Top Banner
8/18/2019 ESI_Husa_II http://slidepdf.com/reader/full/esihusaii 1/62 Introduction to Numerical Relativity II Numerics, Codes and Applications S. Husa University of the Balearic Islands, [email protected] August 3, 2010 S. Husa (UIB)  Numerical Relativity  Vienna 1 / 26
62

ESI_Husa_II

Jul 07, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 1/62

Introduction to Numerical Relativity II

Numerics, Codes and Applications

S. Husa

University of the Balearic Islands, [email protected]

August 3, 2010

S. Husa (UIB)   Numerical Relativity   Vienna 1 / 26

Page 2: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 2/62

Outline

1   Numerical stability and Well-Posedness

S. Husa (UIB)   Numerical Relativity   Vienna 2 / 26

Page 3: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 3/62

Outline

1   Numerical stability and Well-Posedness

2   Computational Infrastructure

S. Husa (UIB)   Numerical Relativity   Vienna 2 / 26

Page 4: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 4/62

Outline

1   Numerical stability and Well-Posedness

2   Computational Infrastructure

3   ApplicationsCritical CollapseBinary Black Hole DynamicsInterlude: GW detectionUltrarelativistic Collisions

S. Husa (UIB)   Numerical Relativity   Vienna 2 / 26

Page 5: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 5/62

Outline

1   Numerical stability and Well-Posedness

2   Computational Infrastructure

3   ApplicationsCritical CollapseBinary Black Hole DynamicsInterlude: GW detectionUltrarelativistic Collisions

4   Getting started

S. Husa (UIB)   Numerical Relativity   Vienna 2 / 26

N merical stabilit and Well Posedness

Page 6: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 6/62

Numerical stability and Well-Posedness

NR at the turn of the century

90’s: success with critical collapse in1+1, but still little success with BBHsafter  > 3 decades.

Lnhab    = 2K ab 

LnK ab    =   −α−1D aD b α

+R ab  + KK ab  − 2K ac K c b 

S. Husa (UIB)   Numerical Relativity   Vienna 3 / 26

Numerical stability and Well Posedness

Page 7: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 7/62

Numerical stability and Well-Posedness

NR at the turn of the century

90’s: success with critical collapse in1+1, but still little success with BBHsafter  > 3 decades.

Lnhab    = 2K ab 

LnK ab    =   −α−1D aD b α

+R ab  + KK ab  − 2K ac K c b 

York-ADM eqs. geometrically elegant &minimalistic, but initial value problemwell posed only in spherical symmetry.

S. Husa (UIB)   Numerical Relativity   Vienna 3 / 26

Numerical stability and Well-Posedness

Page 8: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 8/62

Numerical stability and Well Posedness

NR at the turn of the century

90’s: success with critical collapse in1+1, but still little success with BBHsafter  > 3 decades.

Lnhab    = 2K ab 

LnK ab    =   −α−1D aD b α

+R ab  + KK ab  − 2K ac K c b 

York-ADM eqs. geometrically elegant &minimalistic, but initial value problemwell posed only in spherical symmetry.

Pair geometric with understanding thedark side – EEs as PDEs!

S. Husa (UIB)   Numerical Relativity   Vienna 3 / 26

Numerical stability and Well-Posedness

Page 9: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 9/62

Numerical stability and Well Posedness

Conditioning as a technical starting point

Model problem  F (x , y ) = 0 – how sensitive is the dependence  y (x )?

Condition number: worst possible effect on  y   when  x   is perturbed

Consider perturbed eq.   F (x  + δ x , y  + δ y ) = 0,define

K  = supδx 

||δ y ||/||y ||

||δ x ||/||x ||

K   small: well conditioned,  K   large: ill conditioned,  K (y ) = ∞: ill-posed, unstable

S. Husa (UIB)   Numerical Relativity   Vienna 4 / 26

Numerical stability and Well-Posedness

Page 10: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 10/62

y

Well–posedness and Stability

WP: A unique solution exists at least for some time (when gauge is chosen),

depends continuously on initial data.

||u (t )|| ≤ Ke a t ||u (0)||,

Exponential term ensures robustness w.r.t. lower order terms!

For ill–posed problems  a, K  depend on ID: Higher frequencies correspond to largera, K   ⇒  better resolution  →  worse solution.

WP (stable) in numerical context for iterative problem (e αt n ok,  e αn not):

v n+1 = Q (t n, v n, v n+1)v n :   ||v n|| ≤ Ke αt n ||v 0|| ∀v 0

Lax equivalence theorem:“a consistent (formally convergent) finite difference scheme for a linear PDE forwhich the initial value problem is well posed is convergent iff it is stable.”

S. Husa (UIB)   Numerical Relativity   Vienna 5 / 26

Numerical stability and Well-Posedness

Page 11: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 11/62

y

Example: ODEs

ODE IVPs are well–posed, solutions may blow up in finite time:

y  = λy 2,   y (0) = y 0   →   y (x ) = y 0/(x y 0 − 1).

To analyze numerical stability, perform Von Neumann analysis and consider

y  = λy ,   y (0) = y 0,

solve numerically with forward Euler algorithm

y n+1 = y n + hy n  = y n + hλy n   → |y n+1|/|y n| = |1 + hλ|

– unstable for  h > −2/λ

For  λ > 0 even a stable algorithm will suffer from ill-conditioning.

S. Husa (UIB)   Numerical Relativity   Vienna 6 / 26

Numerical stability and Well-Posedness

Page 12: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 12/62

“Evolution problem” & “well-posedness wars”

Ad–hoc methods for first order in time/second order in space systems dominating“astrophysical applications” vs. standard theory of first order systems!⇒  much confusion about what the essential problems are!

How to solve ODEs?   →  convert to first order, choose “good” variables, a stable

time integrator and appropriate time step, special treatment for singularities etc.!

PDEs:

Reduction to first order in time  →  (FTSS) new evolution equations

Reduction to first order in space  →  new evolution & constraint equations!

Reduction to first order in space changes solution space!

FTSS formulation is convenient for “technical reasons”: expect higher accuracy,less constraints, easier to analyze (WP & numerically stable not enough!) . . .

S. Husa (UIB)   Numerical Relativity   Vienna 7 / 26

Numerical stability and Well-Posedness

Page 13: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 13/62

First Order Systems in a Nutshell

Consider a linear first order system with constant coefficients: u  = A∂ x u  + l .o .t .

Solve in Fourier space:   ˙u  = I ωAu  → u  = e I ωtAu 0.  (complex eigenvalues andJordan Blocks create trouble!)

Real speeds: (weakly) hyperbolic,  ∃  norm  →  well posed in absence of l.o.t.

Complete set of eigenvectors (characteristic variables span solution space):well posed (strongly hyperbolic)

strongly hyperbolic + conserved energy: symmetrizable

Method of  Lines: split time and space discretizations, leave time continous at first→  PDE reduces to family of coupled ODEs.

Semidiscrete analogous!  Fully discrete: semidiscrete stability + Von-Neumann.

Treating ODEs in Fourier space puts first and second order in space on same level!

S. Husa (UIB)   Numerical Relativity   Vienna 8 / 26

Numerical stability and Well-Posedness

Page 14: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 14/62

Example: ADM 1D, “densitized lapse”

˙hii  = 2K ii K xx  =

  12 ∂ xx hxx  + ∂ xx  (hyy  + hzz )

K  jj  =  12 ∂ xx h jj    ( j   =   y , z )

All characteristic speeds real; Jordan normal form of first order system:

−1 0 0 0 0 00   −1 1 0 0 00 0   −1 0 0 00 0 0 1 0 00 0 0 0 1 10 0 0 0 0 1

Decoupling the  xx  components from the  yy   and  zz  components leads towell–posed systems and good numerical results.

Direct Fourier-analysis of FTSS problem quickly leads to same conclusion: ADMill-posed!

S. Husa (UIB)   Numerical Relativity   Vienna 9 / 26

Numerical stability and Well-Posedness

Page 15: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 15/62

“Generalized Harmonic”

R µν  = −1

2 g λρ g µν,λρ + ∇(µΓν ) + Γλ

ηµ g ηδ g λρ Γρ

δν  + 2 Γδ

λη g δρ g λ(µ Γν )

ηρ.

Consider Γν  as given function,  x µ = Γµ.

∂ t  α − α,a β a = α2 (K  − nν Γν ),

∂ t  β a − β a ,b  β b  = α2 (γ a − D a log  α − haν  Γ

ν ),

C a

≡ Γµ − x µ,   C µ = 0 ⇒ Einstein constraints = 0!Important: second order in time equations for lapse and shift in combination withharmonic decomposition!

4-dimensional form of metric plays no role! – 3+1 decomposition can be used the

same way! Broad choice of variables!

Harmonic evolution appears prone to constraint violating modes, larger number of damping terms have been developed.

Harmonic lapse leads to evolutions where the spatial slice approaches a BH

singularity for large times.S. Husa (UIB)   Numerical Relativity   Vienna 10 / 26

Numerical stability and Well-Posedness

Page 16: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 16/62

BSSN: the workhorse formulation for BHs and astrophysics

Core idea: York-ADM + factor our spatial conformal factor + introduce 1 extra

variable to achieve hyperbolicity – follow KISS principle.

ϕ = (1/12) log(detγ ij )γ ij  = e −4ϕγ ij 

K  = γ ij K ij ,

Aij  = e −4ϕ(K ij  − (1/3)γ ij K ),

Γi  = Γi  jk γ  jk 

Making a standard choice for adding constraints (several “natural” ambiguities inthis system – not yet completely analyzed!) we get

Lnϕ   =   −(1/6)αK ,

Lnγ ij    =   −2αAij ,

LnK    =   −D i D i α + αAij Aij  + (1/3)αK 2,

LnAij    =   −e −4ϕ(D i D  j α)TF  + e −4ϕα(R ij )TF  + αK  Aij  − 2αAik A

k  j ,

LnΓi  =   −2(∂  j α)Aij  + 2α

Γi  jk A

kj  − (2/3)γ ij (∂  j K ) + 6Aij (∂  j ϕ)

.

S. Husa (UIB)   Numerical Relativity   Vienna 11 / 26

Computational Infrastructure

Page 17: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 17/62

Code and Computational resources

Scaling of resources in  N  space dimensions:

∆t  → ∆t /2,   ∆x  → ∆x /2

⇒ Memory → 2N  × Memory,   Operations → 2N +1 × Ops.,   Error → 2−p  × Err.

for p -th order scheme.

E.g. 3 space dimensions: break-even at fourth order accuracy. BBH work requires

at least 6th order for satisfactory phase error.

Typical memory requirements of 3D BBH codes:> 100 grid functions,  > 1003 boxes in 10 refinement levels:   ≈ 100GByte .

Runs take several days to weeks  →  BBH groups use several million CPUhours/year.

European groups seriously starved for computer time, hope for PRACE.

What is the right level of cooperation/competition in exploring the parameter

space? How are similar challenges handled in other communities?S. Husa (UIB)   Numerical Relativity   Vienna 12 / 26

Computational Infrastructure

Page 18: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 18/62

Computational infrastructure for NR

Einstein toolkit,  http://einsteintoolkit.org, collection of open sourcecode for NR, largely build on Cactus framework for parallelisation(MPI/OpenMP based) –  http://www.cactuscode.org.

S. Husa (UIB)   Numerical Relativity   Vienna 13 / 26

Computational Infrastructure

Page 19: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 19/62

Computational infrastructure for NR

Einstein toolkit,  http://einsteintoolkit.org, collection of open sourcecode for NR, largely build on Cactus framework for parallelisation(MPI/OpenMP based) –  http://www.cactuscode.org.

Simulation Factory: compiling and deploying applications on machines andmanaging simulations.

S. Husa (UIB)   Numerical Relativity   Vienna 13 / 26

Computational Infrastructure

Page 20: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 20/62

Computational infrastructure for NR

Einstein toolkit,  http://einsteintoolkit.org, collection of open sourcecode for NR, largely build on Cactus framework for parallelisation(MPI/OpenMP based) –  http://www.cactuscode.org.

Simulation Factory: compiling and deploying applications on machines andmanaging simulations.Kranc mathematica package to generate codes from high-level descriptions of 

PDE problems.

S. Husa (UIB)   Numerical Relativity   Vienna 13 / 26

Computational Infrastructure

Page 21: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 21/62

Computational infrastructure for NR

Einstein toolkit,  http://einsteintoolkit.org, collection of open sourcecode for NR, largely build on Cactus framework for parallelisation(MPI/OpenMP based) –  http://www.cactuscode.org.

Simulation Factory: compiling and deploying applications on machines andmanaging simulations.Kranc mathematica package to generate codes from high-level descriptions of 

PDE problems.Visualization tools.

S. Husa (UIB)   Numerical Relativity   Vienna 13 / 26

Computational Infrastructure

Page 22: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 22/62

Computational infrastructure for NR

Einstein toolkit,  http://einsteintoolkit.org, collection of open sourcecode for NR, largely build on Cactus framework for parallelisation(MPI/OpenMP based) –  http://www.cactuscode.org.

Simulation Factory: compiling and deploying applications on machines andmanaging simulations.Kranc mathematica package to generate codes from high-level descriptions of 

PDE problems.Visualization tools.Alpaca tools for performance measuring and code testing.

S. Husa (UIB)   Numerical Relativity   Vienna 13 / 26

Computational Infrastructure

Page 23: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 23/62

Computational infrastructure for NR

Einstein toolkit,  http://einsteintoolkit.org, collection of open sourcecode for NR, largely build on Cactus framework for parallelisation(MPI/OpenMP based) –  http://www.cactuscode.org.

Simulation Factory: compiling and deploying applications on machines andmanaging simulations.Kranc mathematica package to generate codes from high-level descriptions of 

PDE problems.Visualization tools.Alpaca tools for performance measuring and code testing.Full-featured GR production code including BH & NS initial data, evolutioncode with mesh-refinement, AH & EH finders, GW extraction, . . .

S. Husa (UIB)   Numerical Relativity   Vienna 13 / 26

Computational Infrastructure

Page 24: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 24/62

Computational infrastructure for NR

Einstein toolkit,  http://einsteintoolkit.org, collection of open sourcecode for NR, largely build on Cactus framework for parallelisation(MPI/OpenMP based) –  http://www.cactuscode.org.

Simulation Factory: compiling and deploying applications on machines andmanaging simulations.Kranc mathematica package to generate codes from high-level descriptions of 

PDE problems.Visualization tools.Alpaca tools for performance measuring and code testing.Full-featured GR production code including BH & NS initial data, evolutioncode with mesh-refinement, AH & EH finders, GW extraction, . . .Full checkpointing support.

S. Husa (UIB)   Numerical Relativity   Vienna 13 / 26

Computational Infrastructure

Page 25: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 25/62

Computational infrastructure for NR

Einstein toolkit,  http://einsteintoolkit.org, collection of open sourcecode for NR, largely build on Cactus framework for parallelisation(MPI/OpenMP based) –  http://www.cactuscode.org.

Simulation Factory: compiling and deploying applications on machines andmanaging simulations.Kranc mathematica package to generate codes from high-level descriptions of 

PDE problems.Visualization tools.Alpaca tools for performance measuring and code testing.Full-featured GR production code including BH & NS initial data, evolutioncode with mesh-refinement, AH & EH finders, GW extraction, . . .Full checkpointing support.

Private multipatch and characteristic codes available.

S. Husa (UIB)   Numerical Relativity   Vienna 13 / 26

Computational Infrastructure

Page 26: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 26/62

Computational infrastructure for NR

Einstein toolkit,  http://einsteintoolkit.org, collection of open sourcecode for NR, largely build on Cactus framework for parallelisation

(MPI/OpenMP based) –  http://www.cactuscode.org.

Simulation Factory: compiling and deploying applications on machines andmanaging simulations.Kranc mathematica package to generate codes from high-level descriptions of 

PDE problems.Visualization tools.Alpaca tools for performance measuring and code testing.Full-featured GR production code including BH & NS initial data, evolutioncode with mesh-refinement, AH & EH finders, GW extraction, . . .Full checkpointing support.

Private multipatch and characteristic codes available.

www.ApplesWithApples.org – suite of standardized testbeds for NR

S. Husa (UIB)   Numerical Relativity   Vienna 13 / 26

Computational Infrastructure

C f f

Page 27: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 27/62

Computational infrastructure for NR

Einstein toolkit,  http://einsteintoolkit.org, collection of open sourcecode for NR, largely build on Cactus framework for parallelisation

(MPI/OpenMP based) –  http://www.cactuscode.org.

Simulation Factory: compiling and deploying applications on machines andmanaging simulations.Kranc mathematica package to generate codes from high-level descriptions of 

PDE problems.Visualization tools.Alpaca tools for performance measuring and code testing.Full-featured GR production code including BH & NS initial data, evolutioncode with mesh-refinement, AH & EH finders, GW extraction, . . .Full checkpointing support.

Private multipatch and characteristic codes available.

www.ApplesWithApples.org – suite of standardized testbeds for NR

xAct suite of Mathematica packages,  http://www.xact.es/  (J. M. Martin

Garcia).S. Husa (UIB)   Numerical Relativity   Vienna 13 / 26

Computational Infrastructure

Wh h fi ?

Page 28: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 28/62

Why mesh refinement?

Many numerical relativity problems require adaptive mesh refinement:

Critical collapse at the threshold of BH-formation (self-similar solutions)

binary black holes:

many different length scales:

the individual black holes (radiation efficiency   ∼ compactness of source)

orbital scale

wave scale  > 10M 

1/r n background falloff 

Binary black hole simulations do not require full AMR: refinement boxes justneed to track BHs!

Variant of Berger-Oliger (fine grids evolve faster) + extra buffers

S. Husa (UIB)   Numerical Relativity   Vienna 14 / 26

Applications   Critical Collapse

Fi S S C i i l C ll

Page 29: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 29/62

First Success Story: Critical Collapse

Possible final states of gravitating systems?Can naked singularities form out of “regular” initial data?

Can we create arbitrarily small BHs – arbitrarily large curvature?

Sufficiently “strong” data contain trapped surfaces⇒  singularitiesSufficiently “weak” data decay to Minkowski.

Choptuik  ≈ 1990: Numerical “zoom” (bisection) on the transition between

“decay” to BH-formation in the space of spherical scalar field initial data.

Critical data correspond to ahypersurface of   codimension 1 in thespace of initial data

Universal  critical solution is discretelyself-similar, corresponds to intermediateattractor in the language of dynamical

systems. Mass scaling M BH  ∝ |p − p |γ .

Flat space fixed point

Black hole fixed point

thresholdBlack hole

pointCritical

p = p*

initial data

family of 

1−parameter

p < p*

p > p*

S. Husa (UIB)   Numerical Relativity   Vienna 15 / 26

Applications   Critical Collapse

Fi t S St C iti l C ll

Page 30: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 30/62

First Success Story: Critical Collapse

Possible final states of gravitating systems?

Can naked singularities form out of “regular” initial data?Can we create arbitrarily small BHs – arbitrarily large curvature?

Sufficiently “strong” data contain trapped surfaces⇒  singularities

Sufficiently “weak” data decay to Minkowski.

Choptuik  ≈ 1990: Numerical “zoom” (bisection) on the transition between“decay” to BH-formation in the space of spherical scalar field initial data.

Critical data correspond to ahypersurface of   codimension 1 in the

space of initial dataUniversal  critical solution is discretelyself-similar, corresponds to intermediateattractor in the language of dynamicalsystems. Mass scaling M BH  ∝ |p − p |γ .

S. Husa (UIB)   Numerical Relativity   Vienna 15 / 26

Applications   Critical Collapse

C iti l C ll II

Page 31: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 31/62

Critical Collapse II

Since Choptuik’s initial discovery critical behaviour has been found for a numberof fields (complex scalar fields,  σ-models, Yang-Mills, fluids, . . . ).

Most work in spherical symmetry, but also in 2+1, and for zoom-whirl BBH orbitsin neutron star collisions in 3+1.

Critical collapse for pure gravitational waves has not been confirmed.

Spherical symmetry: instead of sophisticated AMR, double-null coordinates can beused, focusing of null-geodesics concentrates grid-points in regions of largecurvature.

Attractors show symmetries: exact or discrete self-similarity, stationarity ortime-periodic solutions (breathers).

S. Husa (UIB)   Numerical Relativity   Vienna 16 / 26

Applications   Critical Collapse

C iti l C ll s III

Page 32: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 32/62

Critical Collapse III

Two principal types of critial behaviour found:

Type II: analogous to second order phase transitions in statistical mechanics:

M BH  ∝ |p − p |γ .

Associated with (discretely) self-simlar solutions with 1 unstable mode.

Type I: analogous to first order phase transitions in statistical mechanics:critical black hole mass is finite.Associated with stationary/periodic solutions with 1 unstable mode.

Many systems, such as the massive scalar field, show both type I and type II

critical phenomena, in different regions of the space of initial data.

Can critical phenomena be observed in nature (natural fine-tuning)?

”Critical Phenomena in Gravitational Collapse” Carsten Gundlach and Jos M.Martn-Garca http://www.livingreviews.org/lrr-2007-5 

S. Husa (UIB)   Numerical Relativity   Vienna 17 / 26

Applications   Binary Black Hole Dynamics

Binary Black Hole Problem

Page 33: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 33/62

Binary Black Hole Problem

Standard technique of math. relativityto treat black hole initial data: modelBH as nontrivial topology – add(compactified) infinities – “punctures”![Beig &  O Murchadha, CQG (1994)]

Spacelike infinities enforce minimalsurfaces  →  apparent horizons  →  BHs.

Staying away from the singularity:

Excision technique: do not evolve values inside a pure outflow boundary

Singularity avoiding slicings: Choose coordinates such that the physicalsingularity is approached only at infinite coordinate time – or never at all.

S. Husa (UIB)   Numerical Relativity   Vienna 18 / 26

Applications   Binary Black Hole Dynamics

Binary Black Hole Problem

Page 34: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 34/62

Binary Black Hole Problem

Standard technique of math. relativityto treat black hole initial data: modelBH as nontrivial topology – add(compactified) infinities – “punctures”![Beig &  O Murchadha, CQG (1994)]

Spacelike infinities enforce minimalsurfaces → apparent horizons → BHs.

 

   

 

     

 

   

 

 

 

   

 

     

 

   

 

 

 

   

 

     

 

   

 

 

Staying away from the singularity:

Excision technique: do not evolve values inside a pure outflow boundary

Singularity avoiding slicings: Choose coordinates such that the physicalsingularity is approached only at infinite coordinate time – or never at all.

S. Husa (UIB)   Numerical Relativity   Vienna 18 / 26

Applications   Binary Black Hole Dynamics

Binary Black Hole Problem

Page 35: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 35/62

Binary Black Hole Problem

Standard technique of math. relativityto treat black hole initial data: modelBH as nontrivial topology – add(compactified) infinities – “punctures”![Beig &  O Murchadha, CQG (1994)]

Spacelike infinities enforce minimalsurfaces  →  apparent horizons  →  BHs.

Staying away from the singularity:

“Punctures” become the workhorse initial data of BBH simulations.

The (1/r ) singularity in the metric was factored out analytically not only forinitial data, but also evolutions.

S. Husa (UIB)   Numerical Relativity   Vienna 18 / 26

Applications   Binary Black Hole Dynamics

Binary Black Hole Problem

Page 36: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 36/62

Binary Black Hole Problem

Standard technique of math. relativityto treat black hole initial data: modelBH as nontrivial topology – add(compactified) infinities – “punctures”![Beig &  O Murchadha, CQG (1994)]

Spacelike infinities enforce minimalsurfaces  →  apparent horizons  →  BHs.

Staying away from the singularity:

“Punctures” become the workhorse initial data of BBH simulations.

The (1/r ) singularity in the metric was factored out analytically not only forinitial data, but also evolutions.

S. Husa (UIB)   Numerical Relativity   Vienna 18 / 26

Applications   Binary Black Hole Dynamics

2005: BBH Phase Transition to Gold Rush

Page 37: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 37/62

2005: BBH Phase Transition to Gold Rush . . .

S. Husa (UIB)   Numerical Relativity   Vienna 19 / 26

Applications   Binary Black Hole Dynamics

2005: BBH Phase Transition to Gold Rush

Page 38: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 38/62

2005: BBH Phase Transition to Gold Rush . . .

−1.2 −0.6 0 0.6 1.2

x / M

−1.2

−0.6

0

0.6

1.2

    y     /     M

0 10 20 30 40

t/ m

−0.0004

−0.0002

0

0.0002

0.0004

ψ 4(M/16) −ψ 

4 (M/24)

(ψ 4(M/24) −ψ 4  (M/36))*(81/16)

0 20 40 60−0.02

−0.01

0

0.01

0.02

   4

 

 ,

M/16

M/24M/36

Figure:  Results from Frans Pretorius April 2005 talk and July 2005 PRL, Novemberresults from NASA Goddard and UT Brownsville.

“Everything done differently” than everbody else:

Generalized second order harmonic evolution + constraint damping.

BH-excision regions can move through grid.

Full AMR + implicit evolution + high resolution + lots of dissipation.

S. Husa (UIB)   Numerical Relativity   Vienna 19 / 26

Applications   Binary Black Hole Dynamics

2005: BBH Phase Transition to Gold Rush

Page 39: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 39/62

2005: BBH Phase Transition to Gold Rush . . .

−1.2 −0.6 0 0.6 1.2

x / M

−1.2

−0.6

0

0.6

1.2

    y     /     M

0 10 20 30 40

t/ m

−0.0004

−0.0002

0

0.0002

0.0004

ψ 4(M/16) −ψ 

4 (M/24)

(ψ 4(M/24) −ψ 

4  (M/36))*(81/16)

0 20 40 60−0.02

−0.01

0

0.01

0.02

   4

 

 ,

M/16

M/24

M/36

Figure:  Results from Frans Pretorius April 2005 talk and July 2005 PRL, Novemberresults from NASA Goddard and UT Brownsville.

UT Brownsville and NASA Goddard, Nov. 2005:  Small modifications to standardBSSN codes do the trick:

Do not factor out puncture singularity during evolution!

Do not keep the puncture location fixed – drop artificial gauge-terms freezingthe shift at the puncture to zero!

Forget what you have been told about how BBH simulations should be done!

S. Husa (UIB)   Numerical Relativity   Vienna 19 / 26

Applications   Binary Black Hole Dynamics

Schwarzschild for the moving puncture generation:

Page 40: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 40/62

Schwarzschild for the moving puncture generation:

Trumpets, not wormholes!

The stationary solutions for NR slicing equations develop cylindrical asymptotics,end at the throat  →  actual singularity is milder than what has been factored out.

[Hannam,  SH, Pollney, Brugmann,  O Murchadha, PRL 99, 241102 (2007)

[Hannam,  SH,  O Murchadha,  et al , J. Phys. Conf. Series Series 66 012047 (2007)]

[Hannam,  SH, Ohme, Brugmann,  O Murchadha, PRD 78, 064020 (2008)]

“Trumpet data” – a new paradigm for high precision numerical evolutions:

S. Husa (UIB)   Numerical Relativity   Vienna 20 / 26

Applications   Binary Black Hole Dynamics

Schwarzschild for the moving puncture generation:

Page 41: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 41/62

Schwarzschild for the moving puncture generation:

Trumpets, not wormholes!

The stationary solutions for NR slicing equations develop cylindrical asymptotics,end at the throat  →  actual singularity is milder than what has been factored out.

[Hannam,  SH, Pollney, Brugmann,  O Murchadha, PRL 99, 241102 (2007)

[Hannam,  SH,  O Murchadha,  et al , J. Phys. Conf. Series Series 66 012047 (2007)]

[Hannam,  SH, Ohme, Brugmann,  O Murchadha, PRD 78, 064020 (2008)]

“Trumpet data” – a new paradigm for high precision numerical evolutions:i +R 

i +L

I +I +

I − I −

i −R i −L

i 0L   i 

0

  R =   2  M

R   =  

2   M    

R  = 0   i +R 

i +L

I +

I +

I −

I −

i −

R i −

L

i 0L   i 

0

  R =   2  M   R   

=  2   M    

R  = 0

S. Husa (UIB)   Numerical Relativity   Vienna 20 / 26

Applications   Binary Black Hole Dynamics

Asymmetric beaming of radiation causes recoil!

Page 42: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 42/62

y b g

Astrophysics: recoil  >  2000 km/s kicks remnant out of large galaxies.

Analytical estimates: 50 – 1000’s of km/s.

Full GR, no spins:   V max  = 175 ± 11 km/s for  m1 ≈ 3m2.

[Gonzalez, Sperhake, Brugmann, Hannam,  SH, PRL 98, 091101 (2007)]

Kick of  ≈ 2500 km/s for spins in orbital plane, due to up-down asymmetry in

leading quadrupole mode!  Fuels astrophysical theory & observation! 

[Gonzalez, Hannam, Sperhake, Brugmann,  SH, PRL 98, 231101 (2007)

0.15 0.2 0.25η

0

50

100

150

200

250

300

  v   (   k  m   /  s   )

Baker, et al

Campanelli

Damour and Gopakumar

Herrmann, et al

Sopuerta, et al

Blanchet, et al

4

2

0

2

4

x

42

02

  4

y

0.15

0.1

0.05

0

z4

2

0

2

0

S. Husa (UIB)   Numerical Relativity   Vienna 21 / 26

Applications   Binary Black Hole Dynamics

Asymmetric beaming of radiation causes recoil!

Page 43: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 43/62

y g

Astrophysics: recoil  >  2000 km/s kicks remnant out of large galaxies.

Analytical estimates: 50 – 1000’s of km/s.

Full GR, no spins:   V max  = 175 ± 11 km/s for  m1 ≈ 3m2.

[Gonzalez, Sperhake, Brugmann, Hannam,  SH, PRL 98, 091101 (2007)]

Kick of  ≈ 2500 km/s for spins in orbital plane, due to up-down asymmetry in

leading quadrupole mode!  Fuels astrophysical theory & observation! 

[Gonzalez, Hannam, Sperhake, Brugmann,  SH, PRL 98, 231101 (2007)

0.15 0.2 0.25η

0

50

100

150

200

250

300

  v   (   k  m   /  s   )

Baker, et al

Campanelli

Damour and Gopakumar

Herrmann, et al

Sopuerta, et al

Blanchet, et al

S. Husa (UIB)   Numerical Relativity   Vienna 21 / 26

Applications   Binary Black Hole Dynamics

Asymmetric beaming of radiation causes recoil!

Page 44: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 44/62

y g

Astrophysics: recoil  >  2000 km/s kicks remnant out of large galaxies.

Analytical estimates: 50 – 1000’s of km/s.

Full GR, no spins:   V max  = 175 ± 11 km/s for  m1 ≈ 3m2.

[Gonzalez, Sperhake, Brugmann, Hannam,  SH, PRL 98, 091101 (2007)]

Kick of  ≈ 2500 km/s for spins in orbital plane, due to up-down asymmetry in

leading quadrupole mode!  Fuels astrophysical theory & observation! [Gonzalez, Hannam, Sperhake, Brugmann,  SH, PRL 98, 231101 (2007)

0.15 0.2 0.25η

0

50

100

150

200

250

300

  v   (   k  m   /  s   )

Baker, et al

Campanelli

Damour and Gopakumar

Herrmann, et al

Sopuerta, et al

Blanchet, et al

10

0

10

10

0

10

4

2

0

2

4

S. Husa (UIB)   Numerical Relativity   Vienna 21 / 26

Applications   Interlude: GW detection

General Relativity is becoming observational science!

Page 45: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 45/62

y g

International network of interferometersfinished first science run @ design

sensitivity in 11/2007, enhanceddetectors start to operate in July.

Effort for first GW detectionreminiscent of large high energy

experiments.

Advanced, 3rd generation & spacedetectors to operate in the style of astronomical observatories.

3 hours of Advanced LIGO  ≈ 1 year of initial LIGO.

Era of GW astronomy is only about 2PhD theses away . . .

S. Husa (UIB)   Numerical Relativity   Vienna 22 / 26

Applications   Interlude: GW detection

General Relativity is becoming observational science!

Page 46: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 46/62

International network of interferometersfinished first science run @ design

sensitivity in 11/2007, enhanceddetectors start to operate in July.

Effort for first GW detectionreminiscent of large high energy

experiments.

Advanced, 3rd generation & spacedetectors to operate in the style of astronomical observatories.

3 hours of Advanced LIGO  ≈ 1 year of initial LIGO.

Era of GW astronomy is only about 2PhD theses away . . .

S. Husa (UIB)   Numerical Relativity   Vienna 22 / 26

Applications   Ultrarelativistic Collisions

Ultrarelativistic Collisions

Page 47: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 47/62

High velocity collisions of BHs and particles – possible relevance for LHC.

Do colliding particles form BHs? What is the cross-section? GW-energy released?

Idealized calculation: collision of two infinitely boosted particles described byAichelburg-Sexl metric. TS forms in collision of two such “shock-waves”.

Collisions of solitons built from massive complex scalar field (Choptuik &Pretorius) suggest generic BH formation at boosts higher than  v  ≈ .94c .

Similar calculations for BH collisions show very large energy releases  > 20%.

Higher dimensions: currently feasible if symmetries reduce the problem to 3+1.

Larger effective dimensions with increased computational power and possiblyimproved algorithms (compare neutrino transport problem for supernovae).

S. Husa (UIB)   Numerical Relativity   Vienna 23 / 26

Applications   Ultrarelativistic Collisions

Ultrarelativistic Collisions

Page 48: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 48/62

High velocity collisions of BHs and particles – possible relevance for LHC.

Do colliding particles form BHs? What is the cross-section? GW-energy released?

Idealized calculation: collision of two infinitely boosted particles described byAichelburg-Sexl metric. TS forms in collision of two such “shock-waves”.

Collisions of solitons built from massive complex scalar field (Choptuik &Pretorius) suggest generic BH formation at boosts higher than  v  ≈ .94c .

Similar calculations for BH collisions show very large energy releases  > 20%.

Higher dimensions: currently feasible if symmetries reduce the problem to 3+1.

Larger effective dimensions with increased computational power and possiblyimproved algorithms (compare neutrino transport problem for supernovae).

What exactly should we compute, what physical conclusions can we draw fromsimplified models? 

S. Husa (UIB)   Numerical Relativity   Vienna 23 / 26

Getting started

Getting started in NR: Literature

Page 49: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 49/62

Some textbooks now available:Bona et al.

Alcubierre

Baumgarte & Shapiro

Living Reviews,  http://relativity.livingreviews.org:

BBH: Articles citing F. Pretorius, gr-qc/0507014 (351).

Interface to GW-detection: NINJA project,  http://www.ninja-project.org/

Happy to provide more literature!

S. Husa (UIB)   Numerical Relativity   Vienna 24 / 26

Getting started

NR - getting started

Page 50: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 50/62

Toy models: dynamics in 1+1 D (spherical symmetry!), 2D AH finder,“apples” tests.

S. Husa (UIB)   Numerical Relativity   Vienna 25 / 26

Getting started

NR - getting started

Page 51: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 51/62

Toy models: dynamics in 1+1 D (spherical symmetry!), 2D AH finder,“apples” tests.

Characteristic (null) code for critical collapse in spherical symmetry.

S. Husa (UIB)   Numerical Relativity   Vienna 25 / 26

Getting started

NR - getting started

Page 52: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 52/62

Toy models: dynamics in 1+1 D (spherical symmetry!), 2D AH finder,“apples” tests.

Characteristic (null) code for critical collapse in spherical symmetry.

In 1+1 or 2+1 D, using Mathematica, Matlab, python, . . . can be a great

tool to numerically solve PDEs.

S. Husa (UIB)   Numerical Relativity   Vienna 25 / 26

Getting started

NR - getting started

Page 53: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 53/62

Toy models: dynamics in 1+1 D (spherical symmetry!), 2D AH finder,“apples” tests.

Characteristic (null) code for critical collapse in spherical symmetry.

In 1+1 or 2+1 D, using Mathematica, Matlab, python, . . . can be a great

tool to numerically solve PDEs.

Full 3+1 simulations: Einstein toolkit worth a look.

S. Husa (UIB)   Numerical Relativity   Vienna 25 / 26

Getting started

NR - getting started

Page 54: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 54/62

Toy models: dynamics in 1+1 D (spherical symmetry!), 2D AH finder,“apples” tests.

Characteristic (null) code for critical collapse in spherical symmetry.

In 1+1 or 2+1 D, using Mathematica, Matlab, python, . . . can be a great

tool to numerically solve PDEs.

Full 3+1 simulations: Einstein toolkit worth a look.

Kranc  should be relatively easy to modify to generate code for frameworks

other than Cactus.

S. Husa (UIB)   Numerical Relativity   Vienna 25 / 26

Getting started

NR - getting started

Page 55: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 55/62

Toy models: dynamics in 1+1 D (spherical symmetry!), 2D AH finder,“apples” tests.

Characteristic (null) code for critical collapse in spherical symmetry.

In 1+1 or 2+1 D, using Mathematica, Matlab, python, . . . can be a great

tool to numerically solve PDEs.

Full 3+1 simulations: Einstein toolkit worth a look.

Kranc  should be relatively easy to modify to generate code for frameworks

other than Cactus.

Don’t use spectral evolution methods unless you know what you are doing.

S. Husa (UIB)   Numerical Relativity   Vienna 25 / 26

Getting started

NR - getting started

Page 56: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 56/62

Toy models: dynamics in 1+1 D (spherical symmetry!), 2D AH finder,“apples” tests.

Characteristic (null) code for critical collapse in spherical symmetry.

In 1+1 or 2+1 D, using Mathematica, Matlab, python, . . . can be a great

tool to numerically solve PDEs.

Full 3+1 simulations: Einstein toolkit worth a look.

Kranc  should be relatively easy to modify to generate code for frameworks

other than Cactus.

Don’t use spectral evolution methods unless you know what you are doing.

Make friends!

S. Husa (UIB)   Numerical Relativity   Vienna 25 / 26

Getting started

Conclusions

Page 57: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 57/62

In NR we typically solve the Einstein equations as PDEs in the time domain.

S. Husa (UIB)   Numerical Relativity   Vienna 26 / 26

Getting started

Conclusions

Page 58: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 58/62

In NR we typically solve the Einstein equations as PDEs in the time domain.

The complicated structure of the constraints, diffeomorphism freedom, andthe lack of quasilocal energy/momentum create unique problems for NR.

S. Husa (UIB)   Numerical Relativity   Vienna 26 / 26

Getting started

Conclusions

Page 59: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 59/62

In NR we typically solve the Einstein equations as PDEs in the time domain.

The complicated structure of the constraints, diffeomorphism freedom, andthe lack of quasilocal energy/momentum create unique problems for NR.

First solution of the two-body problem in full GR took 4 decades.

S. Husa (UIB)   Numerical Relativity   Vienna 26 / 26

Getting started

Conclusions

Page 60: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 60/62

In NR we typically solve the Einstein equations as PDEs in the time domain.

The complicated structure of the constraints, diffeomorphism freedom, andthe lack of quasilocal energy/momentum create unique problems for NR.

First solution of the two-body problem in full GR took 4 decades.

Simulations of BHs, neutron stars, boson stars or supernovas are nowroutinely performed in 3+1 dimensions.

S. Husa (UIB)   Numerical Relativity   Vienna 26 / 26

Getting started

Conclusions

Page 61: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 61/62

In NR we typically solve the Einstein equations as PDEs in the time domain.

The complicated structure of the constraints, diffeomorphism freedom, andthe lack of quasilocal energy/momentum create unique problems for NR.

First solution of the two-body problem in full GR took 4 decades.

Simulations of BHs, neutron stars, boson stars or supernovas are nowroutinely performed in 3+1 dimensions.

Accurate tracking of the orbital phase of binary black holes is hoped todramatically increase the scientific gain from GW simulations.

S. Husa (UIB)   Numerical Relativity   Vienna 26 / 26

Getting started

Conclusions

Page 62: ESI_Husa_II

8/18/2019 ESI_Husa_II

http://slidepdf.com/reader/full/esihusaii 62/62

In NR we typically solve the Einstein equations as PDEs in the time domain.

The complicated structure of the constraints, diffeomorphism freedom, andthe lack of quasilocal energy/momentum create unique problems for NR.

First solution of the two-body problem in full GR took 4 decades.

Simulations of BHs, neutron stars, boson stars or supernovas are nowroutinely performed in 3+1 dimensions.

Accurate tracking of the orbital phase of binary black holes is hoped todramatically increase the scientific gain from GW simulations.

NR is a small field, but there is a lot of interest to expand to new problems.

S. Husa (UIB)   Numerical Relativity   Vienna 26 / 26