Top Banner
Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators:Strauss,Schneider,Ric hards, Hennawi,Gunn,Becker,White,Rix,Penter icci, Walter, Carilli,Cox,Bertoldi,Omont,Brandt, Vestergaard,Eisenstein, Cool, Jiang, Diamond-Stanic, et al.
34

Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Jan 01, 2016

Download

Documents

Beryl Rice
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Evolution of High-Redshift Quasars

Xiaohui Fan

University of Arizona

Castel Gandolfo, Oct 2005

Collaborators:Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci, Walter, Carilli,Cox,Bertoldi,Omont,Brandt, Vestergaard,Eisenstein, Cool, Jiang, Diamond-Stanic, et al.

Page 2: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

The Highest Redshift Quasars Today

• z>4: >1000 known

• z>5: >60

• z>6: 9

• SDSS i-dropout Survey:– By Spring 2005: 6600 deg2 at

zAB<20

– Nineteen luminous quasars at z>5.7

• Complete sample for bright quasars at z~6:– ~8000 deg, ~25 quasars by

2006

• Next: work on faint sample at z~6

Page 3: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,
Page 4: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Outline

• Evolution of luminosity function• BH masses at high-z• High-z quasar clustering and environment• Evolution of quasar spectra and metallicity• Dust and star formation in high-z quasar host

galaxies

Page 5: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

46,420 Quasars from the SDSS Data Release Three

wavelength4000 A 9000 A

reds

hift

0

1

2

3

5

Ly

CIV

CIIIMgII

HOIII

FeII

FeII

Ly forest

Page 6: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Evolution of quasar densities

Exponential decline of quasar density at high redshift, different from normal galaxies, mostly luminosity dependent

Richards et al. 2005,Fan e al. 2005

SFR of galaxies

Density of quasars

Bouwens et al.

Page 7: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Quasar Density at z~6• From SDSS i-dropout

survey– Density declines by a factor

of ~40 from between z~2.5 and z~6

• Cosmological implication– MBH~109-10 Msun

– Mhalo ~ 1012-13 Msun

– rare, 5-6 sigma peaks at z~6 (density of 1 per Gpc3)

• Assembly of massive dark matter halo environment?

• Assembly of supermassive BHs? Fan et al. 2004

Page 8: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Simulating z~6 Quasars• The largest halo in Millennium

simulation (500 Mpc cube) at z=6.2– Virial mass 5x1012 M_sun– Stellar mass 5x1010 M_sun– SFR: 300 M_sun/year– Resembles properties of SDSS quasars– Even the largest N-body simulation

not big enough to produce one SDSS z~6 quasar…

– Today: 1.5 x 1015 M_sun cluster– Much massive halos existed at z~6,

but..

• How to assemble such mass BHs and their host galaxies in less than 1Gyr??– The universe was ~20 tedd old– Initial assembly from seed BH at

z>>10– Little or no feedback to stop

BH/galaxy growth

z=6.2

z=0

Dark matter galaxy

Springel et al. 2005

Page 9: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Early Growth of Supermassive Black Holes

Vestergaard 2004 Dietrich and Hamann 2004

• Billion solar mass BH at z~6 indicates very early growth of BHs in the Universe

Formation timescale (assuming Eddington)

Lack of spectral evolution in high-redshift quasars quasar BH estimate valid at high-z

BH mass estimate: using emission line width to approximate gravitational velocity, accurate to a factor of 3 – 5 locally

Page 10: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Evolution of X-ray AGN LF

-- downsizing

• At high-luminosity: X-ray and optical traces the same population

• How does optically-selected quasar population evolve at low-luminosity?

Hasinger et al. 2005

Page 11: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Evolution of the Shape of Quasar LF

Richards et al. 2005

Page 12: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Evolution of Quasar LF Shape

• High-z quasar LF different from low-z– Bright-end slope of QLF is a strong function of redshift– Transition at z~3 (where quasar density peaks in the universe)– Different formation mechanism at low and high-z?

Richards, et al.; Fan et al. 2005

Page 13: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Probing the Evolution of Faint Quasar

• SDSS Southern Deep Spectroscopic Survey– 270 deg along Fall Equator in the Southern Galactic

Cap

– Down to ~25 mag in SDSS bands with repeated imaging

– Spectroscopic follow-up using 300-fiber Hectospec spectrograph on 6.5-meter MMT

– Reaches AGN luminosity at z~2.5

– Few hundred faint quasars at z>3

– 10 – 20 at z~6

Page 14: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Evolution of faint quasars in SDSS Deep Survey

Jiang et al. in prep.

• Sample reaches AGN luminosity at z~3

• Strong evolution in LF shape

• Simple luminosity evolution clearly not a good description

• “break” luminosity evolves: -- downsizing

• faint end slope also evolve: -- steeper at high-z?

Page 15: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Downsizing of optical quasars

Page 16: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

High-z QLF from SDSS Deep Stripe Survey

• High-z quasar LF different from low-z– High-z LF much flatter – Implies that more

luminous quasars grow early in the Universe

• Similar to the early growth of massive galaxies??

– Quasars are not major contributors to reionization at z>6

z ~ 4.5

(low-z)

(high-z)

Fan et al. 2005

Page 17: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Clustering of Quasars

• What does quasar clustering tell us?– Bias factor of quasars

average DM halo mass

– Clustering provides the most effective probe to the statistical properties of quasar host DM properties at high-redshift

• Another hint of quasars at z>3 being somewhat different from low-z quasars? Fan et al. in preparation

Wyithe and Loeb 2004

Page 18: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Environment of a z=6.3 quasar

• Deep VLT i-z-J imaging• 19 i-dropout candidates

in 38 sq. arcmin at z<25.6• >6 times higher than in

GOODS etc.

(also Stiavelle et al. 2005)

izJ composite (z_lim =26)

Pentericci et al.

quasar

Page 19: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

NV

OI SiIV

Ly a

Ly a forest

• Rapid chemical enrichment in quasar vicinity• Quasar env has supersolar metallicity -- metal lines, CO,

dust etc.• High-z quasars and their environments mature

early on

The Lack of Evolution in Quasar Intrinsic Spectral Properties

Page 20: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Chemical Enrichment at z>>6?

• Strong metal emission consistent with supersolar metallicity

• NV emission multiple generation of star formation from enriched pops

• Fe II emission type II SNe… some could be Pop III?

• Question: can we generalize the conclusion drawn from regions around central BHs to the whole early Universe?

Fan et al. 2001Barth et al. 2003

Page 21: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Early enrichment of quasars

Venkatesan et al. 2004

• Metallicity in BLR of z~6 quasars: 1 -- 10 solar

• Nuclear synthesis model shows:– Normal IMF is sufficient

(given high SFR)

– Type Ia is not critical in Fe production

– Mostly Pop III under-produce N/C

– “normal” stars existed at very high-z in quasar environment.

Top-heavy IMF

Normal IMFPopIII

Page 22: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

z~6 Quasar SEDs: from X-ray to radio

• Lack of evolution in UV, emission line and X-ray disk and emission line regions form in very short time scale

old quasars in a young universe…

• But how about dust? Timescale problem: running out of time for AGB dust… Spitzer…

dust

Page 23: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Mid-IR SEDs of z~6 Quasars

• Overall shape shows little evolution• But obj-obj variation significant

– z=6.42 quasar: stronger dust emission with higher T?

Min. from dust sublimation

Page 24: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

BH mass distribution

McLure et al. SDSS DR 1

Fan et al. >1000 quasars at z>3

CIV Upper Limit?

How fast can the most massive high-z BH grow? Will it be stopped by negative feedback?

L~M

Page 25: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

BH Accretion Rate

z<3

z>3

Page 26: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Evolution of Quasar BH Mass Function

• Lack of spectral evolution:– Similar BLR structure

– BH mass scaling relation at low-z still valid at high-z

• Quasar mass function: represents accretion history traced by luminous quasars

• Not surprisingly, closely follows evolution of luminosity function:– Flatter MF at high-z

– Probing evolution of accretion rate?

– At z>2: MF shape similar and flat at high-mass end, but the shape different at low-z

Vestergaard et al.

Page 27: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Probing the Host Galaxy Assembly

Spitzer

ALMA

Dust torus

Cool Dust in host galaxy

Page 28: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Sub-mm and Radio Observation

of High-z Quasars• Probing dust and star formation in the most

massive high-z systems• Advantage:

– No host galaxy contamination

– Negative K-correction for both continuum and line luminosity at high-z

– Give direction measurement to

• Star formation rate

• Gas morphology

• Gas kinematics

Page 29: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Sub-mm and Radio Observationof High-z Quasars

• Using IRAM and SCUBA: ~30% of radio-quiet quasars at z>4 detected at 1mm (observed frame) at 1mJy level

submm radiation in radio-quiet quasars come from thermal

dust with mass ~ 108 Msun

• If dust heating came from starburst star formation rate of

500 – 2000 Msun/year Quasars are likely sites of intensive star formation• FIR luminosity not correlated with UV luminosity of quasar

Arp 220

Bertoldi et al. 2003

Page 30: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

PSS J2322+1944 (z=4.12)

• CO Einstein ring– Modeled by star-

forming disk with 2kpc radius

– CO line-width 280km/s

– BH Mass ~10^9 solar– Star formation rate

900 solar mass/year

• 15 detections of CO at z>2 (5/6 known CO sources at z>4 are quasars) Carilli et al. 2003

Page 31: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Submm, CO and CII detection in the highest-redshift quasar • Dust mass: 108 – 109Msun • H2 mass: 1010Msun • Star formation rate: 103/yr co-formation of SBH and young galaxies

Mailino et al. 2005

Page 32: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

High-resolution CO Observation of z=6.42

Quasar• Spatial Distribution

– Radius ~ 2 kpc– Two peaks separated by 1.7 kpc

• Velocity Distribution– CO line width of 280 km/s– Dynamical mass within central 2 kpc: ~ 1010

M_sun– Total bulge mass ~ 1011 M_sun< M-sigma prediction

• BH formed before complete galaxy assembly?

caution: selection effect whenusing luminous quasars

Walter et al. 2004

1 kpc

VLA CO 3—2 map

60 km/s

Channel Maps

Page 33: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

High-z vs. Low-z Quasars• LF evolution:

– Strong evolution in total density– Downsizing of characteristic luminosity– At z>3:

• Declining density• Flatter LF/MF• Stronger clustering

– Are high-z and low-z quasars different? • Spectral evolution:

– Little or no evolution in continuum/emission line properties– Dust properties might have changed– High-metallicity requires presence of evolved stellar pop at high-z– How does this constrain host evolution?

• BH/galaxy co-evolution– Billion solar-mass BH at the end of reionization– Strong star-formation associated with BH growth– Has M-sigma relation established at high-z?

Page 34: Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Question

• Should one be surprised about the existence of luminous, high-mass, high metallicity quasars at the end of reionization?