Top Banner
Example: n n n R b R A , Introduction to Krylov Subspace Methods DEF: b Ax , , , 2 b A Ab b Krylov sequence Krylov sequence 10 -1 2 0 -1 11 -1 3 2 -1 10 -1 0 3 -1 8 A 1 11 118 1239 12717 1 12 141 1651 19446 1 10 100 989 9546 1 10 106 1171 13332 Ab b A 2 b A 3 b A 4 b
8

Example:

Jan 04, 2016

Download

Documents

Introduction to Krylov Subspace Methods. DEF:. Krylov sequence. Example:. Krylov sequence. 1 11 118 1239 12717 1 12 141 1651 19446 1 10 100 989 9546 1 10 106 1171 13332. 10 -1 2 0 -1 11 -1 3 2 -1 10 -1 0 3 -1 8. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Example:

Example:

nnn RbRA ,

Introduction to Krylov Subspace Methods

DEF:

bAx

,,, 2bAAbb Krylov sequence

Krylov sequence

10 -1 2 0 -1 11 -1 3 2 -1 10 -1 0 3 -1 8

A1 11 118 1239 127171 12 141 1651 194461 10 100 989 95461 10 106 1171 13332

Ab bA2 bA3 bA4b

Page 2: Example:

Example:

Example:

Introduction to Krylov Subspace Methods

DEF:

} ,,, {),( 1bAAbbspanbA mm

Krylov subspace

10 -1 2 0 -1 11 -1 3 2 -1 10 -1 0 3 -1 8

A

Krylov subspace

),(

106

100

141

118

,

10

10

12

11

,

1

1

1

1

3 spanbA

DEF:

bAAbbbAK mm

1,,,),(

Krylov matrix

106

100

141

118

10

10

12

11

1

1

1

1

),(3 bA

Page 3: Example:

Example:

Introduction to Krylov Subspace Methods

Remark: ))((3 AbAAbA

DEF:

bAAbbbAK mm

1,,,),(

Krylov matrix

106

100

141

118

10

10

12

11

1

1

1

1

),(3 bA

Page 4: Example:

WHY: Krylov Subspace Methods

DEF:

bAAbbbAK mm

1,,,),(

Krylov matrix Example: Solve:

15

11

25

6

4

3

2

1

x

x

x

x 10 -1 2 0 -1 11 -1 3 2 -1 10 -1 0 3 -1 8

>> A=[10 -1 2 0; -1 11 -1 3;2 -1 10 -1; 0 3 -1 8]

>> poly(A)

1 -39 552 -3357 7395

7395335755239)( 234 xxxxxp

Characteristic poly

the Cayley-Hamilton theorem a matrix satisfies its characteristic polynomial, p(A) = 0. That is,

07395335755239 234 IAAAA

Multiplying with inv(A) & rearrange

IAAAA7395

3357

7395

55227395

3937395

11

Hence,

bAbbAbAbA7395

3357

7395

55227395

3937395

11

The key observation here is that the solution x to Ax = b is a linear combination of the vectors b and Ab,.. which make up the Krylov subspace

the solution to Ax = b has a natural representation as a member of a Krylov space,

Page 5: Example:

Krylov subspace Methods

Krylov subspace

GMRES

Conjugate Gradient others

MINRESdefinite

symm

A

.

.symm

Ageneral

A

Page 6: Example:

MATLAB commands

Conjugate Gradient definitesymmA & .

x = pcg(A, b, tol, maxit)

x = gmres(A,b,[],tol,maxit)

GMRESeneral gA

MINRES

x = minres(A, b, tol, maxit)

. symmA

Page 7: Example:

Conjugate Gradient Method

nnn RbRA ,

Conjugate Gradient Method

We want to solve the following linear system

bAx

definite) positive (symmetric SPD A

0

0

x

AxxT

end

210for

111

111

1

1

00

00

kkkk

kT

kkT

kk

kkkk

kkkk

kTkk

Tkk

pβrp

r/rrrβ

Apαr r

pαxx

Ap/prrα

,..,, k

rp

Axbr

Page 8: Example:

0 K=1 K=2 K=3 K=4x1

x2

x3

X4

)(kr

1

1

2

1

*x

Conjugate Gradient Method

Example: Solve:

15

11

25

6

4

3

2

1

x

x

x

x 10 -1 2 0 -1 11 -1 3 2 -1 10 -1 0 3 -1 8

Conjugate Gradient Method

end

210for

111

111

1

1

00

00

kkkk

kT

kkT

kk

kkkk

kkkk

kTkk

Tkk

pβrp

r/rrrβ

Apαr r

pαxx

Ap/prrα

,..,, k

rp

Axbr

0 0.4716 0.9964 1.0015 1.00000 1.9651 1.9766 1.9833 2.00000 -0.8646 -0.9098 -1.0099 -1.00000 1.1791 1.0976 1.0197 1.0000

31.7 5.1503 1.0433 0.1929 0.0000