Top Banner
Experimental Physics - Mechanics - Motion in 2D and 3D 1 Experimental Physics EP1 MECHANICS - Motion in 2D and 3D - Rustem Valiullin https://bloch.physgeo.uni-leipzig.de/amr/
18

Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Apr 27, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 1

Experimental Physics

EP1 MECHANICS

- Motion in 2D and 3D -

Rustem Valiullin

https://bloch.physgeo.uni-leipzig.de/amr/

Page 2: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 2

Position and Displacement

y

x

1

2

path

π‘Ÿ = π‘₯𝑖 + 𝑦𝑗 + π‘§π‘˜

βˆ†π‘Ÿ = π‘Ÿ 2 βˆ’ π‘Ÿ 1

βˆ†π‘Ÿ = βˆ†π‘₯𝑖 + βˆ†π‘¦π‘— + βˆ†π‘§π‘˜

π‘Ÿ 1

π‘Ÿ 2

βˆ†π‘Ÿ

Page 3: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 3

Average velocity

The average velocity

is not a function of

path connecting

two points.

y

x

1

2

path

π‘Ÿ 1

π‘Ÿ 2

βˆ†π‘Ÿ

𝑣 π‘Žπ‘£π‘” =βˆ†π‘Ÿ

βˆ†π‘‘

𝑣 π‘Žπ‘£π‘” =βˆ†π‘₯

βˆ†π‘‘π‘– +

βˆ†π‘¦

βˆ†π‘‘π‘— +

βˆ†π‘§

βˆ†π‘‘π‘˜

Page 4: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 4

Instantaneous velocity

y

x

1

2

path

Always tangent to the path.

222

zyx vvvv

π‘Ÿ 1

π‘Ÿ 2

βˆ†π‘Ÿ

𝑣 1

𝑣 2

𝑣 = limβˆ†π‘‘β†’0

βˆ†π‘Ÿ

βˆ†π‘‘= π‘‘π‘Ÿ

𝑑𝑑

𝑣 =𝑑π‘₯

𝑑𝑑𝑖 +

𝑑𝑦

𝑑𝑑𝑗 +

𝑑𝑧

π‘‘π‘‘π‘˜

𝑣 = 𝑣π‘₯𝑖 + 𝑣𝑦𝑗 + π‘£π‘§π‘˜

Page 5: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 5

Average acceleration

y

x

1

2

path

π‘Ÿ 1

π‘Ÿ 2

βˆ†π‘Ÿ

𝑣 1

𝑣 2 𝑣 1

𝑣 2

π‘Ž π‘Žπ‘£π‘”

βˆ†π‘£

π‘Ž π‘Žπ‘£π‘” =βˆ†π‘£

βˆ†π‘‘

π‘Ž π‘Žπ‘£π‘” =βˆ†π‘£π‘₯βˆ†π‘‘

𝑖 +βˆ†π‘£π‘¦

βˆ†π‘‘π‘— +

βˆ†π‘£π‘§βˆ†π‘‘

π‘˜

Page 6: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 6

Instantaneous acceleration

y

x

1

2

path

Change in either magnitude or in direction.

π‘Ž = limβˆ†π‘‘β†’0

βˆ†π‘£

βˆ†π‘‘= 𝑑𝑣

𝑑𝑑=𝑑2π‘Ÿ 𝑑𝑑2

π‘Ž =𝑑𝑣π‘₯𝑑𝑑

𝑖 +𝑑𝑣𝑦

𝑑𝑑𝑗 +

𝑑𝑣𝑧𝑑𝑑

π‘˜

π‘Ž = π‘Žπ‘₯𝑖 + π‘Žπ‘¦π‘— + π‘Žπ‘§π‘˜ π‘Ÿ 1

π‘Ÿ 2

𝑣 1

𝑣 2

π‘Ž 1

π‘Ž 2

Page 7: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 7

Constant acceleration

2

00

2

00

2

00

2

1

2

1

2

1

tatvzz

tatvyy

tatvxx

zz

yy

xx

tavv

tavv

tavv

zzz

yyy

xxx

0

0

0 𝑣 = 𝑣π‘₯𝑖 + 𝑣𝑦𝑗 + π‘£π‘§π‘˜

𝑣 = 𝑣 0 + π‘Ž 𝑑

π‘Ÿ = π‘₯𝑖 + 𝑦𝑗 + π‘§π‘˜

π‘Ÿ = π‘Ÿ 0 + 𝑣 𝑑 + 12π‘Žπ‘‘2

Page 8: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

0 5 10 15 20 25 30

-10

-5

0

5

10

vy=0

vy

vy

vx

vxvy

vx

v0y

y

x

v0x

R

h

Experimental Physics - Mechanics - Motion in 2D and 3D 8

Projectile motion

𝑣 0

𝑣 𝑣

𝑣

𝑣

Page 9: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 9

0 5 10 15 20

-10

-5

0

5

10

v0y

y

x

v0x

Projectile motion

π‘Ÿ = π‘Ÿ 0 + 𝑣 𝑑 + 12π‘Žπ‘‘2

π‘Ÿ

𝑣 𝑑

12π‘Žπ‘‘2

Page 10: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 10

0 5 10 15 20

-10

-5

0

5

10 y

v0y

y

x

v0x

x

Projectile – horizontal motion

tvxx x00

ga

a

y

x 0

tvxx )cos( 000

𝑣 0 π‘Ÿ

Page 11: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 11

0 5 10 15 20

-10

-5

0

5

10 y

v0y

y

x

v0x

x

Projectile – vertical motion

2/2

00 gttvyy y

ga

a

y

x 0

gtvvy 00 sin

)(2)sin( 0

2

00

2 yygvvy

𝑣 0 π‘Ÿ

Page 12: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 12

Projectile – equation of path

0 5 10 15 20

-10

-5

0

5

10 y

v0y

y

x

v0x

x

)(xfy

tvxx )cos( 000 2/)sin( 2

000 gttvyy

2

2

00

0)cos(2

)(tan xv

gxy

𝑣 0 π‘Ÿ

Page 13: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 13

0 5 10 15 20 25 30

-10

-5

0

5

10

vy=0

vy

vxvy

vx

v0y

y

x

v0x

R

h

Projectile – h and R

g

vh

2

sin 0

22

0

00

2

0 cossin2

g

vR

gvRR /)4/( 2

00max

𝑣 0

𝑣 𝑣

𝑣

Page 14: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 14

Projectile – the longest range R

0 5 10 150

2

4

6

8

75Β°

60Β°

45Β°

30Β°

y(m

)

x(m)

v0 = 12 m/s

15Β°

Page 15: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 15

Circular uniform motion

r

βˆ†π‘£

𝑣 1 𝑣 2

𝑣 1

𝑣 2

πœ† = 2πœƒπ‘Ÿ

βˆ†π‘‘ =πœ†

𝑣=

2π‘Ÿπœƒ

𝑣

𝑣 2 = 𝑣 cos πœƒπ‘– βˆ’ 𝑣 sin πœƒπ‘—

𝑣 1 = 𝑣 cos πœƒπ‘– + 𝑣 sin πœƒπ‘—

βˆ†π‘£ = βˆ’2𝑣 sin πœƒπ‘—

π‘Ž =βˆ†π‘£

βˆ†π‘‘=

𝑣2 sin πœƒ

π‘Ÿπœƒ(βˆ’π‘Ÿ )

π‘Žπ‘Ÿ =𝑣2

π‘Ÿ

Page 16: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 16

Tangential and radial accelerations

r

π‘Ž π‘Ÿ =𝑣2

π‘Ÿ(βˆ’π‘Ÿ ) π‘Ž 𝑑 =

𝑑𝑣

𝑑𝑑𝑑

βˆ†π‘£

𝑣 1

𝑣 2 βˆ†π‘£ 𝑑

βˆ†π‘£ π‘Ÿ

Page 17: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 17

Relative motion

As seen by the external observer:

If the train is moving with a constant velocity,

but the man is moving with an acceleration in the train

𝑣 π‘š = 𝑣 𝑑 + π‘‰π‘š

π‘Ž π‘š = 𝐴 π‘š

π‘…π‘š0 π‘…π‘šπ‘“

π‘Ÿ π‘š0 π‘Ÿ 𝑑0 π‘Ÿ 𝑑𝑓

π‘Ÿ π‘šπ‘“

Page 18: Experimental Physics EP1 MECHANICS - Motion in 2D and 3D

Experimental Physics - Mechanics - Motion in 2D and 3D 18

Equations of motion in the vector form.

Projectile motion – motion in a plane with the free-fall

acceleration.

Uniform circular motion leads to centripetal

acceleration directed towards the center.

There might be a tangential acceleration.

There are simple rules relating velocities

and accelerations in two reference systems

moving with respect to each other.

To remember!