x − 1)(5x2 − 5x + 1)

+ x3(x − 1)3y(y − 1)(5y2 − 5y + 1)],

β1(x, y) =y3(y − 1)3x2(x − 1)2(2x − 1),

β2(x, y) =x3(x − 1)3y2(y − 1)2(2y − 1).

Mixed FEM for Reissner-Mindlin plates. – 18 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 19: Expo

Numerical tests. (cont.)

e(σ) := ‖σ − σh‖0,Ω, e(γ) := ‖γ − γh‖t,H(div ;Ω),

e(β) := ‖β − βh‖0,Ω, e(r) := ‖r − rh‖0,Ω, e(w) := ‖w − wh‖0,Ω,

rc(·) := −2log(e(·)/e′(·))

log(N/N ′),

where N and N ′ denote the degrees of freedom of two consecutive triangulations with

errors e and e′.

Mixed FEM for Reissner-Mindlin plates. – 19 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 20: Expo

Numerical tests. (cont.)

Table 1: Errors and experimental rates of convergence for variables σ and γ, computed

on uniform meshes.

N e(σ) rc(σ) e(γ) rc(γ)

1345 0.40270e-04 – 0.31715e-02 –

5249 0.19649e-04 1.054 0.15876e-02 1.016

20737 0.09760e-04 1.019 0.07942e-02 1.008

82433 0.04868e-04 1.008 0.03971e-02 1.004

328705 0.02431e-04 1.004 0.01986e-02 1.002

Mixed FEM for Reissner-Mindlin plates. – 20 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 21: Expo

Numerical tests. (cont.)

Table 2: Errors and experimental rates of convergence for variables β, r and w, com-

puted on uniform meshes.

N e(β) rc(β) e(r) rc(r) e(w) rc(w)

1345 0.39713e-04 – 0.87462e-04 – 0.66226e-05 –

5249 0.18189e-04 1.147 0.39217e-04 1.178 0.27707e-05 1.280

20737 0.08884e-04 1.043 0.15009e-04 1.398 0.13136e-05 1.086

82433 0.04416e-04 1.013 0.05491e-04 1.457 0.06478e-05 1.025

328705 0.02205e-04 1.004 0.01991e-04 1.466 0.03228e-05 1.007

Mixed FEM for Reissner-Mindlin plates. – 21 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 22: Expo

Numerical tests. (cont.)

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

1000 10000 100000 1e+06

e

degrees of freedom N

σ

♦♦

♦♦

♦γ

++

++

+

r

××

××

×

×w

h

⋆⋆

⋆⋆

⋆ ⋆

Mixed FEM for Reissner-Mindlin plates. – 22 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 23: Expo

Numerical tests. (cont.)

Figure 2: Approximate transverse displacement (left) and first component of the rotation

vector (right).

Mixed FEM for Reissner-Mindlin plates. – 23 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 24: Expo

Numerical tests. (cont.)

Figure 3: Approximate shear vector: first component (left) and second component

(right).

Mixed FEM for Reissner-Mindlin plates. – 24 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 25: Expo

Numerical tests. (cont.)

Figure 4: Approximate bending moment: σ11h(left) and σ12h

(right).

Mixed FEM for Reissner-Mindlin plates. – 25 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 26: Expo

Numerical tests. (cont.)

Figure 5: Approximate bending moment: σ21h(left) and σ22h

(right).

Mixed FEM for Reissner-Mindlin plates. – 26 – BEIRAO DA VEIGA, MORA, RODRIGUEZ

Page 27: Expo

Many thanks for your attention.

Mixed FEM for Reissner-Mindlin plates. – 27 – BEIRAO DA VEIGA, MORA, RODRIGUEZ