Top Banner
Lecture 2: Subspaces Recap : Definition : A vector space over F is a set V equipped w/ two operations : ( addition ) t : VXV V , cx¥,y¥ ) titty ' e V ( Samal plication ) . : Fxv V , C ,¥,x i at EV Satisfying 8 properties :
17

EV ,¥,x...Recap: Definition: A vector space over F is a set V equipped w/ two operations: (addition) t: VXV → V, cx¥,y¥) titty ' e V (Samalplication).: Fxv → V, C,¥,x i →

Jan 29, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Lecture 2: Subspaces

    Recap :

    Definition : A vector space over Fis a set V equipped w/

    two operations :

    ( addition ) t : VXV→ V

    ,

    cx¥,y¥) titty

    '

    e V

    ( Samal plication) .: Fxv → V ,

    C ,¥,x i →at EV

    Satisfying 8 properties :

  • ( VSI ) : I -15'

    = 5'

    + I'

    tix ,J' EV

    ( Vsz ) = ( I' ty ) -1 I = It C g 't 't ) VI. I , 't EVti::3: einen ,( VS 5) = IF

    = I'

    VI EVa

    • (l vs61 : I,¥b¥I' = acbxt I V-a.be 't , EV( VS7) ' -

    of City)= at tag' ta EF , VI. 5

    '

    c- V

    %S8 ) : ( at b) I = af + BI

    '

    ta,

    b EF,

    KIEV

    Remark : an element in F is called scalar .' ' a l v ✓ is called Vector .

  • Proposition : Let V be a vector spaceover F

    . Then :

    (a) The element I'

    in CVS3 ) is unique , called Zeiter .

    ( b ) thx'

    EV,

    the element I'

    in Cuse ) is unique , called

    the additive inverse of I ( Denote as - I )(c) It I = I 't I ⇒ I =D

    '

    ( Cancellation law )

    ( d ) O = I' VI E V .

    A

    F

    Ce) C - a) I =- Caf ) = at - I

    '

    ) fact , f I' e V

    Cf ) a J'

    = I'

    Va EF.

    A

    F

  • Proofi ca ) . If J'

    and J' '

    are to elements satisfying ( VS3) .a A

    ✓ v

    Then : J = I'

    to' '

    =,

    ⇒ 8=8'

    J ' = f '

    to'

    = I to'

    ( Ust )( b ) . Given I

    '

    EV. Suppose we

    have I, I

    ' ' EV satisfying

    ( VS 4).

    Then :→

    I + g'

    =I = I +5

    ' '

    ash 0 → ,

    Then : I = I to = It city'

    ' ) = C I) ty' '

    -- y

    c-

  • (c) I + I = I 't I

    ⇒ ( I 't E) x C- I ) =t I

    '

    ) t C - I )

    ⇒ It if= jeezEI⇒ I =5

    '

    C V8 )by Ccl

    (d) of = Coto ) I'

    = O # to # ⇒ of = 5'

    Il

    of to'

    ( ate - at )aCe ) J = Ca . a) I

    '

    = at + L - a) I'

    ⇒ C- atI = - Cat )( byd)

    Other part - - leave as exercise

  • Cf ) af = a Cotto ' )

    Istaotao

    '

    11

    atto'

    ⇒ af = J'

    (by la )

  • SubspaceDefinition : A subset W of a vector space

    U over a field F is

    called a subspace of V ifW is a vector space over

    F

    Under the same addition and scalar multiplicationinherited from V

    .

    Proposition .- Let V be a vector spaceover F - A subset WCV

    is a subspace iff the following3 conditions holds -

    ( a , Ju E W( b ) Tty

    ' EW,

    tix, Jew ( closed

    under addition )

    ( c ) AI EW,

    faff,

    I'

    EW ( closedunder scalar

    multiplication )

  • Proof . . ( ⇒ ) If we V is a subspace ,then Cb ) and C c ) must hold

    because W is a vector space .

    W has an zero element ('

    .

    '

    W is a vector space )-1

    Ow

    Then : Jw tow = Jw in V ."

    ( can,aquatic ) Jwt Jv'

    ⇒'

    Iw

    -

    - Juin

    W

  • ( ⇐ ) If ca ) - Cc ) hold , then additionand scalar multiplication

    are well - defined on W ( by (b) and Ces ) and ( V S3 )

    follows from Lal .

    ( VS I ) , CVS 2 ) , ( vs5)- ( VS8) hold for V , so they

    hold

    for W as well .

    Remain to checklust ) .

    cVLet I EW . Then , we

    have - I'

    EV.

    F EWUr

    But - I = thx'

    E W

    ( by ca ),

    '

    . W is a vector space overF under the same addition and

    scalar multiplication .

  • Examples : . For any vector space V ,{ I } CV ; ✓ CV C trivial subspaces )

    "

    W. For V= Mnxnlf )

    ,

    ( I2)'

    w , = { diagonal matrices } CV

    + Wz= { A EM nxn CF ) ? detCA7=o } CV NOT subspace

    ( def C A + B ) # def CAI t def CBI )

    ( L Ews- - { A e Mmm CF ) - - tr CA ) - o } CVn

    11

    (3 ai ) €aii

  • • For V = PLF ) ( aotaixt aux 't . . . t aux" )

    Pn CF ) :# { f EPLF ) = deg (f) En } is a subspace

    W Et { f EPLF ) = degcf ) = n }

  • - Consider V = Fn = { c X , ,xz , . . . ,Xn ) : Xj E F for j - - 1.2 . . . ,n )

    Consider linear system :

    f:::c:::::÷

    .

    '

    I ⇐ axe . e

    Ami Xi t Amzxz t- - .

    t Amn In =

    bmgives a subset , the solution set SCV .Is S a subspace ? ?NO if l be , bar . . ,km) toYes iff 5=8 . ( Null space )

  • Theorem : Any intersection of subspaces ofa vector space V is

    a subspace of V .

    Proof : Let { Wi } ; , I be acollection of subspaces of V .

    Set W : It n wi.

    CV.

    i E I

    ' i Tv e Wi for tie ? c'

    .

    Tv E W.

    For any I' twandy' EW , we have I c- Wi , if c- Wi forth'

    .

    Then - . I' t I'

    c- Wi for Hiei ⇒ ityew

    For Few , a c- F , wehave at c- Wi fu allies .

    i . at c- W .

    i. W is a subspace .

  • Question: W , = Subspace ; Wz= subspace

    He

    Win Wz is subspace

    Is Wiuwa a subspace ?? No in general !

  • Linear combination and Span

    Definition : Let V be a vector space over F and SCV a

    non - empty subset .

    • We say a vector Jeff is a linearcombination of vectors of S

    if I iii. Tiz , . . , Tines and a , .az , . . , anC- F sit .

    I = ai Ii , taeuzt . . . t Antin .

    Renate I is usually called a linearcombination of

    iii. Tiz , . . , In and

    a , .az , . . , anthe coefficients of the linear combination .

    • The span of S,

    denoted as Span ( S I , is the set of alllinear combination of Vectors of S a

    Span ( S )Eef { a , I

    '

    , tazuzt . . . + anutn = Aj C- F , I JES for J -4.2 . . . , n ,NEIN }

  • Remark : By convention , span ( &? Et{ I }empty

    set

    • I E Span I Itx'

    , I- x

    ' I*

    ×

  • Example :. Fn = span { I , , Ez , - - ,

    In } where Ij = Co , o , . . . , ¥, o - . o )• PLF ) = span { I , X , x

    2

    ,.

    , #= } j- th

    • Mnxn LF ) = span ( S ) ,

    S = { Ei ; -- ( IitIf i = is i.jen }. Given iii.

    f ka!:) iii. =/ :÷.

    ) , . . . , a' n=(?÷:)xiiitx. ' " in

    #= U ,Then :

    Iie span Chini . , . . . .in } ) iff-

    . god:. IiIaa:÷IIfa'III. =u.( V ,;Vz , - . , Un )An , X , t Anz Xzt . - - tannin

    = Uh

    is consistent. ( has Sol )