Top Banner
Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer Hierold Micro and Nanosystems, ETH Zürich Theory: Ludger Wirtz Institute for Electronics, Microelectronics, and Nanotechnology, Lille Spatially resolved Raman spectroscopy of single- and few-layer graphene 1 1 2 6 6 4 2 m SiO 2 1200 1600 2000 2400 2800 Raman shift (cm -1 ) Intensity
36

Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Jan 18, 2016

Download

Documents

Letitia Farmer
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Experiment:Davy Graf, Françoise Molitor,

and Klaus EnsslinSolid State Physics, ETH Zürich, Switzerland

Christoph Stampfer, Alain Jungen, and Christofer Hierold

Micro and Nanosystems, ETH ZürichTheory:

Ludger WirtzInstitute for Electronics, Microelectronics,

and Nanotechnology, Lille

Spatially resolved Raman spectroscopy

of single- and few-layer graphene

1 12

66

42 m

SiO2

1200 1600 2000 2400 2800Raman shift (cm -1)

Inte

nsity

(a

.u)

Page 2: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Motivation

1. • Investigate the 3D to 2D crossover in graphite.• Probe electronic and vibrational properties of few-layer, double-layer and single-layer graphene with double resonant Raman scattering.

Page 3: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Motivation

2 µm

1 m1

12

SiO2

Scanning force microscope

Optical microscope

0.4

0

SFM height (nm)

0.60.40.20Lateral position (m)

→ Raman spectroscopy:characterize by optical means(# layers and structural quality)

2.

1. • Investigate the 3D to 2D crossover in graphite.• Probe electronic and vibrational properties of few-layer, double-layer and single-layer graphene with double resonant Raman scattering.

Page 4: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Introduction: Vibrational Properties

ab-initio calculations:G. Kresse, J. Furthmüller, and J. Hafner, Europhys. Lett. 32, 729 (1995)Review article: L. Wirtz and A. Rubio, Solid State Comm. 131, 141 (2004).

Page 5: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Introduction: Vibrational Properties

ab-initio calculations:G. Kresse, J. Furthmüller, and J. Hafner, Europhys. Lett. 32, 729 (1995)Review article: L. Wirtz and A. Rubio, Solid State Comm. 131, 141 (2004).

2 atoms per unit cell => 6 phonon branches, 3 optic, 3 acoustic

Page 6: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Introduction: Vibrational Properties

Review article: L. Wirtz and A. Rubio, Solid State Comm. 131, 141 (2004).

Kinks in the dispersion (Kohn Anomaly)M. Lazzeri, F. Mauri, PRL 2004

Page 7: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Introduction: Vibrational Properties

Review article: L. Wirtz and A. Rubio, Solid State Comm. 131, 141 (2004).

Linear crossings of bands (due to symmetry)

Page 8: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Attention: different force constant parametrizations on the market

Review article: L. Wirtz and A. Rubio, Solid State Comm. 131, 141 (2004).

Page 9: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Finally: measured phonon dispersion brings good agreement with ab-initio calculations

Inelastic X-ray diffraction measurements:J. Maultzsch et al., Phys. Rev. Lett. 92, 075501 (2004)

Experiment

ab-initio

Page 10: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman spectroscopy on graphite

kKphonon

at point, k~0→ G

Single-resonant

Ref.: S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes, Wiley-VCH (2004)

0 1500 3000Raman shift (cm-1)

Inte

nsity

(a.

u) graphite 2.33 eV

D

G

D‘ G‘

E2g mode at

Page 11: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman spectroscopy on graphite

kK

phonon

at point, k~0→ G

Single-resonant

Ref.: S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes, Wiley-VCH (2004)

G-line is nondispersive

0 1500 3000Raman shift (cm-1)

Inte

nsity

(a.

u) graphite 2.33 eV

D

G

D‘ G‘

E2g mode at

Page 12: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman spectroscopy on graphite

kKphonon

at point, k~0→ G

Single-resonant

Ref.: S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes, Wiley-VCH (2004)

E =

2.3

3 e

V

0.4 0 0.20.400.2-2

-1

0

1

2

E (

eV

)

KK MM M

q’

q

q’’A

B C

double-resonant

0 1500 3000Raman shift (cm-1)

Inte

nsity

(a.

u) graphite 2.33 eV

D

G

D‘ G‘

TO mode between K and M

Page 13: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman spectroscopy on graphite

kKphonon

at point, k~0→ G

Single-resonant

Ref.: S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes, Wiley-VCH (2004)

E =

2.3

3 e

V

0.4 0 0.20.400.2-2

-1

0

1

2

E (

eV

)

KK MM M

q’

q

q’’A

B C

double-resonant

0 1500 3000Raman shift (cm-1)

Inte

nsity

(a.

u) graphite 2.33 eV

D

G

D‘ G‘

TO mode between K and M

dispersive

Page 14: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman spectra of single- and double layer graphene

Sample fabrication:- Si wafer with 300 nm Si02 cap layer- Mechanical exfoliation of highly oriented pyrolytic graphite (HOPG)Ref.: K.S. Novoselov et al., PNAS 102, 10451 (2005)

Scanning force microscope

1 m1

12

SiO2

Page 15: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Inte

nsity

(a.

u)

1200 1600 2000 2400 2800Raman shift (cm-1)

Inte

nsity

(a.

u)

Raman spectra of single- and double layer graphene

1

2

Scanning force microscope

1 m

D

single-layer graphene

double-layer graphene2

1

G D‘

Scanning confocal Raman spectroscopy:- Laser excitation of 532 nm/ 2.33 eV- Spot size:

Page 16: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman spectra of single- and double layer graphene

1

2

Scanning force microscope

1 mIn

tens

ity (

a.u)

1200 1600 2000 2400 2800Raman shift (cm-1)

Inte

nsity

(a.

u)

D

single-layer graphene

double-layer graphene2

1

G D‘

Page 17: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

1500 1600 1700Raman shift (cm-1)

Inte

nsi

ty (

a.u

)

Raman mapping: Integrated G line intensity

1

2

Scanning force microscope

1 m

Raman: G line intensity

1

2

Page 18: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman mapping: Integrated G line intensity

Scanning force microscope

1 m1

12

SiO2

Raman: Integrated G line intensity

1 m

0 0.4 0.8 1.2 1.6 2Lateral position (m)

Inte

nsi

ty (

a.u

.)2-layer 1-layer SiO2

Page 19: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

One-to-one correlation

1 1

2

65(?)

6

42 m

SFM

0

Intensity G

0 2 4 6 8 10Lateral position (m)

1

2

3

4

5

Inte

nsity

G (

a.u.

)

-2

-1

0

1

SF

M h

eig

ht (

nm

) 5(?) 6 462101

# layers

Page 20: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman spectra of single- and double layer graphene

1

2

Scanning force microscope

1 mIn

tens

ity (

a.u)

1200 1600 2000 2400 2800Raman shift (cm-1)

Inte

nsity

(a.

u)

D

single-layer graphene

double-layer graphene2

1

G D‘

Page 21: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman mapping: Integrated D line intensity

Symmetry:breaking / defects:

1. Edge of the flake.2. Boundary of sections of different height.3. But no defects within the flake.

kKphonon

close to K, M point, k>0Momentum restoring:elastic scattering → D

Double-resonant • Crystallite grain size, symmetry breaking [Tuinstra and Koenig, 1970]

2) Defects, disorder in general[Y. Wang et al, 1990]

Scanning force microscope

1 m1

12

SiO2

Raman: Integrated D line intensity

1 m

Page 22: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman spectra of single- and double layer graphene

1

2

Scanning force microscope

1 mIn

tens

ity (

a.u)

1200 1600 2000 2400 2800Raman shift (cm-1)

Inte

nsity

(a.

u)

D

single-layer graphene

double-layer graphene2

1

G D‘

Page 23: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman mapping: FWHM of the D‘ line

2600 2700 2800Raman shift (cm-1)

Inte

nsity

(a.

u)

~ 30 cm-1

~ 60 cm-1

1

2

Scanning force microscope

1 m

Raman: D‘ line intensity

1

2

1

2

Page 24: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman mapping: FWHM of the D‘ line

Scanning force microscope

1 m1

12

SiO2

Raman: FWHM of D‘ line

1 m

Page 25: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Splitting of the D‘ peak for double-layer graphene

Raman shift (cm-1)

Inte

nsity

(a.

u.)

2600 2700 2800

q

D‘: Single-layer graphene

E =

2.3

3 e

V

0.4 0 0.20.400.2-2

-1

0

1

2

E (

eV

)

KK MM M

q’

q

q’’A

B C

Page 26: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman shift (cm-1)

Inte

nsity

(a.

u.)

2600 2700 2800

Splitting of the D‘ peak for double-layer graphene

Raman shift (cm -1)

Inte

nsity

(a.

u.)

2600 2700 2800

q

q1 q2

Related work: A.C. Ferrari at al., PRL (2006)

D‘: Single-layer graphene

D‘: Double-layer graphene

E =

2.3

3 e

V

0.4 0 0.20.400.2-2

-1

0

1

2

E (

eV

)

KK MM M

q’

q

q’’A

B C

-2

-1

0

1

2

E (

eV

)

KK MM M

q2q1 q3

qq0

q3

Page 27: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

However: quantitative failure of the model

Raman shift (cm -1)

Inte

nsity

(a.

u.)

2600 2700 2800

q1 q2

D‘: Double-layer graphene

-2

-1

0

1

2

E (

eV

)

KK MM M

q2q1 q3

qq0

q3

The amount of splitting is underestimated by a factor of 2

Page 28: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

However: quantitative failure of the model

Raman shift (cm -1)

Inte

nsity

(a.

u.)

2600 2700 2800

q1 q2

D‘: Double-layer graphene

-2

-1

0

1

2

E (

eV

)

KK MM M

q2q1 q3

qq0

q3

The amount of splitting is underestimated by a factor of 2

Furthermore: D-Line dispersion off by a factor of 2

Page 29: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

However: quantitative failure of the model

Raman shift (cm -1)

Inte

nsity

(a.

u.)

2600 2700 2800

q1 q2

D‘: Double-layer graphene

-2

-1

0

1

2

E (

eV

)

KK MM M

q2q1 q3

qq0

q3

The amount of splitting is underestimated by a factor of 2

Furthermore: D-Line dispersion off by a factor of 2

Origin of the discrepancy: slope of ab-initio bands wrong,

or phonon dispersion wrong, or quantitative failure of double

resonant model

Page 30: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Pi-band dispersion of graphite

H

A. Grüneis, C. Attaccalite et al., submitted (2007), see cond-mat

Comparison of calculated and measured band-structure:

ARPES measurements

Blue lines: GW-calculations,

Red lines: LDA

Page 31: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Slope of the TO mode between K and M

J. Maultzsch et al., Phys. Rev. Lett. 92, 075501 (2004)

Experiment

ab-initio

Page 32: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Conclusions• Raman spectroscopy: an alternative to scanning force microscopy

• Monolayer sensitivity (single to double layer)

• Defects/symmetry breaking at the edge not within the flakes

• Need for more quantitative investigations of the double-resonant Raman model (splitting of the D' line and dispersion of the D and D' lines

Raman: FWHM D‘

Raman: Intensity D

D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L.Wirtz,cond-mat/0607562 Nano Lett. 7, 238 (2007).Related work: A.C. Ferrari et al., Phys. Rev. Lett. (2006).Gupta et al. Nano Lett. (2006).

Page 33: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Raman mapping: Integrated D line intensity

Symmetry:breaking / defects:

1. Edge of the flake.2. Boundary of sections of different height.3. But no defects within the flake.

• Crystallite grain size, symmetry breaking [Tuinstra and Koenig, 1970]

2) Defects, disorder in general[Y. Wang et al, 1990]

Scanning force microscope

1 m1

12

SiO2

Raman: Integrated D line intensity

1 m

E =

2.3

3 e

V

0.4 0 0.20.400.2-2

-1

0

1

2

E (

eV

)

KK MM M

q’

q

q’’A

B C

Page 34: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Conclusions Experiment:Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland

Christoph Stampfer, Alain Jungen, and Christofer Hierold Micro and Nanosystems, ETH Zürich, Switzerland

Theory: Ludger WirtzInstitute for Electronics, Microelectronics, and Nanotechnology (IEMN), 59652 Villeneuve d'Ascq, France

D. Graf et al., condmat/ , submittedRelated work: A.C. Ferrari at al., condmat/0606284, A. Gupta et al., condmat/0606593

Raman: FWHM D‘

Raman: Intensity D

• Raman spectroscopy: an alternative to scanning force microscopy

• Monolayer sensitivity (single to double layer)

• Defects/symmetry breaking at the edge not within the flakes

Page 35: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

Frequency shift of the G band

1 2 3 4 6 HOPG# layer

G p

eak

(cm

-1)

1581

1583

1585

Inte

nsity

(a.

u.)

Raman shift (cm-1)

G

1540 1560 1580 1600 1620

HOPG reference:1582 cm-1

HOPG2-layer1-layer

cm-1

Page 36: Experiment: Davy Graf, Françoise Molitor, and Klaus Ensslin Solid State Physics, ETH Zürich, Switzerland Christoph Stampfer, Alain Jungen, and Christofer.

One-to-one correlation

- Height sensitivity for few-layer graphene

- Proportional to # of layers, but saturation above ~ 6 ML

1 2 3 4 60.2

0.4

0.6

0.8

HOPG# layer

Rel

. in

tens

ity

G/D

'

0 2 4 6 8 10Lateral position (m)

1

2

3

4

5

Inte

nsity

G (

a.u.

)

-2

-1

0

1

SF

M h

eig

ht (

nm

) 5(?) 6 462101