Top Banner
Exact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th´ eorique, CEA Saclay (France) Forum de la Th´ eorie, Saclay, 3 Avril 2013 K. Mallick Exact Solutions in Non-equilibrium Statistical Physics
41

Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Jun 06, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Exact Solutions in Non-equilibrium StatisticalPhysics

K. Mallick

Institut de Physique Theorique, CEA Saclay (France)

Forum de la Theorie, Saclay, 3 Avril 2013

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 2: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Introduction

The statistical mechanics of a system at thermal equilibrium is encodedin the Boltzmann-Gibbs canonical law:

Peq(C) =e−E(C)/kT

Z

the Partition Function Z being related to the Thermodynamic FreeEnergy F:

F = −kTLog Z

This provides us with a well-defined prescription to analyze systems atequilibrium:(i) Observables are mean values w.r.t. the canonical measure.(ii) Statistical Mechanics predicts fluctuations (typically Gaussian) thatare out of reach of Classical Thermodynamics.

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 3: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Systems far from equilibrium

No fundamental theory is yet available.

• What are the relevant macroscopic parameters?

• Which functions describe the state of a system?

• Do Universal Laws exist? Can one define Universality Classes?

• Can one postulate a general form for the microscopic measure?

• What do the fluctuations look like (‘non-gaussianity’)?

Example: Stationary driven systems in contact with reservoirs.

R1

J

R2

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 4: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Rare Events and Large Deviations

Let ε1, . . . , εN be N independent binary variables, εk = ±1, withprobability p (resp. q = 1− p). Their sum is denoted by SN =

∑N1 εk .

• The Law of Large Numbers implies that SN/N → p − q a.s.

• The Central Limit Theorem implies that [SN − N(p − q)]/√

Nconverges towards a Gaussian Law.

One can show that for −1 < r < 1, in the large N limit,

Pr

(SN

N= r

)∼ e−N Φ(r)

where the positive function Φ(r) vanishes for r = (p − q).

The function Φ(r) is a Large Deviation Function: it encodes theprobability of rare events.

Φ(r) =1 + r

2ln

(1 + r

2p

)+

1− r

2ln

(1− r

2q

)

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 5: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Density fluctuations in a gas

V, T

N

vn

Mean Density ρ0 = NV

In a volume v s. t. 1 v V〈 nv 〉 = ρ0

The probability of observing large fluctuations of density in v is given by

Pr(n

v= ρ)∼ e−v Φ(ρ)

with Φ(ρ) = f (ρ,T )− f (ρ0,T )− (ρ− ρ0) ∂f∂ρ0where f (ρ,T ) is the

free energy per unit volume in units of kT : the Thermodynamic FreeEnergy can be viewed as a Large Deviation Function.

Conversely, large deviation functions may play the role of potentials innon-equilibrium statistical mechanics.

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 6: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

A Symmetry of the Large Deviation Function

Large deviation functions obey a symmetry that remains valid far fromequilibrium:

Φ(r)− Φ(−r) = Ar

The coefficient A is a constant, e.g. A = ln q/p in the example above.

This Fluctuation Theorem of Gallavotti and Cohen is deep and general: itreflects covariance properties under time-reversal.

In the vicinity of equilibrium the Fluctuation Theorem yields thefluctuation-dissipation relation (Einstein), Onsager’s relations and linearresponse theory (Kubo).

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 7: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Total Current transported through a System

A paradigm of a non-equilibrium system

R1

J

R2

The asymmetric exclusion model with open boundaries

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 8: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Total Current transported through a System

A paradigm of a non-equilibrium system

R1

J

R2

The asymmetric exclusion model with open boundaries

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 9: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Classical Transport in 1d: ASEP

q p p pq

Asymmetric Exclusion Process. A paradigm for non-equilibriumStatistical Mechanics.

• EXCLUSION: Hard core-interaction; at most 1 particle per site.

• ASYMMETRIC: External driving; breaks detailed-balance

• PROCESS: Stochastic Markovian dynamics; no Hamiltonian.

SOME APPLICATIONS:

• Low dimensional transport.

• Sequence matching, Brownian motors.

• Traffic and Pedestrian flow.

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 10: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

ORIGINS

• Interacting Brownian Processes (Spitzer, Harris, Liggett).

• Driven diffusive systems (Katz, Lebowitz and Spohn).

• Transport of Macromolecules through thin vessels.Motion of RNA templates.

• Hopping conductivity in solid electrolytes.

• Directed Polymers in random media. Reptation models.

APPLICATIONS

• Traffic flow.

• Sequence matching.

• Brownian motors.

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 11: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Elementary Model for Protein Synthesis

C. T. MacDonald, J. H. Gibbs and A.C. Pipkin, Kinetics ofbiopolymerization on nucleic acid templates, Biopolymers (1968).

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 12: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

An Important Mathematical Result

Consider the Symmetric Exclusion Process on an infinite one-dimensionallattice with spacing a and with a finite density ρ of particles.

Suppose that we tag and observe a particle that was initially located atsite 0 and monitor its position Xt with time.

On the average 〈Xt〉 = 0 but how large are its fluctuations?

• If the particles were non-interacting (no exclusion constraint), eachparticle would diffuse normally 〈X 2

t 〉 = 2Dt .

• Because of the exclusion condition, a particle displays an anomalousdiffusive behaviour:

〈X 2t 〉 = 2

1− ρρ

a

√Dt

π

T.E. Harris, J. Appl. Prob. (1965).F. Spitzer, Adv. Math. (1970).

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 13: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

An Important Mathematical Result

Consider the Symmetric Exclusion Process on an infinite one-dimensionallattice with spacing a and with a finite density ρ of particles.

Suppose that we tag and observe a particle that was initially located atsite 0 and monitor its position Xt with time.

On the average 〈Xt〉 = 0 but how large are its fluctuations?

• If the particles were non-interacting (no exclusion constraint), eachparticle would diffuse normally 〈X 2

t 〉 = 2Dt .

• Because of the exclusion condition, a particle displays an anomalousdiffusive behaviour:

〈X 2t 〉 = 2

1− ρρ

a

√Dt

π

T.E. Harris, J. Appl. Prob. (1965).F. Spitzer, Adv. Math. (1970).

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 14: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

A crystal growing on a corner in two dimensions

_+tSy

x+

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 15: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Mapping to a one-dimensional particle process

y x

z

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 16: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

The Hydrodynamic Limit

E = ν/2L

ρ ρ21

L

Starting from the microscopic level, define local density ρ(x , t) andcurrent j(x , t) with macroscopic space-time variables x = i/L, t = s/L2

(diffusive scaling).The typical evolution of the system is given by the hydrodynamicbehaviour:

∂tρ =1

2∇2ρ− ν∇σ(ρ) with σ(ρ) = ρ(1− ρ)

(Lebowitz, Spohn, Varadhan)

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 17: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Large Deviations at the Hydrodynamic Level

What is the probability to observe an atypical current j(x , t) and thecorresponding density profile ρ(x , t) during 0 ≤ s ≤ L2 T ?

Prj(x , t), ρ(x , t) ∼ e−L I(j,ρ)

where the Large-Deviation functional is given by macroscopic fluctuationtheory (Jona-Lasinio et al.)

I(j , ρ) =

∫ T

0

dt

∫ 1

0

dx

(j − νσ(ρ) + 1

2∇ρ)2

σ(ρ)

with the constraint: ∂tρ = −∇.jThis leads to a variational procedure to control a deviation of the densityand of the associated current: an optimal path problem.

This is a global framework. Unfortunately, the correspondingEuler-Lagrange equations can not be solved analytically in general.

Our aim is to derive the statistical properties of the current and itslarge deviations starting from the microscopic model.

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 18: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Current Fluctuations

on a ring

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 19: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Markov Equation for the ASEP on a ring

L

N )(Ω =

N PARTICLES

L SITES

x asymmetry parameter

1

x

CONFIGURATIONS

Master Equation for the Probability Pt(x1, . . . , xN) of being inconfiguration 1 ≤ x1 < . . . < xN ≤ L at time t.

dPt

dt=

∑i

′ [Pt(x1, . . . , xi − 1, . . . , xN)− Pt(x1, . . . , xi , . . . xN)]

+ x∑i

′ [Pt(x1, . . . , xi + 1, . . . , xN)− Pt(x1, . . . , xi , . . . xN)]

= MP .

The sum being restricted to admissible configurations.K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 20: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Large Deviations of the Current

Let Yt be the total current i.e. total distance covered by all the Nparticles, hopping on a ring of size L, between time 0 and time t.

In the stationary state, a non-vanishing mean-current: Yt

t → J

The fluctuations of Yt obey a Large Deviation Principle:

P

(Yt

t= j

)∼e−tΦ(j)

Φ(j) being the large deviation function of the total current.

Equivalently, consider the moment-generating function, which whent →∞, behaves as ⟨

eµYt⟩' eE(µ)t

Related by Legendre transform: E (µ) = maxj (µj − Φ(j))

The calculation of E (µ) can be identified to eigenvalue problem solvableby Bethe Ansatz.

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 21: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Cumulants of the Current

• Mean Current: J = (1− x)N(L−N)L−1

• Diffusion Constant: D = (1− x) 2LL−1

∑k>0 k2 CN+k

L

CNL

CN−kL

CNL

(1+xk

1−xk

)• Third cumulant (Skewness):

E3

6L2=

1− x

L− 1

∑i>0

∑j>0

CN+iL CN−i

L CN+jL CN−j

L

(CNL )4

(i2 + j2)1 + x i

1− x i

1 + x j

1− x j

− 1− x

L− 1

∑i>0

∑j>0

CN+iL CN+j

L CN−i−jL

(CNL )3

i2 + ij + j2

2

1 + x i

1− x i

1 + x j

1− x j

− 1− x

L− 1

∑i>0

∑j>0

CN−iL CN−j

L CN+i+jL

(CNL )3

i2 + ij + j2

2

1 + x i

1− x i

1 + x j

1− x j

− 1− x

L− 1

∑i>0

CN+iL CN−i

L

(CNL )2

i2

2

(1 + x i

1− x i

)2

+1− x

L− 1

[N(L− N)

4(2L− 1)

C 2N2L

(CNL )2− N(L− N)

6(3L− 1)

C 3N3L

(CNL )3

]K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 22: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

The General Case (S. Prolhac, 2010)

The function E (µ) is again obtained in a parametric form:

µ = −∑k≥1

CkBk

kand E = −(1− x)

∑k≥1

DkBk

k

Ck and Dk are combinatorial factors enumerating some tree structures.There exists an auxiliary function

WB(z) =∑k≥1

φk(z)Bk

k

such that Ck and Dk are given by complex integrals along a smallcontour that encircles 0 :

Ck =

∮C

dz

2 i π

φk(z)

zand Dk =

∮C

dz

2 i π

φk(z)

(z + 1)2

The function WB(z) contains the full information about the statistics ofthe current.

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 23: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

The function WB(z) is the solution of a functional Bethe equation:

WB(z) = − ln(

1− BF (z)eX [WB ](z))

where

F (z) = (1+z)L

zN

The operator X is a integral operator

X [WB ](z1) =

∮C

dz2

ı2π z2WB(z2)K (z1, z2)

with the kernel

K (z1, z2) = 2∑∞

k=1xk

1−xk

(z1

z2

)k+(

z2

z1

)k

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 24: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Solving this Functional Bethe Ansatz equation for WB(z) enables us tocalculate cumulant generating function.

From the Physics point of view, the solution allows one to

Classify the different universality classes (KPZ, EW).

Study the various scaling regimes.

Investigate the hydrodynamic behaviour.

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 25: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Limits of the Current Cumulants

• Mean Current: J ∼ (1− x)Lρ(1− ρ) for L→∞

• Diffusion Constant:

D ∼ 4φLρ(1− ρ)

∫ ∞0

duu2

tanhφue−u

2

when L→∞ and x → 1 with fixed value of φ =(1−x)√

Lρ(1−ρ)

2 .

• Third cumulant (Skewness): → Non Gaussian fluctuations.

E3 '(

3

2− 8

3√

3

)π(ρ(1− ρ))2L3

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 26: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Full large deviation function (weak asymmetry)

E(µ

L

)' ρ(1− ρ)(µ2 + µν)

L− ρ(1− ρ)µ2ν

2L2+

1

L2ψ[ρ(1− ρ)(µ2 + µν)]

with ψ(z) =∞∑k=1

B2k−2

k!(k − 1)!zk

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 27: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Current Fluctuations

in the open ASEP

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 28: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

The Current in the Open System

The fundamental paradigm

R1

J

R2

The asymmetric exclusion model with open boundaries

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

NB: the asymmetry parameter in now denoted by q.K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 29: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

The Phase Diagram

LOW DENSITY

HIGH DENSITY

MAXIMAL

CURRENT

ρ

1 − ρ

a

b

1/2

1/2

ρa = 1a++1 : effective left reservoir density.

ρb = b+

b++1 : effective right reservoir density.

a± =(1− q − α + γ)±

√(1− q − α + γ)2 + 4αγ

b± =(1− q − β + δ)±

√(1− q − β + δ)2 + 4βδ

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 30: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Total Current

The observable Yt counts the total number of particles exchangedbetween the system and the left reservoir between times 0 and t.

Hence, Yt+dt = Yt + y with

y = +1 if a particle enters at site 1 (at rate α),

y = −1 if a particle exits from 1 (at rate γ)

y = 0 if no particle exchange with the left reservoir has occurredduring dt.

Statistical properties of Yt :

Average current: J(q, α, β, γ, δ, L) = limt→∞〈Yt〉t

Current fluctuations: ∆(q, α, β, γ, δ, L) = limt→∞〈Y 2

t 〉−〈Yt〉2t

These fluctuations depend on correlations at different times.

Cumulant Generating Function E (µ):⟨eµYt

⟩' eE(µ)t for t →∞ .

It encodes the statistical properties of the total current.

Formulae for J,∆ and E (µ) were not obtained by Bethe Ansatz.We had to develop a Matrix Product Representation method.

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 31: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Structure of the solution I

For arbitrary values of q and (α, β, γ, δ), and for any system size L theparametric representation of E (µ) is given by

µ = −∞∑k=1

Ck(q;α, β, γ, δ, L)Bk

2k

E = −∞∑k=1

Dk(q;α, β, γ, δ, L)Bk

2k

The coefficients Ck and Dk are given by contour integrals in the complexplane:

Ck =

∮C

dz

2 i π

φk(z)

zand Dk =

∮C

dz

2 i π

φk(z)

(z + 1)2

There exists an auxiliary function

WB(z) =∑k≥1

φk(z)Bk

k

that contains the full information about the statistics of the current.K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 32: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Structure of the solution II

This auxiliary function WB(z) solves a functional Bethe equation:

WB(z) = − ln(

1− BF (z)eX [WB ](z))

• The operator X is a integral operator

X [WB ](z1) =

∮C

dz2

ı2π z2WB(z2)K

(z1

z2

)

with kernel K (z) = 2∑∞

k=1qk

1−qk

zk + z−k

• The function F (z) is given by

F (z) = (1+z)L(1+z−1)L(z2)∞(z−2)∞(a+z)∞(a+z−1)∞(a−z)∞(a−z−1)∞(b+z)∞(b+z−1)∞(b−z)∞(b−z−1)∞

where (x)∞ =∏∞

k=0(1− qkx) and a±, b± depend on the boundary rates.

• The complex contour C encircles 0, qka+, qka−, q

kb+, qkb− for k ≥ 0.K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 33: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Discussion

These results are of combinatorial nature: valid for arbitrary valuesof the parameters and for any system sizes with no restrictions.

Average-Current:

J = limt→∞

〈Yt〉t

= (1− q)D1

C1= (1− q)

∮Γ

dz2 i π

F (z)z∮

Γdz

2 i πF (z)

(z+1)2

(cf. T. Sasamoto, 1999.)

Diffusion Constant:

∆ = limt→∞

〈Y 2t 〉 − 〈Yt〉2

t= (1− q)

D1C2 − D2C1

2C 31

where C2 and D2 are obtained using

φ1(z) =F (z)

2and φ2(z) =

F (z)

2

(F (z)+

∮Γ

dz2F (z2)K (z/z2)

2ıπz2

)(TASEP case solved in B. Derrida, M. R. Evans, K. M., 1995)

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 34: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Asymptotic behaviour in the Phase Diagram

Maximal Current Phase:

µ = −L−1/2

2√π

∞∑k=1

(2k)!

k!k(k+3/2)Bk

E − 1− q

4µ = − (1− q)L−3/2

16√π

∞∑k=1

(2k)!

k!k(k+5/2)Bk

Low Density (and High Density) Phases:Dominant singularity at a+: φk(z) ∼ F k(z). By Lagrange Inversion:

E (µ) = (1− q)(1− ρa)eµ − 1

eµ + (1− ρa)/ρa

(cf de Gier and Essler, 2011).Current Large Deviation Function:

Φ(j) = (1− q)ρa − r + r(1− r) ln

(1−ρaρa

r1−r

)where the current j is parametrized as j = (1− q)r(1− r).

Matches the predictions of Macroscopic Fluctuation Theory, asobserved by T. Bodineau and B. Derrida.

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 35: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

The TASEP case

Here q = γ = δ = 0 and (α, β) are arbitrary.The parametric representation of E (µ) is

µ = −∞∑k=1

Ck(α, β)Bk

2k

E = −∞∑k=1

Dk(α, β)Bk

2k

with

Ck(α, β) =

∮0,a,b

dz

2iπ

F (z)k

zand Dk(α, β) =

∮0,a,b

dz

2iπ

F (z)k

(1 + z)2

where

F (z) =−(1 + z)2L(1− z2)2

zL(1− az)(z − a)(1− bz)(z − b), a =

1− αα

, b =1− ββ

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 36: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

A special TASEP case

In the case α = β = 1, a parametric representation of the cumulantgenerating function E (µ):

µ = −∞∑k=1

(2k)!

k!

[2k(L + 1)]!

[k(L + 1)]! [k(L + 2)]!

Bk

2k,

E = −∞∑k=1

(2k)!

k!

[2k(L + 1)− 2]!

[k(L + 1)− 1]! [k(L + 2)− 1]!

Bk

2k.

First cumulants of the current

Mean Value : J = L+22(2L+1)

Variance : ∆ = 32

(4L+1)![L!(L+2)!]2

[(2L+1)!]3(2L+3)!

Skewness :E3 = 12 [(L+1)!]2[(L+2)!]4

(2L+1)[(2L+2)!]3

9 (L+1)!(L+2)!(4L+2)!(4L+4)!

(2L+1)![(2L+2)!]2[(2L+4)!]2 − 20 (6L+4)!(3L+2)!(3L+6)!

For large systems: E3 → 2187−1280

√3

10368 π ∼ −0.0090978...

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 37: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Numerical results (DMRG)

20 30 40 50 60 70 80L

- 0.004

- 0.002

0.002

0.004

0.006

E3 , E4

20 40 60 80 100L

- 0.03

- 0.02

- 0.01

0.01

0.02

0.03

0.04

E2 , E3

Left: Max. Current (q = 0.5, a+ = b+ = 0.65, a− = b− = 0.6), Thirdand Fourth cumulant.

Right: High Density (q = 0.5, a+ = 0.28, b+ = 1.15, a− = −0.48 andb− = −0.27), Second and Third cumulant.

A. Lazarescu and K. Mallick, J. Phys. A 44 315001 (2011).

M. Gorissen, A. Lazarescu, K.M., C. Vanderzande, PRL 109 170601 (2012).

A. Lazarescu, J. Phys. A 46 145003 (2013).

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 38: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Conclusion

Systems out of equilibrium are ubiquitous in nature. They breaktime-reversal invariance.

Often, they are characterized by non-vanishing stationary currents.

Large deviation functions (LDF) appear as the right generalization of thethermodynamic potentials: convex, optimized at the stationary state, andnon-analytic features can be interpreted as phase transitions.

The LDF’s are very likely to play a key-role in constructing anon-equilibrium statistical mechanics.

Finding Large Deviation Functions is a very important current issue. Thiscan be achieved through experimental, mathematical or computationaltechniques.

The results given here are one of very few exact analytically exactformulae known for Large Deviation Functions.

These results were obtained in collaboration with A. Lazarescu andS. Prolhac.

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 39: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Corner Growth/Melting in three dimensions

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 40: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Corner Growth in three dimensions

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics

Page 41: Exact Solutions in Non-equilibrium Statistical PhysicsExact Solutions in Non-equilibrium Statistical Physics K. Mallick Institut de Physique Th eorique, CEA Saclay (France) ... The

Equivalence with particle systems

Equivalent to family of coupled exclusion processes:

0

y

x

K. Mallick Exact Solutions in Non-equilibrium Statistical Physics