Top Banner
Experimental Beamlines of GSI Materials Research CARAT Workshop * GSI * 13. – 15.12.2009 Daniel Severin GSI Materials Research
38

Experimental Beamlines of GSI Materials Research

May 24, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Experimental Beamlines of GSI Materials Research

Experimental Beamlines of

GSI Materials Research

CARAT Workshop * GSI * 13. – 15.12.2009Daniel SeverinGSI Materials Research

Page 2: Experimental Beamlines of GSI Materials Research

GSI - Facility

Cave AHigh Energy

UNILAC3.6-11.4 MeV/uRange ~ 100µm

X0

SISup to

2 GeV/u

ERDAIon-Beam Analysis

Page 3: Experimental Beamlines of GSI Materials Research

Sample irradiation

Page 4: Experimental Beamlines of GSI Materials Research

Heavy ion irradiation

X0 Autosampler

single ionrandom

• Automatic load-lock system

• Defocused beam (5x5cm2)

• Random ion distribution

• Fluence regime: 1 – 1E13 ions/cm2

• Single ion irradiation

• 50 samples per hour(for 1E8 ions/cm2 per sample)

Page 5: Experimental Beamlines of GSI Materials Research

Ion track membranes

pores in mica

10 µm

etch pits in SiO2 perforated dead-end pores

pores in Kapton conical pores in Kapton

1 µm

cigar-shaped pores in PC funnel-shaped pores

Page 6: Experimental Beamlines of GSI Materials Research

Heavy-ion beam Microprobe

Page 7: Experimental Beamlines of GSI Materials Research

Heavy-ion beam Microprobe

3m

object aperture

lens

target

electronic

deflectorhit detector

beamswitch

Page 8: Experimental Beamlines of GSI Materials Research

Heavy-ion beam Microprobe

3m

object aperture

lens

target

electronic

hit detector

beamswitch

deflector

Page 9: Experimental Beamlines of GSI Materials Research

Biology Setup

Fast and perfect dose control

10 µm

ions

Unsurpassed targeting accuracy

Page 10: Experimental Beamlines of GSI Materials Research

Heavy-ion beam Microprobe

typ. 20µm

100µm

Page 11: Experimental Beamlines of GSI Materials Research

single-ion lithography

10 µm

• Single ion irradiation

• Accuracy:… in vacuum: below 1µm… into air: 1.5 µm

• Speed: ~ 100 Hz

10.000 ions in regular pattern etched PET

Page 12: Experimental Beamlines of GSI Materials Research

Sample characterization

Page 13: Experimental Beamlines of GSI Materials Research

Off-line techniques atMaterials Research

Spectroscopy

1400 1200 1000 8000

2

1117

cm

-1

abso

rptio

n / a

rb. u

nit

wavenumber / cm-1

virgin 1x1010

1x1011

4x1011

2x1012

725

cm-1

1169

cm

-1

1456

cm

-1

Phase TransitionPolymer Degradation

UV/Vis & Infrared RamanMicroscopy

Shape and Size of Nanopores and -wires

Surface Analysis

AFM / STM SEM

Swelling effects

LaserspectroscopyProfilometry Chemistry

Lab

Template etching

Photon relaxation

Page 14: Experimental Beamlines of GSI Materials Research

In-situ and On-linesample characterization

Page 15: Experimental Beamlines of GSI Materials Research

GSI - Facility

UNILAC3.6-11.4 MeV/u

X0

New M-Branch

Cave A

Page 16: Experimental Beamlines of GSI Materials Research

M - Branch

Page 17: Experimental Beamlines of GSI Materials Research

M1 – Electron Microscopy

Fixed beam spot size:diameter = 3mm

On-line beam diagnostic(aperture current)

Page 18: Experimental Beamlines of GSI Materials Research

M1 – In-situ SEM

2 µm2 µm

• Zeiss SUPRA 40 high-resolution scanning electron microscope (1.3 nm at 15 keV)

• 5-axes motorised eucentricsample stage

• In-situ imaging without exposing the irradiated sample to air

Page 19: Experimental Beamlines of GSI Materials Research

M2 – In-situ XRD

• Small beam spot

• Scanning ion beam system(extreme homogeneousirradiation with high flux)

• On-line beam diagnostic(aperture current)

Page 20: Experimental Beamlines of GSI Materials Research

• SEIFERT 4-circle x-ray diffractometer (Cu-Kα)

• Position sensitive detector

• Investigation under any angle of incidence enables the quantitative analysis of structural modifications

Page 21: Experimental Beamlines of GSI Materials Research

XRD - Application

10 20

inte

nsity

(a.u

.)

two theta (degrees)

unirradiated

1×1013 cm-2

5×1012 cm-2

• Amorphization

• Formation of new ion-beaminduced phases

• Special orientationtexturing

Page 22: Experimental Beamlines of GSI Materials Research

M3 – On-line Spectroscopy

• Variable beam spot size (Slit system with max. 4x4cm2)• On-line beam monitoring by SETRAM• Extreme sensitive beam view monitor (down to 1E3 ions/cm2)

Page 23: Experimental Beamlines of GSI Materials Research

Sample curvature detection

Irradiation-induced material stress measured by sample curvature detection

University of Jena(Wesch, Steinbach)

Page 24: Experimental Beamlines of GSI Materials Research

Residual Gas Analyser

0 10 20 30 40 50 60 70 80 90 10010-9

10-8

10-7

10-6

C2F4

C2F3

CF3

CF2pres

sure

/ m

bar

m/z

without beam with beam

CF

11.4 MeV/u Xe --> PTFE

Irradiation-induced outgassing of PTFE

University of Sao Paulo(Delgado)

Page 25: Experimental Beamlines of GSI Materials Research

On-line FT/IR Spectroscopy

-0,16

-0,14

-0,12

-0,10

-0,08

-0,06

-0,04

-0,02

-0,00

0,02

Abso

rban

ce

2330 2335 2340 2345 Wavenumbers (cm-1)

Transmission FT/IR spectroscopy

• Real on-line measurement possible

• Elimination of errors by sample preparation

Page 26: Experimental Beamlines of GSI Materials Research

M3 – All-in-one chamber

Cryostat UV/Vis and fluorescence

QMS Gas flow controller

FT-IRLong-distancemicroscopy

Ion beam

Sample curvaturemeasurement

Control of irradiation conditions:

• Cryostat

• Gas flow controller and QMS

Page 27: Experimental Beamlines of GSI Materials Research

High temperature irradiation

Sample temperature up to 950 °C (area 4x4cm2)

Page 28: Experimental Beamlines of GSI Materials Research

Outlook for the next 3 years…

Within a second BMBF project starting 2010– On-line Raman spectroscopy– In-situ AFM in an UHV Chamber– High energetic ERDA (UHV)– Photoluminescence

Page 29: Experimental Beamlines of GSI Materials Research

Summary

Sample irradiation …at X0 (random ion distribution)…at µ-Probe (controlled single-ion irradiation)

Off-line techniques: Electron microscopy, AFM, STM,optical spectroscopy (Raman, IR, UV/Vis) etc.

On-line and in-situ beamlines at the new M-branchSEM, XRD, IR etc.

Surface modificationM1 and M3

Structural bulk modificationM2 and M3

!

!

!

!

!

Page 30: Experimental Beamlines of GSI Materials Research

Thanks to…

… GSI Materials Research group

… collaborating Universities of the M-Branch(Darmstadt, Dresden, Göttingen, Heidelberg, Jena, Stuttgart)

… and thanks for your attention!

Page 31: Experimental Beamlines of GSI Materials Research

END

Page 32: Experimental Beamlines of GSI Materials Research

Dose distribution of swift heavy ions

photons ions

Page 33: Experimental Beamlines of GSI Materials Research

Ion track membranes

10 nm

10-1000 µm

Page 34: Experimental Beamlines of GSI Materials Research

Track morphology

5.0 keV/nm

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

ener

gy lo

ss (k

eV/n

m)

energy (MeV/u)

O

Xe

Ar

Krhomogeneous

inhomogeneous

no etching

4.5 keV/nm

NIM B 116 (1996) 429

Page 35: Experimental Beamlines of GSI Materials Research

Track etching

PETpolycarbonate

Kapton

UV treatment

chemicaletching

(NaOH, NaOCl. HF)

Irradiation

Page 36: Experimental Beamlines of GSI Materials Research

Polymers / Pore size

2 µmTrack etchable POLYMERS

PET polyethylene terephthalate (Mylar, Hostaphan)PC polycarbonate (Lexan, Makrofol, CR39)PI polyimide (Kapton, Upilex)PP polypropylenePVDF polyvinyidene fluoride 30 µm Makrofol N

6M NaOH @ 50 °C

2 µm

Page 37: Experimental Beamlines of GSI Materials Research

SAXS

α = 15°

Characteristics: pattern is very sensitive to alignment due to large aspect ratio of pores

α = 0° coaxialq [Å-1]

ln(in

tens

ity)

polyarylate foil5×108 pores/cm2

∅ = 240 nm

Θα SAXSx-rays

Page 38: Experimental Beamlines of GSI Materials Research

Replica method

10 µmion track membrane

filling of pores in galvanic cell

free-standing metal needlesdissolution ofpolymer