Top Banner
12 July 2016 NEREDA ® Innovative technology for cost-effective, energy efficient, sustainable and profitable wastewater treatment [email protected]
35

EWWM - Nereda -Andrew Thompson [105366].pdf

Apr 03, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: EWWM - Nereda -Andrew Thompson [105366].pdf

12 July 2016

NEREDA®

Innovative technology for cost-effective,

energy efficient, sustainable and

profitable wastewater treatment

[email protected]

Page 2: EWWM - Nereda -Andrew Thompson [105366].pdf

2

Wastewater treatment with Nereda®

Natural way of treating wastewater using aerobic granular sludge with excellent settling properties

Flocs

4 g/l

SVI5 > SVI30

Granules

8 g/l or more

SVI5 ≈ SVI30

Page 3: EWWM - Nereda -Andrew Thompson [105366].pdf

3

Aerobic Granular Biomass

Excellent settling properties

Pure biomass

No support media

High MLSS levels (up to 15 g/L)

Reliable and stable operation

No bulking sludge

Activated Sludge Aerobic Granules

Page 4: EWWM - Nereda -Andrew Thompson [105366].pdf

4

Three important selection mechanisms

Hydraulic selection for fast settling particles Biotech selection of EPS forming microorganisms

like phosphate or glycogen accumulating organisms (PAO / GAO’s)

Suppression of filamentous growth

transformation

Page 5: EWWM - Nereda -Andrew Thompson [105366].pdf

5

Oxygen gradient in granule

Heterotrophic organisms

Ammonium oxidising organisms

Aerobic zone: • Biological oxidation • Ammonium oxidation to nitrate

Anaerobic zone: • Nitrate reduction to nitrogen gas • Phosphate removal

COD + NOx + PO43- N2 + CO2 + H2O + poly-P

COD + O2 CO2 + H2O

NH4 + O2 NOx

oxygen

depth in granule

Page 6: EWWM - Nereda -Andrew Thompson [105366].pdf

6

Microorganisms in the granule

Activated sludge Aerobic granular sludge

Nitrifiers Denitrifiers Phosphate Accumulating Organisms (PAO’s) Glycogen Accumulating Organisms (GAO’s)

Page 9: EWWM - Nereda -Andrew Thompson [105366].pdf

9

Continuous suppression of filamentous growth

Robust during less favourable conditions, like:

salt fluctuations chemical spikes pH fluctuations T fluctuations load variations

High process robustness

Activated sludge and granular sludge with shock addition of 5,000 ppm NaCl after 5 min settling

Page 10: EWWM - Nereda -Andrew Thompson [105366].pdf

10

Nereda® process cycle

Simple one-tank concept

No clarifiers

No moving decanter

No mixers

Extensive biological COD,

N- and P-removal

Low energy consumption

Easy operation

Low totex

Page 11: EWWM - Nereda -Andrew Thompson [105366].pdf

11

Small footprint Sustainable & energy efficient Cost-effective Easy to operate Flexible & future proof

Key advantages of Nereda®

footprint energy costs

Nereda® Nereda® Nereda® CAS CAS CAS

Page 12: EWWM - Nereda -Andrew Thompson [105366].pdf

12

Typical effluent quality

Parameter Consent type Nereda only

+Tertiary solids removal

+top-up chemical dosing

BOD 95%ile, grab < 12 < 6

SS 95%ile, grab < 15 < 5

Ammonia 95%ile, grab < 1

TN Annual average, composite < 5

TP Annual average, composite < 1.0 < 0.5 < 0.2

Page 13: EWWM - Nereda -Andrew Thompson [105366].pdf

13

History

Prof. Peter Wilderer TU Munich

Prof. Mark van Loosdrecht

TU Delft

It all started with a good discussion and collaboration between two professors at an October Fest

Page 14: EWWM - Nereda -Andrew Thompson [105366].pdf

14

History

Mid ’90’s Research by Delft University of Technology (DUT)

2000 close co-operation DUT / DHV

2002 Stable granulation, extensive N- en P-removal in DUT lab

2002 Feasibility study showed great potential

2003 – 2005 Large pilot-research at Ede STP

2005 Start-up industrial launching customer

2006 Industrial units

1995 Stable granulation in lab

Page 15: EWWM - Nereda -Andrew Thompson [105366].pdf

15

History

Mid ’90’s Research by Delft University of Technology (DUT)

2000 close co-operation DUT / DHV

2002 Stable granulation, extensive N- en P-removal in DUT lab

2002 Feasibility study showed great potential

2003 – 2005 Large pilot-research at Ede STP

2005 Start-up industrial launching customer

2006 Industrial units start Municipal National Nereda Research

2006 / 2008 Design/construction municipal demo units

2010 construction first Dutch full scale municipal plant

1995 Stable granulation in lab

Page 16: EWWM - Nereda -Andrew Thompson [105366].pdf

16

Global Nereda® roll-out

The Netherlands

Operational plants Plants under construction Pilots Partners

United Kingdom & Ireland

Page 17: EWWM - Nereda -Andrew Thompson [105366].pdf

17

Status Operational plants Daily average

flow (m3/day) Peak flow (m3/h)

Person Equivalent (Calculated for p.e. a 54 g. BOD)

Start-up

Vika, Ede (NL) 50-250 1,500-5,000 2005 Cargill, Rotterdam (NL) 700 10,000-30,000 2006 Fano Fine Foods, Oldenzaal (NL) 360 5,000-10,000 2006 Smilde, Oosterwolde (NL) 500 5,000 2009 STP Gansbaai (RSA) 5,000 400 63,000 2009 STP Epe (NL) 8,000 1,500 54,000 2011 STP Garmerwolde (NL) 30,000 4,200 140,000 2013 STP Vroomshoop (NL) 1,500 400 12,000 2013 STP Dinxperlo (NL) 3,100 570 11,111 2013 STP Wemmershoek (RSA) 5,000 625 39,000 2013 STP Frielas, Lisbon (PT) 12,000 44,444 2014 STP Ryki (PL) 5,300 430 42,889 2015 Westfort Meatproducts, IJsselstein (NL) 1,400 43,000 2015 STP Clonakilty (IRL) 4,896 626 23,278 2015 STP Carrigtwohill (IRL) 6,750 844 41,204 2015 STP Deodoro, Rio de Janeiro (BR) 86,400 6,120 480,000 2016

Page 18: EWWM - Nereda -Andrew Thompson [105366].pdf

18

Status Operational plants Daily average

flow (m3/day) Peak flow (m3/h)

Person Equivalent (Calculated for p.e. a 54 g. BOD)

Start-up

Vika, Ede (NL) 50-250 1,500-5,000 2005 Cargill, Rotterdam (NL) 700 10,000-30,000 2006 Fano Fine Foods, Oldenzaal (NL) 360 5,000-10,000 2006 Smilde, Oosterwolde (NL) 500 5,000 2009 STP Gansbaai (RSA) 5,000 400 63,000 2009 STP Epe (NL) 8,000 1,500 54,000 2011 STP Garmerwolde (NL) 30,000 4,200 140,000 2013 STP Vroomshoop (NL) 1,500 400 12,000 2013 STP Dinxperlo (NL) 3,100 570 11,111 2013 STP Wemmershoek (RSA) 5,000 625 39,000 2013 STP Frielas, Lisbon (PT) 12,000 44,444 2014 STP Ryki (PL) 5,300 430 42,889 2015 Westfort Meatproducts, IJsselstein (NL) 1,400 43,000 2015 STP Clonakilty (IRL) 4,896 626 23,278 2015 STP Carrigtwohill (IRL) 6,750 844 41,204 2015 STP Deodoro, Rio de Janeiro (BR) 86,400 6,120 480,000 2016 Plants under construction STP Jardim Novo, Rio Claro (BR) 23,500 1,764 152,315 2016 STP Hartebeestfontein (RSA) 5,000 1,250 52,185 2016 STP Kingaroy (AUS) 2,700 450 11,000 2016 STP Ringsend SBR Retrofit 1 Cell, Dublin (IRL) 82,000 6,750 94,000 2016 STP Highworth (UK) 10,111 STP Cork Lower Harbour (IRL) 18,280 1,830 65,000 2016 STP Simpelveld (NL) 3,668 945 11,880 2016 STP Ringsend Capacity Upgrade, Dublin (IRL) part of the upgrade project to 2,4 million p.e.)

117,000 9,240 400,000 2019

Plants under design STP Alpnach (CH) 14,000 1845 49,000 2017 STP Österröd, Strömstad (S) 3,730 360 10,400 2017 STP Tatu, Limeira (BR) 57,024 3,492 517,000 2016 STP São Lourenço, Recife (BR) 19,093 (1st fase);

25,123 (2nd fase)

1,674

139,574 2016 2024

STP Jaboatão, Recife (BR) 109,683 (1st fase) 154,483 (2nd fase)

11,588

858,333

2017 2025

STP Jardim São Paulo, Recife (BR) 19,529 (1st fase) 78,117 (2nd fase)

5,859

325,315

2017 2025

STP Utrecht (NL) 55,000 13,200 430,000 2018 STP Faro – Olhão (PT) 28,149 3,942 113,200 2018

Page 19: EWWM - Nereda -Andrew Thompson [105366].pdf

19

Current status of Nereda®

Kin

garo

y (1

10

00

p.e

.)

Sim

pel

veld

(1

18

80

p.e

.)

Car

rigt

oh

ill (

41

20

4 p

.e.)

Har

teb

eest

fon

tein

(5

21

85

p.e

.)

Co

rk L

ow

er H

arb

ou

r (6

50

00

p.e

.)

Jard

im N

ovo

, Rio

Cla

ro (

15

23

15

p.e

.)

Smild

e (5

00

0 p

.e.)

Vik

a, E

de

(50

00

p.e

.)

Fan

o F

ine

Foo

ds

(10

00

0 p

.e.)

Din

xper

lo (

11

11

1 p

.e.)

Vro

om

sho

op

(1

20

00

p.e

.)

Clo

nak

ilty

(23

27

8 p

.e.)

Car

gill,

Ro

tter

dam

(3

00

00

p.e

.)

Wem

mer

sho

ek (

39

00

0 p

.e.)

Ryk

i (4

28

89

p.e

.)

Wes

tfo

rt M

eatp

rod

uct

s (4

30

00

p.e

.)

Frie

las

(44

44

4 p

.e.)

Epe

(54

00

0 p

.e.)

Gan

sbaa

i (6

30

00

p.e

.)

Gar

mer

wo

lde

(14

00

00

p.e

.)

Deo

do

ro (

48

00

00

p.e

.)

Hig

hw

ort

h (

10

11

1 p

.e.)

Öst

errö

d (

10

40

0 p

.e.)

Alp

nac

h (

49

00

0 p

.e.)

Faro

- O

lháo

(1

13

20

0 p

.e.)

São

Lo

ure

nço

(1

39

.57

4 p

.e.)

Jard

im S

ão P

aulo

(3

25

31

5 p

.e.)

Utr

ech

t (4

30

00

0 p

.e.)

Tatu

, Lim

eira

(5

17

00

0 p

.e.)

Jab

oat

ão (

85

83

33

p.e

.)

Rin

gsen

d (

2,4

00

.00

0 p

.e.)

1

10

100

1000

10000

10

00

x P

eo

ple

Eq

uiv

ale

nts

(P

E) -

54

g B

OD

/PE

Construction Operational Design

Page 20: EWWM - Nereda -Andrew Thompson [105366].pdf

20

UK Status - Pilots

Number of Pilot studies completed: Crewe, Davyhulme (United Utilities) Daldowie, Dalmarnock (Scottish Water)

Two pilot studies starting up: Newmarket (Anglian Water) Macclesfield (United Utilities)

Extensive interest from water companies across UK

Scottish, UU, Severn Trent, Anglian, Welsh, Thames, Wessex, Yorkshire

Page 21: EWWM - Nereda -Andrew Thompson [105366].pdf

21

Pilots – proof of technology

Extensive trials by United Utilities and Scottish Pushed to extremes (temperature and load variation)

Scottish Water: “During the time spent below 5°C the effluent ammonia was below 1mg/l

and soluble reactive phosphorus remained below 0.2mg/l”

Pilot plant phosphorus studies – “how low can we go…?”

Newmarket (Anglian Water) Macclesfield (United Utilities)

Page 22: EWWM - Nereda -Andrew Thompson [105366].pdf

22

UK Status – Design/Construction

Demonstration Plant – Thames Water Highworth 10,000 PE Commission January 2017

Full scale plants in Detailed Design Inverurie Scottish 30,000 PE 20 mg/l ammonia, 2 mg/l TP

Kendal UU 93,000 PE 5 mg/l ammonia, 0.8 mg/l TP

Barston Severn Trent 76,000 PE 1 mg/l ammonia, 0.14 mg/l TP

Contract negotiation

~5 more plants expected to be awarded within 2016

Page 23: EWWM - Nereda -Andrew Thompson [105366].pdf

12 July 2016

Aerobic granular biomass technology

23

Applications

©RoyalHaskoningDHV. Confidential. All rights reserved

Page 24: EWWM - Nereda -Andrew Thompson [105366].pdf

24

Nereda system configurations

N

N

N

influent effluent

N

B

N

influent effluent

N

SC

influent effluent

1. GREENFIELD (3 REACTORS) 2. GREENFIELD (2 REACTORS + BUFFER)

3. HYBRID EXTENSION 4. RETROFIT CAS OR SBR

CAS

B

excess sludge

SC

influent effluent

CAS

Nereda®

SC CAS

Page 25: EWWM - Nereda -Andrew Thompson [105366].pdf

25

Nereda® Ringsend Ireland, 2016

Client: Irish Water Wastewater type: Municipal Capacity Upgrade: 400,000 pe SBR Retrofit: 2,000,000 pe Total: 2,400,000 pe

Page 26: EWWM - Nereda -Andrew Thompson [105366].pdf

26

Retrofit SBR: Ringsend STP, Ireland

Page 27: EWWM - Nereda -Andrew Thompson [105366].pdf

27

Nereda® Epe The Netherlands, 2011 Client: Water Board Veluwe Wastewater type: Municipal &

Industrial Capacity: 8,000 m3/day ( 59.000 p.e.

inclusive 13,750 p.e. from industrial discharges)

Peak flow: 1,500 m3/hour Pre-treatment: screening, sand trap

and oil &grease removal (to cope with slaughterhouse emissions)

Post-treatment: sand filtration

Page 28: EWWM - Nereda -Andrew Thompson [105366].pdf

28

Epe STP

Replacement existing STP by Nereda On-line: Q3 2011 59,000 p.e. including 13,750 from

slaughterhouses

Limit Target

Ntot – ppm N < 8 < 5

Ptot – ppm P < 0.3 < 0.2

Page 29: EWWM - Nereda -Andrew Thompson [105366].pdf

29

Page 30: EWWM - Nereda -Andrew Thompson [105366].pdf

30

Epe power consumption

30

Energy consumption: 40% less than other Dutch STP’s with polishing filter while 2 m additional water head was incorporate to enable retrofit to conventional CAS

Period Energy consumption per

removed pollution equivalents (of 150 g Total Oxygen Demand)

Guaranteed value ≤ 22.7 kWh/(PE.annum) @ full load

Actual 16.3 kWh/(PE.annum) @ full load 22.2 kWh/(PE.annum) @ actual load

Bench mark similar Dutch treatment plants with post treatment (Union of Dutch Water Boards 2009)

37.5 kWh/(PE.annum) @ actual load

Bench mark all STP’s (Union of Dutch Water Boards, 2009) 33.4 kWh/(PE.annum) @ actual load

Page 31: EWWM - Nereda -Andrew Thompson [105366].pdf

12 July 2016

Profitable wastewater treatment

Page 32: EWWM - Nereda -Andrew Thompson [105366].pdf

32

Opportunities – Power/Biogas Power self sufficiency

Reduce power demand 30-50% reduction by using Nereda

Combine with advanced digestion THP, EEH, HPH, Ephyra® Increased biogas production

Options for profitability CHP for power production

Less power needed for Nereda, less biogas needed for CHP

Gas clean-up and injection to gas network More gas available, more profitable

Page 33: EWWM - Nereda -Andrew Thompson [105366].pdf

33

Energy balance (worked example – 59,000PE)

Power consumption (ref: Epe WWTP, 59,000 PE) Inlet works (Pumping, screens, FOGG) Nereda Sand filter, top-up chemical dosing Sludge thickening

Power usage: 22.2 kWh / PE.annum

Power production Sludge production 80g/PE/d (crude, bio-P, yield 1.15)

29.2 kg/PE.annum

Typical THP: 0.98 MWH/tds (typical: 0.9-1.1 MWH/tds gross) Allow 15% for advanced digestion power requirements

Power production: 24.3 kWh / PE.annum

Produce 110% of required power Settled sewage could be even better…

Page 34: EWWM - Nereda -Andrew Thompson [105366].pdf

34

Opportunity - Biorefinery Bio-P sludge – phosphorus recovery

Struvite or similar

Biopolymer from waste granules Granules contain 15-25% of structural gel, mainly alginate like polysaccharides

Easy to harvest High market value Recover biopolymer and upgrade into non-food applications

First commercial installation in construction (Holland)

Page 35: EWWM - Nereda -Andrew Thompson [105366].pdf

35

Contact

www.nereda.net [email protected]