Top Banner
FMCG scheduling Martijn van Elzakker EWO meeting, March 2011 S P S Process Systems Engineering
15

EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Apr 23, 2018

Download

Documents

vunhi
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

FMCG scheduling g

Martijn van Elzakker

EWO meeting, March 2011

S P SProcess Systems Engineering

Page 2: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Outline

Problem Overview

Modeling Approach

Results Results

Future Work

S P S Process Systems Engineering 112-3-2011

Page 3: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Problem overview

Stage 1 Intermediate Stage Stage 2

Mi i f d t I t di t St P ki• Mixing of products

• Processing

• Intermediate Storage

• Maturing

• Packing

Product type 1

All products

Product type 2Product type 2

S P S Process Systems Engineering 212-3-2011

Page 4: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Main Challenge

Large computational times Intermediate inventoryIntermediate inventory

1. Limited storage capacity Many mixer switchesMany periods Large models

2 C2. Considerably more storage tanks than mixers and packers− Model size largely determined by storage stage

S P S Process Systems Engineering 312-3-2011

Page 5: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Dedicated time slots

1. Limited Storage Many Periods Large Models

Observation: Almost never two consecutive mixing runs of the same product class (same packer)

Dedicate product types to periods Smaller modelDedicate product types to periods Smaller model

Empty periods ensure flexibility

S P S Process Systems Engineering 412-3-2011

Page 6: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Related Period Model

2. Model size determined by # of tanks

Number of storage tanksTFpack1 TSmixn n

S P S Process Systems Engineering 512-3-2011

Page 7: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Results: Small Example Problems

Horizon: 48 hours

Demand

Case 1 Case 2 Case 3 Case 4Product 1 40,000 40,000 32,000 -Product 2 24,000 16,000 32,000 16,000Product 3 - - - 16,000

Product Type 1

Product 4 - - - 16,000Product 5 40,000 40,000 48,000 -Product 6 24,000 20,000 20,000 -

yp

ProductProduct 7 - - - 40,000Product 8 32,000

Product Type 2

S P S Process Systems Engineering 612-3-2011

Page 8: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Results

Required computational time Gurobi 3 0Gurobi 3.0

400

500

600

6000700080009000

200

300

400

RPMRTN

20003000400050006000

0

100

Case 1 Case 2 Case 3 Case 4

RTN*010002000

Case 1 Case 2 Case 3 Case 4

RTN b Sh ik d Fl d (2008)

Feasibility Makespan

S P S Process Systems Engineering

RTN by Shaik and Floudas (2008)

712-3-2011

Page 9: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Results

Required computational time Gurobi 3 0Gurobi 3.0

80

100

120

250030003500

40

60

80

RPMRTN* 1000

15002000

0

20

Case 1 Case 2 Case 3 Case 4

RTN

0500

Case 1 Case 2 Case 3 Case 4

RTN b Sh ik d Fl d (2008)

Feasibility Makespan

S P S Process Systems Engineering

RTN by Shaik and Floudas (2008)

812-3-2011

Page 10: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Full scale example case

Same set up: 1 mixer, 6 storage tanks, 2 packers

120 hour horizon

4 hour cleaning period every 72 hours

N l ti ithi 36 h

Product 1 2 3 4 5 6 7 8Demand [kg] 80,000 48,000 32,000 8,000 112,000 12,000 48,000 24,000

No solution within 36 hours

S P S Process Systems Engineering 912-3-2011

Page 11: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Heuristics

Bottleneck Minimum makespan 1st packer: 118 33 hrMinimum makespan 1 packer: 118.33 hr Minimum makespan 2nd packer: 109.44 hr

Products on the 1st packer in optimal order 4-3-2-1

Feasibility optimization: 28 hours

S P S Process Systems Engineering 1012-3-2011

Page 12: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Algorithm

Step 1: Order products on bottleneck stage Step 2: Relax horizon feasibility optimization Step 2: Relax horizon feasibility optimization 170s, 124.19hr makespan

St 3 Fi b ttl k ll ti MS i i i ti Step 3: Fix bottleneck allocation MS minimization 358s, 118.74hr makespan

S P S Process Systems Engineering 1112-3-2011

Page 13: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Algorithm

Step 4: Fix 2nd half allocation MS minimization 692s 118 33hr makespan692s, 118.33hr makespan

For example case with algorithm528 t fi t f ibl l ti 528s to first feasible solution

1220s to optimal solution

No guarantee of global optimality

S P S Process Systems Engineering 1212-3-2011

Page 14: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Conclusions

RPM model more efficient than RTN models Dedicated time periods improve efficiencyDedicated time periods improve efficiency Indirectly modeling inventory improves efficiency

Algorithm Required for larger cases

C t t l b l ti lit Cannot guarantee global optimality Gives good results within reasonable time

S P S Process Systems Engineering 1312-3-2011

Page 15: EWO 2011-03 Martijn.ppt - Carnegie Mellon Universityegon.cheme.cmu.edu/ewo/docs/UnileverEWO 2011-03 Martijn.pdf · Results Required computational time Gurobi 3 0Gurobi 3.0 400 500

Future work

Tactical Planning model 1-1 5 year horizon1 1.5 year horizon Fast moving consumer goods− Large number of products− Seasonality Weekly time periods− Large uncertainty in demand and supply

Capacity Estimation Capacity Estimation− How to determine maximum capacity utilization?

S P S Process Systems Engineering 1412-3-2011