Top Banner
Estimating biophysical parameters from CO 2 flask and flux observations Kevin Schaefer 1 , P. Tans 1 , A. S. Denning 2 , J. Collatz 3 , L. Prihodko 2 , I. Baker 2 , W. Peters 1 , A. Andrews 1 , and L. Bruhwiler 1 A Climate Monitoring and Diagnostics Laboratory, Boulder, Colorado t. of Atmospheric Science, Colorado State University, Fort Collins, Colorado dard Space Flight Center, Greenbelt, Maryland
34

Estimating biophysical parameters from CO 2 flask and flux observations Kevin Schaefer 1, P. Tans 1, A. S. Denning 2, J. Collatz 3, L. Prihodko 2, I. Baker.

Dec 19, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Slide 1
  • Estimating biophysical parameters from CO 2 flask and flux observations Kevin Schaefer 1, P. Tans 1, A. S. Denning 2, J. Collatz 3, L. Prihodko 2, I. Baker 2, W. Peters 1, A. Andrews 1, and L. Bruhwiler 1 1 NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, Colorado 2 Dept. of Atmospheric Science, Colorado State University, Fort Collins, Colorado 3 Goddard Space Flight Center, Greenbelt, Maryland
  • Slide 2
  • Objective Understand processes driving terrestrial CO 2 fluxes Technique: estimate model parameters using data assimilation Model: Simple Biosphere (SiB) Carnegie-Ames-Stanford Approach (CASA) Observations: CO 2 concentrations from CMDL flask network CO 2 concentrations & fluxes from towers
  • Slide 3
  • Status 2-year NAS Postdoc fellowship @ CMDL Joint effort: CMDL & CSU SibCasa in final testing Switching to EnKF Preliminary results Offline with SiB2 & TransCom fluxes Single point @ WLEF
  • Slide 4
  • Combined SibCasa Model Simple Biosphere (SiB) Biophysical Good photosynthesis model High time resolution CASA Biogeochemical Good respiration model Coarse time resolution SibCasa Good GPP Model Good respiration model High time resolution
  • Slide 5
  • Which parameters to estimate? Low High Low High Uncertainty Influence no botherno problem no way no excuse
  • Slide 6
  • WLEF Tall Tower in Wisconsin Hourly and monthly average net CO 2 fluxes WLEF
  • Slide 7
  • Monthly Observed vs. SibCasa Fluxes at WLEF Net CO 2 Flux ( mole/m2/s) Date (year) SibCasa Observed
  • Slide 8
  • Hourly Observed vs. SibCasa Fluxes at WLEF Net CO 2 Flux ( mole/m2/s) Date (year) SibCasa Observed
  • Slide 9
  • SibCasa diurnal cycle too small at WLEF June 2-5, 1997 SibCasa Observed Net CO 2 Flux ( mole/m2/s) Date (year)
  • Slide 10
  • Sample Estimate: Respiration Temperature Response (Q 10 ) Q 10 = 3.0 Q 10 = 2.0 Q 10 = 1.0 Soil Temperature (K) Scaling Factor (-)
  • Slide 11
  • Data Assimilation: Minimize Cost function ( ) Optimize using Marquardt-Levenberg method (variant of inverse Hessian) No model adjoint: approximate slope
  • Slide 12
  • Q 10 Cost Function at WLEF (no a priori) Hourly Obs: aliasing Q 10 to fix diurnal cycle
  • Slide 13
  • Initial Slow Pool Cost Function at WLEF Monthly Obs: aliasing Slow to fix low GPP in 1998 Equilibrium Pool Size
  • Slide 14
  • Conclusions We can estimate model parameters from CO 2 data Be careful about data assimilation correcting for model flaws
  • Slide 15
  • What process information can we extract from CO 2 flask and flux tower observations? Ocean Processes Net Flux Biosphere Processes Flux Tower Flask Atmospheric Transport Net Flux Fossil Fuel
  • Slide 16
  • Objectives Use model physics to better understand mechanisms that drive CO 2 fluxes Optimize model parameters to best match model output & observations Estimate hard-to-measure parameters: Q 10, turnover, pool sizes, etc. Joint effort: CMDL & CSU
  • Slide 17
  • Postdoc Plan 6 Months for Software development Add geochemistry from CASA to SiB2 8 months for simulations and testing Flux towers first, then flasks 6 months writing papers Status: 3 months into SiB-CASA development
  • Slide 18
  • DAS Setup Combine SiB3 with CASA SiB3: Photosynthesis & turbulent fluxes CASA: biogeochemistry and respiration Integrate Sibcasa into TM5 Use Ensemble Kalman Filter (EnKF)
  • Slide 19
  • DAS Experiments Single point: Sibcasa & flux tower data Offline: Sibcasa & Transcom3 fluxes Compare NCEP, ECMWF, GEOS4 reanalysis Integrated: Sibcasa in TM5 & flask data
  • Slide 20
  • Problems Parameter Estimation Parameter compensation Model/data biases EnKF 3-D [CO 2 ] field from sparse flask observations How to incorporate CO 2 memory How to go from parameter to flask Number ensemble members
  • Slide 21
  • Data Assimilation: Minimize Cost Function ( ) y = observations f(x) = model output E = uncertainty x = parameter to estimate
  • Slide 22
  • Data Assimilation: Minimize Cost function ( ) observed fluxSiB2 fluxparametera priori flux uncertainty a priori uncertainty Variance between modeled & observed fluxes
  • Slide 23
  • Data Assimilation: Minimize Cost function ( ) Iterate using Marquardt-Levenberg method (variant of inverse Hessian) Approximate Jacobian:
  • Slide 24
  • Data Assimilation: Minimize Cost function ( ) CO 2 Flask Measurements Transport Models TransCom Inversion Estimated NEE SiB2 Assimilation LAI Weather Modeled NEE T Q 10 Iterate
  • Slide 25
  • Ensemble Kalman Filter (EnKF) Use ensemble statistics to approximate terms in Kalman gain equation Run ensemble ~100 members No adjoint required Experimental: still under development
  • Slide 26
  • History of Kevin 1984: BS in Aerospace Engineering 1984-1993: NASA Space Shuttle, Space Station Mission to Planet Earth 1994-1997: White House 1997-2004: CSU Atmospheric Science
  • Slide 27
  • Kevins Family SusyJason
  • Slide 28
  • Simple Biosphere Model, Version 2 (SiB2) TcTc TgTg CO 2 TaTa Rh a NEE=R-GPP LHSH Snow Canopy Canopy Air Space Soil GPP R W1W1 W2W2 W3W3 T1T1 T2T2 T3T3 T4T4 T5T5 T6T6 10-min time step 11 to 45-year simulations
  • Slide 29
  • SiB2 Input National Centers for Environmental Prediction (NCEP) reanalysis 1958-2002, every 6 hours, 2x2 resolution European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis 1978-1993, every 6 hours, 1x1 resolution Leaf Area Index: Fourier-Adjustment, Solar zenith angle corrected, Interpolated Reconstructed (FASIR) Normalized Difference Vegetation Index (NDVI) data 1982-1998, monthly, variable resolution
  • Slide 30
  • NOAAs global flask network Run transport backwards to estimate CO 2 fluxes Compare estimated & SiB2 regional fluxes
  • Slide 31
  • Initial Coarse Woody Debris Pool at WLEF Monthly Obs: aliasing to fix low GPP in 1998 Hourly Obs: aliasing to fix diurnal cycle Equilibrium Pool Size
  • Slide 32
  • Q 10 Estimated from Transcom Fluxes Tropical broadleaf evergreen forest Broadleaf deciduous forest Broadleaf-needleleaf forest Needleleaf forest Needleleaf-deciduous forest Tropical Grasslands Semi-arid grasslands Broadleaf shrubs with bare soil Tundra Desert Agriculture and C3 grasslands 1.2 0.1 2.2 0.3 1.9 0.1 2.6 0.1 2.2 0.1 1.4 0.0 1.6 0.1 1.7 0.2 2.1 0.2 2.6 0.3 1.6 0.0 BiomeQ 10 (-)
  • Slide 33
  • Flasks: Turnover (T) and Q 10 Tropical broadleaf evergreen forest Broadleaf deciduous forest Broadleaf-needleleaf forest Needleleaf forest Needleleaf-deciduous forest Tropical Grasslands Semi-arid grasslands Broadleaf shrubs with bare soil Tundra Desert Agriculture and C3 grasslands 12.8 0.8 1.2 0.1 13.3 2.2 2.2 0.3 13.6 0.8 1.9 0.1 12.9 0.5 2.6 0.1 12.8 0.4 2.2 0.1 12.8 0.4 1.4 0.0 12.4 1.0 1.6 0.1 16.3 1.9 1.7 0.2 12.4 1.0 2.1 0.2 12.9 2.4 2.6 0.3 12.8 0.4 1.6 0.0 BiomeT (mon) Q 10 (-)
  • Slide 34
  • Global Estimated T and Q 10 Global Q 10 = 1.670.04 Agrees well with published values (1.6-2.4) Q 10 increases with shorter time scales Global T = 12.7 0.8 months Represents only fast turnover pools Average between autotrophic & heterotrophic Need more carbon pools in SiB2