Top Banner
Evolution of the horse This image shows a representative sequence but should not be construed to represent a "straight-line" evolution of the horse. Reconstruction, left forefoot skeleton (third digit emphasized yellow) and longitudinal section of molars of selected prehistoric horses The evolution of the horse involves the gradual development of the modern horse from the fox-sized, forest-dwelling Hyracotherium . Paleozoologists have been able to piece together a more complete picture of the modern horse's evolutionary lineage than that of any other animal. The horse belongs to an order known as Perissodactyla , or "odd-toed ungulates ", which all share hoofed feet and an odd number of toes on each foot, as well as mobile upper lips and a similar tooth structure. This means that they share a common ancestry with tapirs and rhinoceros . The perissodactyls originally arose in the late Paleocene , less than 10 million years after the extinction of the dinosaurs . This group of animals appears to have been originally specialized for life in tropical forests , but whereas tapirs and, to some extent, rhinoceroses, retained their jungle specializations, horses instead adapted to life on dryer land in the much-harsher climatic conditions of the steppes . document.doc 1 of 25
25

Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

Jun 10, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

Evolution of the horse

This image shows a representative sequence but should not be construed to represent a "straight-line" evolution of the horse. Reconstruction, left forefoot skeleton (third digit emphasized yellow) and longitudinal section of molars of selected prehistoric horses

The evolution of the horse involves the gradual development of the modern horse from the fox-sized, forest-dwelling Hyracotherium. Paleozoologists have been able to piece together a more complete picture of the modern horse's evolutionary lineage than that of any other animal.

The horse belongs to an order known as Perissodactyla, or "odd-toed ungulates", which all share hoofed feet and an odd number of toes on each foot, as well as mobile upper lips and a similar tooth structure. This means that they share a common ancestry with tapirs and rhinoceros. The perissodactyls originally arose in the late Paleocene, less than 10 million years after the extinction of the dinosaurs. This group of animals appears to have been originally specialized for life in tropical forests, but whereas tapirs and, to some extent, rhinoceroses, retained their jungle specializations, horses instead adapted to life on dryer land in the much-harsher climatic conditions of the steppes.

The early ancestors of the modern horse walked on several spread-out toes, an accommodation to life spent walking on the soft, moist grounds of primeval forests. As grass species began to appear and flourish, the equids' diets shifted from foliage to grasses, leading to larger and more durable teeth. At the same time, as the steppes began to appear, the horse's predecessors needed to be capable of greater speeds in order to outrun predators. This was attained through the lengthening of limbs and the lifting of some toes from the ground in such a way that the weight of the body was gradually placed on one of the longest toes, the third.

History of research

document.doc 1 of 18

Page 2: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

Restoration of Eurohippus parvulus, Museum für Naturkunde Berlin

Horses appeared to be absent from the Americas until the Spanish Conquistadors brought domestic horses from Europe in the 16th Century, and escaped horses quickly established large wild herds. The early naturalist Buffon suggested in the 1760s that this was an indication of inferiority of fauna in the New World, then later reconsidered this idea.[1] William Clark's 1807 expedition to Big Bone Lick found "leg and foot bones of the Horses" which were included with other fossils sent to Thomas Jefferson and evaluated by the anatomist Caspar Wistar, but neither commented on the significance of this find.[2]

During the Beagle survey expedition the young naturalist Charles Darwin had remarkable success with fossil hunting in Patagonia. On 10 October 1833 at Santa Fe, Argentina, he was "filled with astonishment" when he found a horse's tooth in the same stratum as fossil giant armadillos, and wondered if it might have been washed down from a later layer, but concluded that this was "not very probable".[3] After the expedition returned in 1836 the anatomist Richard Owen confirmed that the tooth was from an extinct species which he subsequently named Equus curvidens, and remarked that "This evidence of the former existence of a genus, which, as regards South America, had become extinct, and has a second time been introduced into that Continent, is not one of the least interesting fruits of Mr. Darwin's palæontological discoveries."[4][2]

In 1848 a study On the fossil horses of America by Joseph Leidy systematically examined Pleistocene horse fossils from various collections including that of the Academy of Natural Sciences and concluded that there had been at least two ancient horse species in North America, Equus curvidens and another which he named Equus americanus, but a decade later he found that name had already been taken and renamed it Equus complicatus.[1] In the same year he visited Europe and was introduced by Owen to Darwin.[5]

The original sequence of species believed to have evolved into the horse were based on fossils discovered in North America in the 1870s by paleontologist Othniel Charles Marsh. The sequence, from Hyracotherium (popularly called Eohippus) to the modern horse (Equus), was popularized by Thomas Huxley and became one of the most widely-known examples of a clear evolutionary progression. The horse's evolutionary lineage became a common feature of biology textbooks, and the sequence of transitional fossils was assembled by the American Museum of Natural History into an exhibit which emphasized the gradual, "straight-line" evolution of the horse.

Since then, as the number of equid fossils has increased, the actual evolutionary progression from Hyracotherium to Equus has been discovered to be much more complex and multi-branched than was initially supposed: the straight, direct progression from the former to the latter has been replaced by a more elaborate model with numerous branches in different directions, of which the modern horse is only one of many. It was first recognized by George Gaylord Simpson in 1951[6] that the modern horse is not the "goal" of the entire lineage of equids (the notion of a goal would contradict modern evolutionary theory); it is simply the only genus of the many horse lineages that has happened to survive.

document.doc 2 of 18

Page 3: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

Detailed fossil information on the rate and distribution of new equid species has also revealed that the progression between species was not as smooth and consistent as was once believed: although some transitions, such as that of Dinohippus to Equus, were indeed gradual progressions, a number of others, such as that of Epihippus to Mesohippus, were relatively abrupt and sudden in geologic time, taking place over only a few million years. Both anagenesis (gradual change in an entire population's gene frequency) and cladogenesis (a population "splitting" into two distinct evolutionary branches) occurred, and many species coexisted with "ancestor" species at various times. The change in equids' traits was also not always a "straight line" from Hyracotherium to Equus: some traits reversed themselves at various points in the evolution of new equid species, such as size and the presence of facial fossae, and it is only in retrospect that certain evolutionary trends can be recognized.[7]

Eocene and Oligocene: Early equids

Hyracotherium

Hyracotherium, also called "eohippus".

The earliest animal to bear recognizably horse-like anatomy was the Hyracotherium ("hyrax-like beast"). Its scientific name is derived from initial confusion over early partial fossils' relationship with living species: Richard Owen likened early Hyracotherium fossils "to a hare in one passage and to something between a hog and a hyrax in another".[8] A later name for the Hyracotherium, "eohippus" ("dawn horse"), is also popular, though the earlier name takes precedence due to scientific naming conventions.[9][10]

Hyracotherium lived in the Ypresian (early Eocene), about 52 mya (million years ago). It was an animal approximately the size of a fox (250–450 mm in height), with a relatively short head and neck and a springy, arched back. It had 44 low-crowned teeth, in the typical arrangement of an omnivorous, browsing mammal: 3 incisors, 1 canine, 4 premolars, and 3 molars on each side of the jaw. Its molars were uneven, dull, and bumpy, and used primarily for grinding foliage. The cusps of the molars were slightly connected in low crests. The Hyracotherium browsed on soft foliage and fruit, probably scampering between thickets in the mode of a modern muntjac: the Hyracotherium had a small brain, and possessed especially small frontal lobes.[7]

document.doc 3 of 18

Page 4: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

Hyracotherium, with left forefoot (third metacarpal colored) and tooth (a enamel; b dentin; c cement) detailed.

Its limbs were decently long relative to its body, already showing the beginnings of adaptations for running. However, all of the major leg bones were unfused, leaving the legs flexible and rotatable. Its wrist and hock joints were low to the ground. The forelimbs had developed five toes, out of which only four were equipped with a small proto-hoof; the large fifth "toe-thumb" was off the ground. The hind limbs had three out of the five toes equipped with small hooves, while the vestigial first and fifth toes did not touch the ground. Its feet were padded, much like a dog's, but with the small hooves on each toe in place of claws.

For a span of about 20 million years[verification needed], the Hyracotherium thrived, with few significant evolutionary changes occurring. The most significant change was in the teeth, which began to adapt to the changing diet of Hyracotheria as these early equids shifted from a mixed diet of fruits and foliage to one focused increasingly on browsing foods. During the Eocene, a Hyracotherium species (most likely Hyracotherium vassacciense) branched out into various new types of equids. Thousands of complete, fossilized skeletons of these animals have been found in the Eocene layers of North American strata, mainly in the Wind River basin in Wyoming. Similar fossils of horses have also been discovered in Europe, such as Propalaeotherium (which is not considered ancestral to the modern horse).[11]

Orohippus

Approximately 50 million years ago, in the early-to-middle Eocene, Hyracotherium smoothly transitioned into Orohippus over a gradual series of changes.[11] Although its name means "mountain horse", Orohippus did not live in the mountains. It resembled Hyracotherium in size, but had a slimmer body, an elongated head, and slimmer forelimbs and longer hind legs, all of which are characteristics of a good jumper. Although Orohippus was still pad-footed, the vestigial outer toes of Hyracotherium were not present in the Orohippus; there were four toes on each forelimb, and three on each hind leg.

The most dramatic change between Hyracotherium and Orohippus was in their teeth: the first of the premolar teeth were dwarfed, the last premolar shifted in shape and function into a molar, and the crests on the teeth became more pronounced. Both of these factors gave the teeth of Orohippus greater grinding ability, suggesting that Orohippus was subsisting on tougher plant material.

In the mid-Eocene, about 47 million years ago, Epihippus, a species which continued the evolutionary trend of increasingly efficient grinding teeth, evolved from Orohippus. Epihippus had five grinding,

document.doc 4 of 18

Page 5: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

low-crowned cheek teeth with well-formed crests. A late form of Epihippus, sometimes called Duchesnehippus, had teeth similar to Oligocene equids, although slightly less developed. Whether Duchesnehippus was a subgenus of Epihippus or a distinct genus is disputed.

Mesohippus

In the late Eocene and the early stages of the Oligocene epoch (32–24 million years ago), the climate of North America became drier, and the earliest grasses began to evolve. The forests were yielding to flatlands, home to grasses and various kinds of brush. In a few areas these plains were covered in sand, creating the type of environment resembling the present-day prairies.

In response to the changing environment, equids, too, began to change. In the late Eocene, they began developing tougher teeth and becoming slightly larger and leggier, allowing for faster running speeds in open areas, and thus for evading predators in non-wooded areas. About 40 million years ago, Mesohippus ("middle horse") suddenly developed in response to strong new selective pressures to adapt, beginning with the species Mesohippus celer and soon followed by Mesohippus westoni.

In the early Oligocene, Mesohippus was one of the more widespread mammals in North America. It walked on three toes on each of its front and hind feet (the first and fifth toes remained, but were small and not used in walking). The third toe was stronger than the outer ones, and thus more weighted; the fourth front toe was diminished to a vestigial nub. Judging by its longer and slimmer limbs, Mesohippus was an agile animal.

Mesohippus was slightly larger than Epihippus, about 610 mm (24") at the shoulder. Its back was less arched, and its face, snout, and neck were somewhat longer. It had significantly larger cerebral hemispheres, and had a small, shallow depression on its skull called a fossa, which in later horses became quite detailed, and serves as a useful marker for identifying an equine fossil's species. Mesohippus had six grinding "cheek teeth", with a single premolar in front—a trait all later equid species would retain. Mesohippus also had the sharp tooth crests of Epihippus, improving its ability to grind down tough vegetation

Miohippus

Around 36 million years ago, soon after the development of Mesohippus, Miohippus ("lesser horse") emerged, the earliest species being Miohippus assiniboiensis. Like Mesohippus, Miohippus's evolution was relatively abrupt, though a few transitional fossils linking the two genera have been found. It was once believed that Mesohippus had anagenetically evolved into Miohippus by a gradual series of progressions, but new evidence has shown that Miohippus's evolution was cladogenetic: a Miohippus population split off from the main Mesohippus genus, coexisted with Mesohippus for around 4 million years, and then over time came to replace Mesohippus.[12]

Miohippus was significantly larger than its predecessors, and its ankle joints had subtly changed. Its facial fossa was larger and deeper, and it also began to show a variable extra crest in its upper cheek teeth, a trait that became a characteristic feature of later equid teeth.

Miohippus ushered in a major new period of equid diversification.[10] While Mesohippus died out in the mid-Oligocene, Miohippus continued to thrive, and in the early Miocene (24–5.3 million years ago), it began to rapidly diversify and speciate. It branched out into two major groups, one of which adjusted to the life in forests once again, while the other remained suited to life on the prairies.[citation needed]

document.doc 5 of 18

Page 6: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

Miocene and Pliocene: True equines

Kalobatippus

Megahippus remains

The forest-suited form was Kalobatippus (or Miohippus intermedius, depending on whether it was a new genus or species), whose second and fourth front toes were long, well-suited travel on the soft forest floors. Kalobatippus probably gave rise to Anchitherium, which travelled to Asia via the Bering Strait land bridge, and from there to Europe.[13] In both North America and Eurasia, larger-bodied genera evolved from Anchitherium; Sinohippus in Eurasia and Hypohippus and Megahippus in North America.[14] Hypohippus became extinct near the beginning of the Pliocene.[citation needed]

Parahippus

The Miohippus population that remained on the steppes is believed to be ancestral to Parahippus, a North American animal about the size of a small pony, with a prolonged skull and a facial structure resembling the horses of today. Its third toe was stronger and larger, and carried the main weight of the body. Its four premolars resembled the molar teeth and the first were small and almost nonexistent. The incisive teeth of Parahippus, like those of its predecessors, had a crown as humans do; however, the top incisors had a trace of a shallow crease marking the beginning of the core/cup.

Merychippus

Merychippus, an effective grazer and runner.

In the middle of the Miocene epoch, the grazer Merychippus flourished. Merychippus had wider molars than its predecessors, which are believed to have been used for crunching the hard grasses of the steppes. The hind legs, which were relatively short, had side toes equipped with small hooves, but

document.doc 6 of 18

Page 7: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

they probably only touched the ground when running.[10] Merychippus radiated into at least 19 additional grassland species.

Hipparion

Three new equid lineages are believed to be descended from the numerous varieties of Merychippus: Hipparion, Protohippus and Pliohippus. The most different from Merychippus was Hipparion. The main difference was in the structure of tooth enamel: in comparison with other equids, the inside, or tongue side, had a completely isolated parapet. A complete and well-preserved skeleton of the North American Hipparion shows an animal the size of a small pony. They were very slim, rather like antelopes, and were adapted to life on dry prairies. On its slim legs, Hipparion had three toes equipped with small hooves, but the side toes did not touch the ground.

In North America, Hipparion and its relatives (Cormohipparion, Nannippus, Neohipparion, and Pseudhipparion), proliferated into many kinds of equids, at least one of which managed to migrate to Asia and Europe during the Miocene epoch.[15] (European Hipparion differs from American Hipparion in its smaller body size – the best-known discovery of these fossils was near Athens.)

Pliohippus

Pliohippus pernix

Pliohippus arose from Calippus in the middle Miocene, around 12 million years ago. It was very similar in appearance to Equus, though it had two long extra toes on both sides of the hoof, externally barely visible as callused stubs. The long and slim limbs of Pliohippus reveal a quick-footed steppe animal.

Until recently, Pliohippus was believed to be the ancestor of present-day horses because of its many anatomical similarities. However, though Pliohippus was clearly a close relative of Equus, its skull had deep facial fossae, whereas Equus had no fossae at all. Additionally, its teeth were strongly curved, unlike the very straight teeth of modern horses. Consequently, it is unlikely to be the ancestor of the modern horse; instead, it is a likely candidate for the ancestor of Astrohippus.[16]

Dinohippus

Dinohippus was the most common horse in North America during the late Pliocene. It was originally thought that Dinohippus was a monodactyl horse, but a 1981 fossil find in Nebraska shows that some were tridactyl.

Plesippus

document.doc 7 of 18

Page 8: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

Mounted skeleton of Hagerman Horse (Equus simplicidens)

Plesippus is often considered an intermediary stage between Dinohippus and the present day horse, Equus.

The famous fossils found near Hagerman, Idaho were originally thought to be a part of the genus Plesippus Hagerman Fossil Beds (Idaho), a Pliocene site, dating about 3.5 Ma ago. The fossilized remains were originally called Plesippus shoshonensis but further study by paleontologists determined that fossils represented the oldest remains of the genus Equus.[17] Their estimated average weight was 425 kg, roughly the size of an Arabian horse.

At the end of the Pliocene, the climate in North America began to cool down significantly and most of the animals were forced to move south. One group of the Plesippus species moved across the land bridge around the Bering Strait into Eurasia around 2.5 Ma ago.[18]

Modern horses

Equus

The oldest species of "true" horse, Equus stenonis, was discovered in Italy, and is believed to have evolved from Plesippus-like animals at the end of the Tertiary or beginning of the Quaternary periods. Equus stenonis proliferated into two branches, one lighter in body mass and one heavier.

Equus stenonis crossed into North America, where similar forms known as Equus scotti are common; some types (Equus scotti var. giganteus) exceeded the modern horse in size. However, all the horses in North America ultimately became extinct approximately 11,000 years ago. The causes of this extinction (simultaneous with the extinctions of a variety of other American megafauna) are still a matter of debate, particularly given the suddenness of the event and the fact that these mammals had clearly been surviving for millions of years previously. Possible reasons include climate change, pandemic, or hunting to extinction by the possibly simultaneous arrival of humans.[19]

Hippidion, a relatively short-legged form that developed in South America after invading from North America as part of the Great American Interchange about 2.5 million years ago, has traditionally been thought to have evolved from pliohippines.[20] However, recent studies of the DNA of Hippidion and other New World Pleistocene horses indicate that Hippidion is actually a member of Equus, closely related to the domestic horse, Equus caballus.[20][21] Another invasion of South America by Equus occurred about a million years ago, and this lineage appears indistinguishable from E. caballus.[21] South American equids died out simultaneously with those from North America.

Recent studies by a team of geneticists headed by C. Vila indicate that the horse line split from the zebra/donkey line between 4 and 2 million years ago[22]. Wild horse fossils from the Upper Paleolithic have been found in the Alaskan permafrost and are widely distributed over the Eurasian steppe [22] [23] . In many areas, horse fossils disappear from the fossil record from about 10,000 years ago, only occurring document.doc 8 of 18

Page 9: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

frequently again in archaeological sites in Kazakhstan and the southern Ukraine from 6,000 years ago [22]. In the Americas, the Alaskan permafrost bones are the last record of Equus until the arrival of Europeans in the 15th century. The timing of the earliest horse domestication is uncertain, but it probably occurred between 9400 BC and 2000 BC, the latter being the approximate date of the oldest known chariot burials on the Ural steppe[23]. By 1250 BC, however, burial, textual, and iconographic evidence shows that chariots were widespread from Greece to China [23] . Genetic analysis of wild horse populations, both contemporary and extinct, shows considerably less genetic diversity than that of the modern domestic horse[22][23]. Assuming this genetic homogeneity among individual groups of wild horses was representative when they were first domesticated, then several populations of wild horses were probably incorporated for domestic horse breeding[22][23]. It is possible, then, that the knowledge of capturing, taming, and rearing horses spread along with the domesticated horses themselves, with wild mares from several wild populations being incorporated en route[23]. Genetic evidence suggests that modern domestic horses, Przewalski's horse, and Paleothic horses from Germany, Siberia, and Alaska are from a single holarctic species[20].

The "Four Foundations" theory

Przewalski's Horse, the last surviving wild horse species

There is a theory that four basic "proto" horses developed in Europe through natural selection with adaptations to their environment prior to domestication of the horse. There are competing theories, some arguing that the prototypes were separate species, others suggesting that the prototypes were physically different manifestations of Equus ferus or Equus caballus. Either way, the most common theories of historical wild species from which other types are thought to have developed suggests the following base prototypes:[24]

The "Warmblood subspecies" or "Forest Horse" (Equus ferus silvaticus, also called the Diluvial Horse), thought to have evolved into Equus ferus germanicus, and which may have contributed to the development of the warmblood horses of northern Europe, as well as older "heavy horses" such as the Ardennais.

The "Draft" subspecies, a small, sturdy, heavyset animal with a heavy hair coat, arising in northern Europe, adapted to cold, damp climates, somewhat resembling today's draft horse and even the Shetland pony.

The "Oriental" subspecies, (Equus agilis) a taller, slim, refined and agile animal arising in western Asia, adapted to hot, dry climates, thought to be the progenitor of the modern Arabian horse and Akhal-Teke.

The "Tarpan subspecies," dun-colored, sturdy animal, the size of a large pony, adapted to the cold, dry climates of northern Asia, the predecessor to the Tarpan and Przewalski's Horse as well as the domesticated Mongolian horse.

Return to the Americas

document.doc 9 of 18

Page 10: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

When the first Europeans came to America, beginning with Columbus in A.D. 1492, there were no horses remaining in the western hemisphere. The indigenous peoples of the Americas in what today is Mexico, the southwestern United States, and Peru did not have a specific word for the animal, later referring to it in their languages as a type of dog or deer (in one case, "elk-dog").

The Spanish began to import Iberian horses to breeding ranches on Cuba, Haiti, and other large Caribbean islands offshore of the Americas beginning with Columbus' second voyage in 1493. The first horses to return to the main continent were 16 specifically identified horses brought by Hernan Cortes. Subsequent explorers, such as Coronado and DeSoto brought ever-larger numbers, some from Spain and other from breeding establishments set up by the Spanish in the Caribbean. Later, as Spanish missions were founded on the mainland, horses would eventually be lost or stolen, and proliferated into large herds of feral horses that became known as mustangs.

Details

Toes

The ancestors of the horse came to walk only on the end of the third toe and both side toes. Skeletal remnants show obvious wear on the back of both sides of metacarpal and metatarsal bones, commonly called the “splint bones”. They are the remnants of the second and the fourth toe. Modern horses retain the splint bones; it is often believed that they are a useless attachment, but they in fact play an important role in supporting the carpal joints (front knee) and even the tarsal joints (hock).

Teeth

Throughout the phylogenetic development, the teeth of the horse underwent significant changes. The type of the original omnivorous teeth with short, "bumpy" molars, with which the prime members of the evolutionary line distinguished themselves, gradually changed into the teeth common to herbivorous mammals. They became long (as much as 100 mm), roughly cubical molars equipped with a flat grinding surface. In conjunction with the teeth, during the horse’s evolution the elongation of the facial part of the skull is apparent, and can also be observed in the backward set eyeholes. In addition, the relatively short neck of the equine ancestors became longer with equal elongation of the legs. Finally, the size of the body grew as well.

HyracotheriumHyracotherium

Fossil range: Early - Mid Eocene

Scientific classificationKingdom: AnimaliaPhylum: Chordata

document.doc 10 of 18

Page 11: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

Class: MammaliaOrder: PerissodactylaFamily: PalaeotheriidaeGenus: Hyracotherium

Owen, 1841

Binomial nameHyracotherium leporinum

Owen, 1841

Synonyms

?Eohippus Marsh, 1876

Hyracotherium ("Hyrax-like beast") (also known as Eohippus) was a dog-sized perissodactyl ungulate that lived in the Northern Hemisphere, with species ranging throughout Asia, Europe, and North America during the Early to Mid Eocene, about 60 to 45 million years ago. [1] It was once considered to be the earliest known member of the horse family[2] before being reclassified as a palaeothere, of a perissodactyl family related to both horses and brontotheres.

Discovery

Mounted replica of a Hyracotherium vasacciensis skeleton.

Size chart.

The first fossils of this animal were found in England by the paleontologist Richard Owen in 1841, who suspected that it was a hyrax due to its teeth. He did not have a full skeleton and called it "Hyrax-like beast". In 1876, Othniel C. Marsh found the full skeleton in America, which he named Eohippus ("dawn horse"). When it became clear that the two finds were closely related, the first published name (Hyracotherium) became official and Eohippus came to be a synonym.

DescriptionHyracotherium averaged only 2 feet (60 cm) in length and averaged 8 to 9 inches (20 cm) high at the shoulder. It had 4 hoofed toes on the front feet and 3 hoofed toes on each hind foot. The skull was long, having 44 low-crowned teeth. Hyracotherium is believed to have been a browsing herbivore that ate primarily leaves as well as some fruits and nuts.[3]

document.doc 11 of 18

Page 12: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

Evolutionary roleIt is believed by some scientists that the Hyracotherium was not only ancestral to the horse, but to other perissodactyls such as rhinos and tapirs.[4] It is now regarded as a paleothere, rather than a horse proper, but this is only true of the type species, H. leporinum.[5][6] Most other species of Hyracotherium are still regarded as equids, but they have been placed in several other genera: Arenahippus, Minippus, Pliolophus, Protorohippus, Sifrhippus, Xenicohippus, and even Eohippus.[6] At one time, Xenicohippus was regarded as an early brontothere.

MiscellaneousIn elementary level textbooks, Hyracotherium is commonly described as being "the size of a small Fox Terrier", which is actually about twice the size of the Hyracotherium. This arcane analogy was so curious that Stephen Jay Gould wrote an essay about it ("The Case of the Creeping Fox Terrier Clone"), in which he concluded that Henry Fairfield Osborn had so described it in a widely distributed pamphlet, Osborn being a keen fox hunter who made a natural association between horses and the dogs that accompany them.

See also Evolution of the horse Mesohippus Merychippus Equus

EquidaeEquids

Fossil range: 54–0 Ma Early Eocene to Recent

Plains Zebras

Scientific classificationKingdom: AnimaliaPhylum: ChordataClass: MammaliaOrder: Perissodactyla

document.doc 12 of 18

Page 13: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

Family: EquidaeGray, 1821

Genus: EquusLinnaeus, 1758

Species

E. asinus - DonkeyE. africanus - African Wild AssE. caballus - Domestic HorseE. ferus - Wild HorseE. grevyi - Grevy's ZebraE. hemionus - OnagerE. kiang - KiangE. quagga - Plains ZebraE. zebra - Mountain Zebra

Equidae is the family of horse-like animals, which belong to the order Perissodactyla. It is sometimes known as the horse family. Apart from the horse, other extant equids include assorted subspecies of donkey or ass, and the zebras. All of these are in the genus Equus.

CharacteristicsSee also: Horse anatomy and Horse behavior

Equids are medium to large mammals, with long heads, and necks with a mane. Their legs are slender and end in a single, unguligrade toe, protected by a horny hoof. They have long, slender, tails, either ending in a tuft, or entirely covered in flowing hair. They are adapted to generally open terrain, from plains and savannas, to mountains or deserts.

The range of equid monocular vision. Shaded areas represent blind spots.

The pinnae ("ears") of equids are mobile, enabling them to easily localise the origin of sounds. They have two-color, or dichromatic vision. Their eyes are set back far on the head, giving them a wide angle of view, without entirely losing binocular vision. Equids also have a vomeronasal organ, that allows males to use the flehmen, or 'lip-curling' response to assess the sexual state of potential mates.

Equids are herbivores, and feed predominantly on tough, fibrous food, such as grasses and sedges. When in need, they will also eat other vegetable matter, such as leaves, fruits, or bark, but are normally grazers, not browsers. Unlike ruminants, with their complex stomachs, equids break down cellulose in

document.doc 13 of 18

Page 14: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

the "hindgut" or cecum, a part of the colon. Their dentition is almost complete, with cutting incisors to crop food, and grinding molars set well back behind a diastema. The dental formula for equids is:

3.1.3-4.3

3.1.3.3

A feral horse herd in the western United States

Equids are social animals, living in herds or bands. Horses, along with Plains and Mountain Zebras, have permanent herds generally consisting of a single male and a band of females, with the remaining males forming small "bachelor" herds. The remaining species have temporary herds, lasting only a few months, which may be either single-sexed or mixed. In either case, there are clear hierarchies established amongst the individuals, usually with a dominant female controlling access to food and water resources and the lead male controlling mating opportunities.

Females, usually called mares in horses and zebras, or, in the case of asses and donkeys, jennys, usually bear a single foal, after a gestation period of approximately 11 months. Young equids are able to walk within an hour of birth, and are weaned after four to thirteen months (animals living in the wild naturally wean foals at a later date than those under domestication). Depending on species, living conditions and other factors, females in the wild may give birth every year or every other year.[1][2]

Equids who are not in foal generally have a seasonal estrous cycle, from early spring into autumn. Most females enter an anestrus period during the winter and thus do not cycle in this period. The reproductive cycle is controlled by the photoperiod (length of the day), with estrus triggered when the days begin to lengthen. Anestrus prevents the female from conceiving in the winter months, as that would result in her foaling during the harshest part of the year, a time when it would be more difficult for the foal to survive.[3] However, equids who live near the equator, where there is less change in length of day from season to season, have no anestrus period, at least in theory.[4] Further, for reasons that are not clear, about twenty percent of domestic mares in the Northern Hemisphere will cycle the year round.[5]

Evolution

Hyracotherium, also called "eohippus".Main article: Evolution of the horse

document.doc 14 of 18

Page 15: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

The oldest known equid fossils date from the early Eocene, 54 million years ago. This species, Hyracotherium (formerly known as Eohippus), was a fox-sized animal with three toes on its hind feet, and four on the front feet. It was herbivorous browser on relatively soft plants, and already adapted for running. The complexity of its brain suggests that it was already an alert and intelligent animal.[6] Later species reduced the number of toes, and developed teeth more suited for grinding up grasses and other tough plant food.

The group became relatively large during the Miocene, with many new species appearing. By this time, equids were more truly horse-like, having developed the typical body shape of the modern animals. Many of these species bore the main weight of their bodies on their central, third, toe, with the others becoming reduced, and barely touching the ground, if at all. The surviving modern genus, Equus, had evolved by the early Pleistocene, and spread rapidly though the world.[7]

Classification

Przewalski's horse, the only remaining type of "wild" horse that has never been domesticated

A domesticated horse

A donkey

An onager, one type of wild ass

document.doc 15 of 18

Page 16: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

A pair of Kiangs

Plains zebra Order Perissodactyla (In addition to Equidae, Perissodactyla includes four species of tapir in a

single genus, as well as five living species (belonging to four genera) of rhinoceros.) † indicates extinct species.

o Family Equidae Genus Hyracotherium† Genus Orohippus† Genus Epihippus† Genus Haplohippus† Genus Mesohippus† Genus Miohippus† Genus Archaeohippus† Genus Anchitherium† Genus Kalobatippus† Genus Hypohippus† Genus Sinohippus† Genus Megahippus† Genus Parahippus† Genus Merychippus† Genus Acritohippus† Genus Pseudhipparion† Genus Nannippus† Genus Neohipparion† Genus Hipparion† Genus Proboscidipparion† Genus Stylohipparion† Genus Cormohipparion† Genus Protohippus† Genus Parapliohippus† Genus Heteropliohippus† Genus Pliohippus† Genus Calippus† Genus Astrohippus†

document.doc 16 of 18

Page 17: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

Genus Hippidion† Genus Onohippidium† Genus Dinohippus† Genus Equus

Subgenus Equus Horse , Equus caballus Wild Horse , Equus ferus

†Tarpan, Equus ferus ferus Przewalski's Horse or Mongolian Wild Horse, Equus

ferus przewalskii †Yukon Horse, Equus lambei

Subgenus Asinus African Wild Ass , Equus africanus

Nubian Wild Ass , Equus africanus africanus †Atlas Wild Ass, Equus africanus atlanticus Somali Wild Ass , Equus africanus somalicus Donkey or Burro, Equus africanus asinus

†European Ass, Equus hydruntinus Onager or Asiatic Ass, Equus hemionus, Equus hemionus onager

Mongolian Wild Ass , Equus hemionus hemionus †Syrian Wild Ass, Equus hemionus hemippus Gobi Kulan or Dziggetai , Equus hemionus luteus Turkmenian Kulan , Equus hemionus kulan Indian Wild Ass or Khur, Equus hemionus khur

Kiang , Equus kiang Western Kiang , Equus kiang kiang Eastern Kiang , Equus kiang holdereri Southern Kiang , Equus kiang polyodon Northern Kiang , Equus kiang chu

†Cummin’s Ass, Equus cumminsii †Stilt-legged Onager, Equus calobatus †Pygmy Onager, Equus tau

Subgenus Dolichohippus Grevy's Zebra , Equus grevyi

Subgenus Hippotigris Plains Zebra , Equus quagga

†Quagga, Equus quagga quagga Burchell's Zebra , Equus quagga burchellii Grant's Zebra , Equus quagga boehmi Selous' zebra , Equus quagga borensis Chapman's Zebra , Equus quagga chapmani Crawshay's Zebra , Equus quagga crawshayi

Mountain Zebra , Equus zebra Cape Mountain Zebra , Equus zebra zebra Hartmann's Mountain Zebra , Equus zebra hartmannae

†Subgenus Amerhippus †Scott’s Horse, Equus scotti †Niobrara Horse, Equus niobrarensis †Mexican Horse, Equus conversidens

†Subgenus Parastylidequus

document.doc 17 of 18

Page 18: Evolution of the horse - Webs 14... · Web viewMain article: Evolution of the horse The oldest known equid fossils date from the early Eocene, 54 million years ago. This species,

†Mooser’s Horse, Equus parastylidens incertae sedis

†Hagerman Horse (or Hagerman Zebra), Equus simplicidens - perhaps closest to Dolichohippus[8]

†Western Horse, Equus occidentalis †Complex-toothed Horse, Equus complicatus †Brother Horse, Equus fraternus †Noble Horse, Equus excelsus - subgenus Equus? †'Giant' Horses, Equus giganteus group

† Equus giganteus † Equus pacificus † Equus pectinatus † Equus crinidens

Cross-breedsDifferent species of equidae can crossbreed, though the ensuing offspring are usually infertile. Some hybrid equidae include:

a mule Mule , a cross between a male donkey and a female horse. Mules are the most common type of

hybrid equid and are renowned for their toughness, surefootedness, and working ability. Hinny , a cross between a female donkey and a male horse. Considered a less desirable cross

than a mule, generally smaller in size and not as hardy. Zeedonk or Zonkey, a cross between a donkey and a zebra. Zony , a zebra/pony cross. Zorse or zebrula, the offspring of a zebra stallion and a horse mare; the rarer reverse pairing is

sometimes called a hebra.

Any equid with partial zebra ancestry is also called a zebroid.

See also Domestication of the horse

document.doc 18 of 18