Top Banner
Suppose for a commodity, demand function and supply function are as follows: Q d = α - βP ; α,β> 0 Q s = -γ + δP ; γ,δ > 0 From last lecture, the equilibrium price is: P = (α +γ)/(β +δ) If the initial price, P(0) = P , then, the market is in an equilibrium and, therefore, no need to analyze the movements of the price. Market Price Dynamics
78

Exact Differential Equation

Jan 19, 2017

Download

Documents

truongtu
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Exact Differential Equation

Suppose for a commodity, demand function and supply function are as follows:

Qd = α - βP ; α,β > 0

Qs = -γ + δP ; γ,δ > 0

From last lecture, the equilibrium price is:

P= (α +γ)/(β +δ)

If the initial price, P(0) = P, then, the market is in an equilibrium and, therefore, no need to analyze the movements of the price.

Market Price Dynamics

Page 2: Exact Differential Equation

However, if P(0) ≠ P, we need to see the process from P(0) to P (if there is an equilibrium).

In this case, the price will change as time changes; so do Qd and Qs.

The interesting question is: will P(t) converge to P as t → ∞ ?

Market Price Dynamics

Page 3: Exact Differential Equation

To answer the question, we need to know the movement of P(t).

In general, a price change depends on demand (Qd) and supply (Qs).

If Qd > Qs, then, P tends to increase;

If Qd < Qs, then, P tends to decrease;

So, it can be assumed that dP/dt = λ (Qd-Qs); λ >0;

λ represents coefficient of adjustment:

dP/dt = λ(α - βP + γ - δP) = λ(α +γ)- λ(β +δ)P

or dP/dt + λ(β + δ)P = λ(α + γ)

Market Price Dynamics

Page 4: Exact Differential Equation

Notice that the differential equation is of the form: dy/dt + ay = b; where: y(t) = P(t) and the solution is:

P(t) = (P(0) – (α +γ)/(β +δ)) e- λ(β+δ)t + (α + γ)/(β + δ)

= (P(0) – P )e-kt + P ; k= λ(β +δ)

Market Price Dynamics

Page 5: Exact Differential Equation

General form: dy/dt + u(t)y = w(t)

• If u(t) = a, constant, and w(t) =0, then the new form dy/dt + ay = 0 ; is called homogeneous differential equation.

• It can be written as: 1/y dy/dt = -a

• General solution: y(t) = A e-at ;

• Particular solution: y(t) = y(0) e-at

First Order Linear Differential Equations

Page 6: Exact Differential Equation

The Non-homogeneous case

dy/dt + ay = b ; b ≠ 0 ; a ≠ 0

Solution: y(t) = yc + yp ; yc : complementary functionyp : particular function

yc the solution of its homogeneous differential equation, yc = Ae-at

First Order Linear Differential Equations

Page 7: Exact Differential Equation

While yp is obtained by assuming that y(t) = k therefore dy/dt =0 and then yp = b/a ; finally, the solution y(t) = Ae-at + b/a

For t = 0, y(0) = A + b/a or A = y(0)-b/a

Thus, y(t) = (y(0) – b/a) e-at + b/a.(compare to the solution of P(t) on market price dynamics)

First Order Linear Differential Equations

Page 8: Exact Differential Equation

Back to earlier case:

dP/dt = λ(α - βP + γ - δP) = λ(α +γ)- λ(β +δ)P

or dP/dt + λ(β + δ)P = λ(α + γ)

Notice that the differential equation is of the form: dy/dt + ay = b; where: y(t) = P(t) and the solution is:

P(t) = (P(0) – (α +γ)/(β +δ)) e - λ(β+δ)t + (α + γ)/(β + δ)= (P(0) – P )e -kt + P ; k= λ(β +δ)

Market Price Dynamics

Page 9: Exact Differential Equation

The Dynamic Stability of Equilibrium

Will P(t) converge to P as t→ ∞

• See the following equationP(t) = (P(0) – P )e-kt + P . . . (*)

From the equation, it can be seen that P(t) will converge to P since e-kt → 0 as t → ∞

because k= λ(β +δ) > 0.

Therefore, the equilibrium is dynamically stable.

Market Price Dynamics

Page 10: Exact Differential Equation

There are 3 cases can happened from equation (*)

1 . If P(0) = P , then P(t) = P . This situation represents the constant movement of P(t) at equilibrium price P

2 . If P(0) > P , then P(0) – P > 0. The price movement of P(t) approaches P from above.

3 . If P(0) < P , then P(0) – P < 0. The price movement of P(t) approaches P from below.

Market Price Dynamics

Page 11: Exact Differential Equation

In general, if deviation of P(t) and P equal zero or decreases as t increases, then it will reach an equilibrium that dynamically stable.

Market Price Dynamics

Page 12: Exact Differential Equation

Examples

1. If dy/dt + 2 y = 6 , with initial condition y(0) =10;find the solution.

y(t) = (y0- b/a) e-at + b/a ; b=6; a= 2

= (10-3)e-2t + 3

y(t) = 7 e-2t + 3

Verification: dy/dt + 2y = 7 (-2)e-2t + 2(7e-2t + 3) = 6

First Order Linear Differential Equations

Page 13: Exact Differential Equation

2. dy/dt + 4y = 0; initial condition y(0) = 1obtain the solution.

y(t) = (y0 – b/a) e-at + b/a; b = 0; a = 4

= (1 – 0)e-4t + 0 = e-4t

Verification: dy/dt + 4y = -4e-4t + 4e-4t = 0

First Order Linear Differential Equations

Page 14: Exact Differential Equation

Exercises

1. Find the solution of:

(a). dy/dt +4y = 12; y(0) = 2

y(t) = (y(0) – b/a) e-at + b/a ; b=12; a=4

= (2- 12/4) e-4t + 12/4

= - e-4t + 3

Verification: dy/dt + 4y = 4e-4et + 4(-e-4t + 3) = 12

First Order Linear Differential Equations

Page 15: Exact Differential Equation

(b). dy/dt – 2y = 0; y(0) = 9

y(t) = (y(0) – b/a) e-at + b/a; b=0; a=-2= (9-0)e2t + 0 = 9e2t

verification: dy/dt-2y = (9)(2)e2t - 2(9e2t) = 0

(c). dy/dt + 10y = 15; y(0) = 0y(t) = (y(0) – b/a) e-at + b/a; b = 15, a = 10

= (0 -15/10)e-10t + 15/10 = -3/2 e-10t + 3/2verification:

dy/dt + 10y = -3/2(-10)e-10t + 10(- 3/2e-10t + 3/2) =15

First Order Linear Differential Equations

Page 16: Exact Differential Equation

(d). 2dy/dt + 4y = 6 ; y(0) = 3/2or dy/dt + 2y = 3

y(t) = (y(0)-b/a)e-at + b/a ; b=3; a=2= (3/2-3/2)e-2t + 3/2 = 3/2

verification: 2dy/dt + 4y = 2 (0) + 4(3/2) =6

(e). dy/dt +y = 4; y(0)=0

y(t) = (y(0)-b/a)e-at + b/a; b=4; a=1= (0-4)e-t + 4 = -4e-t + 4

verification: 4e-t + (-4e-t + 4) = 4

First Order Linear Differential Equations

Page 17: Exact Differential Equation

(f). dy/dt – 5y = 0; y(0) = 6

y(t) = (y(0) - b/a) e-at + b/a; b = 0; a = -5

= (6-0)e5t – 0 = 6e5t

verification: (6)(5)e5t – 5(6e5t) = 0

(g). dy/dt – 7y = 7; y(0)= 7

y(t) = (y(0) – b/a) e-at + b/a; b=7, a=7

= (7-1) e-7t + 1 = 6e-7t + 1

verification: (6) (-7)e-7t – 7 (6 e-7t + 1) = 7

First Order Linear Differential Equations

Page 18: Exact Differential Equation

dy/dt + u(t)y = w(t)

How to obtain the solution of y(t) ?

Differential Equation with Variable Coefficient

Page 19: Exact Differential Equation

Homogeneous Case:

w(t) = 0

dy/dt + u(t)y = 0 or (1/y)(dy/dt) = -u(t)

If we do integration on both sides:

∫ (1/y)(dy/dt) dt =∫ - u(t)dt or ∫dy/y = - ∫u(t) dt

Ln y + c = -∫u(t) dt

Ln y = - c - ∫u(t) dt

y(t) = eLn y = e-c e-∫u(t) dt = Ae-∫u(t) dt ; A= e-c

Differential Equation with Variable Coefficient

Page 20: Exact Differential Equation

Ilustration:

Find the general solution of dy/dt + 3t2y = 0

From earlier discussion, y(t)= A e-∫u(t) dt ;

with ∫u(t) dt = ∫ 3t2 dt = t3 + c

Thus, y(t) = Ae-t3 e-c = B e-t3 with B = Ae-c

Differential Equation with Variable Coefficient

Page 21: Exact Differential Equation

Differential Equation with Variable Coefficient

Non-homogeneous case

w(t) ≠ 0

dy/dt + u(t) y = w(t)

Solution : y(t) = e-∫u dt (A +∫ w e ∫u dt dt)

Page 22: Exact Differential Equation

Differential Equation with Variable Coefficient

Ilustration

Find the solution of dy/dt + 2ty = t

u(t) = 2t ; w(t) = t

Page 23: Exact Differential Equation

∫u (t) dt = ∫2t dt = t2 + k; k: constant

∫w(t) e∫u(t) dt dt = ∫t e(t2 +k) dt

= ek ∫ t et2dt = (ek/2) et2 + c ; c: constant.

y(t) = e -∫u(t) dt (A +∫we ∫u dt dt)

= e –(t2 +k) ( A+ ek et2/2 + c)

= A e-k e-t2 + e-t2 e-k ek et2/2 +ce-(t2+k)

= (A + c) e-k e-t2 +1/2

= B e-t2 +1/2; B=(A+c) e-k ; a constant

Differential Equation with Variable Coefficient

Page 24: Exact Differential Equation

Another illustration

Find the solution of dy/dt + 4ty = 4tu(t) = 4t; w(t) = 4t

∫u(t) dt = 2t2

∫w(t)e∫u(t) dt dt = ∫4t e 2t2 dt

= ∫eν dν = eν = e2t2 ; for ν = 2t2

y(t) = e-2t2 (A+e2t2) = Ae-2t2 + 1 ;

Differential Equation with Variable Coefficient

Page 25: Exact Differential Equation

Differential Equation with Variable Coefficient

Exercises:

1. dy/dt + 5y = 15 ; u(t) = 5 ; w(t) = 15

General solution: y(t) = e -∫u dt (A + ∫we∫u dt dt)

Page 26: Exact Differential Equation

•∫u dt = ∫5 dt = 5t

•∫we∫u dt dt = ∫15 e5t dt = 3e5t

y(t) = e-5t (A + 3e5t) = Ae-5t + 3

Verification using of constants u(t) and w(t) rule:

y(t) = Ae-at + b/a ; a= 5 ; b= 15

= Ae-5t + 3

check: dy/dt + 5y = -5Ae-5t + 5(Ae-5t + 3 ) = 15

Differential Equation with Variable Coefficient

Page 27: Exact Differential Equation

2. dy/dt +2ty = t; y(0) = 3/2; u(t) = 2t; w(t) = t

solution:∫u dt = ∫2t dt = t2

•∫we∫u dt = ∫te t2 dt = ½ et2

•y(t) = e-t2 (A + ½ et2) = Ae-t2 + ½

y(0) = A +1/2 → A= y0 -1/2check: dy/dt + 2ty = -Ae-t2 (2t) + 2t(Ae-t2 + ½ ) = t

Differential Equation with Variable Coefficient

Page 28: Exact Differential Equation

3. dy/dt + t2 y = 5t2 ; y(0) = 6; u(t) = t2 ; w(t) = 5t2

• ∫u dt = ∫ t2 dt = t3/3

• ∫we∫u dt dt = ∫ 5t2 e t3/3 dt

for u = t3/3; then du = t2 dt

therefore, ∫5t2 et3/3 dt = ∫ 5 eu du = 5eu = 5e t3/3

Differential Equation with Variable Coefficient

Page 29: Exact Differential Equation

solution: y(t) = e-t3/3 (A + 5 e t3/3) = A e-t3/3 + 5

y(0) = A + 5 →A = y(0) - 5 = 1

y(t) = e-t3/3 + 5

check: dy/dt + t2 y = -t2 e-t3/3 + t 2 (e –t3/3 + 5) = 5t2

Differential Equation with Variable Coefficient

Page 30: Exact Differential Equation

4. 2 dy/dt + 12y + 2et = 0; y(0) = 6/7

atau dy/dt + 6y = -et ; u(t) = 6; w(t) = -et

∫u dt = ∫ 6 dt = 6t

∫ we∫u dt dt = ∫-et e6t dt = -∫ e7t dt = -e7t/7

Solution: y(t) = e-6t (A – e7t/7)

y(0) = (A-1) →A = y(0) +1/7 =

Differential Equation with Variable Coefficient

Page 31: Exact Differential Equation

1. The changes of investment rate per year will have impacts on two things:(i). Aggregate Demand (total)(ii). Production Capacity

2. The impact of demand from investment can be represented by:dy/dt = ( dI/dt) (1/s)s: marginal propensity to save

Domar Growth Model

Page 32: Exact Differential Equation

3. The impact of production capacity from investment can be represented by:dk/dt = ρ dK/dt = ρ Ik = ρKk : production capacityρ: ratio between capacity and capitalK: capital

Domar Growth Model

Page 33: Exact Differential Equation

4. In Domar Model, an equilibrium achieved when production capacity fulfilled.This case happened when total demand (y(t)) equals to production capacity (k) at time t; or; dy/dt = dk

Domar Growth Model

Page 34: Exact Differential Equation

5. How to obtain an investment pattern (I(t)) per year?

Domar Growth Model

Page 35: Exact Differential Equation

dy/dt = dI/dt (1/s); but dk/dt = ρIFrom these two equations:

(dI/dt) (1/s) = ρ I or (1/I)(dI/dt) = ρ s

Integrate both sides:

∫(1/I) (dI/dt) dt = ∫ρ s dt

Or ∫ dI/I = ∫ρ s dt

Ln I + c1 = ρ s t + c2

or Ln I = ρ s t + c

Analysis obtaining I(t)

Page 36: Exact Differential Equation

I = e (ρst + c)

I(t)= A eρst ; A= ec

At t=0, I(0)=A e0 = A

Then, I(t) = I(0) eρst ; I(0): initial investment

Interpretation: to maintain an equilibrium between production capacity and demand, rate of investment should grow at eρs. The higher the investment rate needed, the higher ρ and s required.

Analysis obtaining I (t)

Page 37: Exact Differential Equation

Exact Differential Equations

• If we have a two-variable function F(y,t), the total differential:

dF(y, t) = ( ∂F/∂y ) dy + ( ∂F/∂t ) dt

• When dF(y, t) = 0,(∂F/∂y) dy + ( ∂F/∂t ) dt = 0,

The form of this differential equation is called Exact Differential Equation since its left side is exactly the differential of the function F(y, t).

Page 38: Exact Differential Equation

Exact Differential Equations

• For example F( y, t ) = y2 t + k; k: contstant

The total differential: dF = 2y t dy + y2 dt, and the differential equation is in the form of:

2y t dy + y2 dt = 0

Or dy/dt + y2/2y t = 0

Page 39: Exact Differential Equation

Exact Differential Equations

• In general, the differential equationM dy + N dt = 0

is an exact differential equation if and only if there is a function F(y, t) with M = ∂F/∂y and N = ∂F/∂t

Since ∂2F/∂t∂y = ∂2F/∂y∂t,

it can be said that M dy + N dt = 0

if only if ∂M/∂t = ∂N/∂y

Page 40: Exact Differential Equation

• Verify whether 2y t dy + y2 dt = 0 is an exact differential equation?

Check: M = 2y t; N= y2

∂M/∂t = 2y; ∂N/∂y = 2y

Since, ∂M/∂t = ∂N/∂y = 2y;

therefore the DE is exact DE.

Exact Differential Equation

Page 41: Exact Differential Equation

Exact Differential EquationHow to solve an Exact Differential Equation

Exact DE: M dy + N dt = 0

Solution: F( y, t ) = ∫ M dy + ψ(t)

Example:

(1). 2y t dy + y2 dt = 0

M = 2y t; N = y2

Solution: F(y, t) = ∫ 2y t dy + Ψ(t) = y2 t +ψ (t)

How to obtain ψ (t) ?

Page 42: Exact Differential Equation

Exact Differential Equation

∂F/∂t = y2+ψ' (t)

But ∂F/∂t = N = y2; therefore ψ ' (t) = 0 or (t) = k,

So, F ( y, t ) = y2 t + k

Thus, the solution of DE is:y2 t = c; or y(t) = c t-0.5 ; c = constant

Page 43: Exact Differential Equation

Exact Differential Equation(2). Find the following DE:

( t +2y ) dy + ( y + 3t2 ) dt =0

M = t + 2y; N = y + 3t2

∂M/∂t = 1 = ∂N/∂y ;so, ∂M/∂t = ∂N/∂y → exact DE

F(y,t) = ∫ M dy + ψ(t)

= ∫ (t + 2y) dy + ψ(t)

= yt + y2 + ψ(t)

∂F/∂t = y + ψ'(t)

Page 44: Exact Differential Equation

Exact Differential EquationBut, N = ∂F/∂t = y + 3t2 ;thus, ψ'(t) = 3t2 ; ψ(t) = t3

Therefore, F ( y, t ) = yt + y2 + t3

The solution of the exact DE is:

yt + y2 + t3 = c; c: constant

Verification: The total differential: ( ∂F/∂y ) dy + ( ∂F/∂t ) dt

= ( t + 2y ) dy + ( y + 3t2 ) dt = 0

Can a non-exact DE be transformed into an exact DE?

Page 45: Exact Differential Equation

Exact Differential Equation

See he following example:

(3). 2t dy + y dt = 0;

M = 2t; N = ycheck: ∂M/∂t = 2; ∂N/∂y = 1 ;it means ∂M/∂t ≠ ∂N/∂y

Therefore, the DE is a non exact DE.

Page 46: Exact Differential Equation

Now, multiply the DE with y, then:

2t y dy + y2 dt = 0; is an exact DE (verify?) and its solution is:

y(t) = c t-0.5

In this case, y is a multiplication factor that can transform a non exact DE to an exact DE; and y is called intergration factor.

Exact Differential Equation

Page 47: Exact Differential Equation

1. 2y t3 dy + 3y2 t2 dt = 0 Apakah PD eksak?cari solusinya.

M = 2y t3 ; N = 3y2 t2

∂M/∂t = 6y t2 ; ∂N/∂y = 6y t2 ;

berarti ∂M/∂t = ∂N/∂y, PD tersebut di atas merupakan PD eksak.

Solusi: F(y,t) = ∫M dy +ψ(t)

= ∫2y t3 dy + ψ(t)

= y2 t3 + ψ(t), sehingga ∂F/∂t = 3y2 t2 + ψ'(t)

Exact Differential Equation

Page 48: Exact Differential Equation

Exact Differential Equation

Padahal, N = ∂F/∂t = 3y2 t2

Dengan demikian, ψ'(t) = 0 sehingga solusinya:

F ( y, t ) = y2 t3 + k atau y2 t3 = c

Cek : diferensial totalnya: 2y t2 dy + 3y2 t2 dt = 0

Page 49: Exact Differential Equation

Exact Differential Equation

2. 3y2t dy + (y3 + 2t) dt = 0

Apakah PD eksak ? cari solusinya:

M = 3y2 t ; N = ( y3 + 2t)

∂M/∂t = 3y2 = ∂N/∂y → PD eksak

Solusi: F( y, t ) = ∫ M dy + ψ(t)

= ∫3y2 t dy + ψ(t)

= y3 t + ψ(t)

∂F/∂t = y3 +ψ'(t)

Page 50: Exact Differential Equation

Exact Differential Equation

Sedangkan, N = ∂F/∂t = y3 + 2t; maka ψ'(t) = 2t

atau ψ(t) = t2

sehingga solusinya F ( y, t ) = y3 t + t2 = c

cek: diferensial totalnya: 3y2 t dy + ( y3 +2t) dt = 0

Page 51: Exact Differential Equation

Exact Differential Equation3. t(1+2y)dy + y (1+y)dt = 0

Apakah PD eksak? cari solusinya.

M= t(1+2y); N= y (1+y) = (y+y2)

∂M/∂t = (1+2y) = ∂N/∂y; →PD eksak

Solusi: F(y,t) = ∫ M dy + ψ(t)

= ∫ t (1 + 2y) dy + ψ(t)

= t (y + y2) + ψ(t)

∂F/∂t = (y + y2) + ψ'(t)

Page 52: Exact Differential Equation

Exact Differential Equation

sedangkan N = ∂F/∂t = (y + y2);

berarti ψ'(t) = 0 atau ψ(t) = k

solusi: F ( y, t ) = t (y + y2) + k

atau t (y + y2) = c ; c: konstan

cek:

diferensial totalnya: t (1 + 2y) dy + y ( 1+ y) dt = 0

Page 53: Exact Differential Equation

4. 2 (t3 +1) dy + 3y t2 dt = 0

Apakah PD eksak? solusi?

M = 2(t3 + 1) ; N = 3y t2

∂M/∂t = 6t2 ≠ ∂N/∂y = 3t2 bukan PD eksak

Exact Differential Equation

Page 54: Exact Differential Equation

Exact Differential EquationAkan dicoba dicari faktor integrasinya

Bila PD tersebut di atas dikalikan dengan y, diperoleh:

2 y (t3 + 1) dy + 3 y2 t2 dt = 0

dengan M = 2y (t3 + 1) ; N = 3y2 t2

∂M/∂t = 6y t2 = ∂N/∂y → PD eksak

Page 55: Exact Differential Equation

Solusi: F(y,t) = ∫ M dy + ψ(t)

= ∫ 2y (t3 + 1) dy + ψ(t)

= y2 (t3 + 1) + ψ(t)

∂F/∂t = 3y2 t2 + ψ'(t)

Sedangkan N = ∂F/∂t = 3y2 t2

Exact Differential Equation

Page 56: Exact Differential Equation

Dengan demikian, ψ'(t) = 0 atau ψ(t) = k

F( y, t ) = y2 (t3 + 1) + k atau y2 (t3 + 1) = c;c = konstan

Komentar:

Bagaimana mencari faktor integrasi?

Exact Differential Equation

Page 57: Exact Differential Equation

5. 4y3 t dy + (2y4 + 3t) dt = 0

Apakah PD eksak? solusi?

M = 4y3 t ; ∂M/∂t = 4y3 t

N = 2y4 + 3t ∂N/∂y = 8y3; PD tidak eksak

Sekarang dicari faktor integrasinya:

Bila PD diatas dikalikan dengan t, diperoleh:

4y3 t2 dy + (2y4 + 3t) t dt = 0M = 4y3 t2 ; N = (2y4 + 3t) t

∂M/∂t = 8y3t = ∂N/∂y PD eksak.

Exact Differential Equation

Page 58: Exact Differential Equation

Solusi: F ( y, t ) = ∫ M dy + ψ(t)= ∫ 4y3 t2 dy + ψ(t)= y4 t2 + ψ(t)

∂M/∂t = 2y4 t + ψ'(t)

Sedangkan, N = ∂F/∂t = 2y4 t + 3t2

Maka ψ'(t) = 3t2 ; ψ(t) = t3 + k

F( y, t ) = y4 t2 + t3 + k atau y4 t2 + t3 = c

Komentar: Bagaimana mencari faktor integrasi?

Trial and Error?

Exact Differential Equation

Page 59: Exact Differential Equation

Persamaan Diferensial Tdk Linier Orde 1 Degree Satu

PD Linear: (i). dy/dt dan y linier

(ii). tidak boleh ada perkalian y. (dy/dt)

Dengan demikian meskipun dy/dt linier tetapi bila y berpangkat lebih besar dari satu, persamaannya menjadi tidak linier.

Page 60: Exact Differential Equation

Secara umum, bentuk persamaannya:

f(y,t) dy + g(y,t) dt = 0

atau dy/dt = h(y,t)

Ada 3 cara mencari solusinya

(i). Model PD eksak (sudah dipelajari)

(ii). Model PD terpisah

(iii). Model tidak linier direduksi menjadi linier

Persamaan Diferensial Tdk Linier Orde 1 Degree Satu

Page 61: Exact Differential Equation

PD dengan variabel terpisahBentuk umum: f(y,t) dy + g(y,t) dt = 0

Bila f(y,t) hanya merupakan fungsi dari y atau f(y) dan bila g(y,t) juga hanya merupakan fungsi dari t atau g(t), maka bentuk umum di atas berubah menjadi

f(y) dy + g(t) dt = 0

PD ini disebut PD dengan variabel terpisah karena variabel y dan t muncul secara terpisah, mereka berada di ruas yang terpisah.

Page 62: Exact Differential Equation

Contoh:

(1). 3y2 dy – t dt = 0

atau 3y2 dy = t dt

∫3y2 dy = ∫t dt

y3 = t2/2 + c

Solusi: y(t) = (t2/2 + c) 1/3

PD dengan variabel terpisah

Page 63: Exact Differential Equation

Contoh:

(2). 2t dy + y dt = 0

dy/y + dt/2t = 0

∫(1/y ) dy +∫(1/2t) dt = c

Ln y + (1/2) Ln t + c

atau Ln (yt1/2) = c

y t1/2 = ec = k

y(t) = k t-1/2

PD dengan variabel terpisah

Page 64: Exact Differential Equation

Komentar:

Lihat lagi contoh 2:

2t dy + y dt = 0 atau 2t y dy + y2 dt = 0,

merupakan PD Eksak dengan M = 2ty, N =y2.

Solusi umum F(y,t) = ∫2yt dy + ψ (t) = y2 t + ψ(t)

∂F/∂t = y2 + ψ'(t)

Padahal: N = ∂F/∂t = y2 ;

berarti ψ' (t) = 0 atau ψ(t) = k1

PD dengan variabel terpisah

Page 65: Exact Differential Equation

Solusi: F(y,t) = y2 t + k1

Atau y2 t + k1 = c1

y2 t = c

y = k . t-1/2

Komentar:

Dengan metode PD terpisah maupun dengan metode PD eksak, solusi pada contoh no.2 mencapai hasil akhir yang sama.

PD dengan variabel terpisah

Page 66: Exact Differential Equation

PD yang dapat direduksi menjadi PD Linier

Bila PD dy/dt = h(y,t) dapat dinyatakan dalam bentuk tidak linier sebagai berikut:

dy/dt + Ry = Tym dengan R, T fungsi tdan m ≠0, m ≠1

maka PD tersebut selalu dapat direduksi menjadi PD linier.

Proses reduksi:

dy/dt + Ry = T ym ; persamaan Bernoulli

y-m dy/dt + R y1-m = T

Page 67: Exact Differential Equation

sederhanakan: z = y1-m

dz/dt = dz/dy . dy/dt

= (1-m) y-m . dy/dt

(1-m)-1 dz/dt + Rz = T

dz +[(1-m) Rz - (1-m) T ] dt = 0

dz + (u z –wT) dt; u =(1-m)R ; w =(1-m)

Solusi: z(t) = e-∫ u(t) dt (A + ∫we ∫ u dt dt)

PD yang dapat direduksi menjadi PD Linier

Page 68: Exact Differential Equation

PD yang dapat direduksi menjadi PD Linier

Contoh:

1. cari solusi dari dy/dt + ty = 3 ty2

m = 2 ; z = y1-m ; R = t T = 3t

PD liniernya; dz + [(1- m) Rz – (1- m) T ] dt = 0

dz + [(1 – 2) tz - (1 – 2)(3t)] dt = 0

dz + ( -tz + 3t) dt = 0

Page 69: Exact Differential Equation

solusi z(t) = e-∫ u(t) dt (A + ∫we ∫ u dt dt)

dengan u(t) = -t ; w(t) = -3t

∫ u(t) dt = ∫ -t dt = - t2/2∫we ∫ u dt dt = - ∫ 3t e- t2/2 dt = 3e- t2/2

z(t) = e +t2/2 (A + 3e –et2/2) = A e t2/2 + 3

padahal, z(t) = y(t)-1

atau y(t) = z(t)-1 = (A + 3e –t2/2)-1

PD yang dapat direduksi menjadi PD Linier

Page 70: Exact Differential Equation

2. cari solusi dari dy/dt + (1/t) y = y3.

m = 3 ; z = y-2 ; R = t-1 ; T = 1

PD liniernya; dz + [(1- m) Rz – (1- m) T ] dt = 0

dz + ( – 2t-1z + 2) dt = 0

u(t) = – 2t-1 ; w(t) = -2

solusi z(t) = e-∫ u(t) dt (A + ∫we ∫ u dt dt)

∫ u(t) dt = - ∫ 2 dt/t = - 2 Ln t

PD yang dapat direduksi menjadi PD Linier

Page 71: Exact Differential Equation

∫we ∫ u dt dt = ∫- 2 e-2 Ln t dt

= ∫- 2 t-2 dt

= 2t-1

z(t) = e 2 Ln t (A + (2) t-1)

= t2 (A + 2t-1)

z(t) = At2 + 2t

y(t) = z-1/2

= (At2 + 2t)-1/2

PD yang dapat direduksi menjadi PD Linier

Page 72: Exact Differential Equation

Model Pertumbuhan SolowQ = f (K,L) ; K > 0 ; L > 0

K: Kapital; L: Labor; Q: Output

Asumsi:(i). fK , fL > 0

Artinya, output meningkat bila ada tambahan kapital maupun labor.

(ii). fKK < 0, fLL < 0 ; diminishing return.

(iii). f: CRTSQ = L . f (K/L , 1) = L φ (k) ;k = K/L; φ (k) = f (K/L , 1)

Page 73: Exact Differential Equation

Karena fK = φ' (k),

maka fKK = ∂/∂K (φ' (k)) = dφ' (k) / dk . ∂k/∂K= φ''(k) . 1/L

Asumsi Solow:

(i). dk/dt = sQ; sebagian dari Q di investasikan.s: Marginal Propensity to Save

(ii). (dL/dt) /L = λ; Labor tumbuh secara eksponensial atau

L = e λt

Model Pertumbuhan Solow

Page 74: Exact Differential Equation

Model Pertumbuhan Solow secara lengkap.

(1). Q = L f (K/L , 1) = L φ (k); k= K/L

(2). dk/dt = sQ

(3). (dL /dt) / L = λ

Model Pertumbuhan Solow

Page 75: Exact Differential Equation

Model Pertumbuhan SolowBagaimana mencari solusi dari model tersebut?

(2): dk/dt = s.Q = s . L . φ (k); k = K/L;

sedangkan: K = k L,Akibatnya: dK/dt = dk/dt. L + dL/dt . k

= L dk/dt + k λ L

Berarti: s . L . φ (k) = L dk/dt + k λ LAtau s φ (k) = dk/dt + k λ

Atau dk/dt = s φ (k) - k λ

Ini merupakan persamaan diferensial dalam k dengan parameter λ dan s.

Page 76: Exact Differential Equation

Sebagai ilustrasi, bila Q = Kα L1-α

Q = Kα L1-α = L (K/L)α, sehingga φ (k) = kα dan persamaan diferensialnya menjadi:

dk/dt = s kα - λk atau dk/dt +λk = skα.

PD tersebut merupakan persamaan Bernoulli dengan R = λ ; T= s; m =α.

Model Pertumbuhan Solow

Page 77: Exact Differential Equation

Model Pertumbuhan Solow

Bila z = k1-α , maka dz + [(1-α ) λz - [1-α )s] dt = 0atau dz/dt + az = b;

a = (1-α ) λ;b = (1-α )s

solusinya: z(t) = (z(0) – s/λ ) e (1-α ) λt + s/λatau k1-α = (k (0)1-α – s/λ ) e (1-α ) λt + s/λ

k(0): nilai awal dari rasio Kapital dan labor.

Page 78: Exact Differential Equation

Model Pertumbuhan Solow

Pada saat t → ∞ , k1-α→ s/λ atau k→ (s/λ) (1/ (1-λ))

Artinya, rasio kapital dan tenaga kerja akan menca-pai konstan pada saat mencapai keseimbangan. Ni-lai keseimbangan ini tergantung pada MPS dan per-tumbuhan tenaga kerja λ .