Top Banner
1 RESUMEN El presente trabajo de investigación pretende mostrar el diseño de un Sistema de Control por Computadora en la Esterilización de Conservas de Pescado. El Capítulo I consta : De la justificación, objetivos generales y específicos. Como objetivo general tenemos el desarrollo y evaluación del control por computadora en la Esterilización de Conservas de Pescado y como objetivos específicos se tienen la evaluación del algoritmo de Penetración de Calor, desarrollo de las Tarjetas Acondicionadora de Señal y Adquisición de Datos y finalmente la evaluación del comportamiento del sistema mediante una simulación usando el SIMULINK ( herramienta de simulación de procesos de control retroalimentados que viene con el MATHLAB ). Luego tenemos los antecedentes, en la que mostramos los estudios y evaluaciones previas que fueron necesarios para el desarrollo de este Trabajo de Investigación. En este Trabajo no abordamos la validez del monto o cálculo de la Letalidad ( es decir la demostración de la Fórmula de Letalidad y la ecuación de Penetración de Calor ). Finalmente abordamos la descripción del problema, en donde presentamos la fórmula de Letalidad Fo y la ecuación de Penetración de Calor. En el Capítulo II presentamos el diagrama de bloques del Proceso de Esterilización y el Algoritmo de Control PID. Mostramos el Circuito completo de la Tarjeta Acondicionadora de Temperatura, de la Tarjeta de Adquisición de Datos, el Diagrama de Flujo del Algoritmo y el Programa escrito en Lenguaje C para el Control del Proceso de Esterilización de las Conservas de Pescado. El Capítulo III evaluamos el algoritmo de penetración de calor en las Conservas de Pescado y la simulación del proceso de calentamiento y enfriamiento de la Autoclave. En el Capítulo IV : Conclusiones y Recomendaciones.
131

Esterilizacion de conservas de pescado por computadora

Jan 19, 2023

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Esterilizacion de conservas de pescado por computadora

1

RESUMEN

El presente trabajo de investigación pretende mostrar el diseño de un Sistema de

Control por Computadora en la Esterilización de Conservas de Pescado.

El Capítulo I consta : De la justificación, objetivos generales y específicos.

Como objetivo general tenemos el desarrollo y evaluación del control por computadora

en la Esterilización de Conservas de Pescado y como objetivos específicos se tienen la

evaluación del algoritmo de Penetración de Calor, desarrollo de las Tarjetas

Acondicionadora de Señal y Adquisición de Datos y finalmente la evaluación del

comportamiento del sistema mediante una simulación usando el SIMULINK (

herramienta de simulación de procesos de control retroalimentados que viene con el

MATHLAB ). Luego tenemos los antecedentes, en la que mostramos los estudios y

evaluaciones previas que fueron necesarios para el desarrollo de este Trabajo de

Investigación. En este Trabajo no abordamos la validez del monto o cálculo de la

Letalidad ( es decir la demostración de la Fórmula de Letalidad y la ecuación de

Penetración de Calor ). Finalmente abordamos la descripción del problema, en donde

presentamos la fórmula de Letalidad Fo y la ecuación de Penetración de Calor.

En el Capítulo II presentamos el diagrama de bloques del Proceso de

Esterilización y el Algoritmo de Control PID. Mostramos el Circuito completo de la

Tarjeta Acondicionadora de Temperatura, de la Tarjeta de Adquisición de Datos, el

Diagrama de Flujo del Algoritmo y el Programa escrito en Lenguaje C para el Control del

Proceso de Esterilización de las Conservas de Pescado.

El Capítulo III evaluamos el algoritmo de penetración de calor en las Conservas

de Pescado y la simulación del proceso de calentamiento y enfriamiento de la Autoclave.

En el Capítulo IV : Conclusiones y Recomendaciones.

Page 2: Esterilizacion de conservas de pescado por computadora

2

Finalmente tenemos anexos en las cuales explicamos el principio de

funcionamiento de una termocupla y Datos Técnicos de los circuitos integrados usados en

el diseño de las Tarjetas.

Page 3: Esterilizacion de conservas de pescado por computadora

3

CAPITULO I

1.1 Justificación

La presente investigación pretende estudiar la aplicación a los procesos de

tratamiento térmico de situaciones reales y simuladas de un modelo de control por

computadora. En particular, nos ceñiremos al caso de esterilización comercial de

conservas.

La industria conservera más importante del Perú tanto desde el punto de vista del

volumen de producción como de su contribución económica es la industria de conservas

de pescado, esta es la razón por la cual concentramos nuestra atención en sus especies y

productos principales. Las especies de pescado más utilizadas para enlatado de consumo

interno y exportación son la sardina (Sardinops sagax sagax) y el jurel (Trachurus

trachurus).

En los últimos años hay una tendencia a disminuir la producción de conservas de

pescado por la disponibilidad de la especia, la estacionalidad, y también a un elevado

costo de producción debido a un bajo nivel tecnológico. El costo de producción en la

esterilización de conservas de pescado está relacionado con dos variables muy

importantes : El tiempo de esterilización y consumo de energía.

Un cambio tecnológico vía el desarrollo de un control automático gobernado por

una microcomputadora sería una alternativa para bajar el costo variable en la producción

de conservas de pescado en el Perú donde los costos, además, pueden ser manejados por

el inmenso volumen de la biomasa disponible para el procesamiento.

El propósito básico para usar control automático es que la producción puede ser

lograda más económicamente, esto se lograría del siguiente modo:

Page 4: Esterilizacion de conservas de pescado por computadora

4

- Disminuyendo el costo de proceso.

- Eliminando o reduciendo los errores humanos.

- Mejorando el control de calidad.

- Reduciendo el tamaño de equipos de proceso y el espacio que estos requieren.

- Proveyendo mayor seguridad en la operación.

- Minimizando el consumo de energía.

Como consecuencia de la velocidad de innovación actual de la microelectrónica, los

costos de producción y precios de venta de control de procesos tienden a bajar con el

tiempo haciéndolos asequibles a toda la industria y comunidad académica nacional.

Adicionalmente, el empleo generalizado de software en las microcomputadoras en la

construcción de modelos más realistas ha pasado de ser una preocupación estrictamente

académica a una potente herramienta del desarrollo del diseño de procesos de alimentos

en el ámbito comercial el cual está dividido en : Simulación, diseño óptimo y control.

El modelo de transferencia de calor que trabaja junto con un sistema de control

computarizado en línea en el que se obtiene la temperatura del centro de la lata en tiempo

real partiendo sólo de la temperatura de la autoclave, la que es muestreada continuamente

y leída como la temperatura de frontera a intervalos de tiempo especificados, a través de

una termocupla que siempre está disponible en todos los autoclaves comerciales. A partir

de la historia de temperatura vs. Tiempo es posible calcular la letalidad acumulada y

compararla con la letalidad de diseño del producto para controlar los tiempos de

calentamiento y enfriamiento así como responder a las desviaciones que pueden ocurrir

durante el proceso.

Finalmente, la capacidad de almacenamiento, procesamiento, así como la

versatilidad de ingresos y salidas de las nuevas familias de controladores lógicos

programables (PLC) harán posible que éste y otros modelos de control similares puedan

implementarse en conjunto con las microcomputadoras en la operación de sistemas de

Page 5: Esterilizacion de conservas de pescado por computadora

5

control centralizado o distribuido para la operación simultánea de varios autoclaves y/o

otra maquinaria en una planta conservera.

1.2 Hipótesis del Trabajo

Para mejorar la productividad y el control de la calidad de la producción a nivel

industrial de conservas de pescado en el Perú, debe utilizarse el control automático por

Computadora de la Autoclave.

1.3 Objetivos

1.3.1 General

Desarrollar y evaluar un modelo para el control por computadora del procesamiento de

desmenuzado y filete de sardina, y sólidos de jurel enlatados que asegure

automáticamente la esterilización comercial en tiempo real, a pesar de desviaciones

arbitrarias en la temperatura del medio de calentamiento.

1.3.2 Específicos

- Evaluar el algoritmo de Penetración de calor.

- Desarrollar las tarjetas de acondicionamiento de señal.

- Desarrollar la tarjeta de adquisición y captura de datos.

- Evaluar mediante simulación el comportamiento del sistema.

Page 6: Esterilizacion de conservas de pescado por computadora

6

1.4 Antecedentes

El modelo de penetración de calor en las conservas de pescado fue evaluado en el

año 1,994 en la Planta Piloto del I.T.P. Instituto Tecnológico Pesquero del Perú. Este

consistió en la introducción de varias termocuplas en un solo envase de conserva de

pescado para medir

Gráfico de penetración de calor en las Conservas de Pescado

Figura No. 1

Temperatura en diferentes puntos como muestra la figura. Una vez validado el modelo, se

procedió a evaluar la fórmula de Letalidad. Para esto se procedió de la siguiente forma :

- Se procedió a esterilizar las conservas de pescado a diferentes temperaturas y

tiempos, para luego realizar estudios microbiológicos de las mismas.

- Estos estudios eran el conteo de microorganismos (bacterias) remanentes y cantidad

de proteínas y vitaminas.

- Estos estudios eran para determinar las constantes de penetración de calor y tiempo

máximo de esterilización de las conservas.

Page 7: Esterilizacion de conservas de pescado por computadora

7

1.5 Límites de la Investigación

Sólo deseamos construir y evaluar un modelo para conseguir la letalidad

comercial o de diseño de conservas de pescado en forma automática, no abordamos el

problema de la validez del monto o del cálculo del nivel de letalidad que necesariamente

implica la realización de estudios microbiológicos y/o físico-químicos.

1.6 Descripción del problema

1.6.1 Esterilización de Conservas de Pescado

El proceso de Esterilización de las Conservas de Pescado se realiza en grandes

hornos de esterilización. Estos hornos son grandes depósitos dentro de las cuales se llevan

en coches metálicos las latas de conservas de pescado. Una vez adentro estas latas, se abre

la válvula de vapor para aumentar la temperatura interna de la autoclave. La temperatura

interna es medida a través de un sensor de temperatura (termocupla) colocada en el

interior del horno y controlada por, valga la redundancia, un controlador de temperatura. (

Ver figura 2 adjunta en la siguiente página.)

La temperatura a la cual debe llegar es de 250 F y por un tiempo de 40 minutos aprox.

Estos valores pueden variar de proceso en proceso, dependiendo del tamaño de las latas

de conserva y la cantidad de las mismas. ¿Porqué se debe llegar a esta temperatura y

durante este tiempo ?. Se ha realizado estudios microbiológicos ( conteo de bacterias ) y

se determinó que con 250 ºF en la autoclave y durante 40 minutos se llegaría a la letalidad

( mortalidad ) de microorganismos deseada para una determinada cantidad de latas de

conservas de pescado. Es necesario realizar estos estudios ya que si por alguna razón

sobrepasamos la temperatura y/o el tiempo de calentamiento, no solo destruimos a los

Page 8: Esterilizacion de conservas de pescado por computadora

8

microorganismos ( bacterias ) sino también a las proteínas y vitaminas, por lo que la

conserva quedaría inutilizada.

En todo este proceso de esterilización, de las dos variables, temperatura de la

autoclave y letalidad, únicamente la temperatura es posible medirla y controlarla en

tiempo real, mientras que la letalidad no.

De acuerdo a estudios realizados en la década de los setenta, se desarrolló algoritmos

para hallar la letalidad en enlatados. Estos algoritmos dependen de la temperatura interna

en el punto mas frío del enlatado ( normalmente en el centro geométrico del mismo ) y

está dada por la siguiente ecuación :

Fórmula de letalidad en el Centro de la Conserva de Pescado

Donde F es la letalidad, th es el tiempo de calentamiento en el centro de la lata, tc es el

tiempo de enfriamiento, Z es una constante que depende del material enlatado y T es la

temperatura en el centro de la lata.

Por lo tanto la primera integral es la contribución a la letalidad F en el proceso de

calentamiento, y la segunda integral es la contribución a la letalidad F en el proceso de

enfriamiento. Es necesario incluir la fase de enfriamiento, ya que según estudios éste

puede llegar a ser hasta 40% del valor total del F. El valor de F en la fase de enfriamiento

no puede ser despreciado, no es una constante y no puede ser controlada, por lo tanto ella

puede ser estimada antes que se inicie el proceso de enfriamiento.

Si de algún modo se pudiera obtener en tiempo real la temperatura interna de la lata

de conserva ( en el centro geométrico), entonces es posible hallar la letalidad también en

)1(10 /)250(

0

/)250(

10 ∫∫+

−−+=

ch

h

h tt

t

ZT

tZT

dtdtF

Page 9: Esterilizacion de conservas de pescado por computadora

9

tiempo real. Como esta variable ( letalidad ) es un factor de diseño ( tiene un valor

determinado ), entonces es posible detener todo el proceso una vez llegado a este valor.

La fórmula usada para hallar la temperatura interna en un punto dado está dada por

ecuaciones diferenciales de transferencia de calor y es de la forma :

Ecuación Diferencial de transferencia de calor en las Conservas de Pescado

Donde T es la temperatura interna, r es la posición radial en el cilindro, h es la

posición vertical en el cilindro, t es el tiempo y a es la difusividad térmica. Por lo tanto

es posible hallar en tiempo real mediante la lectura de la temperatura de la autoclave la

letalidad de los microorganismos y compararla con el valor deseado.

En la figura 3 podemos observar la curva de penetración en el centro de la conserva

de pescado.

)2(11

2

2

2

2

r

T

r

T

rh

T

t

T

a ∂

∂+

∂+

∂=

Page 10: Esterilizacion de conservas de pescado por computadora

10

Curva de penetración de Calor en el centro de la Conserva de Pescado

Figura No. 3

Con estas fórmulas es posible hallar en tiempo real la temperatura interna en el punto

mas frío de la conserva de pescado y la letalidad en el mismo punto, ya que si se llega al

valor de letalidad en este punto, entonces definitivamente los otros puntos cumplen.

1.6.2 Control por Computadora en la Esterilización de las Conservas de Pescado

En la sección anterior se presentaron las ecuaciones de diseño para hallar el valor

de letalidad en la conserva de pescado. Por la naturaleza geométrica del producto

(cilindro), para el cálculo de la temperatura en cualquier punto y en un instante de tiempo,

se dividirá imaginariamente el cilindro en elementos de volumen que parecerán como

capas de anillos concéntricos con una sección vertical rectangular. Se considerará

entonces que tal punto está en el centro de cada uno de estos elementos de volumen y a la

temperatura como representativa del volumen que lo rodea.

Page 11: Esterilizacion de conservas de pescado por computadora

11

La ecuación diferencial 2 es expresada en la forma de diferencias finitas para una

solución numérica por una computadora :

Ecuación de diferencias Finitas de la Penetración de Calor en las Conservas

de Pescado

Donde las diferencias finitas son incrementos discretos de tiempo y espacio

definidos como pequeñas fracciones del tiempo de proceso, la altura y radio del recipiente

( ∆∆∆∆t, ∆∆∆∆h, y ∆∆∆∆r respectivamente); i, j denotan la secuencia de incrementos radiales y

verticales a partir de la pared de la lata y el plano medio y a es la difusividad térmica del

producto.

Al asignar condiciones apropiadas para la frontera y el inicio a todos los nodos de

temperatura (los nodos interiores anclados en la temperatura inicial del producto y los

nodos de la superficie anclados a la temperatura de la autoclave ), la nueva temperatura

alcanzada en cada nodo puede ser calculado después de un corto intervalo de tiempo (∆∆∆∆t)

que será consistente con la difusividad térmica del producto. Esta nueva distribución se

toma para reemplazar a la inicial, y el proceso se repite para calcular la distribución de

temperatura después de otro intervalo de tiempo. De este modo, la temperatura en

cualquier punto del envase en cualquier instante de tiempo puede obtenerse. Al final del

tiempo de procesamiento, cuando la válvula de vapor se cierra y se ingresa el agua fría a

la autoclave, el proceso de enfriamiento es simulado simplemente cambiando las

condiciones de frontera de la temperatura de la autoclave Ta a la temperatura de

[ ]

[ ]

[ ] )3(TT2T

TT2

TT2TTT

t

1ji,ji,1-ji,2

t

j1,ij1,-i

t

j1,iji,j1,-i2

t

ji,

tt

ji,

+

+

++∆+

+−∆

+−∆

++−∆

∆=

h

ta

rr

ta

r

ta

Page 12: Esterilizacion de conservas de pescado por computadora

12

enfriamiento Tc en los nodos de la superficie y continuando con las iteraciones de la

computadora tal como ya se describió.

De este modo la temperatura en el centro del envase puede ser calculada después

de cada intervalo para producir la curva de penetración de calor desde la cual el valor de

esterilización del proceso F, puede ser calculado.

Como semilla para iniciar los cálculos para las iteraciones iniciaremos con 200 elementos

de volumen en el envase completo, y la temperatura en el centro de cada elemento será

calculada cada octavo de minuto (7.5 segundos)

Page 13: Esterilizacion de conservas de pescado por computadora

13

CAPITULO II

ANALISIS DEL PROBLEMA

2.1 Diagrama de Bloques del Sistema

Tautoclave Tcentro Fm

Diagrama de Bloques del Sistema

Figura No. 4

El diagrama de bloque mostrado líneas arriba nos muestra el proceso para hallar a partir

de la lectura de la temperatura de la autoclave la letalidad en el centro del envase.

ALGORITMO PARA

HALLAR

TEMPERATURA EN EL

CENTRO DEL ENVASE

ALGORITMO PARA

HALLAR

LETALIDAD EN EL

CENTRO DEL

ENVASE

Page 14: Esterilizacion de conservas de pescado por computadora

14

La variable Autoclave ha sido previamente acondicionada electrónicamente, es decir

compensada y amplificada ya que viene de una termocupla tipo T (tipo cobre –

constantan), y además ha sido digitalizada para poder ingresarla a la computadora.

El primer bloque nos muestra que la Tautoclave, yá acondicionada y digitalizada,

será usada para hallar la temperatura en el centro del envase en cualquier instante. El

algoritmo para hallar esta temperatura ya fue mostrada y explicada en la sección 1.6.1

como solución en ecuaciones diferenciales y en la sección 1.6.2 como una solución de

ecuaciones de diferencias.

El segundo bloque nos muestra que a partir de la temperatura en el centro del

envase, hallada por el algoritmo anterior, hallaremos la letalidad Fm en el mismo punto

mediante el algoritmo mostrado en la sección 1.6.1 como una ecuación con dos

integrales.

Page 15: Esterilizacion de conservas de pescado por computadora

15

Fsp e Ttemp oF

+ -

Fm

Proceso de Esterilización de las Conservas de Pescado

Figura No. 5

El diagrama de bloques mostrado arriba, Figura 5, nos muestra el proceso

completo. Donde Fsp es la letalidad a la cual se quiere llegar (set point) y Fm es la

letalidad hallada a partir de las mediciones en la autoclave y el algoritmo para hallarlo.

La señal de referencia Fsp es comparada con la señal Fm dando como resultado la

señal e. Esta señal ingresa al bloque A donde el algoritmo la procesa y luego controla la

autoclave (bloque B) . La Autoclave nos entrega Temperatura Ttemp, que es medida por el

elemento de medición, la termocupla (bloque C). La señal que entrega la termocupla es

del orden de los milivoltios; esta es tratada y procesada y luego ingresa al algoritmo del

bloque D, que es para hallar la letalidad en el centro del envase.

En este diagrama de bloques no hemos considerado una parte importante de todo

el proceso, que es la tarjeta de adquisición de datos. Esta tarjeta se compone de dos partes:

la primera es la sección que acondiciona y compensa la señal que viene de la termocupla

y la segunda es la que controla las válvulas de entrada de vapor y del ingreso de agua. La

primera sección estaría entre el bloque C y el bloque D. La segunda sección estará entre

los bloques A y B. Finalmente el diagrama de bloque quedaría como sigue :

ALGORIMTO DE CONTROL

POR COMPU-

TADORA

(A)

AUTOCLAVE

(PROCESO)

(B)

ALGORITMO PARA HALLAR

LETALIDAD

F(t)

(D)

ELEMENTO DE MEDICION

TERMOCUPLA (C)

Page 16: Esterilizacion de conservas de pescado por computadora

16

Fsp e TtemoF

+ -

Fm

Proceso de Esterilización de las Conservas de Pescado

Figura No. 6

Para entender mejor el proceso usando el computador como controlador de la

autoclave, El diagrama general sería :

X (s) Y (S)

COMPUTADOR

Sistema de Control basado en un Computador

Figura No. 7

La función de transferencia del diagrama de bloques mostrando líneas

arriba es como sigue:

ALGORITMO

PARA HALLAR

LETALIDAD F(t)

(D)

ELEMENTO DE

MEDICION

TERMOCUPLA

(C)

ALGORIMTO

DE CONTROL POR COMPU-

TADORA

(A)

AUTOCLAVE

(PROCESO)

(B)

CONTROL DE

VALVULAS DE AGUA Y

VAPOR

ACONDICIONADOR

Y COMPENSADOR

DE TEMPERATURA

CONTROLADOR PID

GC(S)

PLANTA

P(S)

ELEMENTO DE MEDICION

TERMOCUPLA

H(S)

Page 17: Esterilizacion de conservas de pescado por computadora

17

Función de Transferencia del Sistema de Control

Donde las funciones de transferencia H(S), P(S), y Gc(S) están definidas como

siguen:

Función de Transferencia del Controlador PID

Función de Transferencia de la Autoclave

)4(1 (S)(S).P(S).H

cG

(S).P(S)c

G

Y(S)

X(S)

+=

)5(1

)( d

i

PC STST

KSG ++=

)6()1(

)(ST

KSP

+=

Page 18: Esterilizacion de conservas de pescado por computadora

18

Función de Transferencia de la Termocupla

Donde

Kp es la ganancia proporcional del controlador

Ti es la constante integrativa

Td es la constante derivativa

K es la temperatura de trabajo de la autoclave

KM es la sensibilidad de la termocupla tipo T.

T es el tiempo de respuesta de la autoclave

TA es el tiempo de respuesta de la termocupla

Para el desarrollo de esta investigación estamos asumiendo una función de

transferencia típica de una autoclave ya que al momento de implementar es necesario

hallar las constantes de la autoclave, así como de la termocupla.

Conociendo todas las constantes, podríamos simular el proceso de control y

validar nuestra ecuación de letalidad en el envase de conserva de pescado.

En realidad sólo es necesario la ecuación del control PID para poder usarlo como

algoritmo de control de la autoclave :

Función de Transferencia de un Controlador PID

)7(1

)(ST

KSH

A

M

+=

)8(1

)( d

i

PC STST

KSG ++=

Page 19: Esterilizacion de conservas de pescado por computadora

19

e u

Diagrama de Bloques de un Controlador PID

Figura No. 8

Si nos vamos al dominio discreto, entonces según Tustin reemplazamos s :

Aproximación de Tustin

Donde GC(s) es la Función de Transferencia del controlador PID, e(s) es la señal de error

a la entrada del controlador y u(s) es la salida del controlador.

Simplificando tendremos :

[KP(Z2 - 1) + a(Z

2 + 2Z + 1) + b(Z

2 - 2Z + 1)]e(Z) = u(Z) (Z

2 - 1)

(11)

)9()1(

)1(.

2 −

+=

Z

ZTS

)10()(

)()(

Su

SeSG C =

KP

1/TiS

TdS

Page 20: Esterilizacion de conservas de pescado por computadora

20

donde

dividiendo entre Z2 tenemos lo siguiente :

Z-2(KP+a+b)e(Z)+Z

-1(2a-2b)e(Z)+(KP+a+b)e(Z)+Z

-2u(Z)= u(Z)

(12)

Si tomamos como muestras discretas, tendremos :

e(K-2)(KP+a+b)+e(K-1)(2a-2b)+e(K)(KP+a+b)+u(K-2)=u(K)

(13)

Donde las muestras e(K-2), e(K-1), e(K), u(K-2) y u(K) son muestras discretas de las

señales en tiempos pasados (t-2), (t-1), (t). Por lo tanto la ecuación del control PID

depende de las muestras pasadas y presentes tanto de la entrada como de la salida.

Esta fórmula nos ayudará mucho en la construcción del algoritmo de control PID

i

d

TTb

TTa

2

2

.==

Page 21: Esterilizacion de conservas de pescado por computadora

21

2.2 Tarjeta Acondicionadora de Temperatura

En la siguiente figura nos muestra el diagrama de bloques de la tarjeta

compensadora de temperatura y en la siguiente página se encuentra el esquema completa

de la Tarjeta Acondicionadora.

Termocupla

Tarjeta Acondicionadora de Temperatura

Figura No. 9

La Termocupla es conectada a los terminales VI+ y VI- donde es compensada por

R1, R2, R3, R4, R5 y D1. El potenciómetro R1 se calibra de tal modo que a la salida del

sensor de Temperatura LM335, es decir en el punto A, nos entregue en voltaje la

temperatura ambiente. Estos componentes hacen que la unión fría de la termocupla sea

compensada y la salida sea únicamente función de la temperatura de la autoclave (ver

anexo 1 Principio de Funcionamiento de las Termocuplas). Para hallar los valores

correctos de R2 y R3 debemos tener la curva o datos de temperatura vs voltaje de la

termocupla que nos debe entregar el fabricante. En la siguiente sección se explica el modo

de hallar dichos valores. A la entrada del pin 3 del OPAMP U1A tenemos el voltaje dado

por la termocupla ( del orden de los milivoltios ) referido a 0ºC más una porción de la

fuente VCC. Para eliminar este voltaje, hacemos un divisor de resistencias R12, R13, R14

y lo introducimos en el OPAMP U1B para que a la salida del Amplificador Instrumental

formado por los OPAMP´s U1A, U1B, U1C y U1D, el voltaje amplificado sea función

únicamente del voltaje de la termocupla. El uso de un Amplificador Instrumental es

debido a su elevado CMRR ( alrededor de 120 dB) lo que nos daría mayor estabilidad en

la amplificación de la señal proveniente de la termocupla.

Acondiciona-

dora de

Temperatura

Amplificador de alta

impedancia y alto CMRR

(Amplificador Instrumental)

Filtro RC

Page 22: Esterilizacion de conservas de pescado por computadora

22

Page 23: Esterilizacion de conservas de pescado por computadora

23

La señal ya amplificada ingresa al OPAMP U2A (pin 2), el cual es un sumador,

ajustándose el voltaje a sumar por el potenciómetro R19. A la salida de este sumador

viene un filtro activo pasa bajos formado por el OPAMP U2B para filtrar cualquier ruido

externo

La tarjeta compensadora de temperatura es externa a la computadora ya que debe

acondicionar previamente la señal de la termocupla y poder enviarla hacia la

computadora para su procesamiento. Por lo tanto esta tarjeta debe encontrarse entre la

autoclave y la computadora.

2.2.1 Calibracion de la tarjeta compensadora

Para calibrar la tarjeta compensadora de Temperatura es necesario realizar varios

pasos. El primero de ellos es que al momento de adquirir la termocupla tipo T, el

fabricante nos debe entregar la curva característica de la misma. De acuerdo a esta curva o

tabla de valores debemos hallar la sensibilidad de la termocupla para nuestro rango de

trabajo. Es muy importante hallar este valor ya que lo usamos para diseñar la sección

compensadora de unión fría de la termocupla.

Supongamos que nuestra termocupla tipo T ( Cobre-Constantan ) tiene una

sensibilidad S en [µV/° C] y es conectada a la tarjeta compensadora de Temperatura. En

el circuito mostrado en la figura 10, se observa que la termocupla es conectada junto con

otro sensor de temperatura, el LM335. Este sensor lo usamos para compensar la unión

fría de la termocupla ( ver anexo 1). La sensibilidad de este sensor es de 10 mV/°C, por lo

que hacemos un arreglo de resistencias ( R2 y R3 ) para igualar estas sensibilidades. Esto

se logra del siguiente modo :

Page 24: Esterilizacion de conservas de pescado por computadora

24

Donde despejamos la relación R2/R3 y tenemos la siguiente :

Podemos asumir un valor para R3 y hallar R2. Por ejemplo si asumimos R3 = 220Ω,

entonces el valor de R2. Una vez hallado los valores de R2 y R3 procedemos a realizar los

ajustes de la tarjeta compensadora.

Lo primero que debemos hacer es ajustar la resistencia R12 (ADJUST) de tal modo que

cuando se cortocircuiten las entradas donde va conectada la termocupla, la salida del

operacional U1C nos dé 0.00 Voltios (en el punto B). Esto se hace para eliminar la

componente de voltaje DC que proviene de la fuente VCC.

Una vez hecho este ajuste, es necesario calibrar la tarjeta con la termocupla que se

va a usar. El procedimiento de calibración es el siguiente:

1) Es necesario contar con un controlador PID con una Histéresis de 1 °C, un

voltímetro, un elemento calefactor (puede ser una hornilla), y un PT100 como

elemento de medición de temperatura.

)/(32

3)/(10CmVS

RR

xRCmVVI °=

+

°=−

1)/(

)/(10

3

2−

°

°=

CmVS

CmV

R

R

Page 25: Esterilizacion de conservas de pescado por computadora

25

2) En un recipiente con hielo ( 0 °C ) se sumerge completamente la termocupla y

se ajusta la resistencia R19 (ZERO) hasta que la salida del OPAMP U2B nos

indique 0.00 Voltios en el voltímetro.

3) Luego usamos el controlador, el PT 100 y la hornilla calefactora con un

recipiente semihermético para llegar a 150 °C. Conectamos la hornilla y el

sensor PT100 al controlador para formar en pequeño sistema controlado a

una temperatura de 150 °C ( tal como en la figura 11 ). Una vez que en el

interior del recipiente halla 150 °C introducimos la termocupla lo mas cerca

posible al PT100 y ajustamos con la resistencia R11 (SPAN) hasta un valor de

5.00 Voltios.

4) Luego regresamos al punto 2 para verificar y/o ajustar hasta que a la salida de

la tarjeta para 0ºC nos dé 0.00V y a 150ºC no dé 5.00V.

Como la tarjeta acondicionadora es externa a la computadora, entonces es

necesario que el cable de la termocupla llegue hasta dicha tarjeta. Por lo tanto, al realizar

la calibración de la tarjeta con la termocupla, es necesario que ésta esté conectada con el

cable que será usado en planta para que no existan errores de compensación.

PT 100

Histéresis =< 1 °C

Diagrama para la calibración de la Tarjeta Acondicionador de Temperatura

Figura 11

El tipo de cable usado para llevar la señal de la tarjeta compensadora a la

computadora es un cable enmallado multifilar para tener protección al ruido industrial

CONTROLADOR PID

SET POINT 150 °C

ELEMENTO CALEFACTOR

T = 150 ° C

Page 26: Esterilizacion de conservas de pescado por computadora

26

existente. El cable coaxial no es recomendado ya que tiene espacios entre el núcleo y el

dieléctrico y esto crea capacitancias parásitas.

2.3 Tarjeta de Adquisición de Datos

BUS DE DATOS

BUS DE DIRECCIONES

Diagrama de Bloques de la Tarjeta de Adquisición de Datos

Figura No. 12

La señal ya acondicionada de la tarjeta acondicionadora ingresa al conversor A/D,

convirtiendo esta señal en digital ( 8 bits ) los cuales ingresan al PPI ( 82C55 ). Este IC se

programa de tal modo que el Puerto A ( PA) sea de ingreso de datos y el Puerto B (PB) sea

de salida de datos. Luego la señal ya digitalizada sale por el puerto D, los cuales ingresan

al transceiver bidireccional. La salida de este IC se conecta a los pines D0..D7 del bus

EISA de la PC, para la posterior lectura por medio de un programa escrito en lenguaje C.

Se debe anotar que el A/D se configura de tal modo que la conversión digital sea en forma

continua. El decodificador de direcciones es usado para la captura y envío de datos y

para programar al PPI. El conversor D/A es usado para la conversión digital/análoga para

el manejo del elemento final de control ( válvula de control de ingreso de vapor ).

A continuación hacemos una breve explicación de la programación del PPI 8255.

A/D

PPI

PA D

PB

D/A

DECODIFICADOR

DE DIRECCIONES

TRANSCEIVER

Page 27: Esterilizacion de conservas de pescado por computadora

27

E/S PA7 - PA0

E/S PC7 - PC4

E/S PC3 - PC0

E/S PB7 - PB0

Diagrama de Bloques del PPI 82C55

Figura N12

Como se aprecia en la figura, el PPI consta de 3 puertas de entrada/salida en

paralelo, a las que se denomina A, B, y C. Las 8 líneas de la puerta C se dividen en 2

grupos de 4, que pueden trabajar con las puertas A y B. Cada puerta tiene sus

características especificas, lo que proporciona una gran flexibilidad a este dispositivo.

Internamente, el 8255 dispone de 4 registros de los cuales 3 se dedican a

almacenar la información que entra o sale por las puertas y el otro a realizar las funciones

de control, por lo que recibe el nombre de Registro de Control. La programación desde la

CONTROL

GRUPO A

PUERTA A

GRUPO A

GRUPO A PUERTA C

SUPERIOR

GRUPO B PUERTA C

INFERIOR

GRUPO B

PUERTA

B

CONTROL

GRUPO B

BUFFER BUS DE

DATOS

CONTROL

LOGICO

LECTURA ESCRITURA

Page 28: Esterilizacion de conservas de pescado por computadora

28

CPU de este último registro, sirve para configurar las puertas y el funcionamiento general

del PPI.

Modos de Funcionamiento

El PPI admite 3 modos diferentes de funcionamiento, que se denominan Modo 0, Modo 1

y Modo 2.

Modo 0.

Es la forma más sencilla y básica de comportamiento de las puertas de E/S. Las 3

puertas pueden trabajar como entrada o salida, pero sin la posibilidad de disponer de

líneas auxiliares de control para soportar el dialogo con los periféricos.

Modo 1

En este caso es posible que las puertas A y B puedan dialogar con los periféricos,

actuando las líneas de la puerta C como soporte de las señales de dialogo.

Modo 2

Se permite trabajar a la puerta A de forma bidireccional, o sea que puede actuar como

entrada y salida de información, utilizando ciertas líneas de la puerta C para establecer el

diálogo con los periféricos. En este modo la puerta B puede actuar en Modo 0 o Modo 1.

Programación del Registro de Control

La palabra que se escribe en el Registro de Control del PPI configura su

funcionamiento. En la figura , se muestra la misión de cada uno de los bits que componen

Page 29: Esterilizacion de conservas de pescado por computadora

29

este registro. Cuando el bit de mas peso tiene un uno, el Registro de Control determina el

modo de trabajo de las 3 puertas según los restantes bits. En el caso de que el bit de mas

peso sea un cero, los restantes bits del Registro de Control se usan para sacar 1 ó 0 por las

líneas de la puerta C.

El PPI (U2) se programa de tal modo que el puerto A sea de entrada de datos y el

puerto B sea de salida de datos, para esto es necesario enviar a la dirección 303h la

palabra de control, según la siguiente definición de bits

D7 D6 D5 D4 D3 D2 D1 D0

D0: Canal C (bits bajos) 1-> entrada 0-> salida.

D1: Canal B 1-> entrada 0 -> salida

D2: Selección modo Grupo B 1-> Modo 1 0-> Modo 0

D3: Canal C (Bits altos) 1-> entrada 0 -> salida

D4: Canal A 1 -> entrada 0 -> salida

D5 D6 : 00 Modo 0

01 Modo 1

D7 : 1 - > activo

De acuerdo a estos valores se programan los puertos para entrada o salida de datos. Por

ejemplo el valor 144 (90h) significa que el puerto A es de entrada de datos y el puerto B es

de salida de datos. Para mayor información acerca de la programación del PPI, del

A/D0804, el D/A0804, la dirección del bus transceiver 74LS245 y del comparador

74LS688 se encuentran en el anexo 2.

Page 30: Esterilizacion de conservas de pescado por computadora

30

Page 31: Esterilizacion de conservas de pescado por computadora

31

2.4 Algoritmo para hallar la Letalidad Fo

Se usó el lenguaje de programación C por ser el más conveniente para el control

por computadora. Así mismo es muy sencillo la captura y envío de datos por los puertos

de comunicación. A continuación presentamos el diagrama de flujo del programa y luego

el algoritmo.

El programa se inicia con la lectura de la Temperatura en la Autoclave. Con este

valor se calcula la temperatura en el centro de la conserva de pescado. Una vez hallado

este valor se procede a hallar el valor de la Letalidad acumulada Fo en el mismo punto

hasta ese momento. Si este valor de Letalidad Fo es mayor o igual a 5.0, entonces es

necesario cerrar las válvulas de control de ingreso de vapor y abrir las válvulas de ingreso

de agua fría. En caso que Fo ( Letalidad ) sea menor a 5.0, se procede a medir

nuevamente la temperatura de la Autoclave, calculando otra vez la temperatura

interna de la conserva de pescado y Fo ( Letalidad ).

Page 32: Esterilizacion de conservas de pescado por computadora

32

Diagrama de Flujo para hallar la Letalidad Fo.

Figura No. 13

A continuación presentamos El programa completo para hallar la Letalidad Fo y

el control de temperatura de la Autoclave.

LECTURA DE LA TEMPERATURA DE

LA AUTOCLAVE

CALCULO DE LA TEMPERATURA EN

EL CENTRO DE LA LATA

CALCULO DE LA LETALIDAD

ACUMULADA Fo

Fo> 5.0 CERRAR VALVULA DE

CONTROL DE VAPOR

FIN

INICIO

SI

NO

Page 33: Esterilizacion de conservas de pescado por computadora

33

Programa para hallar la Letalidad Fo y el control de la Autoclave

#include <dos.h>

#include <conio.h>

#include <graphics.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <ctype.h>

# include <time.h>

main()

float a, dt, r, h, z, fo, dr, dh, alpha, beta, gamma, Td, Ti;

float ta, tr[6],e[6], u[6], xx, yy, zz, semilla, temp,aa, bb, Kp;

int tf[11][11][111], ti[11][11][111];

int t, y, x, i, ii, j, jj, t1, t2, ff, porta, portb, portc;

int control,temperatura;

aa = 7.5*Td/2.0;

bb = 2.0/(7.5*Ti);

temp = 240.0;

a = .85;

dt = .25;

r = 10.795;

h = 5.08;

z = 18.0;

fo = 0.0;

dr = r / 10.0;

dh = h / 10.0;

ta = 68.0;

fo = 0.0;

porta = 768;

portb = 769;

portc = 770;

control = 771;

alpha = a * dt / (dr * dr);

beta = a * dt / (2 * r * dr);

gamma = a * dt / (dh * dh);

for(t=0; t<=110; t++)

for(y=0; y<=10; y++)

for(x=0; x<=10; x++)

ti[x][y][t] = 68.0;

tf[x][y][t] = 0.0;

Page 34: Esterilizacion de conservas de pescado por computadora

34

y=0;

t=1;

ii = 2;

do

if (ii = 5)

ii = 2;

for (jj=0;jj<=3;jj++)

e[jj] = e[jj+3];

u[jj] = u[jj+3];

temperatura = inportb(porta);

tr[ii] = temperatura / 255.0;

e[ii] = temp - tr[ii];

u[ii] = u[ii-2] + e[ii]*(Kp+aa+bb) + e[ii-1]*(2*aa-2*bb) + e[ii-2]*(Kp+aa+bb);

outportb(portb,u[ii]);

ii++;

for(i=0; i<=10; i++)

ti[0][i][t] = tr[ii];

ti[10][i][t] = tr[ii];

ti[i][0][t] = tr[ii];

ti[i][10][t] = tr[ii];

for(y=1; y<=10; y++)

for(x=1; x<=10; x++)

xx = ti[x - 1][y][t] - 2 * ti[x][y][t] + ti[x + 1][y][t];

yy = ti[x - 1][y][t] - ti[x + 1][y][t];

zz = ti[x][y - 1][t] - 2 * ti[x][y][t] + ti[x][y + 1][t];

tf[x][y][t+1] = ti[x][y][t] + alpha * xx + beta * yy + gamma * zz;

ti[x][y][t+1] = tf[x][y][t+1];

fo = fo + pow10((tf[5][5][t+1] - 250)/z);

t++;

delay(7000);

while (fo<=5.0);

return 0;

Page 35: Esterilizacion de conservas de pescado por computadora

35

Page 36: Esterilizacion de conservas de pescado por computadora

36

CAPITULO III

SIMULACIÓN

Para la evaluación del algoritmo del modelo matemático para hallar la

temperatura en el centro de la lata, se modificó el algoritmo principal y se simuló el

ingreso de Temperatura de la autoclave por medio de una curva exponencial tratando de

seguir la curva real de aumento de temperatura en una autoclave.

Curvas de Temperatura y Letalidad Fo sin ruido

Figura No. 14

Page 37: Esterilizacion de conservas de pescado por computadora

37

En la figura 14, podemos observar que la Temperatura de la Autoclave (simulada)

es de color verde y es de forma exponencial con tendencia a llegar a 240 º F. La

temperatura en el centro de la lata es de color amarillo y es de forma exponencial con un

tiempo muerto y que trata de seguir a la temperatura de la autoclave. La curva de letalidad

Fo es de color magenta y es una curva exponencial bastante pronunciada.

Curvas de Temperatura y Letalidad Fo con ruido

Figura No. 15

Page 38: Esterilizacion de conservas de pescado por computadora

38

Curvas de Temperatura y Letalidad Fo con ruido

Figura No. 16

En la figura 15 y 16, hemos simulado el ingreso de ruido, tratando de acercarnos

mas a la realidad. Observamos que las formas de las curvas no cambian en su

característica principal, es decir exponenciales. Cabe anotar que ha disminuido el tiempo

de esterilización para hallar la letalidad Fo debido al ruido introducido, siendo menos

preciso para controlarlo

Para la prueba de todo el sistema se usó el programa Simulink que viene con el

MatLab 5.0 for Windows. Se simuló el proceso de calentamiento y enfriamiento de la

autoclave, para lo cual se le introduce un tiempo de calentamiento y terminado este

tiempo se procede a la etapa de enfriamiento.

Simulink permite a los usuarios de MATLAB, simular la retroalimentación de

sistemas de control. Con este programa podemos introducir como bloques funcionales

las diferentes partes de un proceso, tal como el que estamos estudiando.

Para realizar esto, el Simulink cuenta con un bloque estándar de librerías, el cual

se organiza en sub-bloques de acuerdo a su función. Los sub-bloques son: Sources, Sink,

Discrete, Linear, Nonlinear, Connections, Extras.

Page 39: Esterilizacion de conservas de pescado por computadora

39

En la figura 17 vemos el Diagrama de Bloques del Proceso de Simulación.

Diagrama de Bloques del Control de la Autoclave con el Simulink

Figura No. 17

Con este programa se pueden hallar los valores teóricos de las constantes

proporcional, integrativa y derivativa para poder introducirlas en el programa de control

PID de la Computadora. Posteriormente se harán las pruebas necesarias para sintonizar

mejor estos valores. Para hacer la simulación lo mas real posible, es necesario realizar

pruebas a la autoclave para hallar su característica.

En esta parte se ha querido realizar varias pruebas al sistema introduciendo ruido y

observando el comportamiento del sistema. Además se introdujo una perturbación para

ver la reacción y retardo del sistema.

Page 40: Esterilizacion de conservas de pescado por computadora

40

Diagrama de bloques del control de la Autoclave con el Simulink insertando

ruido

Figura No. 18

Evaluación del Control de la Autoclave mediante Simulink

Figura No. 19

Page 41: Esterilizacion de conservas de pescado por computadora

41

Evaluación del proceso con perturbación mediante Simulink

Figura No. 20

Comparando las figuras 19 y 20 vemos que no existe mucha diferencia en cuanto a

la forma de respuesta. Si introducimos una perturbación ( en el segundo 1500 )

observamos un sobrepico que luego es atenuada por la acción del controlador PID, a pesar

que la perturbación sigue latente. Prácticamente no tiene consecuencia en la temperatura

de la autoclave, más sí en la letalidad Fo.

Page 42: Esterilizacion de conservas de pescado por computadora

42

Evaluación del proceso con ruido mediante Simulink

Figura No. 21

Page 43: Esterilizacion de conservas de pescado por computadora

43

CAPITULO IV

CONCLUSIONES Y RECOMENDACIONES

La presente investigación nos permite la evaluación de un modelo de

penetración de calor y también la simulación de su comportamiento gracias al algoritmo

de control desarrollado para este tipo de trabajo. Obteniendo la Letalidad Comercial o

de Diseño de conservas de pescado en forma automática .

En la implementación para este sistema podemos destacar el uso del controlador

PID por sus características más optimas para este tipo de trabajo ( control de temperatura

y procesos lentos ).

Gracias a un programa en Lenguaje C podemos observar la evaluación completa

del sistema de control automático para hallar la Letalidad Fo de conservas de pescado.

Se recomienda el uso del programa de simulación SIMULINK (herramienta de

simulación de procesos de control retroalimentados que viene con el MATHLAB ) para

obtener una mejor evaluación en estos tipos de sistemas de control por computadora.

Page 44: Esterilizacion de conservas de pescado por computadora

44

Este diseño puede ser proyectado para el control de varias autoclaves mediante el

uso de varias tarjetas acondicionadoras de temperatura conectados a los sensores de

temperatura de las mismas. Así mismo es necesario el uso de multiplexores analógicos

para la conversión A/D. El programa tendría que modificarse para realizar una lectura

secuencial de todas las autoclaves y así calcular la Letalidad Fo de cada proceso.

En algunas plantas de conservas de pescado, la distancia entre las autoclaves y

Oficina de Control de Producción es grande, además muchas veces casi imposible

realizar un tendido de cables para llevar las señales de medición y control. En este tipo de

plantas se recomendaría el uso de enlaces radioeléctricos para una mejor implementación

y supervisión del proceso de Esterilización.

En la implementación de este diseño se han usado circuitos integrados que se

encuentran fácilmente en el mercado local. Por ejemplo el uso de un Conversor A/D de

resolución de 8 bits en vez de uno de 12 bits.

Se recomienda el uso del Lenguaje de programación Visual C o Visual Basic, ya

que con ellos es posible realizar una interface más sencilla entre el operador de la planta y

la computadora para la visualización de las medidas de temperaturas de las autoclaves y

de los valores de la Letalidad Fo, tanto en forma numérica como en forma gráfica.

Page 45: Esterilizacion de conservas de pescado por computadora

45

ANEXO 1

TERMOCUPLAS

La termocupla es uno de los más simples y más comúnmente usados métodos para

determinar las temperaturas de los procesos. Cuando se requiere una indicación remota y

lecturas periódicas y cuando varios puntos deben ser mostrados en un sólo dispositivo de

lectura, ningún otro método de medición puede competir en costo-beneficio.

En 1821, T.J. Seebeck descubrió que cuando se aplicaba calor a una juntura de dos

metales distintos, se generaba una fuerza electromotriz (fem.), la cual podía medirse en la

otra juntura (fría) de estos dos metales (conductores). Estos contactores forman un

circuito eléctrico y la corriente fluye como resultado de la fem. generada, la corriente

seguirá fluyendo en tal circuito (figura 1) mientras T1=/=T2. El conductor B es descrito

como negativo con respecto al conductor A cuando la corriente fluye dentro de él en la

juntura fría. Este conductor negativo es siempre de color rojo (normas ISA y ANSI) como

una forma conveniente de determinar la polaridad correcta al conectar termocuplas.

Page 46: Esterilizacion de conservas de pescado por computadora

46

Metal A(+)

Fem. = E

Metal B (-)

Temperatura Zona T1 T1 > T2 Temperatura Zona T2

Diagrama de una Termocupla

Figura No. 1

En la industria, las termocuplas se utilizan para medir temperatura en forma

exacta con propósitos de indicación, registro o control de procesos. Una juntura simple de

dos metales distintos (una termocupla) puede ser sometida a una temperatura a ser medida

y su fem. térmica puede ser comparada a una carta de referencia para obtener la

temperatura correspondiente. Desde que la temperatura de la segunda junta de los

metales debe ser conocida, se requiere mantenerla a un valor referencial (comúnmente

0°C). Existen diversas formas para mantener constante la temperatura de esta “unión

fría”, los cuales se pueden observar en la figura 2 ; se puede mantener a 0°C esa unión de

referencia, mediante un baño de hielo (a), lo cual no es práctico por razones obvias.

Compensación de una Termocupla

Figura No. 2

Page 47: Esterilizacion de conservas de pescado por computadora

47

En cuanto a los materiales empleados para construir termocuplas o termopares, se

pueden observar algunas combinaciones de ellos, así como su rango de aplicación, salida

en mV/°Cs y los errores máximos en la medición en la tabla 1 la figura 3, da la respuesta

en función de la temperatura de algunos termopares.

Curva de diferentes tipos de Termocupla

Figura No. 3

Page 48: Esterilizacion de conservas de pescado por computadora

48

Tabla de valores de diferentes tipos de Termocuplas

Tabla No.1

La selección del tipo de termocupla adecuado a un proceso en particular no

solamente depende del rango de medición sino de otras condiciones adicionales. Por

ejemplo, el termopar tipo J, es adecuado en atmósferas con escaso oxígeno libre, sin

embargo, la oxidación del hilo de hierro aumenta rápidamente por encima de 550°C

siendo necesario un mayor diámetro de hilo hasta una temperatura límite de 750°C. El

termopar tipo K, se recomienda en atmósferas oxidantes y a temperaturas de trabajo entre

500 y 1,000°C. No debe ser utilizado en atmósferas reductoras ni sulfurosas a menos que

esté protegido con un tubo de protección. Las termocuplas R y S se emplean en

atmósferas oxidantes y temperaturas de trabajo de hasta 1,500°C. Si la atmósfera no es

oxidante, el termopar debe protegerse con un tubo cerámico estanco; estas termocuplas se

Page 49: Esterilizacion de conservas de pescado por computadora

49

emplean como cartuchos en la fabricación de acero en fusión. Se enchufan a una lanza y

el operario sumerge ésta en acero y aunque el cartucho se funde en pocos segundos, da

tiempo a que un circuito especial fije la máxima temperatura alcanzada. Finalmente el

termopar tipo T tiene una elevada resistencia a la corrosión por humedad atmosférica o

condensación y puede utilizarse en atmósferas oxidantes o reductoras.

En suma la selección de los alambres de termopares se hace en forma que tengan

una resistencia adecuada a la corrosión o la oxidación, a la reducción y a la cristalización;

que desarrolla una fem. relativamente alta, que sean estables, de bajo costo y de baja

resistencia eléctrica y que la relación entre la temperatura y la fem. sea tal que el aumento

de ésta sea (aproximadamente) paralelo al aumento de temperatura.

Con el advenimiento de instrumentos modernos de medición de gran impedancia

de entrada, se incrementa la posibilidad de que un sistema de medición de temperatura

con termocuplas se vea afectado por ruidos de diferentes tipos como estáticos,

magnéticos y de modo común. El primero es causado por el campo eléctrico proveniente

de una fuente de voltaje y que se acopla capacitivamente al circuito de la termocupla. Para

evitar esto se forran los cables con una malla metálica y se conecta esta a tierra. El ruido

magnético se produce por corrientes que fluyen por conductores eléctricos. Así, este

ruido se monta sobre una señal de medición y para evitarlo la mejor forma es “entorchar”

los cables de la termocupla. La interferencia de modo común se presenta cuando se tienen

dos tierras distintas en un circuito con la corriente circulando entre ellas. Esto es típico en

termocuplas con juntura a tierra (conectadas a su termopozo). Para evitar el problema

sólo se debe conectar la malla en un sólo punto, de lo contrario se producirá más ruido;

aparecerá en vez de ser eliminado.

Page 50: Esterilizacion de conservas de pescado por computadora

50

COMPUTADOR

SEÑALES DE CONTROL AL ELEMENTO FINAL DE CONTROL(VALVULA DE CONTROL DE VAPOR )

TEMPERATURA DE LA TERMOCUPLA TIPO T

FUNCIONES DEL COMPUTADOR :- A C O N D I O N A M I E N T O D E L ATEMPERATURA.- CONVERSION ANALOGO-DIGITAL- C O N T R O L D E V A L V U L A D EAUTOCLVE-ALGORTMO DE CONTROL PID-ALGORITMO PARA HALLA LETALIDAD

T

AUTOCLAVE

CARRO TRANSPORTADOR DE LATAS DECONSERVA DE PESCADO

TERMOCUPLA

Page 51: Esterilizacion de conservas de pescado por computadora
Page 52: Esterilizacion de conservas de pescado por computadora
Page 53: Esterilizacion de conservas de pescado por computadora
Page 54: Esterilizacion de conservas de pescado por computadora
Page 55: Esterilizacion de conservas de pescado por computadora
Page 56: Esterilizacion de conservas de pescado por computadora
Page 57: Esterilizacion de conservas de pescado por computadora
Page 58: Esterilizacion de conservas de pescado por computadora
Page 59: Esterilizacion de conservas de pescado por computadora
Page 60: Esterilizacion de conservas de pescado por computadora
Page 61: Esterilizacion de conservas de pescado por computadora
Page 62: Esterilizacion de conservas de pescado por computadora

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinueany product or service without notice, and advise customers to obtain the latest version of relevant informationto verify, before placing orders, that information being relied on is current and complete. All products are soldsubject to the terms and conditions of sale supplied at the time of order acknowledgement, including thosepertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale inaccordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extentTI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarilyperformed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OFDEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICALAPPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, ORWARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHERCRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TOBE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operatingsafeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or representthat any license, either express or implied, is granted under any patent right, copyright, mask work right, or otherintellectual property right of TI covering or relating to any combination, machine, or process in which suchsemiconductor products or services might be or are used. TI’s publication of information regarding any thirdparty’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 1998, Texas Instruments Incorporated

Page 63: Esterilizacion de conservas de pescado por computadora

6-5

Features• 80C48 and 80C80/85 Bus Compatible - No Interfacing

Logic Required

• Conversion Time < 100 µs

• Easy Interface to Most Microprocessors

• Will Operate in a “Stand Alone” Mode

• Differential Analog Voltage Inputs

• Works with Bandgap Voltage References

• TTL Compatible Inputs and Outputs

• On-Chip Clock Generator

• 0V to 5V Analog Voltage Input Range (Single + 5V Supply)

• No Zero-Adjust Required

DescriptionThe ADC0802 family are CMOS 8-Bit, successive-approxi-mation A/D converters which use a modified potentiometricladder and are designed to operate with the 8080A controlbus via three-state outputs. These converters appear to theprocessor as memory locations or I/O ports, and hence nointerfacing logic is required.

The differential analog voltage input has good common-mode-rejection and permits offsetting the analog zero-input-voltage value. In addition, the voltage reference input can beadjusted to allow encoding any smaller analog voltage spanto the full 8 bits of resolution.

Ordering Information

PART NUMBER ERROR EXTERNAL CONDITIONS TEMP. RANGE ( oC) PACKAGE PKG. NO

ADC0802LCN ±1/2 LSB VREF/2 = 2.500VDC (No Adjustments) 0 to 70 20 Ld PDIP E20.3

ADC0802LCD ±3/4 LSB -40 to 85 20 Ld CERDIP F20.3

ADC0802LD ±1 LSB -55 to 125 20 Ld CERDIP F20.3

ADC0803LCN ±1/2 LSB VREF/2 Adjusted for Correct Full ScaleReading

0 to 70 20 Ld PDIP E20.3

ADC0803LCD ±3/4 LSB -40 to 85 20 Ld CERDIP F20.3

ADC0803LCWM ±1 LSB -40 to 85 20 Ld SOIC M20.3

ADC0803LD ±1 LSB -55 to 125 20 Ld CERDIP F20.3

ADC0804LCN ±1 LSB VREF/2 = 2.500VDC (No Adjustments) 0 to 70 20 Ld PDIP E20.3

ADC0804LCD ±1 LSB -40 to 85 20 Ld CERDIP F20.3

ADC0804LCWM ±1 LSB -40 to 85 20 Ld SOIC M20.3

PinoutADC0802, ADC0803, ADC0804

(PDIP, CERDIP)TOP VIEW

Typical Application Schematic

11

12

13

14

15

16

17

18

20

19

10

9

8

7

6

5

4

3

2

1

WR

RD

CS

CLK IN

INTR

VIN (-)

VIN (+)

DGND

VREF/2

AGND

V+ OR VREF

CLK R

DB0 (LSB)

DB1

DB2

DB3

DB4

DB5

DB6

DB7 (MSB)

3

2

1

12

11

5

15

14

13

18

17

16

7

6

10

9

8

4

19

20

WR

RD

CS

DB6

DB7

INTR

DB3

DB4

DB5

DB0

DB1

DB2

CLK IN

CLK R

V+

VIN (-)

VIN (+)

DGND

VREF/2

AGND

ANYµPROCESSOR 8-BIT RESOLUTION

OVER ANYDESIREDANALOG INPUTVOLTAGE RANGE

DIFFINPUTS

10K

150pF

VREF/2

µP B

US

+5V

August 1997

ADC0802, ADC0803ADC0804

8-Bit, Microprocessor-Compatible, A/D Converters

File Number 3094.1CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999

Page 64: Esterilizacion de conservas de pescado por computadora

6-6

Functional Diagram

1211 151413 181716

WR

RD

CS

INTR

CLK OSC

CLK R

V+

VIN (-)

VIN (+)

DGND

VREF/2

AGND

(VREF)

DACVOUT

COMP

CLK GEN CLKS

CLK ARESET

START F/F

LADDERAND

DECODER

SUCCESSIVEAPPROX.

REGISTERAND LATCH

8-BITSHIFT

REGISTER

D

RESET

SET

CONV. COMPL.

THREE-STATEOUTPUT LATCHES

DIGITAL OUTPUTS

THREE-STATE CONTROL“1” = OUTPUT ENABLE

DFF2

CLK A

XFERG2

Q

8 X 1/f

R

Q

INTR F/F

IF RESET = “0”

D

DFF1Q

D

Q

CLK B STARTCONVERSION

MSB

LSB

Q“1” = RESET SHIFT REGISTER“0” = BUSY AND RESET STATE RESET

READ

SET3

2

1

5

7

6

10

9

8

4

19

20

CLK IN

MSB

G1

CLK

-+

LSB

INPUT PROTECTIONFOR ALL LOGIC INPUTS

INPUTTO INTERNAL

BV = 30V

CIRCUITS

V+

+

-

ADC0802, ADC0803, ADC0804

Page 65: Esterilizacion de conservas de pescado por computadora

6-7

Absolute Maximum Ratings Thermal InformationSupply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5VVoltage at Any Input . . . . . . . . . . . . . . . . . . . . . . -0.3V to (V+ +0.3V)

Operating ConditionsTemperature Range

ADC0802/03LD. . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oCADC0802/03/04LCD . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oCADC0802/03/04LCN . . . . . . . . . . . . . . . . . . . . . . . . . .0oC to 70oCADC0803/04LCWM . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC

Thermal Resistance (Typical, Note 1) θJA (oC/W) θJC (oC/W)PDIP Package . . . . . . . . . . . . . . . . . . . . . 125 N/ACERDIP Package . . . . . . . . . . . . . . . . . . 80 20SOIC Package . . . . . . . . . . . . . . . . . . . . . 120 N/A

Maximum Junction TemperatureHermetic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175oCPlastic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150oC

Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oCMaximum Lead Temperature (Soldering, 10s) . . . . . . . . . . . . 300oC

(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationof the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θJA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications (Notes 1, 7)

PARAMETER TEST CONDITIONS MIN TYP MAX UNITS

CONVERTER SPECIFICATIONS V+ = 5V, TA = 25oC and fCLK = 640kHz, Unless Otherwise Specified

Total Unadjusted Error

ADC0802 VREF/2 = 2.500V - - ±1/2 LSB

ADC0803 VREF/2 Adjusted for Correct FullScale Reading

- - ±1/2 LSB

ADC0804 VREF/2 = 2.500V - - ±1 LSB

VREF/2 Input Resistance Input Resistance at Pin 9 1.0 1.3 - kΩ

Analog Input Voltage Range (Note 2) GND-0.05 - (V+) + 0.05 V

DC Common-Mode Rejection Over Analog Input Voltage Range - ±1/16 ±1/8 LSB

Power Supply Sensitivity V+ = 5V ±10% Over Allowed InputVoltage Range

- ±1/16 ±1/8 LSB

CONVERTER SPECIFICATIONS V+ = 5V, 0oC to 70oC and fCLK = 640kHz, Unless Otherwise Specified

Total Unadjusted Error

ADC0802 VREF/2 = 2.500V - - ±1/2 LSB

ADC0803 VREF/2 Adjusted for Correct FullScale Reading

- - ±1/2 LSB

ADC0804 VREF/2 = 2.500V - - ±1 LSB

VREF/2 Input Resistance Input Resistance at Pin 9 1.0 1.3 - kΩ

Analog Input Voltage Range (Note 2) GND-0.05 - (V+) + 0.05 V

DC Common-Mode Rejection Over Analog Input Voltage Range - ±1/8 ±1/4 LSB

Power Supply Sensitivity V+ = 5V ±10% Over Allowed InputVoltage Range

- ±1/16 ±1/8 LSB

CONVERTER SPECIFICATIONS V+ = 5V, -25oC to 85oC and fCLK = 640kHz, Unless Otherwise Specified

Total Unadjusted Error

ADC0802 VREF/2 = 2.500V - - ±3/4 LSB

ADC0803 VREF/2 Adjusted for Correct FullScale Reading

- - ±3/4 LSB

ADC0804 VREF/2 = 2.500V - - ±1 LSB

VREF/2 Input Resistance Input Resistance at Pin 9 1.0 1.3 - kΩ

Analog Input Voltage Range (Note 2) GND-0.05 - (V+) + 0.05 V

DC Common-Mode Rejection Over Analog Input Voltage Range - ±1/8 ±1/4 LSB

Power Supply Sensitivity V+ = 5V ±10% Over Allowed InputVoltage Range

- ±1/16 ±1/8 LSB

ADC0802, ADC0803, ADC0804

Page 66: Esterilizacion de conservas de pescado por computadora

6-8

CONVERTER SPECIFICATIONS V+ = 5V, -55oC to 125oC and fCLK = 640kHz, Unless Otherwise Specified

Total Unadjusted Error

ADC0802 VREF/2 = 2.500V - - ±1 LSB

ADC0803 VREF/2 Adjusted for Correct FullScale Reading

- - ±1 LSB

VREF/2 Input Resistance Input Resistance at Pin 9 1.0 1.3 - kΩ

Analog Input Voltage Range (Note 2) GND-0.05 - (V+) + 0.05 V

DC Common-Mode Rejection Over Analog Input Voltage Range - ±1/8 ±1/4 LSB

Power Supply Sensitivity V+ = 5V ±10% Over Allowed InputVoltage Range

- ±1/8 ±1/4 LSB

AC TIMING SPECIFICATIONS V+ = 5V, and TA = 25oC, Unless Otherwise Specified

Clock Frequency, fCLK V+ = 6V (Note 3) 100 640 1280 kHz

V+ = 5V 100 640 800 kHz

Clock Periods per Conversion(Note 4), tCONV

62 - 73 Clocks/Conv

Conversion Rate In Free-RunningMode, CR

INTR tied to WR with CS = 0V,fCLK = 640kHz

- - 8888 Conv/s

Width of WR Input (Start PulseWidth), tW(WR)I

CS = 0V (Note 5) 100 - - ns

Access Time (Delay from FallingEdge of RD to Output Data Valid),tACC

CL = 100pF (Use Bus Driver IC forLarger CL)

- 135 200 ns

Three-State Control (Delay fromRising Edge of RD to Hl-Z State),t1H, t0H

CL = 10pF, RL= 10K(See Three-State Test Circuits)

- 125 250 ns

Delay from Falling Edge of WR toReset of INTR, tWI, tRI

- 300 450 ns

Input Capacitance of LogicControl Inputs, CIN

- 5 - pF

Three-State Output Capacitance(Data Buffers), COUT

- 5 - pF

DC DIGITAL LEVELS AND DC SPECIFICATIONS V+ = 5V, and TMIN to TMAX, Unless Otherwise Specified

CONTROL INPUTS (Note 6)

Logic “1“ Input Voltage (ExceptPin 4 CLK IN), VINH

V+ = 5.25V 2.0 - V+ V

Logic “0“ Input Voltage (ExceptPin 4 CLK IN), VINL

V+ = 4.75V - - 0.8 V

CLK IN (Pin 4) Positive GoingThreshold Voltage, V+CLK

2.7 3.1 3.5 V

CLK IN (Pin 4) Negative GoingThreshold Voltage, V-CLK

1.5 1.8 2.1 V

CLK IN (Pin 4) Hysteresis, VH 0.6 1.3 2.0 V

Logic “1” Input Current(All Inputs), IINHI

VlN = 5V - 0.005 1 µΑ

Logic “0” Input Current(All Inputs), IINLO

VlN = 0V -1 -0.005 - µA

Supply Current (Includes LadderCurrent), I+

fCLK = 640kHz,TA = 25oCand CS = Hl

- 1.3 2.5 mA

DATA OUTPUTS AND INTR

Logic “0” Output Voltage, VOL lO = 1.6mA, V+ = 4.75V - - 0.4 V

Electrical Specifications (Notes 1, 7) (Continued)

PARAMETER TEST CONDITIONS MIN TYP MAX UNITS

ADC0802, ADC0803, ADC0804

Page 67: Esterilizacion de conservas de pescado por computadora

6-9

Logic “1” Output Voltage, VOH lO = -360µA, V+ = 4.75V 2.4 - - V

Three-State Disabled OutputLeakage (All Data Buffers), ILO

VOUT = 0V -3 - - µA

VOUT = 5V - - 3 µA

Output Short Circuit Current,ISOURCE

VOUT Short to Gnd TA = 25oC 4.5 6 - mA

Output Short Circuit Current,ISINK

VOUT Short to V+ TA = 25oC 9.0 16 - mA

NOTES:

1. All voltages are measured with respect to GND, unless otherwise specified. The separate AGND point should always be wired to theDGND, being careful to avoid ground loops.

2. For VIN(-) ≥ VIN(+) the digital output code will be 0000 0000. Two on-chip diodes are tied to each analog input (see Block Diagram) whichwill forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V+ supply. Be careful,during testing at low V+ levels (4.5V), as high level analog inputs (5V) can cause this input diode to conduct - especially at elevated tem-peratures, and cause errors for analog inputs near full scale. As long as the analog VIN does not exceed the supply voltage by more than50mV, the output code will be correct. To achieve an absolute 0V to 5V input voltage range will therefore require a minimum supply volt-age of 4.950V over temperature variations, initial tolerance and loading.

3. With V+ = 6V, the digital logic interfaces are no longer TTL compatible.

4. With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversionprocess.

5. The CS input is assumed to bracket the WR strobe input so that timing is dependent on the WR pulse width. An arbitrarily wide pulsewidth will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the WR pulse (seeTiming Diagrams).

6. CLK IN (pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately.

7. None of these A/Ds requires a zero-adjust. However, if an all zero code is desired for an analog input other than 0V, or if a narrow full scale spanexists (for example: 0.5V to 4V full scale) the VIN(-) input can be adjusted to achieve this. See the Zero Error description in this data sheet.

Electrical Specifications (Notes 1, 7) (Continued)

PARAMETER TEST CONDITIONS MIN TYP MAX UNITS

Timing Waveforms

FIGURE 1A. t1H FIGURE 1B. t1H, CL = 10pF

FIGURE 1C. t0H FIGURE 1D. t0H, CL = 10pF

FIGURE 1. THREE-STATE CIRCUITS AND WAVEFORMS

10K

V+

RD

CS

CL

DATAOUTPUT

RD

2.4Vtr

90%50%

10%

t1H

0.8V

DATAOUTPUTS

GND

tr = 20ns

VOH 90%

10K

V+

RD

CSCL

DATAOUTPUT

V+

RD

2.4V

tr

90%50%

10%

t0H

0.8V

DATAOUTPUTS

VOI

tr = 20ns

V+

10%

ADC0802, ADC0803, ADC0804

Page 68: Esterilizacion de conservas de pescado por computadora

6-10

Typical Performance Curves

FIGURE 2. LOGIC INPUT THRESHOLD VOLTAGE vs SUPPLYVOLTAGE

FIGURE 3. DELAY FROM FALLING EDGE OF RD TO OUTPUTDATA VALID vs LOAD CAPACITANCE

FIGURE 4. CLK IN SCHMITT TRIP LEVELS vs SUPPLY VOLTAGE FIGURE 5. fCLK vs CLOCK CAPACITOR

FIGURE 6. FULL SCALE ERROR vs f CLK FIGURE 7. EFFECT OF UNADJUSTED OFFSET ERROR

-55oC TO 125oC1.8

1.7

1.6

1.5

1.4

1.34.754.50 5.00 5.25 5.50

V+ SUPPLY VOLTAGE (V)

LOG

IC IN

PU

T T

HR

ES

HO

LD V

OLT

AG

E (

V)

DE

LAY

(ns

)

500

400

300

200

1000

LOAD CAPACITANCE (pF)200 400 600 800 1000

CLK

IN T

HR

ES

HO

LD V

OLT

AG

E (

V)

3.5

3.1

2.7

2.3

1.9

1.54.50

V+ SUPPLY VOLTAGE (V)

-55oC TO 125oC

VT(-)

VT(+)

4.75 5.00 5.25 5.50

1000

CLOCK CAPACITOR (pF)

f CLK

(kH

z)

10010010 1000

R = 10K

R = 50K

R = 20K

FU

LL S

CA

LE E

RR

OR

(LS

Bs)

7

6

5

4

3

2

1

0

fCLK (kHz)0 400 800 1200 1600 2000

V+ = 4.5V

V+ = 5V

V+ = 6V

VIN(+) = VIN(-) = 0V

ASSUMES VOS = 2mV

THIS SHOWS THE NEEDFOR A ZERO ADJUSTMENTIF THE SPAN IS REDUCED

OF

FS

ET

ER

RO

R (

LSB

s)

16

14

12

10

8

6

4

2

VREF/2 (V)

00.01 0.1 1.0 5

ADC0802, ADC0803, ADC0804

Page 69: Esterilizacion de conservas de pescado por computadora

6-11

FIGURE 8. OUTPUT CURRENT vs TEMPERATURE FIGURE 9. POWER SUPPLY CURRENT vs TEMPERATURE

Timing Diagrams

FIGURE 10A. START CONVERSION

FIGURE 10B. OUTPUT ENABLE AND RESET INTR

Typical Performance Curves (Continued)O

UT

PU

T C

UR

RE

NT

(m

A)

8

7

6

5

4

3

2-50

TA AMBIENT TEMPERATURE ( oC)

-ISINKVOUT = 0.4V

ISOURCEVOUT = 2.4V

DATA OUTPUTBUFFERS

V+ = 5V

-25 0 25 50 75 100 125

PO

WE

R S

UP

PLY

CU

RR

EN

T (

mA

)

TA AMBIENT TEMPERATURE ( oC)-50 -25 0 25 50 75 100 125

1.6

1.5

1.4

1.3

1.2

1.1

1.0

fCLK = 640kHz

V+ = 5.5V

V+ = 5.0V

V+ = 4.5V

tWI

tW(WR)I

1 TO 8 x 1/fCLK INTERNAL TC

CS

WR

ACTUAL INTERNALSTATUS OF THE

CONVERTER

INTR(LAST DATA READ)

(LAST DATA NOT READ)

“NOT BUSY”

“BUSY”DATA IS VALID INOUTPUT LATCHES

INTRASSERTED

tVI 1/2 fCLK

VALIDDATA

VALIDDATA

INTR RESETINTR

CS

RD

DATAOUTPUTS

THREE-STATE

(HI-Z)

tRI

tACCt1H, t0H

ADC0802, ADC0803, ADC0804

Page 70: Esterilizacion de conservas de pescado por computadora

6-12

Understanding A/D Error SpecsA perfect A/D transfer characteristic (staircase wave-form) isshown in Figure 11A. The horizontal scale is analog input volt-age and the particular points labeled are in steps of 1 LSB(19.53mV with 2.5V tied to the VREF/2 pin). The digital outputcodes which correspond to these inputs are shown as D-1, D,and D+1. For the perfect A/D, not only will center-value (A - 1,A, A + 1, . . .) analog inputs produce the correct output digitalcodes, but also each riser (the transitions between adjacentoutput codes) will be located ±1/2 LSB away from each center-value. As shown, the risers are ideal and have no width. Correctdigital output codes will be provided for a range of analog inputvoltages which extend ±1/2 LSB from the ideal center-values.Each tread (the range of analog input voltage which providesthe same digital output code) is therefore 1 LSB wide.

The error curve of Figure 11B shows the worst case transferfunction for the ADC0802. Here the specification guaranteesthat if we apply an analog input equal to the LSB analog volt-age center-value, the A/D will produce the correct digital code.

Next to each transfer function is shown the corresponding errorplot. Notice that the error includes the quantization uncertainty ofthe A/D. For example, the error at point 1 of Figure 11A is+1/2 LSB because the digital code appeared 1/2 LSB in advanceof the center-value of the tread. The error plots always have a

constant negative slope and the abrupt upside steps are always1 LSB in magnitude, unless the device has missing codes.

Detailed DescriptionThe functional diagram of the ADC0802 series of A/Dconverters operates on the successive approximation princi-ple (see Application Notes AN016 and AN020 for a moredetailed description of this principle). Analog switches areclosed sequentially by successive-approximation logic untilthe analog differential input voltage [VlN(+) - VlN(-)] matchesa voltage derived from a tapped resistor string across thereference voltage. The most significant bit is tested first andafter 8 comparisons (64 clock cycles), an 8-bit binary code(1111 1111 = full scale) is transferred to an output latch.

The normal operation proceeds as follows. On the high-to-lowtransition of the WR input, the internal SAR latches and theshift-register stages are reset, and the INTR output will be sethigh. As long as the CS input and WR input remain low, theA/D will remain in a reset state. Conversion will start from 1 to8 clock periods after at least one of these inputs makes a low-to-high transition. After the requisite number of clock pulses tocomplete the conversion, the INTR pin will make a high-to-lowtransition. This can be used to interrupt a processor, orotherwise signal the availability of a new conversion. A RDoperation (with CS low) will clear the INTR line high again.

TRANSFER FUNCTION ERROR PLOT

FIGURE 11A. ACCURACY = ±0 LSB; PERFECT A/D

TRANSFER FUNCTION ERROR PLOT

FIGURE 11B. ACCURACY = ±1/2 LSB

FIGURE 11. CLARIFYING THE ERROR SPECS OF AN A/D CONVERTER

ANALOG INPUT (V IN)

DIG

ITA

L O

UT

PU

T C

OD

ED + 1

D

D - 1

A + 1AA - 1

3

21

5 6

4

3

2

1 5

64

ER

RO

R

0

+1 LSB

-1 LSB

-1/2 LSB

+1/2 LSB

* QUANTIZATION ERROR

A

ANALOG INPUT (V IN)

A + 1A - 1

ANALOG INPUT (V IN)

DIG

ITA

L O

UT

PU

T C

OD

E

D + 1

D

D - 1

A + 1AA - 1

3

21

5

6

4*0

+1 LSB

-1 LSB

QUANTIZATION

ER

RO

R

3

2

1

6

4

ANALOG INPUT (V IN)

A + 1AA - 1

ERROR

ADC0802, ADC0803, ADC0804

Page 71: Esterilizacion de conservas de pescado por computadora

6-13

The device may be operated in the free-running mode by con-necting INTR to the WR input with CS = 0. To ensure start-upunder all possible conditions, an external WR pulse isrequired during the first power-up cycle. A conversion-in-pro-cess can be interrupted by issuing a second start command.

Digital Operation

The converter is started by having CS and WR simultaneouslylow. This sets the start flip-flop (F/F) and the resulting “1” levelresets the 8-bit shift register, resets the Interrupt (INTR) F/Fand inputs a “1” to the D flip-flop, DFF1, which is at the inputend of the 8-bit shift register. Internal clock signals then trans-fer this “1” to the Q output of DFF1. The AND gate, G1, com-bines this “1” output with a clock signal to provide a resetsignal to the start F/F. If the set signal is no longer present(either WR or CS is a “1”), the start F/F is reset and the 8-bitshift register then can have the “1” clocked in, which starts theconversion process. If the set signal were to still be present,this reset pulse would have no effect (both outputs of the startF/F would be at a “1” level) and the 8-bit shift register wouldcontinue to be held in the reset mode. This allows for asyn-chronous or wide CS and WR signals.

After the “1” is clocked through the 8-bit shift register (whichcompletes the SAR operation) it appears as the input toDFF2. As soon as this “1” is output from the shift register, theAND gate, G2, causes the new digital word to transfer to theThree-State output latches. When DFF2 is subsequentlyclocked, the Q output makes a high-to-low transition whichcauses the INTR F/F to set. An inverting buffer then suppliesthe INTR output signal.

When data is to be read, the combination of both CS and RDbeing low will cause the INTR F/F to be reset and the three-state output latches will be enabled to provide the 8-bit digitaloutputs.

Digital Control Inputs

The digital control inputs (CS, RD, and WR) meet standardTTL logic voltage levels. These signals are essentially equiva-lent to the standard A/D Start and Output Enable control sig-nals, and are active low to allow an easy interface tomicroprocessor control busses. For non-microprocessorbased applications, the CS input (pin 1) can be grounded andthe standard A/D Start function obtained by an active lowpulse at the WR input (pin 3). The Output Enable function isachieved by an active low pulse at the RD input (pin 2).

Analog Operation

The analog comparisons are performed by a capacitivecharge summing circuit. Three capacitors (with preciseratioed values) share a common node with the input to anauto-zeroed comparator. The input capacitor is switchedbetween VlN(+) and VlN(-), while two ratioed reference capaci-tors are switched between taps on the reference voltagedivider string. The net charge corresponds to the weighted dif-ference between the input and the current total value set bythe successive approximation register. A correction is made tooffset the comparison by 1/2 LSB (see Figure 11A).

Analog Differential Voltage Inputs and Common-ModeRejection

This A/D gains considerable applications flexibility from the ana-log differential voltage input. The VlN(-) input (pin 7) can be used

to automatically subtract a fixed voltage value from the inputreading (tare correction). This is also useful in 4mA - 20mA cur-rent loop conversion. In addition, common-mode noise can bereduced by use of the differential input.

The time interval between sampling VIN(+) and VlN(-) is 41/2clock periods. The maximum error voltage due to this slighttime difference between the input voltage samples is given by:

where:

∆VE is the error voltage due to sampling delay,

VPEAK is the peak value of the common-mode voltage,

fCM is the common-mode frequency.

For example, with a 60Hz common-mode frequency, fCM,and a 640kHz A/D clock, fCLK, keeping this error to 1/4 LSB(~5mV) would allow a common-mode voltage, VPEAK, givenby:

,

or

.

The allowed range of analog input voltage usually placesmore severe restrictions on input common-mode voltagelevels than this.

An analog input voltage with a reduced span and a relativelylarge zero offset can be easily handled by making use of thedifferential input (see Reference Voltage Span Adjust).

Analog Input Current

The internal switching action causes displacement currents toflow at the analog inputs. The voltage on the on-chip capaci-tance to ground is switched through the analog differentialinput voltage, resulting in proportional currents entering theVIN(+) input and leaving the VIN(-) input. These current tran-sients occur at the leading edge of the internal clocks. Theyrapidly decay and do not inherently cause errors as the on-chip comparator is strobed at the end of the clock perIod.

Input Bypass Capacitors

Bypass capacitors at the inputs will average these chargesand cause a DC current to flow through the output resistancesof the analog signal sources. This charge pumping action isworse for continuous conversions with the VIN(+) input voltageat full scale. For a 640kHz clock frequency with the VIN(+)input at 5V, this DC current is at a maximum of approximately5µA. Therefore, bypass capacitors should not be used atthe analog inputs or the V REF/2 pin for high resistancesources (>1kΩ). If input bypass capacitors are necessary fornoise filtering and high source resistance is desirable to mini-mize capacitor size, the effects of the voltage drop across thisinput resistance, due to the average value of the input current,can be compensated by a full scale adjustment while thegiven source resistor and input bypass capacitor are both inplace. This is possible because the average value of the inputcurrent is a precise linear function of the differential inputvoltage at a constant conversion rate.

VE MAX( )∆ VPEAK( ) 2πfCM( ) 4.5fCLK------------=

VPEAK

∆VE MAX( ) fCLK( )

2πfCM( ) 4.5( )--------------------------------------------------=

VPEAK5 10

3–×( ) 640 103×( )

6.28( ) 60( ) 4.5( )---------------------------------------------------------- 1.9V≅=

ADC0802, ADC0803, ADC0804

Page 72: Esterilizacion de conservas de pescado por computadora

6-14

Input Source Resistance

Large values of source resistance where an input bypasscapacitor is not used will not cause errors since the inputcurrents settle out prior to the comparison time. If a low-pass filter is required in the system, use a low-value seriesresistor (≤1kΩ) for a passive RC section or add an op ampRC active low-pass filter. For low-source-resistanceapplications (≤1kΩ), a 0.1µF bypass capacitor at the inputswill minimize EMI due to the series lead inductance of a longwire. A 100Ω series resistor can be used to isolate thiscapacitor (both the R and C are placed outside the feedbackloop) from the output of an op amp, if used.

Stray Pickup

The leads to the analog inputs (pins 6 and 7) should be keptas short as possible to minimize stray signal pickup (EMI).Both EMI and undesired digital-clock coupling to these inputscan cause system errors. The source resistance for theseinputs should, in general, be kept below 5kΩ. Larger values ofsource resistance can cause undesired signal pickup. Inputbypass capacitors, placed from the analog inputs to ground,will eliminate this pickup but can create analog scale errors asthese capacitors will average the transient input switching cur-rents of the A/D (see Analog Input Current). This scale errordepends on both a large source resistance and the use of aninput bypass capacitor. This error can be compensated by afull scale adjustment of the A/D (see Full Scale Adjustment)with the source resistance and input bypass capacitor inplace, and the desired conversion rate.

Reference Voltage Span Adjust

For maximum application flexibility, these A/Ds have beendesigned to accommodate a 5V, 2.5V or an adjusted voltagereference. This has been achieved in the design of the IC asshown in Figure 12.

Notice that the reference voltage for the IC is either 1/2 of thevoltage which is applied to the V+ supply pin, or is equal tothe voltage which is externally forced at the VREF/2 pin. Thisallows for a pseudo-ratiometric voltage reference using, forthe V+ supply, a 5V reference voltage. Alternatively, a volt-age less than 2.5V can be applied to the VREF/2 input. Theinternal gain to the VREF/2 input is 2 to allow this factor of 2reduction in the reference voltage.

Such an adjusted reference voltage can accommodate areduced span or dynamic voltage range of the analog inputvoltage. If the analog input voltage were to range from 0.5V to3.5V, instead of 0V to 5V, the span would be 3V. With 0.5Vapplied to the VlN(-) pin to absorb the offset, the referencevoltage can be made equal to 1/2 of the 3V span or 1.5V. TheA/D now will encode the VlN(+) signal from 0.5V to 3.5V withthe 0.5V input corresponding to zero and the 3.5V input corre-sponding to full scale. The full 8 bits of resolution are thereforeapplied over this reduced analog input voltage range. The req-uisite connections are shown in Figure 13. For expandedscale inputs, the circuits of Figures 14 and 15 can be used.

FIGURE 12. THE VREFERENCE DESIGN ON THE IC

FIGURE 13. OFFSETTING THE ZERO OF THE ADC0802 ANDPERFORMING AN INPUT RANGE (SPAN)ADJUSTMENT

FIGURE 14. HANDLING ±10V ANALOG INPUT RANGE

V+

DGND

VREF/2

AGND

(VREF)

R

R

DIGITALCIRCUITS

ANALOGCIRCUITS

9

8 10

20

DECODE

300TO VREF/2

TO VIN(-)ZERO SHIFT VOLTAGE

0.1µF

5V

-+

VREF(5V)

FSADJ.

“SPAN”/2

ICL7611

VIN(-)

2R

5V

2R

VIN ± 10V

R

VIN(+)

(VREF)

V+20

10µF

6

7

+

ADC0802-ADC0804

ADC0802, ADC0803, ADC0804

Page 73: Esterilizacion de conservas de pescado por computadora

6-15

Reference Accuracy Requirements

The converter can be operated in a pseudo-ratiometricmode or an absolute mode. In ratiometric converter applica-tions, the magnitude of the reference voltage is a factor inboth the output of the source transducer and the output ofthe A/D converter and therefore cancels out in the final digi-tal output code. In absolute conversion applicatIons, both theinitial value and the temperature stability of the referencevoltage are important accuracy factors in the operation of theA/D converter. For VREF/2 voltages of 2.5V nominal value,initial errors of ±10mV will cause conversion errors of ±1LSB due to the gain of 2 of the VREF/2 input. In reducedspan applications, the initial value and the stability of theVREF/2 input voltage become even more important. Forexample, if the span is reduced to 2.5V, the analog input LSBvoltage value is correspondingly reduced from 20mV (5Vspan) to 10mV and 1 LSB at the VREF/2 input becomes5mV. As can be seen, this reduces the allowed initial toler-ance of the reference voltage and requires correspondinglyless absolute change with temperature variations. Note thatspans smaller than 2.5V place even tighter requirements onthe initial accuracy and stability of the reference source.

In general, the reference voltage will require an initialadjustment. Errors due to an improper value of referencevoltage appear as full scale errors in the A/D transfer func-tion. IC voltage regulators may be used for references if theambient temperature changes are not excessive.

Zero Error

The zero of the A/D does not require adjustment. If theminimum analog input voltage value, VlN(MlN), is not ground, azero offset can be done. The converter can be made to output0000 0000 digital code for this minimum input voltage by bias-ing the A/D VIN(-) input at this VlN(MlN) value (see Applicationssection). This utilizes the differential mode operation of the A/D.

The zero error of the A/D converter relates to the location ofthe first riser of the transfer function and can be measured bygrounding the VIN(-) input and applying a small magnitudepositive voltage to the VIN(+) input. Zero error is the differencebetween the actual DC input voltage which is necessary tojust cause an output digital code transition from 0000 0000 to0000 0001 and the ideal 1/2 LSB value (1/2 LSB = 9.8mV forVREF/2 = 2.500V).

Full Scale Adjust

The full scale adjustment can be made by applying adifferential input voltage which is 11/2 LSB down from thedesired analog full scale voltage range and then adjustingthe magnitude of the VREF/2 input (pin 9) for a digital outputcode which is just changing from 1111 1110 to 1111 1111.When offsetting the zero and using a span-adjusted VREF/2voltage, the full scale adjustment is made by inputting VMlNto the VIN(-) input of the A/D and applying a voltage to theVIN(+) input which is given by:

,

where:

VMAX = the high end of the analog input range,

and

VMIN = the low end (the offset zero) of the analog range.(Both are ground referenced.)

Clocking Option

The clock for the A/D can be derived from an external sourcesuch as the CPU clock or an external RC network can beadded to provIde self-clocking. The CLK IN (pin 4) makesuse of a Schmitt trigger as shown in Figure 16.

Heavy capacitive or DC loading of the CLK R pin should beavoided as this will disturb normal converter operation.Loads less than 50pF, such as driving up to 7 A/D converterclock inputs from a single CLK R pin of 1 converter, areallowed. For larger clock line loading, a CMOS or low powerTTL buffer or PNP input logic should be used to minimize theloading on the CLK R pin (do not use a standard TTL buffer).

Restart During a Conversion

If the A/D is restarted (CS and WR go low and return high)during a conversion, the converter is reset and a new con-version is started. The output data latch is not updated if theconversion in progress is not completed. The data from theprevious conversion remain in this latch.

Continuous Conversions

In this application, the CS input is grounded and the WRinput is tied to the INTR output. This WR and INTR nodeshould be momentarily forced to logic low following a power-up cycle to insure circuit operation. See Figure 17 for details.

FIGURE 15. HANDLING ±5V ANALOG INPUT RANGE

VIN(-)

R

5V

VIN ±5V

R

VIN(+)

(VREF)

V+20

10µF

6

7

+

ADC0802-ADC0804

VIN +( )fSADJ VMAX 1.5VMAX VMIN–( )

256-----------------------------------------–=

CLK R

4CLK IN

CLK

ADC0802-ADC0804

fCLK ≅

19

R

C

11.1 RC

R ≅ 10kΩ

FIGURE 16. SELF-CLOCKING THE A/D

ADC0802, ADC0803, ADC0804

Page 74: Esterilizacion de conservas de pescado por computadora

6-16

Driving the Data Bus

This CMOS A/D, like MOS microprocessors and memories,will require a bus driver when the total capacitance of thedata bus gets large. Other circuItry, which is tied to the databus, will add to the total capacitive loading, even in three-state (high-impedance mode). Back plane busing alsogreatly adds to the stray capacitance of the data bus.

There are some alternatives available to the designer to han-dle this problem. Basically, the capacitive loading of the databus slows down the response time, even though DC specifi-cations are still met. For systems operating with a relativelyslow CPU clock frequency, more time is available in which toestablish proper logic levels on the bus and therefore highercapacitive loads can be driven (see Typical PerformanceCurves).

At higher CPU clock frequencies time can be extended forI/O reads (and/or writes) by inserting wait states (8080) orusing clock-extending circuits (6800).

Finally, if time is short and capacitive loading is high,external bus drivers must be used. These can be three-statebuffers (low power Schottky is recommended, such as the74LS240 series) or special higher-drive-current productswhich are designed as bus drivers. High-current bipolar busdrivers with PNP inputs are recommended.

Power Supplies

Noise spikes on the V+ supply line can cause conversionerrors as the comparator will respond to this noise. Alow-inductance tantalum filter capacitor should be usedclose to the converter V+ pin, and values of 1µF or greaterare recommended. If an unregulated voltage is available inthe system, a separate 5V voltage regulator for the converter(and other analog circuitry) will greatly reduce digital noiseon the V+ supply. An lCL7663 can be used to regulate sucha supply from an input as low as 5.2V.

Wiring and Hook-Up Precautions

Standard digital wire-wrap sockets are not satisfactory forbreadboarding with this A/D converter. Sockets on PCboards can be used. All logic signal wires and leads shouldbe grouped and kept as far away as possible from the analog

signal leads. Exposed leads to the analog inputs can causeundesired digital noise and hum pickup; therefore, shieldedleads may be necessary in many applications.

A single-point analog ground should be used which is separatefrom the logic ground points. The power supply bypass capaci-tor and the self-clockIng capacitor (if used) should both bereturned to digital ground. Any VREF/2 bypass capacitors, ana-log input filter capacitors, or input signal shielding should bereturned to the analog ground point. A test for proper groundingis to measure the zero error of the A/D converter. Zero errors inexcess of 1/4 LSB can usually be traced to improper boardlayout and wiring (see Zero Error for measurement). Furtherinformation can be found in Application Note AN018.

Testing the A/D ConverterThere are many degrees of complexity associated with testingan A/D converter. One of the simplest tests is to apply aknown analog input voltage to the converter and use LEDs todisplay the resulting digital output code as shown in Figure 18.

For ease of testing, the VREF/2 (pin 9) should be suppliedwith 2.560V and a V+ supply voltage of 5.12V should beused. This provides an LSB value of 20mV.

If a full scale adjustment is to be made, an analog input volt-age of 5.090V (5.120 - 11/2 LSB) should be applied to theVIN(+) pin with the VIN(-) pin grounded. The value of theVREF/2 input voltage should be adjusted until the digital out-put code is just changing from 1111 1110 to 1111 1111. Thisvalue of VREF/2 should then be used for all the tests.

The digital-output LED display can be decoded by dividing the 8bits into 2 hex characters, one with the 4 most-significant bits(MS) and one with the 4 least-significant bits (LS). The output isthen interpreted as a sum of fractions times the full scale voltage:

.

For example, for an output LED display of 1011 0110, theMS character is hex B (decimal 11) and the LS character ishex (and decimal) 6, so:

.

11

12

13

14

15

16

17

18

20

19

10

9

8

7

6

5

4

3

2

1

ADC0802 - ADC0804

WR

RD

CS

INTR

CLK IN

VIN (-)

VIN (+)

DGND

VREF/2

AGND

DB1

DB0

DB4

DB3

DB2

DB7

DB6

DB5

CLK R

V+

10K 5V (VREF)

10µF+

DATA

START

ANALOGINPUTS

150pF

OUTPUTS

N.O.

MSB

LSB

FIGURE 17. FREE-RUNNING CONNECTION

VOUTMS16--------- LS

256----------+

5.12( )V=

START

VIN (+)

DGND

2.560VAGND

10µF

150pF

N.O.

0.1µF

0.1µF

TANTALUM

5.120V

5V

1.3kΩ LEDs(8) (8)

MSB

LSB

10kΩ

VREF/2

+

11

12

13

14

15

16

17

18

20

19

10

9

8

7

6

5

4

3

2

1

ADC0802-ADC0804

FIGURE 18. BASIC TESTER FOR THE A/D

VOUT1116------ 6

256----------+

5.12( ) 3.64V= =

ADC0802, ADC0803, ADC0804

Page 75: Esterilizacion de conservas de pescado por computadora

6-17

Figures 19 and 20 show more sophisticated test circuits.

Typical ApplicationsInterfacing 8080/85 or Z-80 Microprocessors

This converter has been designed to directly interface with8080/85 or Z-80 Microprocessors. The three-state outputcapability of the A/D eliminates the need for a peripheralinterface device, although address decoding is still requiredto generate the appropriate CS for the converter. The A/Dcan be mapped into memory space (using standard mem-ory-address decoding for CS and the MEMR and MEMWstrobes) or it can be controlled as an I/O device by using theI/OR and I/OW strobes and decoding the address bits A0 →A7 (or address bits A8 → A15, since they will contain thesame 8-bit address information) to obtain the CS input.Using the I/O space provides 256 additional addresses andmay allow a simpler 8-bit address decoder, but the data canonly be input to the accumulator. To make use of the addi-tional memory reference instructions, the A/D should bemapped into memory space. See AN020 for more discus-sion of memory-mapped vs I/O-mapped interfaces. Anexample of an A/D in I/O space is shown in Figure 21.

The standard control-bus signals of the 8080 (CS, RD andWR) can be directly wired to the digital control inputs of theA/D, since the bus timing requirements, to allow both startingthe converter, and outputting the data onto the data bus, aremet. A bus driver should be used for larger microprocessorsystems where the data bus leaves the PC board and/ormust drive capacitive loads larger than 100pF.

It is useful to note that in systems where the A/D converter is1 of 8 or fewer I/O-mapped devices, no address-decodingcircuitry is necessary. Each of the 8 address bits (A0 to A7)can be directly used as CS inputs, one for each I/O device.

Interfacing the Z-80 and 8085

The Z-80 and 8085 control buses are slightly different fromthat of the 8080. General RD and WR strobes are providedand separate memory request, MREQ, and I/O request,IORQ, signals have to be combined with the generalizedstrobes to provide the appropriate signals. An advantage ofoperating the A/D in I/O space with the Z-80 is that the CPUwill automatically insert one wait state (the RD and WRstrobes are extended one clock period) to allow more timefor the I/O devices to respond. Logic to map the A/D in I/Ospace is shown in Figure 22. By using MREQ in place ofIORQ, a memory-mapped configuration results.

Additional I/O advantages exist as software DMA routines areavailable and use can be made of the output data transferwhich exists on the upper 8 address lines (A8 to A15) duringI/O input instructions. For example, MUX channel selection forthe A/D can be accomplished with this operating mode.

The 8085 also provides a generalized RD and WR strobe, withan IO/M line to distinguish I/O and memory requests. The cir-cuit of Figure 22 can again be used, with IO/M in place of IORQfor a memory-mapped interface, and an extra inverter (or thelogic equivalent) to provide IO/M for an I/O-mapped connection.

Interfacing 6800 Microprocessor Derivatives (6502, etc.)

The control bus for the 6800 microprocessor derivatives doesnot use the RD and WR strobe signals. Instead it employs asingle R/W line and additional timing, if needed, can be derivedfrom the φ2 clock. All I/O devices are memory-mapped in the6800 system, and a special signal, VMA, indicates that the cur-rent address is valid. Figure 23 shows an interface schematicwhere the A/D is memory-mapped in the 6800 system. For sim-plicity, the CS decoding is shown using 1/2 DM8092. Note thatin many 6800 systems, an already decoded 4/5 line is broughtout to the common bus at pin 21. This can be tied directly to theCS pin of the A/D, provided that no other devices areaddressed at HEX ADDR: 4XXX or 5XXX.

In Figure 24 the ADC0802 series is interfaced to the MC6800microprocessor through (the arbitrarily chosen) Port B of theMC6820 or MC6821 Peripheral Interface Adapter (PlA). Herethe CS pin of the A/D is grounded since the PlA is alreadymemory-mapped in the MC6800 system and no CS decodingis necessary. Also notice that the A/D output data lines are con-nected to the microprocessor bus under program controlthrough the PlA and therefore the A/D RD pin can be grounded.

Application Notes

ANALOGINPUTS

“A”

R

“B”

R

RR

“C”

100R

-+ A2

8-BITA/D UNDER

TEST

10-BITDAC

VANALOG OUTPUT

100X ANALOG

-+A1

ERROR VOLTAGE

FIGURE 19. A/D TESTER WITH ANALOG ERROR OUTPUT. THISCIRCUIT CAN BE USED TO GENERATE “ERRORPLOTS” OF FIGURE 11.

A/D UNDERTEST

10-BITDAC

DIGITAL

VANALOGINPUTS

DIGITALOUTPUTS

FIGURE 20. BASIC “DIGITAL” A/D TESTER

NOTE # DESCRIPTIONAnswerFAX

DOC. #

AN016 “Selecting A/D Converters” 9016

AN018 “Do’s and Don’ts of Applying A/DConverters”

9018

AN020 “A Cookbook Approach to High SpeedData Acquisition and MicroprocessorInterfacing”

9020

AN030 “The ICL7104 - A Binary Output A/DConverter for Microprocessors”

9030

ADC0802, ADC0803, ADC0804

Page 76: Esterilizacion de conservas de pescado por computadora

6-18

NOTE: Pin numbers for 8228 System Controller: Others are 8080A.

FIGURE 21. ADC0802 TO 8080A CPU INTERFACE

11

12

13

14

15

16

17

18

20

19

10

9

8

7

6

5

4

3

2

1

ADC0802 - ADC0804

WR

RD

CS

INTR

CLK IN

VIN (-)

VIN (+)

DGND

VREF/2

AGND

DB1

DB0

DB4

DB3

DB2

DB7

DB6

DB5

CLK R

V+

10K

5V 10µF+

ANALOGINPUTS

150pF

MSB

LSB

DB1 (16) (NOTE)

DB0 (13) (NOTE)

DB4 (5) (NOTE)

DB3 (9) (NOTE)

DB2 (11) (NOTE)

DB7 (7) (NOTE)

DB6 (20) (NOTE)

DB5 (18) (NOTE)

5V

AD15 (36)

AD14 (39)

AD13 (38)

AD12 (37)

AD11 (40)

AD10 (1)

8131BUS

COMPARATOR

INT (14)

I/O RD (25) (NOTE)

I/O WR (27) (NOTE)

T5

T4

T3

T2

T1

T0

B5

B4

B3

B2

B1

B0

V+OUT

ADC0802, ADC0803, ADC0804

Page 77: Esterilizacion de conservas de pescado por computadora

6-19

FIGURE 22. MAPPING THE A/D AS ANI/O DEVICE FOR USEWITH THE Z-80 CPU

FIGURE 23. ADC0802 TO MC6800 CPU INTERFACE

FIGURE 24. ADC0802 TO MC6820 PIA INTERFACE

WR

RD

IORQ

RD

WR

74C32

ADC0802-ADC0804

3

2

11

12

13

14

15

16

17

18

20

19

10

9

8

7

6

5

4

3

2

1

ADC0802 - ADC0804

WR

RD

CS

INTR

CLK IN

VIN (-)

VIN (+)

DGND

VREF/2

AGND

DB1

DB0

DB4

DB3

DB2

DB7

DB6

DB5

CLK R

V+

10K

5V (8)

10µF+

ANALOGINPUTS

150pFMSB

LSB

D1 (32) [29]

D0 (33) [31]

D4 (29) [32]

D3 (30) [H]

D2 (31) [K]

D7 (26) [J]

D6 (27) [L]

D5 (28) [30]

A12 (22) [34]

A13 (23) [N]

A14 (24) [M]

A15 (25) [33]

VMA (5) [F]

IRQ (4)† [D] ††

R/W (34) [6]

1

2

3

4

5

6

1/2 DM8092

A B C1 2 3

† Numbers in parentheses refer to MC6800 CPU Pinout.†† Numbers or letters in brackets refer to standard MC6800 System Common Bus Code.

11

12

13

14

15

16

17

18

20

19

10

9

8

7

6

5

4

3

2

1

ADC0802 - ADC0804

WR

RD

CS

INTR

CLK IN

VIN (-)

VIN (+)

DGND

VREF/2

AGND

DB1

DB0

DB4

DB3

DB2

DB7

DB6

DB5

CLK R

V+

10K

5V

ANALOGINPUTS

150pFMSB

LSB

11

10

14

13

12

17

16

15

PB1

PB0

PB4

PB3

PB2

PB7

PB6

PB5

MC6820(MCS6520)

PIA

CB2

CB119

18

ADC0802, ADC0803, ADC0804

Page 78: Esterilizacion de conservas de pescado por computadora

6-20

Die Characteristics

DIE DIMENSIONS:

(101 mils x 93 mils) x 525µm x 25µm

METALLIZATION:

Type: AlThickness: 10kÅ ±1kÅ

PASSIVATION:

Type: Nitride over SiloxNitride Thickness: 8kÅSilox Thickness: 7kÅ

Metallization Mask LayoutADC0802, ADC0803, ADC0804

WR

RD

CS

CLK ININTRVIN (-) VIN (+)

DGND

VREF/2

AGND

V+ OR VREF

CLK R

DB0DB1DB2DB3DB4

DB5

DB6

DB7 (MSB)

V+ OR VREF

ADC0802, ADC0803, ADC0804

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time withoutnotice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurateand reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties whichmay result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Page 79: Esterilizacion de conservas de pescado por computadora
Page 80: Esterilizacion de conservas de pescado por computadora
Page 81: Esterilizacion de conservas de pescado por computadora
Page 82: Esterilizacion de conservas de pescado por computadora
Page 83: Esterilizacion de conservas de pescado por computadora

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductorproduct or service without notice, and advises its customers to obtain the latest version of relevant informationto verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable atthe time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques areutilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of eachdevice is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, orsevere property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTEDTO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHERCRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TIproducts in such applications requires the written approval of an appropriate TI officer. Questions concerningpotential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operatingsafeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, orinfringement of patents or services described herein. Nor does TI warrant or represent that any license, eitherexpress or implied, is granted under any patent right, copyright, mask work right, or other intellectual propertyright of TI covering or relating to any combination, machine, or process in which such semiconductor productsor services might be or are used.

Copyright 1996, Texas Instruments Incorporated

Page 84: Esterilizacion de conservas de pescado por computadora

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinueany product or service without notice, and advise customers to obtain the latest version of relevant informationto verify, before placing orders, that information being relied on is current and complete. All products are soldsubject to the terms and conditions of sale supplied at the time of order acknowledgement, including thosepertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale inaccordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extentTI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarilyperformed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OFDEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICALAPPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, ORWARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHERCRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TOBE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operatingsafeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or representthat any license, either express or implied, is granted under any patent right, copyright, mask work right, or otherintellectual property right of TI covering or relating to any combination, machine, or process in which suchsemiconductor products or services might be or are used. TI’s publication of information regarding any thirdparty’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 1998, Texas Instruments Incorporated

Page 85: Esterilizacion de conservas de pescado por computadora

DAC0830/DAC08328-Bit µP Compatible, Double-Buffered D to A ConvertersGeneral DescriptionThe DAC0830 is an advanced CMOS/Si-Cr 8-bit multiplyingDAC designed to interface directly with the 8080, 8048,8085, Z80®, and other popular microprocessors. A depositedsilicon-chromium R-2R resistor ladder network divides thereference current and provides the circuit with excellent tem-perature tracking characteristics (0.05% of Full Scale Rangemaximum linearity error over temperature). The circuit usesCMOS current switches and control logic to achieve lowpower consumption and low output leakage current errors.Special circuitry provides TTL logic input voltage level com-patibility.

Double buffering allows these DACs to output a voltage cor-responding to one digital word while holding the next digitalword. This permits the simultaneous updating of any numberof DACs.

The DAC0830 series are the 8-bit members of a family ofmicroprocessor-compatible DACs (MICRO-DAC™).

Featuresn Double-buffered, single-buffered or flow-through digital

data inputsn Easy interchange and pin-compatible with 12-bit

DAC1230 seriesn Direct interface to all popular microprocessorsn Linearity specified with zero and full scale adjust

only — NOT BEST STRAIGHT LINE FIT.n Works with ±10V reference-full 4-quadrant multiplicationn Can be used in the voltage switching moden Logic inputs which meet TTL voltage level specs (1.4V

logic threshold)n Operates “STAND ALONE” (without µP) if desiredn Available in 20-pin small-outline or molded chip carrier

package

Key Specificationsn Current settling time: 1 µsn Resolution: 8 bitsn Linearity: 8, 9, or 10 bits (guaranteed over temp.)n Gain Tempco: 0.0002% FS/˚Cn Low power dissipation: 20 mWn Single power supply: 5 to 15 VDC

Typical Application

BI-FET™ and MICRO-DAC™ are trademarks of National Semiconductor Corporation.Z80® is a registered trademark of Zilog Corporation.

DS005608-1

May 1999

DA

C0830/D

AC

08328-B

itµPC

ompatible,D

ouble-Buffered

Dto

AC

onverters

© 1999 National Semiconductor Corporation DS005608 www.national.com

Page 86: Esterilizacion de conservas de pescado por computadora

Connection Diagrams (Top Views)

Dual-In-Line andSmall-Outline Packages

DS005608-21

Molded Chip Carrier Package

DS005608-22

www.national.com 2

Page 87: Esterilizacion de conservas de pescado por computadora

Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (VCC) 17 VDC

Voltage at Any Digital Input VCC to GNDVoltage at VREF Input ±25VStorage Temperature Range −65˚C to +150˚CPackage Dissipation

at TA=25˚C (Note 3) 500 mWDC Voltage Applied to

IOUT1 or IOUT2 (Note 4) −100 mV to VCC

ESD Susceptability (Note 4) 800V

Lead Temperature (Soldering, 10 sec.)Dual-In-Line Package (plastic) 260˚CDual-In-Line Package (ceramic) 300˚CSurface Mount Package

Vapor Phase (60 sec.) 215˚CInfrared (15 sec.) 220˚C

Operating ConditionsTemperature Range TMIN≤TA≤TMAX

Part numbers with “LCN” suffix 0˚C to +70˚CPart numbers with “LCWM” suffix 0˚C to +70˚CPart numbers with “LCV” suffix 0˚C to +70˚CPart numbers with “LCJ” suffix −40˚C to +85˚CPart numbers with “LJ” suffix −55˚C to +125˚C

Voltage at Any Digital Input VCC to GND

Electrical CharacteristicsVREF=10.000 VDC unless otherwise noted. Boldface limits apply over temperature, T MIN≤TA≤TMAX. For all other limitsTA=25˚C.

Parameter Conditions SeeNote

VCC = 4.75 VDCVCC = 15.75 VDC

VCC = 5 VDC ±5%VCC = 12 VDC ±5%

to 15 VDC ±5% LimitUnits

Typ(Note 12)

TestedLimit

(Note 5)

DesignLimit

(Note 6)

CONVERTER CHARACTERISTICS

Resolution 8 8 8 bits

Linearity Error Max Zero and full scale adjusted 4, 8

−10V≤VREF≤+10V

DAC0830LJ & LCJ 0.05 0.05 % FSR

DAC0832LJ & LCJ 0.2 0.2 % FSR

DAC0830LCN, LCWM &LCV

0.05 0.05 % FSR

DAC0831LCN 0.1 0.1 % FSR

DAC0832LCN, LCWM &LCV

0.2 0.2 % FSR

Differential Nonlinearity Zero and full scale adjusted 4, 8

Max −10V≤VREF≤+10V

DAC0830LJ & LCJ 0.1 0.1 % FSR

DAC0832LJ & LCJ 0.4 0.4 % FSR

DAC0830LCN, LCWM &LCV

0.1 0.1 % FSR

DAC0831LCN 0.2 0.2 % FSR

DAC0832LCN, LCWM &LCV

0.4 0.4 % FSR

Monotonicity −10V≤VREF LJ & LCJ 4 8 8 bits

≤+10V LCN, LCWM & LCV 8 8 bits

Gain Error Max Using Internal Rfb 7 ±0.2 ±1 ±1 % FS

−10V≤VREF≤+10V

Gain Error Tempco Max Using internal Rfb 0.0002 0.0006 %

FS/˚C

Power Supply Rejection All digital inputs latched high

VCC=14.5V to 15.5V 0.0002 0.0025 %

11.5V to 12.5V 0.0006 FSR/V

4.5V to 5.5V 0.013 0.015

Reference Max 15 20 20 kΩ

Input Min 15 10 10 kΩ

Output Feedthrough Error VREF=20 Vp-p, f=100 kHzAll data inputs latched low 3 mVp-p

www.national.com3

Page 88: Esterilizacion de conservas de pescado por computadora

Electrical Characteristics (Continued)

VREF=10.000 VDC unless otherwise noted. Boldface limits apply over temperature, T MIN≤TA≤TMAX. For all other limitsTA=25˚C.

Parameter Conditions SeeNote

VCC = 4.75 VDCVCC = 15.75 VDC

VCC = 5 VDC ±5%VCC = 12 VDC ±5%

to 15 VDC ±5% LimitUnits

Typ(Note 12)

TestedLimit

(Note 5)

DesignLimit

(Note 6)

CONVERTER CHARACTERISTICS

Output LeakageCurrent Max

IOUT1 All data inputs LJ & LCJ 10 100 100 nA

latched low LCN, LCWM & LCV 50 100

IOUT2 All data inputs LJ & LCJ 100 100 nA

latched high LCN, LCWM & LCV 50 100

Output IOUT1 All data inputs 45 pF

Capacitance IOUT2 latched low 115

IOUT1 All data inputs 130 pF

IOUT2 latched high 30

DIGITAL AND DC CHARACTERISTICS

Digital Input Max Logic Low LJ: 4.75V 0.6

Voltages LJ: 15.75V 0.8

LCJ: 4.75V 0.7 VDC

LCJ: 15.75V 0.8

LCN, LCWM, LCV 0.95 0.8

Min Logic High LJ & LCJ 2.0 2.0 VDC

LCN, LCWM, LCV 1.9 2.0

Digital Input Max Digital inputs <0.8V

Currents LJ & LCJ −50 −200 −200 µA

LCN, LCWM, LCV −160 −200 µA

Digital inputs>2.0V

LJ & LCJ 0.1 +10 +10 µA

LCN, LCWM, LCV +8 +10

Supply Current Max LJ & LCJ 1.2 3.5 3.5 mA

Drain LCN, LCWM, LCV 1.7 2.0

Electrical CharacteristicsVREF=10.000 VDC unless otherwise noted. Boldface limits apply over temperature, T MIN≤TA≤TMAX. For all other limitsTA=25˚C.

Symbol Parameter Conditions SeeNote

VCC=15.75 VDCVCC=12 VDC±5%to 15 VDC ±5% VCC=4.75 VDC

VCC=5VDC±5%

LimitUnitsTyp

(Note 12)

TestedLimit

(Note 5)

Design Limit(Note 6)

Typ(Note 12)

TestedLimit

(Note 5)

DesignLimit

(Note 6)

AC CHARACTERISTICS

ts Current Setting VIL=0V, VIH=5V 1.0 1.0 µs

Time

tW Write and XFER VIL=0V, VIH=5V 11 100 250 375 600

Pulse Width Min 9 320 320 900 900

tDS Data Setup Time VIL=0V, VIH=5V 9 100 250 375 600

Min 320 320 900 900

tDH Data Hold Time VIL=0V, VIH=5V 9 30 50 ns

Min 30 50

tCS Control Setup Time VIL=0V, VIH=5V 9 110 250 600 900

Min 320 320 1100 1100

tCH Control Hold Time VIL=0V, VIH=5V 9 0 0 10 0 0

Min 0 0

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operatingthe device beyond its specified operating conditions.

Note 2: All voltages are measured with respect to GND, unless otherwise specified.

www.national.com 4

Page 89: Esterilizacion de conservas de pescado por computadora

Electrical Characteristics (Continued)

Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature, TA. The maximumallowable power dissipation at any temperature is PD = (TJMAX − TA)/θJA or the number given in the Absolute Maximum Ratings, whichever is lower. For this device,TJMAX = 125˚C (plastic) or 150˚C (ceramic), and the typical junction-to-ambient thermal resistance of the J package when board mounted is 80˚C/W. For the N pack-age, this number increases to 100˚C/W and for the V package this number is 120˚C/W.

Note 4: For current switching applications, both IOUT1 and IOUT2 must go to ground or the “Virtual Ground” of an operational amplifier. The linearity error is degradedby approximately VOS ÷ VREF. For example, if VREF = 10V then a 1 mV offset, VOS, on IOUT1 or IOUT2 will introduce an additional 0.01% linearity error.

Note 5: Tested limits are guaranteed to National’s AOQL (Average Outgoing Quality Level).

Note 6: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.

Note 7: Guaranteed at VREF=±10 VDC and VREF=±1 VDC.

Note 8: The unit “FSR” stands for “Full Scale Range.” “Linearity Error” and “Power Supply Rejection” specs are based on this unit to eliminate dependence on a par-ticular VREF value and to indicate the true performance of the part. The “Linearity Error” specification of the DAC0830 is “0.05% of FSR (MAX)”. This guarantees thatafter performing a zero and full scale adjustment (see Sections 2.5 and 2.6), the plot of the 256 analog voltage outputs will each be within 0.05%xVREF of a straightline which passes through zero and full scale.

Note 9: Boldface tested limits apply to the LJ and LCJ suffix parts only.

Note 10: A 100nA leakage current with Rfb=20k and VREF=10V corresponds to a zero error of (100x10−9x20x103)x100/10 which is 0.02% of FS.

Note 11: The entire write pulse must occur within the valid data interval for the specified tW, tDS, tDH, and tS to apply.

Note 12: Typicals are at 25˚C and represent most likely parametric norm.

Note 13: Human body model, 100 pF discharged through a 1.5 kΩ resistor.

Switching Waveform

DS005608-2

www.national.com5

Page 90: Esterilizacion de conservas de pescado por computadora

Definition of Package Pinouts

Control Signals (All control signals level actuated)

CS: Chip Select (active low). The CS in combinationwith ILE will enable WR1.

ILE: Input Latch Enable (active high). The ILE in combi-nation with CS enables WR1.

WR1: Write 1. The active low WR1 is used to load the digi-tal input data bits (DI) into the input latch. The datain the input latch is latched when WR1 is high. Toupdate the input latch–CS and WR1 must be lowwhile ILE is high.

WR2: Write 2 (active low). This signal, in combination withXFER, causes the 8-bit data which is available inthe input latch to transfer to the DAC register.

XFER: Transfer control signal (active low). The XFER willenable WR2.

Other Pin Functions

DI0-DI7: Digital Inputs. DI0 is the least significant bit (LSB)and DI7 is the most significant bit (MSB).

IOUT1: DAC Current Output 1. IOUT1 is a maximum for adigital code of all 1’s in the DAC register, and iszero for all 0’s in DAC register.

IOUT2: DAC Current Output 2. IOUT2 is a constant minusIOUT1 , or IOUT1 + IOUT2 = constant (I full scale fora fixed reference voltage).

Rfb: Feedback Resistor. The feedback resistor is pro-

vided on the IC chip for use as the shunt feedbackresistor for the external op amp which is used toprovide an output voltage for the DAC. This on-chip resistor should always be used (not an exter-nal resistor) since it matches the resistors whichare used in the on-chip R-2R ladder and tracksthese resistors over temperature.

VREF: Reference Voltage Input. This input connects anexternal precision voltage source to the internalR-2R ladder. VREF can be selected over the rangeof +10 to −10V. This is also the analog voltage in-put for a 4-quadrant multiplying DAC application.

VCC: Digital Supply Voltage . This is the power supplypin for the part. VCC can be from +5 to +15VDC.Operation is optimum for +15VDC

GND: The pin 10 voltage must be at the same groundpotential as IOUT1 and IOUT2 for current switchingapplications. Any difference of potential (VOS pin10) will result in a linearity change of

For example, if VREF = 10V and pin 10 is 9mV offset fromIOUT1 and IOUT2 the linearity change will be 0.03%.

Pin 3 can be offset ±100mV with no linearity change, but thelogic input threshold will shift.

Linearity Error

Definition of TermsResolution: Resolution is directly related to the number ofswitches or bits within the DAC. For example, the DAC0830has 28 or 256 steps and therefore has 8-bit resolution.

Linearity Error: Linearity Error is the maximum deviationfrom a straight line passing through the endpoints of theDAC transfer characteristic. It is measured after adjusting forzero and full-scale. Linearity error is a parameter intrinsic tothe device and cannot be externally adjusted.

National’s linearity “end point test” (a) and the “best straightline” test (b,c) used by other suppliers are illustrated above.The “end point test’’ greatly simplifies the adjustment proce-dure by eliminating the need for multiple iterations of check-ing the linearity and then adjusting full scale until the linearityis met. The “end point test’’ guarantees that linearity is metafter a single full scale adjust. (One adjustment vs. multiple

iterations of the adjustment.) The “end point test’’ uses astandard zero and F.S. adjustment procedure and is a muchmore stringent test for DAC linearity.

Power Supply Sensitivity: Power supply sensitivity is ameasure of the effect of power supply changes on the DACfull-scale output.

Settling Time: Settling time is the time required from a codetransition until the DAC output reaches within ±1⁄2LSB of thefinal output value. Full-scale settling time requires a zero tofull-scale or full-scale to zero output change.

Full Scale Error: Full scale error is a measure of the outputerror between an ideal DAC and the actual device output.Ideally, for the DAC0830 series, full scale is VREF −1LSB.For VREF = 10V and unipolar operation, VFULL-SCALE =10,0000V–39mV 9.961V. Full-scale error is adjustable tozero.

DS005608-23

a) End point test afterzero and fs adj.

DS005608-24

b) Best straight line DS005608-25

c) Shifting fs adj. to passbest straight line test

www.national.com 6

Page 91: Esterilizacion de conservas de pescado por computadora

Definition of Terms (Continued)

Differential Nonlinearity: The difference between any twoconsecutive codes in the transfer curve from the theoretical1 LSB to differential nonlinearity.

Monotonic: If the output of a DAC increases for increasingdigital input code, then the DAC is monotonic. An 8-bit DACwhich is monotonic to 8 bits simply means that increasingdigital input codes will produce an increasing analog output.

Typical Performance Characteristics

DS005608-4

FIGURE 1. DAC0830 Functional Diagram

Digital Input Thresholdvs. Temperature

DS005608-26

Digital Input Thresholdvs. VCC

DS005608-27

Gain and Linearity ErrorVariation vs. Temperature

DS005608-28

www.national.com7

Page 92: Esterilizacion de conservas de pescado por computadora

Typical Performance Characteristics (Continued)

DAC0830 Series Application HintsThese DAC’s are the industry’s first microprocessor compat-ible, double-buffered 8-bit multiplying D to A converters.Double-buffering allows the utmost application flexibility froma digital control point of view. This 20-pin device is also pinfor pin compatible (with one exception) with the DAC1230, a12-bit MICRO-DAC. In the event that a system’s analog out-put resolution and accuracy must be upgraded, substitutingthe DAC1230 can be easily accomplished. By tying addressbit A0 to the ILE pin, a two-byte µP write instruction (doubleprecision) which automatically increments the address forthe second byte write (starting with A0=“1”) can be used.This allows either an 8-bit or the 12-bit part to be used withno hardware or software changes. For the simplest 8-bit ap-plication, this pin should be tied to VCC (also see other usesin section 1.1).

Analog signal control versatility is provided by a precisionR-2R ladder network which allows full 4-quadrant multiplica-tion of a wide range bipolar reference voltage by an applieddigital word.

1.0 DIGITAL CONSIDERATIONS

A most unique characteristic of these DAC’s is that the 8-bitdigital input byte is double-buffered. This means that thedata must transfer through two independently controlled 8-bitlatching registers before being applied to the R-2R laddernetwork to change the analog output. The addition of a sec-ond register allows two useful control features. First, anyDAC in a system can simultaneously hold the current DACdata in one register (DAC register) and the next data word inthe second register (input register) to allow fast updating ofthe DAC output on demand. Second, and probably more im-portant, double-buffering allows any number of DAC’s in asystem to be updated to their new analog output levels si-multaneously via a common strobe signal.

The timing requirements and logic level convention of theregister control signals have been designed to minimize oreliminate external interfacing logic when applied to mostpopular microprocessors and development systems. It iseasy to think of these converters as 8-bit “write-only”memory locations that provide an analog output quantity. Allinputs to these DAC’s meet TTL voltage level specs and canalso be driven directly with high voltage CMOS logic innon-microprocessor based systems. To prevent damage tothe chip from static discharge, all unused digital inputsshould be tied to VCC or ground. If any of the digital inputsare inadvertantly left floating, the DAC interprets the pin as alogic “1”.

1.1 Double-Buffered Operation

Updating the analog output of these DAC’s in adouble-buffered manner is basically a two step or doublewrite operation. In a microprocessor system two unique sys-tem addresses must be decoded, one for the input latch con-trolled by the CS pin and a second for the DAC latch whichis controlled by the XFER line. If more than one DAC is beingdriven, Figure 2, the CS line of each DAC would typically bedecoded individually, but all of the converters could share acommon XFER address to allow simultaneous updating ofany number of DAC’s. The timing for this operation is shown,Figure 3.

It is important to note that the analog outputs that will changeafter a simultaneous transfer are those from the DAC’swhose input register had been modified prior to the XFERcommand.

Gain and Linearity ErrorVariation vs. Supply Voltage

DS005608-29

Write Pulse Width

DS005608-30

Data Hold Time

DS005608-31

www.national.com 8

Page 93: Esterilizacion de conservas de pescado por computadora

DAC0830 Series Application Hints (Continued)

The ILE pin is an active high chip select which can be de-coded from the address bus as a qualifier for the normal CSsignal generated during a write operation. This can be usedto provide a higher degree of decoding unique control sig-nals for a particular DAC, and thereby create a more efficientaddressing scheme.

Another useful application of the ILE pin of each DAC in amultiple DAC system is to tie these inputs together and usethis as a control line that can effectively “freeze” the outputsof all the DAC’s at their present value. Pulling this line lowlatches the input register and prevents new data from beingwritten to the DAC. This can be particularly useful in multi-processing systems to allow a processor other than the one

controlling the DAC’s to take over control of the data bus andcontrol lines. If this second system were to use the same ad-dresses as those decoded for DAC control (but for a differentpurpose) the ILE function would prevent the DAC’s from be-ing erroneously altered.

In a “Stand-Alone” system the control signals are generatedby discrete logic. In this case double-buffering can be con-trolled by simply taking CS and XFER to a logic “0”, ILE to alogic “1” and pulling WR1 low to load data to the input latch.Pulling WR2 low will then update the analog output. A logic“1” on either of these lines will prevent the changing of theanalog output.

DS005608-35

*TIE TO LOGIC 1 IF NOT NEEDED (SEE SEC. 1.1).

FIGURE 2. Controlling Mutiple DACs

DS005608-36

FIGURE 3.

www.national.com9

Page 94: Esterilizacion de conservas de pescado por computadora

DAC0830 Series Application Hints (Continued)

1.2 Single-Buffered Operation

In a microprocessor controlled system where maximum datathroughput to the DAC is of primary concern, or when onlyone DAC of several needs to be updated at a time, asingle-buffered configuration can be used. One of the two in-ternal registers allows the data to flow through and the otherregister will serve as the data latch.

Digital signal feedthrough (see Section 1.5) is minimized ifthe input register is used as the data latch. Timing for thismode is shown in Figure 4.

Single-buffering in a “stand-alone” system is achieved bystrobing WR1 low to update the DAC with CS, WR2 andXFER grounded and ILE tied high.

1.3 Flow-Through Operation

Though primarily designed to provide microprocessor inter-face compatibility, the MICRO-DAC’s can easily be config-ured to allow the analog output to continuously reflect thestate of an applied digital input. This is most useful in appli-cations where the DAC is used in a continuous feedbackcontrol loop and is driven by a binary up-down counter, or infunction generation circuits where a ROM is continuouslyproviding DAC data.

Simply grounding CS, WR1, WR2, and XFER and tying ILEhigh allows both internal registers to follow the applied digitalinputs (flow-through) and directly affect the DAC analog out-put.

1.4 Control Signal Timing

When interfacing these MICRO-DAC to any microprocessor,there are two important time relationships that must be con-sidered to insure proper operation. The first is the minimumWR strobe pulse width which is specified as 900 ns for allvalid operating conditions of supply voltage and ambienttemperature, but typically a pulse width of only 180ns is ad-equate if VCC=15VDC. A second consideration is that theguaranteed minimum data hold time of 50ns should be met

or erroneous data can be latched. This hold time is definedas the length of time data must be held valid on the digital in-puts after a qualified (via CS) WR strobe makes a low to hightransition to latch the applied data.

If the controlling device or system does not inherently meetthese timing specs the DAC can be treated as a slowmemory or peripheral and utilize a technique to extend thewrite strobe. A simple extension of the write time, by addinga wait state, can simultaneously hold the write strobe activeand data valid on the bus to satisfy the minimum WR pulse-width. If this does not provide a sufficient data hold time atthe end of the write cycle, a negative edge triggeredone-shot can be included between the system write strobeand the WR pin of the DAC. This is illustrated in Figure 5 foran exemplary system which provides a 250ns WR strobetime with a data hold time of less than 10ns.

The proper data set-up time prior to the latching edge (LO toHI transition) of the WR strobe, is insured if the WR pulse-width is within spec and the data is valid on the bus for theduration of the DAC WR strobe.

1.5 Digital Signal Feedthrough

When data is latched in the internal registers, but the digitalinputs are changing state, a narrow spike of current may flowout of the current output terminals. This spike is caused bythe rapid switching of internal logic gates that are respondingto the input changes.

There are several recommendations to minimize this effect.When latching data in the DAC, always use the input registeras the latch. Second, reducing the VCC supply for the DACfrom +15V to +5V offers a factor of 5 improvement in themagnitude of the feedthrough, but at the expense of internallogic switching speed. Finally, increasing CC (Figure 8) to avalue consistent with the actual circuit bandwidth require-ments can provide a substantial damping effect on any out-put spikes.

DS005608-7

ILE=LOGIC “1”; WR2 and XFER GROUNDED

FIGURE 4.

www.national.com 10

Page 95: Esterilizacion de conservas de pescado por computadora

DAC0830 Series Application Hints (Continued)

2.0 ANALOG CONSIDERATIONS

The fundamental purpose of any D to A converter is to pro-vide an accurate analog output quantity which is representa-tive of the applied digital word. In the case of the DAC0830,the output, IOUT1, is a current directly proportional to theproduct of the applied reference voltage and the digital inputword. For application versatility, a second output, IOUT2, isprovided as a current directly proportional to the complementof the digital input. Basically:

where the digital input is the decimal (base 10) equivalent ofthe applied 8-bit binary word (0 to 255), VREF is the voltageat pin 8 and 15 kΩ is the nominal value of the internal resis-tance, R, of the R-2R ladder network (discussed in Section2.1).

Several factors external to the DAC itself must be consid-ered to maintain analog accuracy and are covered in subse-quent sections.

2.1 The Current Switching R-2R Ladder

The analog circuitry, Figure 6, consists of a silicon-chromium(SiCr or Si-chrome) thin film R-2R ladder which is depositedon the surface oxide of the monolithic chip. As a result, thereare no parasitic diode problems with the ladder (as theremay be with diffused resistors) so the reference voltage,VREF, can range −10V to +10V even if VCC for the device is5VDC.

The digital input code to the DAC simply controls the positionof the SPDT current switches and steers the available laddercurrent to either IOUT1 or IOUT2 as determined by the logic in-

put level (“1” or “0”) respectively, as shown in Figure 6. TheMOS switches operate in the current mode with a small volt-age drop across them and can therefore switch currents ofeither polarity. This is the basis for the 4-quadrant multiplyingfeature of this DAC.

2.2 Basic Unipolar Output Voltage

To maintain linearity of output current with changes in the ap-plied digital code, it is important that the voltages at both ofthe current output pins be as near ground potential (0VDC)as possible. With VREF=+10V every millivolt appearing at ei-ther IOUT1 or IOUT2 will cause a 0.01% linearity error. In mostapplications this output current is converted to a voltage byusing an op amp as shown in Figure 7.

The inverting input of the op amp is a “virtual ground” createdby the feedback from its output through the internal 15 kΩ re-sistor, Rfb. All of the output current (determined by the digitalinput and the reference voltage) will flow through Rfb to theoutput of the amplifier. Two-quadrant operation can be ob-tained by reversing the polarity of VREF thus causing IOUT1 toflow into the DAC and be sourced from the output of the am-plifier. The output voltage, in either case, is always equal toIOUT1xRfb and is the opposite polarity of the reference volt-age.

The reference can be either a stable DC voltage source oran AC signal anywhere in the range from −10V to +10V. TheDAC can be thought of as a digitally controlled attenuator:the output voltage is always less than or equal to the appliedreference voltage. The VREF terminal of the device presentsa nominal impedance of 15 kΩ to ground to external circuitry.

Always use the internal Rfb resistor to create an output volt-age since this resistor matches (and tracks with tempera-ture) the value of the resistors used to generate the outputcurrent (IOUT1).

DS005608-8

FIGURE 5. Accommodating a High Speed System

www.national.com11

Page 96: Esterilizacion de conservas de pescado por computadora

DAC0830 Series Application Hints (Continued)

2.3 Op Amp Considerations

The op amp used in Figure 7 should have offset voltage null-ing capability (See Section 2.5).

The selected op amp should have as low a value of inputbias current as possible. The product of the bias currenttimes the feedback resistance creates an output voltage er-ror which can be significant in low reference voltage applica-tions. BI-FET™ op amps are highly recommended for usewith these DACs because of their very low input current.

Transient response and settling time of the op amp are im-portant in fast data throughput applications. The largest sta-bility problem is the feedback pole created by the feedbackresistance, Rfb, and the output capacitance of the DAC. Thisappears from the op amp output to the (−) input and includesthe stray capacitance at this node. Addition of a lead capaci-tance, CC in Figure 8, greatly reduces overshoot and ringingat the output for a step change in DAC output current.

Finally, the output voltage swing of the amplifier must begreater than VREF to allow reaching the full scale output volt-age. Depending on the loading on the output of the amplifierand the available op amp supply voltages (only ±12 volts inmany development systems), a reference voltage less than10 volts may be necessary to obtain the full analog outputvoltage range.

2.4 Bipolar Output Voltage with a Fixed Reference

The addition of a second op amp to the previous circuitry canbe used to generate a bipolar output voltage from a fixed ref-erence voltage. This, in effect, gives sign significance to theMSB of the digital input word and allows two-quadrant multi-plication of the reference voltage. The polarity of the refer-ence can also be reversed to realize full 4-quadrant multipli-cation: ±VREFx±Digital Code=±VOUT. This circuit is shownin Figure 9.

This configuration features several improvements over exist-ing circuits for bipolar outputs with other multiplying DACs.Only the offset voltage of amplifier 1 has to be nulled to pre-serve linearity of the DAC. The offset voltage error of thesecond op amp (although a constant output voltage error)has no effect on linearity. It should be nulled only if absoluteoutput accuracy is required. Finally, the values of the resis-tors around the second amplifier do not have to match the in-ternal DAC resistors, they need only to match and tempera-ture track each other. A thin film 4-resistor network availablefrom Beckman Instruments, Inc. (part no. 694-3-R10K-D) isideally suited for this application. These resistors arematched to 0.1% and exhibit only 5 ppm/˚C resistance track-ing temperature coefficient. Two of the four available 10 kΩresistors can be paralleled to form R in Figure 9 and theother two can be used independently as the resistances la-beled 2R.

2.5 Zero Adjustment

For accurate conversions, the input offset voltage of the out-put amplifier must always be nulled. Amplifier offset errorscreate an overall degradation of DAC linearity.

The fundamental purpose of zeroing is to make the voltageappearing at the DAC outputs as near 0VDC as possible.This is accomplished for the typical DAC — op amp connec-tion (Figure 7) by shorting out Rfb, the amplifier feedback re-sistor, and adjusting the VOS nulling potentiometer of the opamp until the output reads zero volts. This is done, of course,with an applied digital code of all zeros if IOUT1 is driving theop amp (all one’s for IOUT2). The short around Rfb is then re-moved and the converter is zero adjusted.

DS005608-37

FIGURE 6.

DS005608-38

FIGURE 7.

www.national.com 12

Page 97: Esterilizacion de conservas de pescado por computadora

DAC0830 Series Application Hints (Continued)

2.6 Full-Scale Adjustment

In the case where the matching of Rfb to the R value of theR-2R ladder (typically ±0.2%) is insufficient for full-scale ac-curacy in a particular application, the VREF voltage can beadjusted or an external resistor and potentiometer can beadded as shown in Figure 10 to provide a full-scale adjust-ment.

The temperature coefficients of the resistors used for this ad-justment are of an important concern. To prevent degrada-tion of the gain error temperature coefficient by the external

resistors, their temperature coefficients ideally would have tomatch that of the internal DAC resistors, which is a highly im-practical constraint. For the values shown in Figure 10, if theresistor and the potentiometer each had a temperature coef-ficient of ±100 ppm/˚C maximum, the overall gain error tem-perature coefficent would be degraded a maximum of0.0025%/˚C for an adjustment pot setting of less than 3% ofRfb.

DS005608-39

tsOP Amp C C (O to Full Scale)

LF356 22 pF 4 µs

LF351 22 pF 5 µs

LF357* 10 pF 2 µs

*2.4 kΩ RESISTOR ADDED FROM−INPUT TO GROUND TOINSURE STABILITY

FIGURE 8.

DS005608-40

Input Code IDEAL V OUT

MSB LSB +V REF −VREF

1 1 1 1 1 1 1 1

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0

*THESE RESISTORS ARE AVAILABLE FROM BECKMAN INSTRUMENTS, INC. AS THEIR PART NO. 694-3-R10K-D

FIGURE 9.

www.national.com13

Page 98: Esterilizacion de conservas de pescado por computadora

DAC0830 Series Application Hints(Continued)

2.7 Using the DAC0830 in a Voltage SwitchingConfiguration

The R-2R ladder can also be operated as a voltage switch-ing network. In this mode the ladder is used in an invertedmanner from the standard current switching configuration.

The reference voltage is connected to one of the current out-put terminals (IOUT1 for true binary digital control, IOUT2 is forcomplementary binary) and the output voltage is taken fromthe normal VREF pin. The converter output is now a voltagein the range from 0V to 255/256 VREF as a function of the ap-plied digital code as shown in Figure 11.

This configuration offers several useful application advan-tages. Since the output is a voltage, an external op amp isnot necessarily required but the output impedance of theDAC is fairly high (equal to the specified reference input re-sistance of 10 kΩ to 20 kΩ) so an op amp may be used forbuffering purposes. Some of the advantages of this modeare illustrated in Figures 12, 13, 14, 15.

There are two important things to keep in mind when usingthis DAC in the voltage switching mode. The applied refer-ence voltage must be positive since there are internal para-sitic diodes from ground to the IOUT1 and IOUT2 terminalswhich would turn on if the applied reference went negative.There is also a dependence of conversion linearity and gainerror on the voltage difference between VCC and the voltageapplied to the normal current output terminals. This is a re-sult of the voltage drive requirements of the ladder switches.To ensure that all 8 switches turn on sufficiently (so as not toadd significant resistance to any leg of the ladder andthereby introduce additional linearity and gain errors) it isrecommended that the applied reference voltage be keptless than +5VDC and VCC be at least 9V more positive thanVREF. These restrictions ensure less than 0.1% linearity andgain error change. Figures 16, 17, 18 characterize the ef-fects of bringing VREF and VCC closer together as well astypical temperature performance of this voltage switchingconfiguration.

DS005608-11

FIGURE 10. Adding Full-Scale Adjustment

DS005608-12

FIGURE 11. Voltage Mode Switching

DS005608-41

• Voltage switching mode eliminates output signal inver-sion and therefore a need for a negative power supply.

• Zero code output voltage is limited by the low level outputsaturation voltage of the op amp. The 2 kΩ pull-down re-sistor helps to reduce this voltage.

• VOS of the op amp has no effect on DAC linearity.

FIGURE 12. Single Supply DAC

www.national.com 14

Page 99: Esterilizacion de conservas de pescado por computadora

DAC0830 Series Application Hints (Continued)

DS005608-42

FIGURE 13. Obtaining a Bipolar Output from a FixedReference with a Single Op Amp

DS005608-60

FIGURE 14. Bipolar Output with Increased Output Voltage Swing

www.national.com15

Page 100: Esterilizacion de conservas de pescado por computadora

DAC0830 Series Application Hints (Continued)

DS005608-14

FIGURE 15. Single Supply DAC with Level Shift and Span-Adjustable Output

Gain and Linearity ErrorVariation vs. Supply Voltage

DS005608-32

Note: For these curves, VREF is the voltage applied to pin 11 (IOUT1) withpin 12 (IOUT2) grounded.

FIGURE 16.

Gain and Linearity ErrorVariation vs. Reference Voltage

DS005608-33

FIGURE 17.

www.national.com 16

Page 101: Esterilizacion de conservas de pescado por computadora

DAC0830 Series Application Hints(Continued)

2.8 Miscellaneous Application Hints

These converters are CMOS products and reasonable careshould be exercised in handling them to prevent catastrophicfailures due to static discharge.

Conversion accuracy is only as good as the applied refer-ence voltage so providing a stable source over time and tem-perature changes is an important factor to consider.

A “good” ground is most desirable. A single point ground dis-tribution technique for analog signals and supply returnskeeps other devices in a system from affecting the output ofthe DACs.

During power-up supply voltage sequencing, the −15V (or−12V) supply of the op amp may appear first. This will cause

the output of the op amp to bias near the negative supply po-tential. No harm is done to the DAC, however, as the on-chip15 kΩ feedback resistor sufficiently limits the current flowfrom IOUT1 when this lead is internally clamped to one diodedrop below ground.

Careful circuit construction with minimization of lead lengthsaround the analog circuitry, is a primary concern. Good highfrequency supply decoupling will aid in preventing inadvert-ant noise from appearing on the analog output.

Overall noise reduction and reference stability is of particularconcern when using the higher accuracy versions, theDAC0830 and DAC0831, or their advantages are wasted.

3.0 GENERAL APPLICATION IDEAS

The connections for the control pins of the digital input regis-ters are purposely omitted. Any of the control formats dis-cussed in Section 1 of the accompanying text will work withany of the circuits shown. The method used depends on theoverall system provisions and requirements.

The digital input code is referred to as D and represents thedecimal equivalent value of the 8-bit binary input, for ex-ample:

Binary Input D

Pin 13 Pin 7 Decimal

MSB LSB Equivalent

1 1 1 1 1 1 1 1 255

1 0 0 0 0 0 0 0 128

0 0 0 1 0 0 0 0 16

0 0 0 0 0 0 1 0 2

0 0 0 0 0 0 0 0 0

Gain and Linearity ErrorVariation vs. Temperature

DS005608-34

FIGURE 18.

www.national.com17

Page 102: Esterilizacion de conservas de pescado por computadora

Applications

DAC Controlled Amplifier (Volume Control)

DS005608-43

Capacitance Multiplier

DS005608-44

Variable f O, Variable Q O, Constant BW Bandpass Filter

DS005608-17

www.national.com 18

Page 103: Esterilizacion de conservas de pescado por computadora

Applications (Continued)

DAC Controlled Function Generator

DS005608-18

www.national.com19

Page 104: Esterilizacion de conservas de pescado por computadora

Applications (Continued)

Two Terminal Floating 4 to 20 mA Current Loop Controller

DS005608-19

• DAC0830 linearly controls the current flow from the input terminal to the output terminal to be 4 mA (for D=0) to 19.94 mA (forD=255).

• Circuit operates with a terminal voltage differential of 16V to 55V.

• P2 adjusts the magnitude of the output current and P1 adjusts the zero to full scale range of output current.

• Digital inputs can be supplied from a processor using opto isolators on each input or the DAC latches can flow-through (con-nect control lines to pins 3 and 10 of the DAC) and the input data can be set by SPST toggle switches to ground (pins 3 and10).

www.national.com 20

Page 105: Esterilizacion de conservas de pescado por computadora

Applications (Continued)

Ordering Information

Temperature Range 0˚C to +70˚ −40˚C to+85˚C

−55˚C to+125˚C

Non0.05%FSR

DAC0830LCN DAC0830LCM DAC0830LCV DAC0830LCJ DAC0830LJ

Linearity 0.1%FSR

DAC0831LCN

0.2%FSR

DAC0832LCN DAC0832LCM DAC0832LCV DAC0832LCJ DAC0832LJ

Package Outline N20A — MoldedDIP

M20B SmallOutline

V20A Chip Carrier J20A — Ceramic DIP

DAC Controlled Exponential Time Response

DS005608-20

• Output responds exponentially to input changes and automatically stops when VOUT=VIN

• Output time constant is directly proportional to the DAC input code and capacitor C

• Input voltage must be positive (See section 2.7)

www.national.com21

Page 106: Esterilizacion de conservas de pescado por computadora

Physical Dimensions inches (millimeters) unless otherwise noted

Ceramic Dual-In-Line Package (J)Order Number DAC0830LCJ,

DAC0830LJ, DAC0832LJ or DAC0832LCJNS Package Number J20A

www.national.com 22

Page 107: Esterilizacion de conservas de pescado por computadora

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Molded Small Outline Package (M)Order Number DAC0830LCM

or DAC0832LCMNS Package Number M20B

Molded Dual-In-Line Package (N)Order Number DAC0830LCN,

or DAC0832LCNNS Package Number N20A

www.national.com23

Page 108: Esterilizacion de conservas de pescado por computadora

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERALCOUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices orsystems which, (a) are intended for surgical implantinto the body, or (b) support or sustain life, andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling, can be reasonably expected to result in asignificant injury to the user.

2. A critical component is any component of a lifesupport device or system whose failure to performcan be reasonably expected to cause the failure ofthe life support device or system, or to affect itssafety or effectiveness.

National SemiconductorCorporationAmericasTel: 1-800-272-9959Fax: 1-800-737-7018Email: [email protected]

National SemiconductorEurope

Fax: +49 (0) 1 80-530 85 86Email: [email protected]

Deutsch Tel: +49 (0) 1 80-530 85 85English Tel: +49 (0) 1 80-532 78 32Français Tel: +49 (0) 1 80-532 93 58Italiano Tel: +49 (0) 1 80-534 16 80

National SemiconductorAsia Pacific CustomerResponse GroupTel: 65-2544466Fax: 65-2504466Email: [email protected]

National SemiconductorJapan Ltd.Tel: 81-3-5639-7560Fax: 81-3-5639-7507

www.national.com

Molded Chip Carrier (V)Order Number DAC0830LCV

or DAC0832LCVNS Package Number V20A

DA

C08

30/D

AC

0832

8-B

itµP

Com

patib

le,D

oubl

e-B

uffe

red

Dto

AC

onve

rters

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Page 109: Esterilizacion de conservas de pescado por computadora

October 1995 Order Number: 231256-004

82C55ACHMOS PROGRAMMABLE PERIPHERAL INTERFACE

Y Compatible with all Intel and MostOther Microprocessors

Y High Speed, ‘‘Zero Wait State’’Operation with 8 MHz 8086/88 and80186/188

Y 24 Programmable I/O Pins

Y Low Power CHMOS

Y Completely TTL Compatible

Y Control Word Read-Back Capability

Y Direct Bit Set/Reset Capability

Y 2.5 mA DC Drive Capability on all I/OPort Outputs

Y Available in 40-Pin DIP and 44-Pin PLCC

Y Available in EXPRESSÐ Standard Temperature RangeÐ Extended Temperature Range

The Intel 82C55A is a high-performance, CHMOS version of the industry standard 8255A general purposeprogrammable I/O device which is designed for use with all Intel and most other microprocessors. It provides24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation.The 82C55A is pin compatible with the NMOS 8255A and 8255A-5.

In MODE 0, each group of 12 I/O pins may be programmed in sets of 4 and 8 to be inputs or outputs. InMODE 1, each group may be programmed to have 8 lines of input or output. 3 of the remaining 4 pins are usedfor handshaking and interrupt control signals. MODE 2 is a strobed bi-directional bus configuration.

The 82C55A is fabricated on Intel’s advanced CHMOS III technology which provides low power consumptionwith performance equal to or greater than the equivalent NMOS product. The 82C55A is available in 40-pinDIP and 44-pin plastic leaded chip carrier (PLCC) packages.

231256–1

Figure 1. 82C55A Block Diagram

231256–31

231256–2

Figure 2. 82C55A PinoutDiagrams are for pin reference only. Packagesizes are not to scale.

Page 110: Esterilizacion de conservas de pescado por computadora

82C55A

Table 1. Pin Description

SymbolPin Number

Type Name and FunctionDip PLCC

PA3–0 1–4 2–5 I/O PORT A, PINS 0–3: Lower nibble of an 8-bit data output latch/

buffer and an 8-bit data input latch.

RD 5 6 I READ CONTROL: This input is low during CPU read operations.

CS 6 7 I CHIP SELECT: A low on this input enables the 82C55A to

respond to RD and WR signals. RD and WR are ignored

otherwise.

GND 7 8 System Ground

A1–0 8–9 9–10 I ADDRESS: These input signals, in conjunction RD and WR,

control the selection of one of the three ports or the control

word registers.

A1 A0 RD WR CS Input Operation (Read)

0 0 0 1 0 Port A - Data Bus

0 1 0 1 0 Port B - Data Bus

1 0 0 1 0 Port C - Data Bus

1 1 0 1 0 Control Word - Data Bus

Output Operation (Write)

0 0 1 0 0 Data Bus - Port A

0 1 1 0 0 Data Bus - Port B

1 0 1 0 0 Data Bus - Port C

1 1 1 0 0 Data Bus - Control

Disable Function

X X X X 1 Data Bus - 3 - State

X X 1 1 0 Data Bus - 3 - State

PC7–4 10–13 11,13–15 I/O PORT C, PINS 4–7: Upper nibble of an 8-bit data output latch/buffer and an 8-bit data input buffer (no latch for input). This port

can be divided into two 4-bit ports under the mode control. Each

4-bit port contains a 4-bit latch and it can be used for the control

signal outputs and status signal inputs in conjunction with ports

A and B.

PC0–3 14–17 16–19 I/O PORT C, PINS 0–3: Lower nibble of Port C.

PB0-7 18–25 20–22, I/O PORT B, PINS 0–7: An 8-bit data output latch/buffer and an 8-24–28 bit data input buffer.

VCC 26 29 SYSTEM POWER: a 5V Power Supply.

D7–0 27–34 30–33, I/O DATA BUS: Bi-directional, tri-state data bus lines, connected to35–38 system data bus.

RESET 35 39 I RESET: A high on this input clears the control register and all

ports are set to the input mode.

WR 36 40 I WRITE CONTROL: This input is low during CPU write

operations.

PA7–4 37–40 41–44 I/O PORT A, PINS 4–7: Upper nibble of an 8-bit data output latch/

buffer and an 8-bit data input latch.

NC 1, 12, No Connect23, 34

2

Page 111: Esterilizacion de conservas de pescado por computadora

82C55A

82C55A FUNCTIONAL DESCRIPTION

General

The 82C55A is a programmable peripheral interfacedevice designed for use in Intel microcomputer sys-tems. Its function is that of a general purpose I/Ocomponent to interface peripheral equipment to themicrocomputer system bus. The functional configu-ration of the 82C55A is programmed by the systemsoftware so that normally no external logic is neces-sary to interface peripheral devices or structures.

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to inter-face the 82C55A to the system data bus. Data istransmitted or received by the buffer upon executionof input or output instructions by the CPU. Controlwords and status information are also transferredthrough the data bus buffer.

Read/Write and Control Logic

The function of this block is to manage all of theinternal and external transfers of both Data andControl or Status words. It accepts inputs from theCPU Address and Control busses and in turn, issuescommands to both of the Control Groups.

Group A and Group B Controls

The functional configuration of each port is pro-grammed by the systems software. In essence, theCPU ‘‘outputs’’ a control word to the 82C55A. Thecontrol word contains information such as ‘‘mode’’,‘‘bit set’’, ‘‘bit reset’’, etc., that initializes the func-tional configuration of the 82C55A.

Each of the Control blocks (Group A and Group B)accepts ‘‘commands’’ from the Read/Write ControlLogic, receives ‘‘control words’’ from the internaldata bus and issues the proper commands to its as-sociated ports.

Control Group A - Port A and Port C upper (C7–C4)Control Group B - Port B and Port C lower (C3–C0)

The control word register can be both written andread as shown in the address decode table in thepin descriptions. Figure 6 shows the control wordformat for both Read and Write operations. Whenthe control word is read, bit D7 will always be a logic‘‘1’’, as this implies control word mode information.

Ports A, B, and C

The 82C55A contains three 8-bit ports (A, B, and C).All can be configured in a wide variety of functionalcharacteristics by the system software but each hasits own special features or ‘‘personality’’ to furtherenhance the power and flexibility of the 82C55A.

Port A. One 8-bit data output latch/buffer and one8-bit input latch buffer. Both ‘‘pull-up’’ and ‘‘pull-down’’ bus hold devices are present on Port A.

Port B. One 8-bit data input/output latch/buffer.Only ‘‘pull-up’’ bus hold devices are present on PortB.

Port C. One 8-bit data output latch/buffer and one8-bit data input buffer (no latch for input). This portcan be divided into two 4-bit ports under the modecontrol. Each 4-bit port contains a 4-bit latch and itcan be used for the control signal outputs and statussignal inputs in conjunction with ports A and B. Only‘‘pull-up’’ bus hold devices are present on Port C.

See Figure 4 for the bus-hold circuit configuration forPort A, B, and C.

3

Page 112: Esterilizacion de conservas de pescado por computadora

82C55A

231256–3

Figure 3. 82C55A Block Diagram Showing Data Bus Buffer and Read/Write Control Logic Functions

*NOTE: 231256–4

Port pins loaded with more than 20 pF capacitance may not have their logic level guaranteed following a hardware reset.

Figure 4. Port A, B, C, Bus-hold Configuration

4

Page 113: Esterilizacion de conservas de pescado por computadora

82C55A

82C55A OPERATIONAL DESCRIPTION

Mode Selection

There are three basic modes of operation that canbe selected by the system software:

Mode 0 Ð Basic input/outputMode 1 Ð Strobed Input/outputMode 2 Ð Bi-directional Bus

When the reset input goes ‘‘high’’ all ports will be setto the input mode with all 24 port lines held at a logic‘‘one’’ level by the internal bus hold devices (seeFigure 4 Note). After the reset is removed the82C55A can remain in the input mode with no addi-tional initialization required. This eliminates the needfor pullup or pulldown devices in ‘‘all CMOS’’ de-signs. During the execution of the system program,any of the other modes may be selected by using asingle output instruction. This allows a single82C55A to service a variety of peripheral deviceswith a simple software maintenance routine.

The modes for Port A and Port B can be separatelydefined, while Port C is divided into two portions asrequired by the Port A and Port B definitions. All ofthe output registers, including the status flip-flops,will be reset whenever the mode is changed. Modesmay be combined so that their functional definitioncan be ‘‘tailored’’ to almost any I/O structure. Forinstance; Group B can be programmed in Mode 0 tomonitor simple switch closings or display computa-tional results, Group A could be programmed inMode 1 to monitor a keyboard or tape reader on aninterrupt-driven basis.

231256–5

Figure 5. Basic Mode Definitions and Bus

Interface

231256–6

Figure 6. Mode Definition Format

The mode definitions and possible mode combina-tions may seem confusing at first but after a cursoryreview of the complete device operation a simple,logical I/O approach will surface. The design of the82C55A has taken into account things such as effi-cient PC board layout, control signal definition vs PClayout and complete functional flexibility to supportalmost any peripheral device with no external logic.Such design represents the maximum use of theavailable pins.

Single Bit Set/Reset Feature

Any of the eight bits of Port C can be Set or Resetusing a single OUTput instruction. This feature re-duces software requirements in Control-based appli-cations.

When Port C is being used as status/control for PortA or B, these bits can be set or reset by using the BitSet/Reset operation just as if they were data outputports.

5

Page 114: Esterilizacion de conservas de pescado por computadora

82C55A

231256–7

Figure 7. Bit Set/Reset Format

Interrupt Control Functions

When the 82C55A is programmed to operate inmode 1 or mode 2, control signals are provided thatcan be used as interrupt request inputs to the CPU.The interrupt request signals, generated from port C,can be inhibited or enabled by setting or resettingthe associated INTE flip-flop, using the bit set/resetfunction of port C.

This function allows the Programmer to disallow orallow a specific I/O device to interrupt the CPU with-out affecting any other device in the interrupt struc-ture.

INTE flip-flop definition:

(BIT-SET)ÐINTE is SETÐInterrupt enable(BIT-RESET)ÐINTE is RESETÐInterrupt disable

Note:All Mask flip-flops are automatically reset duringmode selection and device Reset.

6

Page 115: Esterilizacion de conservas de pescado por computadora

82C55A

Operating Modes

Mode 0 (Basic Input/Output). This functional con-figuration provides simple input and output opera-tions for each of the three ports. No ‘‘handshaking’’is required, data is simply written to or read from aspecified port.

Mode 0 Basic Functional Definitions:

# Two 8-bit ports and two 4-bit ports.

# Any port can be input or output.

# Outputs are latched.

# Inputs are not latched.

# 16 different Input/Output configurations are pos-sible in this Mode.

MODE 0 (BASIC INPUT)

231256–8

MODE 0 (BASIC OUTPUT)

231256–9

7

Page 116: Esterilizacion de conservas de pescado por computadora

82C55A

MODE 0 Port Definition

A B GROUP A GROUP B

D4 D3 D1 D0 PORT APORT C Ý PORT B

PORT C(UPPER) (LOWER)

0 0 0 0 OUTPUT OUTPUT 0 OUTPUT OUTPUT

0 0 0 1 OUTPUT OUTPUT 1 OUTPUT INPUT

0 0 1 0 OUTPUT OUTPUT 2 INPUT OUTPUT

0 0 1 1 OUTPUT OUTPUT 3 INPUT INPUT

0 1 0 0 OUTPUT INPUT 4 OUTPUT OUTPUT

0 1 0 1 OUTPUT INPUT 5 OUTPUT INPUT

0 1 1 0 OUTPUT INPUT 6 INPUT OUTPUT

0 1 1 1 OUTPUT INPUT 7 INPUT INPUT

1 0 0 0 INPUT OUTPUT 8 OUTPUT OUTPUT

1 0 0 1 INPUT OUTPUT 9 OUTPUT INPUT

1 0 1 0 INPUT OUTPUT 10 INPUT OUTPUT

1 0 1 1 INPUT OUTPUT 11 INPUT INPUT

1 1 0 0 INPUT INPUT 12 OUTPUT OUTPUT

1 1 0 1 INPUT INPUT 13 OUTPUT INPUT

1 1 1 0 INPUT INPUT 14 INPUT OUTPUT

1 1 1 1 INPUT INPUT 15 INPUT INPUT

MODE 0 Configurations

231256–10

8

Page 117: Esterilizacion de conservas de pescado por computadora

82C55A

MODE 0 Configurations (Continued)

231256–11

9

Page 118: Esterilizacion de conservas de pescado por computadora

82C55A

MODE 0 Configurations (Continued)

231256–12

Operating Modes

MODE 1 (Strobed Input/Output). This functionalconfiguration provides a means for transferring I/Odata to or from a specified port in conjunction withstrobes or ‘‘handshaking’’ signals. In mode 1, Port Aand Port B use the lines on Port C to generate oraccept these ‘‘handshaking’’ signals.

Mode 1 Basic functional Definitions:

# Two Groups (Group A and Group B).

# Each group contains one 8-bit data port and one4-bit control/data port.

# The 8-bit data port can be either input or outputBoth inputs and outputs are latched.

# The 4-bit port is used for control and status of the8-bit data port.

10

Page 119: Esterilizacion de conservas de pescado por computadora

82C55A

Input Control Signal Definition

STB (Strobe Input). A ‘‘low’’ on this input loadsdata into the input latch.

IBF (Input Buffer Full F/F)

A ‘‘high’’ on this output indicates that the data hasbeen loaded into the input latch; in essence, an ac-knowledgement. IBF is set by STB input being lowand is reset by the rising edge of the RD input.

INTR (Interrupt Request)

A ‘‘high’’ on this output can be used to interrupt theCPU when an input device is requesting service.INTR is set by the STB is a ‘‘one’’, IBF is a ‘‘one’’and INTE is a ‘‘one’’. It is reset by the falling edge ofRD. This procedure allows an input device to re-quest service from the CPU by simply strobing itsdata into the port.

INTE A

Controlled by bit set/reset of PC4.

INTE B

Controlled by bit set/reset of PC2.

231256–13

Figure 8. MODE 1 Input

231256–14

Figure 9. MODE 1 (Strobed Input)

11

Page 120: Esterilizacion de conservas de pescado por computadora

82C55A

Output Control Signal Definition

OBF (Output Buffer Full F/F). The OBF output willgo ‘‘low’’ to indicate that the CPU has written dataout to the specified port. The OBF F/F will be set bythe rising edge of the WR input and reset by ACKInput being low.

ACK (Acknowledge Input). A ‘‘low’’ on this inputinforms the 82C55A that the data from Port A or PortB has been accepted. In essence, a response fromthe peripheral device indicating that it has receivedthe data output by the CPU.

INTR (Interrupt Request). A ‘‘high’’ on this outputcan be used to interrupt the CPU when an outputdevice has accepted data transmitted by the CPU.INTR is set when ACK is a ‘‘one’’, OBF is a ‘‘one’’and INTE is a ‘‘one’’. It is reset by the falling edge ofWR.

INTE A

Controlled by bit set/reset of PC6.

INTE B

Controlled by bit set/reset of PC2.231256–15

Figure 10. MODE 1 Output

231256–16

Figure 11. MODE 1 (Strobed Output)

12

Page 121: Esterilizacion de conservas de pescado por computadora

82C55A

Combinations of MODE 1

Port A and Port B can be individually defined as input or output in Mode 1 to support a wide variety of strobedI/O applications.

231256–17

Figure 12. Combinations of MODE 1

Operating Modes

MODE 2 (Strobed Bidirectional Bus I/O).Thisfunctional configuration provides a means for com-municating with a peripheral device or structure on asingle 8-bit bus for both transmitting and receivingdata (bidirectional bus I/O). ‘‘Handshaking’’ signalsare provided to maintain proper bus flow discipline ina similar manner to MODE 1. Interrupt generationand enable/disable functions are also available.

MODE 2 Basic Functional Definitions:

# Used in Group A only.

# One 8-bit, bi-directional bus port (Port A) and a 5-bit control port (Port C).

# Both inputs and outputs are latched.

# The 5-bit control port (Port C) is used for controland status for the 8-bit, bi-directional bus port(Port A).

Bidirectional Bus I/O Control Signal Definition

INTR (Interrupt Request). A high on this output canbe used to interrupt the CPU for input or output oper-ations.

Output Operations

OBF (Output Buffer Full). The OBF output will go‘‘low’’ to indicate that the CPU has written data outto port A.

ACK (Acknowledge). A ‘‘low’’ on this input enablesthe tri-state output buffer of Port A to send out thedata. Otherwise, the output buffer will be in the highimpedance state.

INTE 1 (The INTE Flip-Flop Associated withOBF). Controlled by bit set/reset of PC6.

Input Operations

STB (Strobe Input). A ‘‘low’’ on this input loadsdata into the input latch.

IBF (Input Buffer Full F/F). A ‘‘high’’ on this outputindicates that data has been loaded into the inputlatch.

INTE 2 (The INTE Flip-Flop Associated with IBF).Controlled by bit set/reset of PC4.

13

Page 122: Esterilizacion de conservas de pescado por computadora

82C55A

231256–18

Figure 13. MODE Control Word231256–19

Figure 14. MODE 2

231256–20

Figure 15. MODE 2 (Bidirectional)

NOTE:Any sequence where WR occurs before ACK, and STB occurs before RD is permissible.(INTR e IBF # MASK # STB # RD a OBF # MASK # ACK # WR)

14

Page 123: Esterilizacion de conservas de pescado por computadora

82C55A

231256–21

Figure 16. MODE (/4 Combinations

15

Page 124: Esterilizacion de conservas de pescado por computadora

82C55A

Mode Definition Summary

MODE 0 MODE 1 MODE 2

IN OUT IN OUT GROUP A ONLY

PA0 IN OUT IN OUT ÝPA1 IN OUT IN OUT ÝPA2 IN OUT IN OUT ÝPA3 IN OUT IN OUT ÝPA4 IN OUT IN OUT ÝPA5 IN OUT IN OUT ÝPA6 IN OUT IN OUT ÝPA7 IN OUT IN OUT ÝPB0 IN OUT IN OUT Ð

PB1 IN OUT IN OUT Ð

PB2 IN OUT IN OUT Ð

PB3 IN OUT IN OUT ÐMODE 0

PB4 IN OUT IN OUT ÐOR MODE 1

PB5 IN OUT IN OUT ÐONLY

PB6 IN OUT IN OUT Ð

PB7 IN OUT IN OUT Ð

PC0 IN OUT INTRB INTRB I/O

PC1 IN OUT IBFB OBFB I/O

PC2 IN OUT STBB ACKB I/O

PC3 IN OUT INTRA INTRA INTRA

PC4 IN OUT STBA I/O STBA

PC5 IN OUT IBFA I/O IBFA

PC6 IN OUT I/O ACKA ACKA

PC7 IN OUT I/O OBFA OBFA

Special Mode Combination Considerations

There are several combinations of modes possible.For any combination, some or all of the Port C linesare used for control or status. The remaining bits areeither inputs or outputs as defined by a ‘‘Set Mode’’command.

During a read of Port C, the state of all the Port Clines, except the ACK and STB lines, will be placedon the data bus. In place of the ACK and STB linestates, flag status will appear on the data bus in thePC2, PC4, and PC6 bit positions as illustrated byFigure 18.

Through a ‘‘Write Port C’’ command, only the Port Cpins programmed as outputs in a Mode 0 group canbe written. No other pins can be affected by a ‘‘WritePort C’’ command, nor can the interrupt enable flagsbe accessed. To write to any Port C output pro-grammed as an output in a Mode 1 group or to

change an interrupt enable flag, the ‘‘Set/Reset PortC Bit’’ command must be used.

With a ‘‘Set/Reset Port C Bit’’ command, any Port Cline programmed as an output (including INTR, IBFand OBF) can be written, or an interrupt enable flagcan be either set or reset. Port C lines programmedas inputs, including ACK and STB lines, associatedwith Port C are not affected by a ‘‘Set/Reset Port CBit’’ command. Writing to the corresponding Port Cbit positions of the ACK and STB lines with the‘‘Set/Reset Port C Bit’’ command will affect theGroup A and Group B interrupt enable flags, as illus-trated in Figure 18.

Current Drive Capability

Any output on Port A, B or C can sink or source 2.5mA. This feature allows the 82C55A to directly driveDarlington type drivers and high-voltage displaysthat require such sink or source current.

16

Page 125: Esterilizacion de conservas de pescado por computadora

82C55A

Reading Port C Status

In Mode 0, Port C transfers data to or from the pe-ripheral device. When the 82C55A is programmed tofunction in Modes 1 or 2, Port C generates or ac-cepts ‘‘hand-shaking’’ signals with the peripheral de-vice. Reading the contents of Port C allows the pro-grammer to test or verify the ‘‘status’’ of each pe-ripheral device and change the program flow ac-cordingly.

There is no special instruction to read the status in-formation from Port C. A normal read operation ofPort C is executed to perform this function.

INPUT CONFIGURATION

D7 D6 D5 D4 D3 D2 D1 D0

I/O I/O IBFA INTEA INTRA INTEB IBFB INTRB

GROUP A GROUP B

OUTPUT CONFIGURATIONS

D7 D6 D5 D4 D3 D2 D1 D0

OBFA INTEA I/O I/O INTRA INTEB OBFB INTRB

GROUP A GROUP B

Figure 17a. MODE 1 Status Word Format

D7 D6 D5 D4 D3 D2 D1 D0

OBFA INTE1 IBFA INTE2 INTRA

GROUP A GROUP B

(Defined By Mode 0 or Mode 1 Selection)

Figure 17b. MODE 2 Status Word Format

Interrupt Enable Flag Position Alternate Port C Pin Signal (Mode)

INTE B PC2 ACKB (Output Mode 1) or STBB (Input Mode 1)

INTE A2 PC4 STBA (Input Mode 1 or Mode 2)

INTE A1 PC6 ACKA (Output Mode 1 or Mode 2

Figure 18. Interrupt Enable Flags in Modes 1 and 2

17

Page 126: Esterilizacion de conservas de pescado por computadora

82C55A

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under BiasÀÀÀÀ0§C to a 70§CStorage Temperature ÀÀÀÀÀÀÀÀÀb 65§C to a 150§CSupply Voltage ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀb 0.5 to a 8.0V

Operating Voltage ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀa 4V to a 7V

Voltage on any InputÀÀÀÀÀÀÀÀÀÀGNDb2V to a 6.5V

Voltage on any Output ÀÀGNDb0.5V to VCC a 0.5V

Power Dissipation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ1 Watt

NOTICE: This is a production data sheet. The specifi-cations are subject to change without notice.

*WARNING: Stressing the device beyond the ‘‘AbsoluteMaximum Ratings’’ may cause permanent damage.These are stress ratings only. Operation beyond the‘‘Operating Conditions’’ is not recommended and ex-tended exposure beyond the ‘‘Operating Conditions’’may affect device reliability.

D.C. CHARACTERISTICSTA e 0§C to 70§C, VCC e a5V g10%, GND e 0V (TA e b40§C to a85§C for Extended Temperture)

Symbol Parameter Min Max Units Test Conditions

VIL Input Low Voltage b0.5 0.8 V

VIH Input High Voltage 2.0 VCC V

VOL Output Low Voltage 0.4 V IOL e 2.5 mA

VOH Output High Voltage 3.0 V IOH e b2.5 mA

VCC b 0.4 V IOH e b100 mA

IIL Input Leakage Current g1 mA VIN e VCC to 0V

(Note 1)

IOFL Output Float Leakage Current g10 mA VIN e VCC to 0V

(Note 2)

IDAR Darlington Drive Current g2.5 (Note 4) mA Ports A, B, C

Rext e 500XVext e 1.7V

IPHL Port Hold Low Leakage Current a50 a300 mA VOUT e 1.0V

Port A only

IPHH Port Hold High Leakage Current b50 b300 mA VOUT e 3.0V

Ports A, B, C

IPHLO Port Hold Low Overdrive Current b350 mA VOUT e 0.8V

IPHHO Port Hold High Overdrive Current a350 mA VOUT e 3.0V

ICC VCC Supply Current 10 mA (Note 3)

ICCSB VCC Supply Current-Standby 10 mA VCC e 5.5V

VIN e VCC or GND

Port Conditions

If I/P e Open/High

O/P e Open Only

With Data Bus e

High/Low

CS e High

Reset e Low

Pure Inputs e

Low/High

NOTES:1. Pins A1, A0, CS, WR, RD, Reset.2. Data Bus; Ports B, C.3. Outputs open.4. Limit output current to 4.0 mA.

18

Page 127: Esterilizacion de conservas de pescado por computadora

82C55A

CAPACITANCETA e 25§C, VCC eGND e 0V

Symbol Parameter Min Max Units Test Conditions

CIN Input Capacitance 10 pF Unmeasured plns

returned to GNDCI/O I/O Capacitance 20 pF

fc e 1 MHz(5)

NOTE:5. Sampled not 100% tested.

A.C. CHARACTERISTICSTA e 0§ to 70§C, VCC e a5V g10%, GND e 0V

TA e b40§C to a85§C for Extended Temperature

BUS PARAMETERS

READ CYCLE

Symbol Parameter82C55A-2

UnitsTest

Min MaxConditions

tAR Address Stable Before RDv 0 ns

tRA Address Hold Time After RDu 0 ns

tRR RD Pulse Width 150 ns

tRD Data Delay from RDv 120 ns

tDF RDu to Data Floating 10 75 ns

tRV Recovery Time between RD/WR 200 ns

WRITE CYCLE

Symbol Parameter82C55A-2

UnitsTest

Min MaxConditions

tAW Address Stable Before WRv 0 ns

tWA Address Hold Time After WRu 20 ns Ports A & B

20 ns Port C

tWW WR Pulse Width 100 ns

tDW Data Setup Time Before WRu 100 ns

tWD Data Hold Time After WRu 30 ns Ports A & B

30 ns Port C

19

Page 128: Esterilizacion de conservas de pescado por computadora

82C55A

OTHER TIMINGS

Symbol Parameter82C55A-2 Units

TestMin Max

Conditions

tWB WR e 1 to Output 350 ns

tlR Peripheral Data Before RD 0 ns

tHR Peripheral Data After RD 0 ns

tAK ACK Pulse Width 200 ns

tST STB Pulse Width 100 ns

tPS Per. Data Before STB High 20 ns

tPH Per. Data After STB High 50 ns

tAD ACK e 0 to Output 175 ns

tKD ACK e 1 to Output Float 20 250 ns

tWOB WR e 1 to OBF e 0 150 ns

tAOB ACK e 0 to OBF e 1 150 ns

tSIB STB e 0 to IBF e 1 150 ns

tRIB RD e 1 to IBF e 0 150 ns

tRIT RD e 0 to INTR e 0 200 ns

tSIT STB e 1 to INTR e 1 150 ns

tAIT ACK e 1 to INTR e 1 150 ns

tWIT WR e 0 to INTR e 0 200 ns see note 1

tRES Reset Pulse Width 500 ns see note 2

NOTE:1. INTRu may occur as early as WRv.2. Pulse width of initial Reset pulse after power on must be at least 50 mSec. Subsequent Reset pulses may be 500 nsminimum. The output Ports A, B, or C may glitch low during the reset pulse but all port pins will be held at a logic ‘‘one’’ levelafter the reset pulse.

20

Page 129: Esterilizacion de conservas de pescado por computadora

82C55A

WAVEFORMS

MODE 0 (BASIC INPUT)

231256–22

MODE 0 (BASIC OUTPUT)

231256–23

21

Page 130: Esterilizacion de conservas de pescado por computadora

82C55A

WAVEFORMS (Continued)

MODE 1 (STROBED INPUT)

231256–24

MODE 1 (STROBED OUTPUT)

231256–25

22

Page 131: Esterilizacion de conservas de pescado por computadora

82C55A

WAVEFORMS (Continued)

MODE 2 (BIDIRECTIONAL)

231256–26

Note:Any sequence where WR occurs before ACK AND STB occurs before RD is permissible.(INTR e IBF # MASK # STB # RD a OBF # MASK # ACK # WR)

WRITE TIMING

231256–27

READ TIMING

231256–28

A.C. TESTING INPUT, OUTPUT WAVEFORM

231256–29

A.C. Testing Inputs Are Driven At 2.4V For A Logic 1 And 0.45VFor A Logic 0 Timing Measurements Are Made At 2.0V For ALogic 1 And 0.8 For A Logic 0.

A.C. TESTING LOAD CIRCUIT

231256–30

*VEXT Is Set At Various Voltages During Testing To GuaranteeThe Specification. CL Includes Jig Capacitance.

23