Top Banner
ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München [email protected] 3 a Conferencia Alβan – Porto 2009
15

ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München [email protected].

Dec 25, 2015

Download

Documents

Leo Marshall
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS

Carlos Javier Rodriguez Solano

Technische Universität München [email protected]

3a Conferencia Alβan – Porto 2009

Page 2: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

ESPACE

International Master‘s Program

ESPACE – Earth Oriented Space Science and Technology

www.espace-tum.de

Page 3: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

ESPACE combines elements of engineering and science in one single interdisciplinary program

Remote Sensing

Satellite Technology

Navigation

Earth System

ESPACE

www.espace-tum.de

Page 4: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

“The NAVSTAR GPS ( NAVigation System with Time And Ranging Global Positioning System) is a satellite-based radio navigation system providing precise three dimensional position, navigation and time information to suitably equipped users.”

Seeber (2003)

Introduction

Positions of at least 4 satellites

+

Travelled distance of the signal from the satellite’s antenna to the receiver

=Position on Earth and synchronization

of the receiver

Page 5: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

The better the positions of the satellites are known

the higher precision that can be achieved on Earth for positioning

The International GNSS Service provides: Final Orbits with accuracy of 5 cm

Final Orbits are computed using:

1) Direct observations from the satellites to reference stations on Earth

2) Force models that include the principal perturbations to the orbit:

- Low terms of Geopotential

- Attraction of Sun and Moon

- Solar Radiation Pressure

- Solid Earth and Ocean Tides

- General Relativity

Introduction

Page 6: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

An independent way to test the accuracy of Final Orbits is using:

Satellite Laser Ranging (SLR)

Accuracy of SLR measurements is 5 – 6 mm

NERC

This bias could come from the Earth radiation that arrives to the satellites

Not included in the modelling of Final Orbits

But there is a consistent bias of 4 – 5 cm

The GPS – SLR Orbit Anomaly.

Ziebart et al. (2007)

Introduction

Page 7: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

Compute irradiance at satellite altitude due to emitted and reflected radiation, using:

- Albedo of the Earth (α ≈ 0.3)

- Satellite altitude (h ≈ 20000 km)

- Angle ψ, formed by satellite, Earth and Sun

Earth radiation model

Page 8: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

After integration of and over the part of the sphere visible to the satellite,we get the total Earth´s irradiance model, which is plotted as function of ψ

emitId

reflId

Earth radiation model

Page 9: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

GPS satellite model

The radiation coming from the Earth that impacts a satellite accelerates it due to the momentum transfer between the photons and the surface of the satellite.

GPS satellite model spherical bus + solar panel pointing to the Sun

100 times smaller as acceleration due to direct solar radiation

Page 10: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

Numerical orbit integration

Numerical integration over one year of:

Unperturbed keplerian orbit + perturbing acceleration

Initial conditions for PRN06, one of the GPS satellites with laser retroreflectors

Semimajor axis [km] Eccentricity Inclination [deg] RAAN [deg] Argument of Perigee [deg]

26560.699 0.0062068 53.5060 155.9994 282.1291

Position in the RTN frame, perturbed – unperturbed (reference) orbit

RTN frame

Page 11: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

Numerical orbit integration

Keplerian elements, perturbed – unperturbed (reference) orbit

Important drift in: Argument of Perigee + True Anomaly = T-component of position

Page 12: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

Results and Discusion

Definition of different reference orbit:

- Mean keplerian elements over one revolution

- Same true anomaly as perturbed orbit

- Star of it at ∆u = 0

Possible to compare just in radial direction!

Position in the RTN frame, perturbed – reference orbit

Shift of 2 – 4 cm in radial direction, comparable with GPS – SLR Orbit Anomaly

Page 13: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

Results and Discusion

Also very interesting, plot of radial residuals as a function of:

Sun elevation angle β0 and angle ∆u

Strong dependency with position of Sun

Twice per revolution and twice per year perturbation

Page 14: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

Conclusions

- A not negligible effect of the Earth radiation on satellite orbits has been found

- Key factors for final results are

1) Earth radiation model with dependency on the relative position of satellite, Earth and Sun

2) Satellite model: bus, solar panel and orientation to the Sun

3) Reference orbit, suitable for the comparison in radial direction

Next steps of the Master Thesis:

- Include models in the computation of GPS orbits

- Use of real GPS and SLR data in the Bernese GPS Software

Better understanding of the GPS – SLR Orbit Anomaly,

a current limit of GPS orbits

Page 15: ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München carlos.rodriguez@mytum.de.

ESPACEPorto, June 2009

THANK YOU!

ANY QUESTIONS?