Top Banner
g GE Energy Nuclear ESBWR Design Control Document Tier 2 Chapter 3 Design of Structures, Components, Equipment, and Systems Appendices 3G - 3L 26A6642AN Revision 3 February 2007
364

ESBWR Design Control Document - NRC: Home Page

Jan 25, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ESBWR Design Control Document - NRC: Home Page

g GE Energy Nuclear

ESBWR Design Control Document Tier 2 Chapter 3 Design of Structures, Components, Equipment, and Systems Appendices 3G - 3L

26A6642ANRevision 3

February 2007

Page 2: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

ii

Contents 3G. DESIGN DETAILS AND EVALUATION RESULTS OF SEISMIC CATEGORY I STRUCTURES......................................................................................................................... 3G-1 3G.1 Reactor Building .............................................................................................................. 3G-1

3G.1.1 Objective and Scope.................................................................................................. 3G-1 3G.1.2 Conclusions............................................................................................................... 3G-1 3G.1.3 Structural Description ............................................................................................... 3G-1

3G.1.3.1 Description of the Reactor Building .................................................................. 3G-1 3G.1.3.1.1 Reactor Building Structure.......................................................................... 3G-1 3G.1.3.1.2 Containment and Containment Structure.................................................... 3G-2 3G.1.3.1.3 Reactor Building Structure/Containment Structure Connections ............... 3G-2 3G.1.3.1.4 Containment Internal Structures ................................................................. 3G-2

3G.1.4 Analytical Models ..................................................................................................... 3G-3 3G.1.4.1 Structural Models ............................................................................................... 3G-3 3G.1.4.2 Foundation Models ............................................................................................ 3G-4

3G.1.5 Structural Analysis and Design................................................................................. 3G-4 3G.1.5.1 Site Design Parameters ...................................................................................... 3G-4 3G.1.5.2 Design Loads, Load Combinations, and Material Properties ............................ 3G-5

3G.1.5.2.1 Design Loads............................................................................................... 3G-5 3G.1.5.2.1.1 Dead Load (D) and Live Load (L and Lo)........................................... 3G-5 3G.1.5.2.1.2 Snow and Rain Load ............................................................................ 3G-5 3G.1.5.2.1.3 Lateral Soil Pressure at Rest ................................................................ 3G-5 3G.1.5.2.1.4 Wind Load (W) .................................................................................... 3G-5 3G.1.5.2.1.5 Tornado Load (Wt) .............................................................................. 3G-5 3G.1.5.2.1.6 Thermal Loads ..................................................................................... 3G-6 3G.1.5.2.1.7 Pressure Loads ..................................................................................... 3G-6 3G.1.5.2.1.8 Condensation Oscillation (CO) and Chugging (CHUG) Loads........... 3G-6 3G.1.5.2.1.9 SRV Loads ........................................................................................... 3G-6 3G.1.5.2.1.10 Steam Tunnel Subcompartment Pressure .......................................... 3G-6 3G.1.5.2.1.11 Subcompartment Pressure in Other Compartments ........................... 3G-6 3G.1.5.2.1.12 Annulus Pressurization (AP) Loads................................................... 3G-7 3G.1.5.2.1.13 Design Seismic Loads........................................................................ 3G-7

3G.1.5.2.2 Load Combinations and Acceptance Criteria ............................................. 3G-7 3G.1.5.2.2.1 Reinforced Concrete Containment Vessel (RCCV)............................. 3G-7 3G.1.5.2.2.2 Steel Containment Components........................................................... 3G-7 3G.1.5.2.2.3 Containment Internal Structures .......................................................... 3G-7 3G.1.5.2.2.4 Reactor Building (RB) Concrete Structures Including Pool Girders... 3G-8

3G.1.5.2.3 Material Properties...................................................................................... 3G-8 3G.1.5.2.3.1 Concrete ............................................................................................... 3G-8 3G.1.5.2.3.2 Reinforcing Steel.................................................................................. 3G-8 3G.1.5.2.3.3 Structural Steel..................................................................................... 3G-9

3G.1.5.3 Stability Requirements ....................................................................................... 3G-9 3G.1.5.4 Structural Design Evaluation ............................................................................. 3G-9

3G.1.5.4.1 Containment Structure ................................................................................ 3G-9 3G.1.5.4.1.1 Containment Wall Including RPV Pedestal....................................... 3G-10 3G.1.5.4.1.2 Containment Top Slab and Suppression Pool Slab............................ 3G-10

Page 3: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

iii

3G.1.5.4.1.3 Containment Foundation Mat ............................................................ 3G-11 3G.1.5.4.1.4 Drywell Head ..................................................................................... 3G-11

3G.1.5.4.2 Containment Internal Structures ............................................................... 3G-12 3G.1.5.4.2.1 Diaphragm Floor ................................................................................ 3G-13 3G.1.5.4.2.2 Vent Wall Structure ........................................................................... 3G-13 3G.1.5.4.2.3 Reactor Shield Wall (RSW)............................................................... 3G-14 3G.1.5.4.2.4 RPV Support Bracket......................................................................... 3G-14 3G.1.5.4.2.5 Gravity Driven Cooling System (GDCS) Pool .................................. 3G-14

3G.1.5.4.3 Reactor Building ....................................................................................... 3G-14 3G.1.5.4.3.1 RB Shear Walls.................................................................................. 3G-15 3G.1.5.4.3.2 RB Foundation Mat Outside Containment......................................... 3G-15 3G.1.5.4.3.3 RB Floor Slabs ................................................................................... 3G-15 3G.1.5.4.3.4 Pool Girders ....................................................................................... 3G-15 3G.1.5.4.3.5 Main Steam Tunnel Floors and Walls................................................ 3G-16

3G.1.5.5 Foundation Stability ......................................................................................... 3G-16 3G.1.5.5.1 Effect of Basemat Uplift ........................................................................... 3G-16 3G.1.5.5.2 Effect of Horizontal Variation of Soil Spring........................................... 3G-17 3G.1.5.5.3 Effect of Construction Sequence............................................................... 3G-17 3G.1.5.5.4 Foundation Settlement .............................................................................. 3G-17

3G.1.5.6 Tornado Missile Evaluation ............................................................................. 3G-17 3G.1.6 References............................................................................................................... 3G-18

3G.2 Control Building .......................................................................................................... 3G-190 3G.2.1 Objective and Scope.............................................................................................. 3G-190 3G.2.2 Conclusions........................................................................................................... 3G-190 3G.2.3 Structural Description ........................................................................................... 3G-190 3G.2.4 Analytical Models ................................................................................................. 3G-190

3G.2.4.1 Structural Model ............................................................................................ 3G-190 3G.2.4.2 Foundation Models ........................................................................................ 3G-191

3G.2.5 Structural Analysis and Design............................................................................. 3G-191 3G.2.5.1 Site Design Parameters .................................................................................. 3G-191 3G.2.5.2 Design Loads, Load Combinations, and Material Properties ........................ 3G-191

3G.2.5.2.1 Design Loads........................................................................................... 3G-191 3G.2.5.2.1.1 Dead Load (D) and Live Load (L and Lo)....................................... 3G-191 3G.2.5.2.1.2 Snow and Rain Load ....................................................................... 3G-192 3G.2.5.2.1.3 Lateral Soil Pressure at Rest ............................................................ 3G-192 3G.2.5.2.1.4 Wind Load (W) ................................................................................ 3G-192 3G.2.5.2.1.5 Tornado Load (Wt)........................................................................... 3G-192 3G.2.5.2.1.6 Thermal Load (To and Ta) ................................................................ 3G-192 3G.2.5.2.1.7 Design Seismic Loads...................................................................... 3G-192

3G.2.5.2.2 Load Combinations and Acceptance Criteria ......................................... 3G-192 3G.2.5.2.3 Material Properties.................................................................................. 3G-193

3G.2.5.3 Stability Requirements ................................................................................... 3G-193 3G.2.5.4 Structural Design Evaluation ......................................................................... 3G-193

3G.2.5.4.1 Shear Walls ............................................................................................. 3G-193 3G.2.5.4.2 Floor Slabs .............................................................................................. 3G-193 3G.2.5.4.3 Foundation Mat ....................................................................................... 3G-193

Page 4: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

iv

3G.2.5.5 Foundation Stability ....................................................................................... 3G-194 3G.2.5.5.1 Foundation Settlement ............................................................................ 3G-194

3G.2.5.6 Tornado Missile Evaluation ........................................................................... 3G-194 3G.3 Fuel Building................................................................................................................ 3G-231

3G.3.1 Objective and Scope.............................................................................................. 3G-231 3G.3.2 Conclusions........................................................................................................... 3G-231 3G.3.3 Structural Description ........................................................................................... 3G-231 3G.3.4 Analytical Models ................................................................................................. 3G-231 3G.3.5 Structural Analysis and Design............................................................................. 3G-232

3G.3.5.1 Site Design Parameters .................................................................................. 3G-232 3G.3.5.2 Design Loads, Load Combinations, and Material Properties ........................ 3G-232

3G.3.5.2.1 Design Loads........................................................................................... 3G-232 3G.3.5.2.1.1 Dead Load (D) and Live Load (L and Lo)....................................... 3G-232 3G.3.5.2.1.2 Snow and Rain Load ....................................................................... 3G-232 3G.3.5.2.1.3 Lateral Soil Pressure at Rest ............................................................ 3G-232 3G.3.5.2.1.4 Wind Load (W) ................................................................................ 3G-232 3G.3.5.2.1.5 Tornado Load (Wt)........................................................................... 3G-232 3G.3.5.2.1.6 Thermal Load (To) ........................................................................... 3G-232 3G.3.5.2.1.7 Design Seismic Loads...................................................................... 3G-233

3G.3.5.2.2 Load Combinations and Acceptance Criteria ......................................... 3G-233 3G.3.5.2.3 Material Properties.................................................................................. 3G-233

3G.3.5.3 Stability Requirements ................................................................................... 3G-233 3G.3.5.4 Structural Design Evaluation ......................................................................... 3G-233

3G.3.5.4.1 Shear Walls and Spent Fuel Pool Walls.................................................. 3G-233 3G.3.5.4.2 Floor Slabs .............................................................................................. 3G-234 3G.3.5.4.3 Foundation Mat ....................................................................................... 3G-234

3G.3.5.5 Foundation Stability ....................................................................................... 3G-234 3G.3.5.6 Tornado Missile Evaluation ........................................................................... 3G-234

3H. EQUIPMENT QUALIFICATION DESIGN ENVIRONMENTAL CONDITIONS........ 3H-1 3H.1 Introduction...................................................................................................................... 3H-1 3H.2 Plant Zones....................................................................................................................... 3H-1

3H.2.1 Containment Vessel .................................................................................................. 3H-1 3H.2.2 Outside Containment Vessel..................................................................................... 3H-1

3H.3 Environmental Conditions ............................................................................................... 3H-2 3H.3.1 Plant Normal Operating Conditions.......................................................................... 3H-2 3H.3.2 Accident Conditions.................................................................................................. 3H-2 3H.3.3 Water Quality............................................................................................................ 3H-2 3H.3.4 COL Unit-Specific Information ................................................................................ 3H-2

3H.4 References........................................................................................................................ 3H-3 3I. DESIGNATED NEDE-24326-1-P MATERIAL WHICH MAY NOT CHANGE WITHOUT PRIOR NRC APPROVAL .........................................................................................................3I-1 3I.1 General Requirements for Dynamic Testing .......................................................................3I-1 3I.2 Product and Assembly Testing ............................................................................................3I-2 3I.3 Multiple-Frequency Tests....................................................................................................3I-2

Page 5: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

v

3I.4 Single- and Multi-axis Tests................................................................................................3I-3 3I.5 Single Frequency Tests........................................................................................................3I-3 3I.6 Damping ..............................................................................................................................3I-3 3I.7 Qualification Determination ................................................................................................3I-3 3I.8 Dynamic Qualification by Analysis ....................................................................................3I-4 3I.9 Required Response Spectra .................................................................................................3I-4 3I.10 Time History Analysis.......................................................................................................3I-4 3I.11 References .........................................................................................................................3I-5 3J. EVALUATION OF POSTULATED RUPTURES IN HIGH ENERGY PIPES................. 3J-1 3J.1 Background and Scope....................................................................................................... 3J-1 3J.2 Identification of Rupture Locations and Rupture Geometry.............................................. 3J-2

3J.2.1 Ruptures in Containment Penetration Area................................................................. 3J-2 3J.2.2 Ruptures in Areas other than Containment Penetration. ............................................. 3J-2 3J.2.3 Determine the Type of Pipe Break .............................................................................. 3J-2

3J.3 Design and Selection of Pipe Whip Restraints................................................................... 3J-2 3J.3.1 Make Preliminary Selection of Pipe Whip Restraint .................................................. 3J-2 3J.3.2 Prepare Simplified Computer Model of Piping-Pipe Whip Restraint System. ........... 3J-2 3J.3.3 Run Pipe Dynamic Analysis........................................................................................ 3J-3 3J.3.4 Select Pipe Whip Restraint for Pipe Whip Restraint Analysis.................................... 3J-3

3J.4 Pipe Rupture Evaluation..................................................................................................... 3J-3 3J.4.1 General Approach........................................................................................................ 3J-3 3J.4.2 Procedure For Dynamic Time-History Analysis With Simplified Model .................. 3J-4

3J.4.2.1 Modeling of Piping System.................................................................................. 3J-4 3J.4.2.2 Dynamic Analysis of Simplified Piping Model ................................................... 3J-5

3J.4.3 Procedure For Dynamic Time-History Analysis Using Detailed Piping Model......... 3J-5 3J.4.3.1 Modeling of Piping System.................................................................................. 3J-5 3J.4.3.2 Dynamic Analysis using Detail Piping Model ..................................................... 3J-5

3J.5 Jet Impingement on Essential Piping ................................................................................. 3J-6 3K. RESOLUTION OF INTERSYSTEM LOSS OF COOLANT ACCIDENT...................... 3K-1 3K.1 Introduction...................................................................................................................... 3K-1 3K.2 Regulatory Positions ........................................................................................................ 3K-1 3K.3 Boundary Limits of Ultimate Rupture Strength............................................................... 3K-2 3K.4 Evaluation Procedure ....................................................................................................... 3K-2 3K.5 Systems Evaluated ........................................................................................................... 3K-2 3K.6 Piping Design Pressure for Ultimate Rupture Strength Compliance............................... 3K-3 3K.7 Applicability of Ultimate Rupture Strength Non-piping Components ............................ 3K-3 3K.8 Results.............................................................................................................................. 3K-3 3K.9 Valve Misalignment Due To Operator Error ................................................................... 3K-3 3K.10 Summary ........................................................................................................................ 3K-4 3K.11 References...................................................................................................................... 3K-4

Page 6: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

vi

ATTACHMENT 3KA. ULTIMATE RUPTURE STRENGTH SYSTEM BOUNDARY EVALUATION......................................................................................................................... 3K-5

3KA.1 Control Rod Drive System........................................................................................ 3K-5 3KA.1.1 System URS Boundary Description................................................................... 3K-5 3KA.1.2 Downstream Interfaces....................................................................................... 3K-5 3KA.1.3 Low-Pressure Piping Systems and Components Designed to URS Pressure .... 3K-6

3KA.2 Standby Liquid Control System................................................................................ 3K-7 3KA.2.1 System URS Boundary Description................................................................... 3K-7 3KA.2.2 Downstream interfaces....................................................................................... 3K-7 3KA.2.3 Low Pressure Piping Systems and Components Designed to URS Pressure..... 3K-7

3KA.3 Reactor Water Cleanup/Shutdown Cooling System ................................................. 3K-8 3KA.3.1 System URS Boundary Description................................................................... 3K-8 3KA.3.2 Downstream Interfaces....................................................................................... 3K-8 3KA.3.3 Low-Pressure Piping Systems and Components Designed to URS Pressure .... 3K-8

3KA.4 Fuel And Auxiliary Pools Cooling System............................................................... 3K-9 3KA.4.1 System URS Boundary Description................................................................... 3K-9 3KA.4.2 Downstream Interfaces....................................................................................... 3K-9 3KA.4.3 Low-Pressure Piping Systems and Components Designed to URS Pressure .... 3K-9

3KA.5 Nuclear Boiler System ............................................................................................ 3K-10 3KA.5.1 System URS Boundary Description................................................................. 3K-10 3KA.5.2 Downstream Interfaces..................................................................................... 3K-10 3KA.5.3 Low-Pressure Piping Systems and Components Designed to URS Pressure .. 3K-10

3KA.6 Condensate And Feedwater System........................................................................ 3K-11 3KA.6.1 System URS Boundary Description................................................................. 3K-11 3KA.6.2 Downstream Interfaces..................................................................................... 3K-11 3KA.6.3 Low-Pressure Piping Systems and Components Designed to URS Pressure .. 3K-11

3L. REACTOR INTERNALS FLOW INDUCED VIBRATION PROGRAM ........................3L-1 3L.1 Introduction .......................................................................................................................3L-1 3L.2 Reactor Internal Components FIV Evaluation ..................................................................3L-2

3L.2.1 Evaluation Process – Part 1 ........................................................................................3L-2 3L.2.2 Evaluation Process – Part 2 ........................................................................................3L-4

3L.3 Chimney Partition Assembly Evaluation ..........................................................................3L-5 3L.3.1 Design and Materials..................................................................................................3L-5 3L.3.2 Prior Operating Experience ........................................................................................3L-5 3L.3.3 Testing and Two-phase Flow Analysis ......................................................................3L-5

3L.4 Steam Dryer Evaluation Program......................................................................................3L-7 3L.4.1 Steam Dryer Design and Performance .......................................................................3L-7 3L.4.2 Materials and Fabrication ...........................................................................................3L-7 3L.4.3 Load Combinations ....................................................................................................3L-8 3L.4.4 Fluid Loads on the Dryer............................................................................................3L-8 3L.4.5 Structural Evaluation ..................................................................................................3L-9 3L.4.6 Instrumentation and Startup Testing ........................................................................3L-10

3L.5 Startup Test Program.......................................................................................................3L-13 3L.5.1 Component Selections ..............................................................................................3L-13 3L.5.2 Sensor Locations ......................................................................................................3L-13

Page 7: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

vii

3L.5.3 Test Conditions.........................................................................................................3L-13 3L.5.4 Data Reduction Methods ..........................................................................................3L-14

3L.5.4.1 Time History Analysis.......................................................................................3L-14 3L.5.4.2 Frequency Analysis ...........................................................................................3L-15

3L.5.5 Data Evaluation Methods .........................................................................................3L-16 3L.5.5.1 Finite Element Models ......................................................................................3L-16

3L.5.5.1.1 Chimney Head and Steam Separators ........................................................3L-16 3L.5.5.1.2 Shroud and Chimney ..................................................................................3L-16 3L.5.5.1.3 Steam Dryer................................................................................................3L-17 3L.5.5.1.4 Standby Liquid Control Lines ....................................................................3L-18

3L.5.5.2 Stress Evaluation ...............................................................................................3L-18 3L.5.5.2.1 Methods I and II .........................................................................................3L-21 3L.5.5.2.2 Method III...................................................................................................3L-23

3L.6 References .......................................................................................................................3L-25

Page 8: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

viii

List of Tables Abbreviations And Acronyms List Table 3G.1-1 Soil Spring Constants for the RB Analysis Model Table 3G.1-2 Site Design Parameters Table 3G.1-3 Equipment and Hydrostatic Loads inside RCCV Table 3G.1-4 Equipment and Hydrostatic Loads in RB Pools Table 3G.1-5 Miscellaneous Structures, Piping, and Commodity Loads on RB Floor Table 3G.1-6 Equivalent Linear Temperature Distributions at Various Sections Table 3G.1-7 Pressure Loads Inside RCCV Table 3G.1-8 Pressure Loads Inside IC/PCCS Pools Table 3G.1-9 Maximum Vertical Acceleration Table 3G.1-10 Selected Load Combinations for the RCCV Table 3G.1-11 Selected Load Combinations for the RB Table 3G.1-12 Material Constants for Design Calculations Table 3G.1-13 Results of NASTRAN Analysis, Dead Load Table 3G.1-14 Results of NASTRAN Analysis, Drywell Unit Pressure (1 MPa) Table 3G.1-15 Results of NASTRAN Analysis, Wetwell Unit Pressure (1 MPa) Table 3G.1-16 Results of NASTRAN Analysis, Temperature Load (Normal Operation: Winter) Table 3G.1-17 Results of NASTRAN Analysis, Temperature Load (LOCA After 6 minutes:

Winter) Table 3G.1-18 Results of NASTRAN Analysis, Temperature Load (LOCA After 72 hours:

Winter) Table 3G.1-19 Results of NASTRAN Analysis, Seismic Load (Horizontal: North to South

Direction) Table 3G.1-20 Results of NASTRAN Analysis, Seismic Load (Horizontal: East to West

Direction) Table 3G.1-21 Results of NASTRAN Analysis, Seismic Load (Vertical: Upward Direction) Table 3G.1-22 Combined Forces and Moments: RCCV, Selected Load Combination CV-1 Table 3G.1-23 Combined Forces and Moments: RCCV, Selected Load Combination CV-7a Table 3G.1-24 Combined Forces and Moments: RCCV, Selected Load Combination CV-7b Table 3G.1-25 Combined Forces and Moments: RCCV, Selected Load Combination CV-11a Table 3G.1-26 Combined Forces and Moments: RCCV, Selected Load Combination CV-11b Table 3G.1-27 Sectional Thicknesses and Rebar Ratios of RCCV Used in the Evaluation Table 3G.1-28 Rebar and Concrete Stresses of RCCV: Selected Load Combination CV-1 Table 3G.1-29 Rebar and Concrete Stresses of RCCV: Selected Load Combination CV-7a Table 3G.1-30 Rebar and Concrete Stresses of RCCV: Selected Load Combination CV-7b Table 3G.1-31 Rebar and Concrete Stresses of RCCV: Selected Load Combination CV-11a Table 3G.1-32 Rebar and Concrete Stresses of RCCV: Selected Load Combination CV-11b Table 3G.1-33 Transverse Shear of RCCV Table 3G.1-34 Tangential Shear of RCCV Table 3G.1-35 Containment Liner Plate Strains (Max) Table 3G.1-36 Drywell Head Elements Stress Summary Table 3G.1-37 Diaphragm Floor (D/F) Slab Elements Stress Summary Table 3G.1-38 Diaphragm Floor (D/F) Slab Anchorage Structural Capacity Table 3G.1-39 Vent Wall Structural Elements Stress Summary

Page 9: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

ix

Table 3G.1-40 Reactor Shield Wall (RSW) Structural Element Stress Summary Table 3G.1-41 RPV Support Bracket Structural Elements Stress Summary Table 3G.1-42 Vent Wall and RPV Support Bracket Anchorage Structural Capacity Table 3G.1-43 Gravity Driven Cooling System (GDCS) Pool Structural Elements Stress

Summary Table 3G.1-44 Gravity Driven Cooling System (GDCS) Pool Anchorage Structural Capacity Table 3G.1-45 Combined Forces and Moments: RB, Selected Load Combination RB-4 Table 3G.1-46 Combined Forces and Moments: RB, Selected Load Combination RB-8a Table 3G.1-47 Combined Forces and Moments: RB, Selected Load Combination RB-8b Table 3G.1-48 Combined Forces and Moments: RB, Selected Load Combination RB-9a Table 3G.1-49 Combined Forces and Moments: RB, Selected Load Combination RB-9b Table 3G.1-50 Sectional Thicknesses and Rebar Ratios of RB Used in the Evaluation Table 3G.1-51 Rebar and Concrete Stresses of RB: Selected Load Combination RB-4 Table 3G.1-52 Rebar and Concrete Stresses of RB: Selected Load Combination RB-8a Table 3G.1-53 Rebar and Concrete Stresses of RB: Selected Load Combination RB-8b Table 3G.1-54 Rebar and Concrete Stresses of RB: Selected Load Combination RB-9a Table 3G.1-55 Rebar and Concrete Stresses of RB: Selected Load Combination RB-9b Table 3G.1-56 Transverse Shear of RB Table 3G.1-57 Factors of Safety for Foundation Stability Table 3G.1-58 Maximum Soil Bearing Stress Involving SSE Table 3G.1-59 Stress Calculation Results for Basemat Uplift Analysis Table 3G.2-1 Soil Spring Constants for the CB Analysis Model Table 3G.2-2 Equipment Load of CB Table 3G.2-3 Miscellaneous Structures, Piping, and Commodity Load of CB Table 3G.2-4 Equivalent Liner Temperature Distributions at Various Sections Table 3G.2-5 Maximum Vertical Acceleration Table 3G.2-6 Selected Load Combinations for the CB Table 3G.2-7 Results of NASTRAN Analysis: Dead Load Table 3G.2-8 Results of NASTRAN Analysis: Temperature Load (LOCA: Winter) Table 3G.2-9 Results of NASTRAN Analysis: Seismic Load (Horizontal: North to South

Direction) Table 3G.2-10 Results of NASTRAN Analysis: Seismic Load (Horizontal: East to West

Direction) Table 3G.2-11 Results of NASTRAN Analysis: Seismic Load (Vertical: Downward Direction) Table 3G.2-12 Combined Forces and Moments: Selected Load Combination CB-3 Table 3G.2-13 Combined Forces and Moments: Selected Load Combination CB-4 Table 3G.2-14 Combined Forces and Moments: Selected Load Combination CB-7 Table 3G.2-15 Combined Forces and Moments: Selected Load Combination CB-9 Table 3G.2-16 Sectional Thicknesses and Rebar Ratios Used in the Evaluation Table 3G.2-17 Rebar and Concrete Stresses (Basemat and Slabs): Selected Load Combination

CB-3 Table 3G.2-18 Rebar and Concrete Stresses (Walls): Selected Load Combination CB-3 Table 3G.2-19 Rebar and Concrete Stresses (Basemat and Slabs): Selected Load Combination

CB-4 Table 3G.2-20 Rebar and Concrete Stresses (Walls): Selected Load Combination CB-4

Page 10: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

x

Table 3G.2-21 Rebar and Concrete Stresses (Basemat and Slabs): Selected Load Combination CB-7

Table 3G.2-22 Rebar and Concrete Stresses (Walls): Selected Load Combination CB-7 Table 3G.2-23 Rebar and Concrete Stresses (Basemat and Slabs): Selected Load Combination

CB-9 Table 3G.2-24 Rebar and Concrete Stresses (Walls): Selected Load Combination CB-9 Table 3G.2-25 Calculation Results for Transverse Shear Table 3G.2-26 Factors of Safety for Foundation Stability Table 3G.2-27 Maximum Soil Bearing Stress Involving SSE Table 3G.3-1 Miscellaneous Structures and Commodity in Spent Fuel Pool Table 3G.3-2 Miscellaneous Structures, Piping, and Commodity Load on FB Floor Table 3G.3-3 Equivalent Liner Temperature Distributions at Various Sections Table 3G.3-4 Selected Load Combinations for the FB Table 3G.3-5 Results of NASTRAN Analysis: Dead Load Table 3G.3-6 Results of NASTRAN Analysis: Temperature Load (Winter) Table 3G.3-7 Results of NASTRAN Analysis: Seismic Load (Horizontal: North to South

Direction) Table 3G.3-8 Results of NASTRAN Analysis: Seismic Load (Horizontal: East to West

Direction) Table 3G.3-9 Results of NASTRAN Analysis: Seismic Load (Vertical: Upward Direction) Table 3G.3-10 Combined Forces and Moments: Selected Load Combination FB-4 Table 3G.3-11 Combined Forces and Moments: Selected Load Combination FB-8 Table 3G.3-12 Combined Forces and Moments: Selected Load Combination FB-9 Table 3G.3-13 Sectional Thicknesses and Rebar Ratios Used in the Evaluation Table 3G.3-14 Rebar and Concrete Stresses: Selected Load Combination FB-4 Table 3G.3-15 Rebar and Concrete Stresses: Selected Load Combination FB-8 Table 3G.3-16 Rebar and Concrete Stresses: Selected Load Combination FB-9 Table 3G.3-17 Transverse Shear of FB Table 3H-1 Cross Reference of Plant Environmental Data and Location Table 3H-2 Thermodynamic Environment Conditions Inside Containment Vessel for Normal

Operating Conditions Table 3H-3 Thermodynamic Environment Conditions Inside Reactor Building for Normal

Operating Conditions Table 3H-4 Thermodynamic Environment Conditions Inside Control Building for Normal

Operating Conditions Table 3H-5 Radiation Environment Conditions Inside Containment Vessel for Normal

Operating Conditions Table 3H-6 Radiation Environmental Qualification Conditions Inside Reactor Building Table 3H-7 Radiation Environmental Qualification Inside Control Building Table 3H-8 Thermodynamic Environment Conditions Inside Containment Vessel for Accident

Conditions Table 3H-9 Thermodynamic Environment Conditions Inside Reactor Building for Accident

Conditions Table 3H-10 Thermodynamic Environment Conditions Inside Control Room Zone for Accident

Conditions

Page 11: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xi

Table 3H-11 Radiation Environment Conditions Inside Containment Vessel for Accident Conditions

Table 3H-12 Room Heat Loads Table 3H-13 (Deleted) Table 3L-1 Comparison of Major Steam Dryer Configuration Parameters Table 3L-2 Specific Steam Dryer Load Definition Legend Table 3L-3 Typical Vibration Sensors Table 3L-4 Typical Sensor Locations and Types Table 3L-5 Applicable Data Reduction Method for Comparison to Criteria Table 3L-6 Parameters Used in Spectrum Generation Table 3L-7 Data Evaluation Methods to be Used for Each Component

Page 12: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xii

List of Illustrations Figure 3G.1-1. RB and FB Concrete Outline Plan at EL -11500 Figure 3G.1-2. RB and FB Concrete Outline Plan at EL 4650 Figure 3G.1-3. RB and FB Concrete Outline Plan at EL 17500 Figure 3G.1-4. RB and FB Concrete Outline Plan at EL 27000 Figure 3G.1-5. RB Concrete Outline Plan at EL 34000 Figure 3G.1-6. RB and FB Concrete Outline N-S Section Figure 3G.1-7. RB and FB Concrete Outline E-W Section Figure 3G.1-8. FE Model of RB/FB (Isometric View) Figure 3G.1-9. FE Model of RB/FB (Foundation Mat) Figure 3G.1-10. FE Model of RB/FB (RCCV Wall) Figure 3G.1-11. FE Model of RB/FB (RPV Pedestal) Figure 3G.1-12. FE Model of RB/FB (Top Slab) Figure 3G.1-13. FE Model of RB/FB (Suppression Pool Slab) Figure 3G.1-14. FE Model of RB/FB (External Wall: North Side) Figure 3G.1-15. FE Model of RB/FB (External Wall: East Side) Figure 3G.1-16. FE Model of RB/FB (Internal Wall on R7/F1 Column Line) Figure 3G.1-17. FE Model of RB/FB (RCCV Internals) Figure 3G.1-18. FE Model of RB/FB (RCCV Liner) Figure 3G.1-19. Soil Pressure at Rest Figure 3G.1-20. Sections Where Temperature Loads Are Defined Figure 3G.1-21. Condensation Oscillation (CO) Pressure Loads Figure 3G.1-22. Chugging (CHUG) Pressure Loads Figure 3G.1-23. Safety Relief Valve (SRV) Pressure Loads Figure 3G.1-24. Design Seismic Shears and Moments for RB and FB Walls Figure 3G.1-25. Design Seismic Shears and Moments for RCCV Figure 3G.1-26. Design Seismic Shears and Moments for RPV Pedestal and Vent Wall Figure 3G.1-27. Seismic Lateral Soil Pressure Figure 3G.1-28. Section Considered for Analysis Figure 3G.1-29. Force and Moment in Shell Element Figure 3G.1-30. Section Deformation for Dead Load Figure 3G.1-31. Section Deformation for Drywell Unit Pressure (1 MPa) Figure 3G.1-32. Section Deformation for Wetwell Unit Pressure (1 MPa) Figure 3G.1-33. Section Deformation for Temperature Load (Normal Operation: Winter) Figure 3G.1-34. Section Deformation for Temperature Load (LOCA After 6 min.: Winter) Figure 3G.1-35. Section Deformation for Temperature Load (LOCA After 72 hr.: Winter) Figure 3G.1-36. Section Deformation for Seismic Load (Horizontal: North to South) Figure 3G.1-37. Section Deformation for Seismic Load (Horizontal: East to West) Figure 3G.1-38. Section Deformation for Seismic Load (Vertical: Upward) Figure 3G.1-39. Flow Chart for Structural Analysis and Design Figure 3G.1-40. Reinforcing Steel of Foundation Mat: Plan Figure 3G.1-41. Reinforcing Steel of Foundation Mat: Section A-A Figure 3G.1-42. Reinforcing Steel of RCCV Wall Figure 3G.1-43. Reinforcing Steel of Suppression Pool Slab Figure 3G.1-44. Reinforcing Steel of Top Slab

Page 13: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xiii

Figure 3G.1-45. Reinforcing Steel of RPV Pedestal Figure 3G.1-46. Reinforcing Steel of IC/PCCS Pool Girder Figure 3G.1-47. List of RB Wall and Slab Reinforcement Figure 3G.1-48. Liner Anchor Figure 3G.1-49. Liner Plate Plans Figure 3G.1-50. Liner Plate Development Elevation Figure 3G.1-51. Drywell Head Figure 3G.1-52. Equipment Hatch Figure 3G.1-53. Wetwell Hatch Figure 3G.1-54. Personnel Airlock Figure 3G.1-55. Diaphragm Floor Figure 3G.1-56. Diaphragm Floor Slab Anchor Figure 3G.1-57. RPV Support Bracket & Vent Wall Figure 3G.1-58. Reactor Shield Wall Figure 3G.1-59. GDCS Pool Figure 3G.1-60. Comparison of Basemat Deformation without Tension Springs (NS Direction

SSE) Figure 3G.1-61. Comparison of Basemat Deformation without Tension Springs (EW Direction

SSE) Figure 3G.1-62. Comparison of Basemat Sectional Moments (S to N SSE) Figure 3G.1-63. Comparison of Basemat Sectional Moments (W to E SSE) b) My in B-B Section Figure 3G.1-64. Comparison of Basemat Sectional Moments (E to W SSE) Figure 3G.1-65. Concrete Backfill in Sliding Evaluation Figure 3G.2-1. CB Concrete Outline Plan at EL -7400 and Foundation Reinforcement Figure 3G.2-2. CB Concrete Outline Plan at EL –2000/4850 and Section Details Figure 3G.2-3. CB Concrete Outline Plan at EL 9060, Section and Section Detail Figure 3G.2-4. FE Model of CB (Isometric View) Figure 3G.2-5. FE Model of CB (Foundation Mat) Figure 3G.2-6. FE Model of CB (External Wall: South Side) Figure 3G.2-7. FE Model of CB (External Wall: East Side) Figure 3G.2-8. FE Model of CB (Floor Slab: EL -2000) Figure 3G.2-9. FE Model of CB (Floor Slab: EL 4650) Figure 3G.2-10. Soil Pressure at Rest Figure 3G.2-11. Sections Where Temperature Loads Are Defined Figure 3G.2-12. Design Seismic Shears and Moments for CB Figure 3G.2-13. Seismic Lateral Soil Pressure Figure 3G.2-14. Force and Moment in Shell Element Figure 3G.2-15. Concrete Backfill in Sliding Evaluation Figure 3G.3-1. Sections Where Temperature Loads Are Defined Figure 3G.3-2. Section Considered for Analysis Figure 3G.3-3. Force and Moment in Shell Element Figure 3G.3-4. Reinforcing Steel of Spent Fuel Pool Walls Figure 3G.3-5. List of FB Wall and Slab Reinforcement Figure 3H-1. Control Room Habitability Area Figure 3J-1. Simplified Piping Models

Page 14: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xiv

Figure 3J-2. Representation of Pipe With Both Ends Supported With a Longitudinal Break Figure 3L-1. Chimney and Partition Assembly Figure 3L-2. ESBWR Steam Dryer Assembly

Page 15: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xv

Abbreviations And Acronyms List

Term Definition 10 CFR Title 10, Code of Federal Regulations A/D Analog-to-Digital AASHTO American Association of Highway and Transportation Officials AB Auxiliary Boiler ABS Auxiliary Boiler System ABWR Advanced Boiling Water Reactor ac / AC Alternating Current AC Air Conditioning ACF Automatic Control Function ACI American Concrete Institute ACS Atmospheric Control System AD Administration Building ADS Automatic Depressurization System AEC Atomic Energy Commission AFIP Automated Fixed In-Core Probe AGMA American Gear Manufacturer's Association AHS Auxiliary Heat Sink AISC American Institute of Steel Construction AISI American Iron and Steel Institute AL Analytical Limit ALARA As Low As Reasonably Achievable ALWR Advanced Light Water Reactor ANS American Nuclear Society ANSI American National Standards Institute AOO Anticipated Operational Occurrence AOV Air Operated Valve API American Petroleum Institute APLHGR Average Planar Linear Head Generation Rate APRM Average Power Range Monitor APR Automatic Power Regulator APRS Automatic Power Regulator System ARI Alternate Rod Insertion ARMS Area Radiation Monitoring System ASA American Standards Association ASD Adjustable Speed Drive ASHRAE American Society of Heating, Refrigerating, and Air Conditioning Engineers ASME American Society of Mechanical Engineers AST Alternate Source Term

Page 16: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xvi

Abbreviations And Acronyms List

Term Definition ASTM American Society of Testing Methods AT Unit Auxiliary Transformer ATLM Automated Thermal Limit Monitor ATWS Anticipated Transients Without Scram AV Allowable Value AWS American Welding Society AWWA American Water Works Association B&PV Boiler and Pressure Vessel BAF Bottom of Active Fuel BHP Brake Horse Power BOP Balance of Plant BPU Bypass Unit BPWS Banked Position Withdrawal Sequence BRE Battery Room Exhaust BRL Background Radiation Level BTP NRC Branch Technical Position BTU British Thermal Unit BWR Boiling Water Reactor BWROG Boiling Water Reactor Owners Group CAV Cumulative absolute velocity C&FS Condensate and Feedwater System C&I Control and Instrumentation C/C Cooling and Cleanup CB Control Building CBHVAC Control Building HVAC CCI Core-Concrete Interaction CDF Core Damage Frequency CFR Code of Federal Regulations CIRC Circulating Water System CIS Containment Inerting System CIV Combined Intermediate Valve CLAVS Clean Area Ventilation Subsystem of Reactor Building HVAC CM Cold Machine Shop CMS Containment Monitoring System CMU Control Room Multiplexing Unit COL Combined Operating License COLR Core Operating Limits Report CONAVS Controlled Area Ventilation Subsystem of Reactor Building HVAC CPR Critical Power Ratio

Page 17: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xvii

Abbreviations And Acronyms List

Term Definition CPS Condensate Purification System CPU Central Processing Unit CR Control Rod CRD Control Rod Drive CRDA Control Rod Drop Accident CRDH Control Rod Drive Housing CRDHS Control Rod Drive Hydraulic System CRGT Control Rod Guide Tube CRHA Control Room Habitability Area CRT Cathode Ray Tube CS&TS Condensate Storage and Transfer System CSDM Cold Shutdown Margin CS / CST Condensate Storage Tank CT Main Cooling Tower CTVCF Constant Voltage Constant Frequency CUF Cumulative usage factor CWS Chilled Water System D-RAP Design Reliability Assurance Program DAC Design Acceptance Criteria DAW Dry Active Waste DBA Design Basis Accident dc / DC Direct Current DCS Drywell Cooling System DCIS Distributed Control and Information System DEPSS Drywell Equipment and Pipe Support Structure DF Decontamination Factor D/F Diaphragm Floor DG Diesel-Generator DHR Decay Heat Removal DM&C Digital Measurement and Control DOF Degree of freedom DOI Dedicated Operators Interface DOT Department of Transportation dPT Differential Pressure Transmitter DPS Diverse Protection System DPV Depressurization Valve DR&T Design Review and Testing DS Independent Spent Fuel Storage Installation DTM Digital Trip Module

Page 18: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xviii

Abbreviations And Acronyms List

Term Definition DW Drywell EB Electrical Building EBAS Emergency Breathing Air System EBHV Electrical Building HVAC ECCS Emergency Core Cooling System EDO Environmental Qualification Document EFDS Equipment and Floor Drainage System EFPY Effective full power years EHC Electrohydraulic Control (Pressure Regulator) ENS Emergency Notification System EOC Emergency Operations Center EOC End of Cycle EOF Emergency Operations Facility EOP Emergency Operating Procedures EPDS Electric Power Distribution System EPG Emergency Procedure Guidelines EPRI Electric Power Research Institute EQ Environmental Qualification ERICP Emergency Rod Insertion Control Panel ERIP Emergency Rod Insertion Panel ESF Engineered Safety Feature ETS Emergency Trip System FAC Flow-Accelerated Corrosion FAPCS Fuel and Auxiliary Pools Cooling System FATT Fracture Appearance Transition Temperature FB Fuel Building FBHV Fuel Building HVAC FCI Fuel-Coolant Interaction FCM File Control Module FCS Flammability Control System FCU Fan Cooling Unit FDDI Fiber Distributed Data Interface FFT Fast Fourier Transform FFWTR Final Feedwater Temperature Reduction FHA Fire Hazards Analysis FIV Flow-Induced Vibration FMCRD Fine Motion Control Rod Drive FMEA Failure Modes and Effects Analysis FPS Fire Protection System

Page 19: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xix

Abbreviations And Acronyms List

Term Definition FO Diesel Fuel Oil Storage Tank FOAKE First-of-a-Kind Engineering FPE Fire Pump Enclosure FTDC Fault-Tolerant Digital Controller FTS Fuel Transfer System FW Feedwater FWCS Feedwater Control System FWS Fire Water Storage Tank GCS Generator Cooling System GDC General Design Criteria GDCS Gravity-Driven Cooling System GE General Electric Company GE-NE GE Nuclear Energy GEN Main Generator System GETAB General Electric Thermal Analysis Basis GL Generic Letter GM Geiger-Mueller Counter GM-B Beta-Sensitive GM Detector GSIC Gamma-Sensitive Ion Chamber GSOS Generator Sealing Oil System GWSR Ganged Withdrawal Sequence Restriction HAZ Heat-Affected Zone HCU Hydraulic Control Unit HCW High Conductivity Waste HDVS Heater Drain and Vent System HEI Heat Exchange Institute HELB High Energy Line Break HEP Human error probability HEPA High Efficiency Particulate Air/Absolute HFE HFF

Human Factors Engineering Hollow Fiber Filter

HGCS Hydrogen Gas Cooling System HIC High Integrity Container HID High Intensity Discharge HIS Hydraulic Institute Standards HM Hot Machine Shop & Storage HP High Pressure HPNSS High Pressure Nitrogen Supply System HPT High-pressure turbine

Page 20: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xx

Abbreviations And Acronyms List

Term Definition HRA Human Reliability Assessment HSI Human-System Interface HSSS Hardware/Software System Specification HVAC Heating, Ventilation and Air Conditioning HVS High Velocity Separator HWCS Hydrogen Water Chemistry System HWS Hot Water System HX Heat Exchanger I&C Instrumentation and Control I/O Input/Output IAS Instrument Air System IASCC Irradiation Assisted Stress Corrosion Cracking IBC International Building Code IC Isolation Condenser ICD Interface Control Diagram ICS Isolation Condenser System IE Inspection and Enforcement IEB Inspection and Enforcement Bulletin IED Instrument and Electrical Diagram IEEE Institute of Electrical and Electronic Engineers IGSCC Intergranular Stress Corrosion Cracking IIS Iron Injection System ILRT Integrated Leak Rate Test IOP Integrated Operating Procedure IMC Induction Motor Controller IMCC Induction Motor Controller Cabinet IRM Intermediate Range Monitor ISA Instrument Society of America ISI In-Service Inspection ISLOCA Intersystem Loss of Coolant Accident ISLT In-Service Leak Test ISM Independent Support Motion ISMA Independent Support Motion Response Spectrum Analysis ISO International Standards Organization ITA Inspections, Tests or Analyses ITAAC Inspections, Tests, Analyses and Acceptance Criteria ITA Initial Test Program LAPP Loss of Alternate Preferred Power LCO Limiting Conditions for Operation

Page 21: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xxi

Abbreviations And Acronyms List

Term Definition LCW Low Conductivity Waste LD Logic Diagram LDA Lay down Area LD&IS Leak Detection and Isolation System LERF Large early release frequency LFCV Low Flow Control Valve LHGR Linear Heat Generation Rate LLRT Local Leak Rate Test LMU Local Multiplexer Unit LO Dirty/Clean Lube Oil Storage Tank LOCA Loss-of-Coolant-Accident LOFW Loss-of-feedwater LOOP Loss of Offsite Power LOPP Loss of Preferred Power LP Low Pressure LPCI Low Pressure Coolant Injection LPCRD Locking Piston Control Rod Drive LPMS Loose Parts Monitoring System LPRM Local Power Range Monitor LPSP Low Power Setpoint LWMS Liquid Waste Management System MAAP Modular Accident Analysis Program MAPLHGR Maximum Average Planar Linear Head Generation Rate MAPRAT Maximum Average Planar Ratio MBB Motor Built-In Brake MCC Motor Control Center MCES Main Condenser Evacuation System MCPR Minimum Critical Power Ratio MCR Main Control Room MCRP Main Control Room Panel MELB Moderate Energy Line Break MLHGR Maximum Linear Heat Generation Rate MMI Man-Machine Interface MMIS Man-Machine Interface Systems MOV Motor-Operated Valve MPC Maximum Permissible Concentration MPL Master Parts List MS Main Steam MSIV Main Steam Isolation Valve

Page 22: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xxii

Abbreviations And Acronyms List

Term Definition MSL Main Steamline MSLB Main Steamline Break MSLBA Main Steamline Break Accident MSR Moisture Separator Reheater MSV Mean Square Voltage MT Main Transformer MTTR Mean Time To Repair MWS Makeup Water System N-DCIS NonSafety-Related Distributed Control and Information System NBR Nuclear Boiler Rated NBS Nuclear Boiler System NCIG Nuclear Construction Issues Group NDE Nondestructive Examination NDRC National Defense Research Committee NDT Nil Ductility Temperature NFPA National Fire Protection Association NIST National Institute of Standard Technology NMS Neutron Monitoring System NOV Nitrogen Operated Valve NPHS Normal Power Heat Sink NPSH Net Positive Suction Head NRC Nuclear Regulatory Commission NRHX Non-Regenerative Heat Exchanger NS Non-seismic NSSS Nuclear Steam Supply System NT Nitrogen Storage Tank NTSP Nominal Trip Setpoint O&M Operation and Maintenance O-RAP Operational Reliability Assurance Program OBCV Overboard Control Valve OBE Operating Basis Earthquake OGS Offgas System OHLHS Overhead Heavy Load Handling System OIS Oxygen Injection System OLMCPR Operating Limit Minimum Critical Power Ratio OLU Output Logic Unit OOS Out-of-service ORNL Oak Ridge National Laboratory OSC Operational Support Center

Page 23: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xxiii

Abbreviations And Acronyms List

Term Definition OSHA Occupational Safety and Health Administration OSI Open Systems Interconnect P&ID Piping and Instrumentation Diagram PA/PL Page/Party-Line PABX Private Automatic Branch (Telephone) Exchange PAM Post Accident Monitoring PAR Passive Autocatalytic Recombiner PAS Plant Automation System PASS Post Accident Sampling Subsystem of Containment Monitoring System PCC Passive Containment Cooling PCCS Passive Containment Cooling System PCT Peak cladding temperature PCV Primary Containment Vessel PFD Process Flow Diagram PGA Peak Ground Acceleration PGCS Power Generation and Control Subsystem of Plant Automation System PH Pump House PL Parking Lot PM Preventive Maintenance PMCS Performance Monitoring and Control Subsystem of NE-DCIS PMF Probable Maximum Flood PMP Probable Maximum Precipitation PPQS Product Performance Qualification Specification PQCL Product Quality Check List PRA Probabilistic Risk Assessment PRMS Process Radiation Monitoring System PRNM Power Range Neutron Monitoring PS Plant Stack PSD Power Spectra Density PSS Process Sampling System PSWS Plant Service Water System PT Pressure Transmitter PWR Pressurized Water Reactor Q-DCIS Safety Related Distributed Control and Information System QA Quality Assurance RACS Rod Action Control Subsystem RAM Reliability, Availability and Maintainability RAPI Rod Action and Position Information RAT Reserve Auxiliary Transformer

Page 24: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xxiv

Abbreviations And Acronyms List

Term Definition RB Reactor Building RBC Rod Brake Controller RBCC Rod Brake Controller Cabinet RBCWS Reactor Building Chilled Water Subsystem RBHV Reactor Building HVAC RBS Rod Block Setpoint RBV Reactor Building Vibration RC&IS Rod Control and Information System RCC Remote Communication Cabinet RCCV Reinforced Concrete Containment Vessel RCCWS Reactor Component Cooling Water System RCPB Reactor Coolant Pressure Boundary RCS Reactor Coolant System RDA Rod Drop Accident RDC Resolver-to-Digital Converter REPAVS Refueling and Pool Area Ventilation Subsystem of Fuel Building HVAC RFP Reactor Feed Pump RG Regulatory Guide RHR Residual Heat Removal (function) RHX Regenerative Heat Exchanger RMS RMS

Root Mean Square Radiation Monitoring Subsystem

RMU Remote Multiplexer Unit RO Reverse Osmosis ROM Read-only Memory RPS Reactor Protection System RPV Reactor Pressure Vessel RRPS Reference Rod Pull Sequence RSM Rod Server Module RSPC Rod Server Processing Channel RSS Remote Shutdown System RSSM Reed Switch Sensor Module RSW Reactor Shield Wall RTIF Reactor Trip and Isolation Function(s) RTNDT Reference Temperature of Nil-Ductility Transition RTP Reactor Thermal Power RW Radwaste Building RWCU/SDC Reactor Water Cleanup/Shutdown Cooling RWE Rod Withdrawal Error

Page 25: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xxv

Abbreviations And Acronyms List

Term Definition RWM Rod Worth Minimizer SA Severe Accident SAR Safety Analysis Report SB Service Building S/C Digital Gamma-Sensitive GM Detector S/D Scintillation Detector S/DRSRO Single/Dual Rod Sequence Restriction Override S/N Signal-to-Noise S/P Suppression Pool SAS Service Air System SB&PC Steam Bypass and Pressure Control System SBO Station Blackout SBWR Simplified Boiling Water Reactor SCEW System Component Evaluation Work SCRRI Selected Control Rod Run-in SDC Shutdown Cooling SDM Shutdown Margin SDS System Design Specification SEOA Sealed Emergency Operating Area SER Safety Evaluation Report SF Service Water Building SFP Spent fuel pool SIL Service Information Letter SIT Structural Integrity Test SIU Signal Interface Unit SJAE Steam Jet Air Ejector SLC Standby Liquid Control (deleted) SLMCPR Safety Limit Minimum Critical Power Ratio SMU SSLC Multiplexing Unit SOV Solenoid Operated Valve SP Setpoint SPC Suppression Pool Cooling SPDS Safety Parameter Display System SPTMS Suppression Pool Temperature Monitoring Subsystem of Containment Monitoring System SR Surveillance Requirement SRM Source Range Monitor SRNM Startup Range Neutron Monitor SRO Senior Reactor Operator

Page 26: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xxvi

Abbreviations And Acronyms List

Term Definition SRP Standard Review Plan SRS Software Requirements Specification SRSRO Single Rod Sequence Restriction Override SRSS Square Root of the Sum of the Squares SRV Safety Relief Valve SRVDL Safety relief valve discharge line SSAR Standard Safety Analysis Report SSC(s) Structure, System and Component(s) SSE Safe Shutdown Earthquake SSLC Safety System Logic and Control SSPC Steel Structures Painting Council ST Spare Transformer STP Sewage Treatment Plant STRAP Scram Time Recording and Analysis Panel STRP Scram Time Recording Panel SV Safety Valve SWH Static water head SWMS Solid Waste Management System SY Switch Yard TAF Top of Active Fuel TASS Turbine Auxiliary Steam System TB Turbine Building TBCE Turbine Building Compartment Exhaust TBE Turbine Building Exhaust TBLOE Turbine Building Lube Oil Area Exhaust TBS Turbine Bypass System TBHV Turbine Building HVAC TBV Turbine Bypass Valve TC Training Center TCCWS Turbine Component Cooling Water System TCS Turbine Control System TCV Turbine Control Valve TDH Total Developed Head TEMA Tubular Exchanger Manufacturers' Association TFSP Turbine first stage pressure TG Turbine Generator TGSS Turbine Gland Seal System THA Time-history accelerograph TLOS Turbine Lubricating Oil System

Page 27: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

xxvii

Abbreviations And Acronyms List

Term Definition TLU Trip Logic Unit TMI Three Mile Island TMSS Turbine Main Steam System TRM Technical Requirements Manual TS Technical Specification(s) TSC Technical Support Center TSI Turbine Supervisory Instrument TSV Turbine Stop Valve UBC Uniform Building Code UHS Ultimate Heat Sink UL Underwriter's Laboratories Inc. UPS Uninterruptible Power Supply URS Ultimate Rupture Strength USE Upper Shelf Energy USM Uniform Support Motion USMA Uniform support motion response spectrum analysis USNRC United States Nuclear Regulatory Commission USS United States Standard UV Ultraviolet V&V Verification and Validation Vac / VAC Volts Alternating Current Vdc / VDC Volts Direct Current VDU Video Display Unit VW Vent Wall VWO Valves Wide Open WD Wash Down Bays WH Warehouse WS Water Storage WT Water Treatment WW Wetwell XMFR Transformer ZPA Zero Period Acceleration

Page 28: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-1

3G. DESIGN DETAILS AND EVALUATION RESULTS OF SEISMIC CATEGORY I STRUCTURES

This appendix presents the structural design and analysis for the Reactor Building, Control Building and Fuel Building of the ESBWR standard plant. It addresses all applicable items included in Appendix C to USNRC Standard Review Plan, NUREG-0800, Section 3.8.4. Drawings depicted in the DCD are not used for construction. Construction drawings will be issued under different contractual/industrial rules, but they will meet the technical licensing commitments made in the DCD.

3G.1 REACTOR BUILDING

The Reactor Building (RB) encloses the concrete containment and its internal systems, structures, and components. In addition, the RB contains the Isolation Condenser/Passive Containment Cooling (IC/PCC) pools and the services pools for storage of Dryer/Separator on the top of the concrete containment.

3G.1.1 Objective and Scope

The objective of this subsection is to document the structural design details, inputs and analytical results from the analysis of the ESBWR main building structures encased in the Reactor Building. The scope includes the design and analysis of the structure for normal, severe environmental, extreme environmental, and abnormal loads.

3G.1.2 Conclusions

The following are the major summary conclusions on the design and analysis of the Reactor Building, the concrete containment and the containment internal structures.

• Based on the results of finite element analyses performed in accordance with the design conditions identified in Subsections 3G.1.3 and 3G.1.5, stresses and/or strains in concrete, reinforcement, liner and containment internal structures are less than the allowable stresses and/or strains per the applicable regulations, codes or standards listed in Section 3.8.

• The factors of safety against floatation, sliding, and overturning of the structure under various loading combinations are higher than the required minimum.

• The thickness of the roof slabs and exterior walls are more than the minimum required to preclude penetration, perforation or spalling resulting from impact of design basis tornado missiles.

3G.1.3 Structural Description

3G.1.3.1 Description of the Reactor Building

3G.1.3.1.1 Reactor Building Structure

The RB structure and the containment structure share the same wall structure which encloses the Gravity-Driven Cooling System (GDCS) pools and the Suppression pool. The RB structure consists of the following areas that are not part of the containment structure.

Page 29: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-2

• RB super structure at and above the refueling floor, up to the support for the bridge crane, including the roof, is made of reinforced concrete floors and walls (floor slabs can also be composite structure). Roof trusses and their supporting columns are made of structural steel.

• Passive Containment Cooling System (PCCS) and Isolation Condenser (IC) heat exchanger pools, the separator/dryer storage pool, the reactor cavity and the buffer pool.

• Rooms at several elevation levels outside the containment but attaching to the containment structure.

• The main steam tunnel that consists of reinforced concrete walls and floor.

The key dimensions of the RB are summarized in Table 3.8-8. Figures 3G.1-1 through 3G.1-7 show the configurations of the RB.

The Fuel Building (FB) is integrated with the RB in the ESBWR standard plant. The RB and FB share a common wall between them and a large common basemat. The summary of the FB design is described in Section 3G.3.

3G.1.3.1.2 Containment and Containment Structure

The containment is a reinforced concrete containment vessel (RCCV), which encloses the reactor pressure vessel (RPV) and its related systems and components. The containment is divided into a drywell region and a wetwell region with an interconnecting vent system.

The key dimensions of the RCCV are summarized in Table 3.8-1. Figure 3.8-1 shows the configuration of the RCCV.

The containment structure boundary consists of the containment top slab with removable drywell head, the containment cylindrical wall that is also the outer wall of the suppression pool, the suppression pool floor slab, the RPV pedestal that encloses the volume under the RPV, and the basemat. The concrete containment is lined with a steel liner for leak-tightness. The containment cylindrical outer wall extends below the suppression pool floor slab to the basemat. This extension is not part of the containment pressure boundary, however, it supports the upper containment cylinder. The reinforced concrete basemat foundation supports the entire containment system, which includes the RPV pedestal, and extends to support the reactor building surrounding the containment. The outline drawings are shown in Figures 3G.1-1 through 3G.1-7.

3G.1.3.1.3 Reactor Building Structure/Containment Structure Connections

The RCCV and the RB structure are integrated by the IC/PCCS pool girders at the top of the containment and by floor slabs at elevations that are defined as part of the RB structure and the basemat. The IC/PCCS pool girders are deep reinforced concrete girders, and they are integrated with the containment top slab and with RB walls.

3G.1.3.1.4 Containment Internal Structures

The containment internal structures consist of the diaphragm floor slab, vent wall, Gravity-Driven Cooling System (GDCS) pool walls, reactor shield wall, and the RPV support bracket. These structures are shown in the general arrangement drawings in this appendix.

Page 30: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-3

The diaphragm floor slab acts as a barrier between the drywell and the wetwell. The diaphragm floor slab is supported on the reinforced concrete containment wall at its outer periphery and on the vent wall at its inner periphery. The diaphragm floor slab is a concrete-filled steel structure. The space between the floor slab top and bottom plates is filled with concrete. The slab is supported by a system of radial beams spaced evenly all around and spanning between the vent wall structure and the reinforced concrete containment wall.

The vent wall structure is also a concrete–filled steel design consisting of two concentric carbon steel cylinders connected together by vertical web plates evenly spaced all around. The vent wall structure is anchored at the bottom into the RPV pedestal and is restrained at the top by the diaphragm floor slab. The cylindrical annulus carries 12 vent pipes and 12 safety relief valve downcomer pipes with sleeves, from the drywell into the suppression pool. The space in the cylindrical annulus is filled with concrete.

There are three GDCS pools supported on top of the diaphragm floor slab. The pools on one side are contained by the reinforced concrete containment wall and on the other side by structural steel walls.

The reactor shield wall is a thick steel cylindrical structure that surrounds the RPV. It is supported by the RPV support brackets and the reactor pedestal. The function of the reactor shield wall is to attenuate radiation emanating from the RPV. In addition, the reactor shield wall provides structural support for the RPV stabilizer, the RPV insulation and miscellaneous equipment, piping and commodities. Openings are provided in the reactor shield wall to permit the routing of necessary piping to the RPV and to permit inservice inspection of the RPV and piping.

3G.1.4 Analytical Models

3G.1.4.1 Structural Models

The RB and the RCCV including its internal structures are analyzed as one integrated structure utilizing the finite element computer program NASTRAN. The finite element model consists of quadrilateral, triangular, and beam elements. The quadrilateral and triangular elements are used to represent the slabs and walls. Beam elements are used to represent columns and beams. The model is shown in Figures 3G.1-8 to 3G.1-18.

As shown in Figure 3G.1-8, the Fuel Building (FB) is also included in the model, because the FB is integrated with the RB. The model includes the whole (360°) portion of the RB including the RCCV and FB taking the application of nonaxisymmetrical loads and the asymmetric layout of the FB structure into consideration.

Liner plates of various thicknesses as shown in Figure 3G.1-48 are included in the model at locations of the pressure boundary of the containment. The liner plate nodal points are connected to the containment nodal points by rigid beams. The liner plate elements are shown in Figure 3G.1-18. Pressure loads in the containment are applied on the liner plate.

The vent wall and the diaphragm floor are concrete-filled structures consisting of steel plates and concrete. The infill concrete is neglected in analysis model conservatively. Steel plates including connecting rib plates and girders are modeled by shell elements. The GDCS pool, the reactor shield wall and the RPV support brackets are also included in the analysis model. These

Page 31: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-4

structures are modeled by shell elements, except the GDCS pool beams which are modeled by beam elements. The analysis model of these structures is shown in Figure 3G.1-17. For the GDCS pool, the detail stress evaluation is performed using a local model.

The following major penetrations in the concrete containment are included in the model in order to take local reduction of the wall stiffness into consideration. The penetrations in the model are shown in Figures 3G.1-10 and 3G.1-11.

• upper drywell equipment and personnel hatches

• lower drywell equipment and personnel hatches

• wetwell access hatch

• main steam and feedwater pipe penetrations.

Small penetrations in the containment are not modeled because their effects on the wall stiffness are negligible.

The nodal points are defined by a right hand Cartesian coordinate system X, Y, Z. This system, called the global coordinate system, has its origin located at the center of the containment at the bottom of the RPV, i.e., EL 0. The positive X axis is parallel with the IC/PCCS pool girder in the 180° direction of the containment; the Y axis is perpendicular to the IC/PCCS pool girder in the 90° direction of the containment; the Z axis is vertical upward. This coordinate system is shown in Figure 3G.1-8.

3G.1.4.2 Foundation Models

The foundation soil is represented by soil springs. The spring constants for rocking and translations are determined based on the following soil parameters which correspond to the Soft Site conditions described in Appendix 3A.

• Shear wave velocity: 300 m/s

• Unit weight: 0.0196 MN/m3 (2.00 t/m3)

• Shear modulus: 180 MN/m2 (1.835×104 t/m2)

• Poisson’s Ratio: 0.478

Soil springs are attached to the bottom of the foundation mat, and the constraints by side soil are not included in the model. The values of the soil springs used in the analysis are shown in Table 3G.1-1. The springs have perfectly elastic stiffness.

These spring values are multiplied by the foundation mat nodal point tributary areas to compute the spring constants assigned to the base slab nodal points.

3G.1.5 Structural Analysis and Design

3G.1.5.1 Site Design Parameters

The key site design parameters are located in Table 3G.1-2.

Page 32: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-5

3G.1.5.2 Design Loads, Load Combinations, and Material Properties

3G.1.5.2.1 Design Loads

3G.1.5.2.1.1 Dead Load (D) and Live Load (L and Lo) The weights of structures are evaluated using the following unit weights.

• reinforced concrete: 23.5 kN/m3

• plain concrete: 22.5 kN/m3

• steel: 77.0 kN/m3

Weights of major equipment, miscellaneous structures, piping, and commodities are summarized in Tables 3G.1-3 through 3G.1-5.

Live loads on the RB floor slabs are described in Subsection 3.8.4.3.1.1.

For the computation of global seismic loads, the value of floor live load is limited to the expected live load, Lo, during normal plant operation. The values of Lo are 25% of the above full floor live loads, L, when used in combination with seismic and dead loads as described in Subsection 3.8.4.3.1.1.

3G.1.5.2.1.2 Snow and Rain Load

The snow load and rain load is applied to the roof slabs and is taken as shown in Table 3G.1-2. One hundred percent of the snow load is applied when combined with seismic loads.

3G.1.5.2.1.3 Lateral Soil Pressure at Rest

The lateral soil pressure at rest is applied to external walls below grade and is based on soil properties given in Table 3G.1-2. Pressures to be applied to the walls are provided in Figure 3G.1-19.

3G.1.5.2.1.4 Wind Load (W)

The wind load is applied to the roof slabs and external walls above grade and is based on basic wind speed given in Table 3G.1-2.

3G.1.5.2.1.5 Tornado Load (Wt)

The tornado load is applied to the roof slabs and external walls above grade and its characteristics are given in Table 3G.1-2. The tornado load, Wt, is further defined by the following combinations:

Wt = Ww

Wt = Wp

Wt = Wm

Wt = Ww + 0.5Wp

Wt = Ww + Wm

Page 33: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-6

Wt = Ww + 0.5Wp + Wm

where,

Wt = Total Tornado Load

Ww = Tornado Wind Load

Wp = Tornado Differential Pressure Load

Wm = Tornado Missile Load

3G.1.5.2.1.6 Thermal Loads

Thermal loads are evaluated for the normal operating conditions and abnormal (LOCA) conditions. Figure 3G.1-20 shows the section location for temperature distributions for various structural elements, and Table 3G.1-6 shows the magnitude of equivalent linear temperature distribution.

The evaluation method of temperature effect on the concrete design is based on ACI 349-01 Commentary Figure RA.1.

The two cases, winter and summer, are considered in the analysis.

Stress-free temperature is 15.5°C.

3G.1.5.2.1.7 Pressure Loads

Table 3G.1-7 shows the pressure loads applied to the RCCV during normal operation, structural integrity test, and the LOCA. Pressure loads in the IC/PCCS pools are provided in Table 3G.1-8.

3G.1.5.2.1.8 Condensation Oscillation (CO) and Chugging (CHUG) Loads

The condensation oscillation (CO) and chugging (CHUG) pressure loads along with Dynamic Load Factors (DLF) are provided in Figures 3G.1-21 and 3G.1-22.

3G.1.5.2.1.9 SRV Loads

The SRV loads along with DLF are provided in Figure 3G.1-23.

3G.1.5.2.1.10 Steam Tunnel Subcompartment Pressure

The design pressure in the RB main steam tunnel to account for a main steam line break is 76.0 kPag (11.0 psig). Thermal loads need not be included due to short duration of the tunnel pressurization.

3G.1.5.2.1.11 Subcompartment Pressure in Other Compartments

For ESBWR, the Reactor Water Cleanup/Shutdown Cooling (RWCU/SDC) system is considered high energy during normal operation. The maximum design pressure inside the affected subcompartments from the high energy line break (HELB) of the system is 34.5 kPag (5.0 psig). Thermal loads need not be included due to short duration of subcompartment pressurization.

Page 34: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-7

3G.1.5.2.1.12 Annulus Pressurization (AP) Loads

The annulus pressurization (AP) loads due to FW and RWCU breaks are considered. AP loads contain pressure load and associated jet forces and pipe whip restraint loads.

3G.1.5.2.1.13 Design Seismic Loads

The design seismic loads are obtained by soil – structure interaction analyses, which are described in Appendix 3A. The seismic loads used for design are as follows:

• Figure 3G.1-24: design seismic shears and moments for RB and FB walls

• Figure 3G.1-25: design seismic shears and moments for RCCV

• Figure 3G.1-26: design seismic shears and moments for RPV Pedestal and Vent Wall

• Table 3G.1-9: maximum vertical acceleration

The seismic loads are composed of one vertical and two perpendicular horizontal components. The effects of the three components are combined based on the 100/40/40 method as described in Subsection 3.8.1.3.6.

Seismic lateral soil pressure for wall design is provided in Figure 3G.1-27 using the envelope pressure of the elastic procedure described in ASCE 4-98 Section 3.5.3.2 and SASSI results as described in Subsection 3A.8.8.

Seismic member forces for each section are obtained directly from the NASTRAN analysis using these seismic input loads.

3G.1.5.2.2 Load Combinations and Acceptance Criteria

Load combinations and acceptance criteria for the various elements of the RB complex are discussed on the following subsections.

3G.1.5.2.2.1 Reinforced Concrete Containment Vessel (RCCV)

Table 3.8-2 gives a detailed list of various Service and Factored load combinations with acceptance criteria per ASME Section III Division 2. Based on previous experience, critical load combinations are selected for the RCCV design. They are mainly combinations including LOCA loads and seismic loads as shown in Table 3G.1-10. The acceptance criteria for the selected combinations are also included in Table 3G.1-10.

3G.1.5.2.2.2 Steel Containment Components

Table 3.8-4 gives a detailed list of various load combinations with acceptance criteria per ASME Section III Division 1, Subsection NE. For the drywell head, the loads of W, W’, Ro, Ra and Y are not direct loads and their indirect effects through the supporting RCCV top slab are negligibly small.

3G.1.5.2.2.3 Containment Internal Structures

Table 3.8-7 gives a detailed list of various load combinations with acceptance criteria per ANSI/AISC N690.

Page 35: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-8

3G.1.5.2.2.4 Reactor Building (RB) Concrete Structures Including Pool Girders

Table 3.8-15 gives load combinations for the safety-related reinforced concrete structure. Based on previous experience, critical load combinations are selected for the RB design. They are mainly combinations including LOCA loads and seismic loads as shown in Table 3G.1-11. The acceptance criteria for the selected combinations are also included in Table 3G.1-11.

3G.1.5.2.3 Material Properties

3G.1.5.2.3.1 Concrete

Properties of concrete used for the design analyses are shown in Table 3G.1-12.

Concrete has a tendency to change properties when subjected to elevated temperatures. For the ESBWR design, reduction of concrete strength due to high temperature is determined based upon the average value of the following upper bound and lower bound equations excerpted from Reference 3G.1-1.

• Lower bound reduction factor

− φ = 1.0 - 0.0030 (T-21.1) 21.1°C (70°F) ≤ T ≤ 121.1°C (250°F)

− φ = 0.70 - 0.00083 (T-121.1) 121.1°C (250°F) ≤ T

• Upper bound reduction factor

− φ = 1.0 T ≤ 260.0°C (500°F)

− φ = 1.0 - 0.00081 (T-260.0) 260.0°C (500°F) ≤ T

Young’s modulus for concrete is also determined based upon the average value of the following upper bound and lower bound equations excerpted from Reference 3G.1-1.

• Lower bound reduction factor

− φ = 1.0 - 0.0069 (T-21.1) 21.1°C (70°F) ≤ T ≤ 93.3°C (200°F)

− φ = 0.50 - 0.0009 (T-93.3) 93.3°C (200°F) ≤ T

• Upper bound reduction factor

− φ = 1.0 - 0.00056 (T-21.1) 21.1°C (70°F) ≤ T ≤ 204.4°C (400°F)

− φ = 0.90 - 0.0015 (T-204.4) 204.4°C (400°F) ≤ T

The design temperature of the drywell is 171°C (340°F) as shown in Table 1.3-3, and it satisfies the concrete temperature limit, 177°C (350°F), for accident or short term period specified in ASME Section III, Subsection CC-3440.

3G.1.5.2.3.2 Reinforcing Steel

Reinforcing steel is deformed billet steel conforming to ASTM A-615 grade 60. Minimum yield strength, Fy, is 413.6 MPa (60 ksi).

Reinforcing steel also has tendency to decrease in strength at elevated temperatures. The reduction of reinforcing steel strength is based upon the following equation excerpted from Reference 3G.1-1.

Page 36: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-9

• Reduction Factor

− φ = 1.0 - 0.000873 (T-21.1) 21.1°C (70°F) ≤ T ≤ 204.4°C (400°F)

3G.1.5.2.3.3 Structural Steel

Properties of structural steel used for the design analyses are included in Table 3G.1-12.

3G.1.5.3 Stability Requirements

The RB foundations shall have the following safety factors against overturning and sliding. Because the impact on the stability by seismic load is larger than wind and tornado, the load combinations for W and Wt, which are shown in Table 3.8-14, are excluded.

Load Combination Overturning Sliding Floatation

D + H + E’ 1.1 1.1

D + F’ 1.1

Where D = Dead Load, F’ = Buoyant forces of design basis flood H = Lateral soil pressure, E’ = Safe Shutdown Earthquake

3G.1.5.4 Structural Design Evaluation

The evaluation of the containment structure, the containment internal structures, and the RB structures is based on the results from the load combinations indicated in Subsection 3G.1.5.2.2.

Figure 3G.1-28 shows the location of the sections that are selected for evaluation of reinforced concrete structures. They are selected, in principle, from the center and both ends of walls and slabs, where it is reasonably expected that the critical stresses appear based on engineering experience and judgment. The computer program SSDP-2D is used for the evaluation of stresses in rebar and concrete. The input to SSDP-2D consists of rebar ratios, material properties, and element geometry at the section under consideration together with the forces and moments from the NASTRAN analysis, which are shown in Tables 3G.1-13 through 3G.1-21. Element forces and moments listed in the tables are defined with relation to the element coordinate system shown in Figure 3G.1-29. Figures 3G.1-30 through 3G.1-38 indicate deformations of structures obtained by NASTRAN analyses for the loads corresponding to Table 3G.1-13 through 3G.1-21.

Figure 3G.1-39 shows a flow chart for the structural analysis and design. Figures 3G.1-40 through 3G.1-47 present the design drawings used for the evaluation of the containment and the Reactor Building structural design. Figures 3G.1-48 through 3G.1-50 show the design details of containment liner plate. Figures 3G.1-51 through 3G.1-54 show the design details of containment major penetrations. Figures 3G.1-55 through 3G.1-59 show the details of containment internal structures.

3G.1.5.4.1 Containment Structure

Tables 3G.1-22 through 3G.1-26 show the resultant combined forces and moments in accordance with the selected load combinations listed in Table 3G.1-10. Table 3G.1-27 lists the sectional

Page 37: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-10

thicknesses and rebar ratios used in the evaluation. At each section, in general, three elements are analyzed at azimuth 0°, 90° and 135°.

Tables 3G.1-28 through 3G.1-32 show the rebar and concrete stresses at these sections for the representative elements. Tables 3G.1-33 and 3G.1-34 summarize evaluation results for transverse shear and tangential shear in accordance with ASME Section III, Division 2, Article CC-3520.

Table 3G.1-35 shows the maximum strains of containment liner plate. Table 3G.1-36 shows the stress summary of drywell head.

3G.1.5.4.1.1 Containment Wall Including RPV Pedestal

Sections 1 through 9 shown in Figure 3G.1-28 are considered critical sections for the containment wall including the RPV pedestal. Maximum stress in the meridional rebar is found to be 286.4 MPa at Section 4 near the bottom of the RCCV Wetwell due to load combination CV-11a, as shown in Table 3G.1-31. The maximum stress in the circumferential rebar is found to be 338.0 MPa, which occurs also at Section 4, the bottom of the RCCV Wetwell due to load combination CV-11a, as shown in Table 3G.1-31. The maximum concrete stress is found to be 17.3 MPa, which occurs at Section 1 due to load combination CV-11a.

The maximum transverse shear stress is found to be 4.49 MPa at Section 1 for the load combination CV-11b. The amounts of shear ties provided satisfy the required values at all sections, as indicated in Table 3G.1-33.

As for tangential shear, the maximum stress of 4.20 MPa is found at Section 4, the bottom of the Wetwell, due to the combination CV-11b. The value is less than the allowable tangential shear stress provided by orthogonal reinforcement, which is described in Table 3.8-3. The amounts of reinforcement provided satisfy the required values at all sections, as indicated in Table 3G.1-34.

Table 3G.1-35 shows liner plate strains. The liner maximum strain is found to be 0.0044 at Section 6, which is within allowable limits given in Table CC-3720-1, ASME Code Section III, Division 2. The liner stresses during construction are kept within the allowable values found in Table CC-3720-1 of ASME Code Section III, Division 2 by limiting concrete placement pressure to a maximum of 167 kPa for the top slab, 48 kPa for the upper drywell/lower drywell wall and 32 kPa for the wetwell wall.

3G.1.5.4.1.2 Containment Top Slab and Suppression Pool Slab

Sections 12 through 17 are examined for the Containment Top Slab and Suppression Pool Slab. The locations of these sections are shown in Figure 3G.1-28. The maximum rebar stresses are found to be 272.6 MPa (39.54 ksi) at Section 17 due to the load combination CV-11b in the Top Slab, and 250.6 MPa (36.35 ksi) at Section 13 due to the combination CV-7a in the Suppression Pool Slab. The maximum concrete stresses are 10.0 MPa (1.45 ksi) and 19.7 MPa (2.86 ksi) in the Top Slab and the Suppression Pool Slab, respectively.

The maximum transverse shear stresses are found to be 1.11 MPa (0.16 ksi) at Section 17 for the load combination CV-7b in the Top Slab, and 4.21 MPa (0.61 ksi) at Section 12 for the combination CV-11a in the Suppression Pool Slab. The amounts of shear ties provided satisfy the required values at all sections, as indicated in Table 3G.1-33.

Page 38: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-11

Maximum Liner strain is found to be 0.0029 at Section 12 as shown in Table 3G.1-35 and is within ASME Code allowable.

3G.1.5.4.1.3 Containment Foundation Mat

Sections 10 and 11 are evaluated for the part of the concrete containment in the foundation mat. The sections are shown in Figure 3G.1-28. The maximum rebar stress is calculated as 281.7 MPa (40.86 ksi) at Section 11 just inside the RPV Pedestal and is shown in Table 3G.1-32. The maximum transverse shear stress of 1.37 MPa (0.2 ksi) is found also at the Section 11 for the load combination CV-11a.

The liner plate maximum strain is found to be 0.0004 at Section 11 as shown in Table 3G.1-35.

3G.1.5.4.1.4 Drywell Head

Figure 3G.1-51 shows the design details. The highest stresses are summarized in Table 3G.1-36. The stresses except PL+Pb+Q at service Level A and B are well within the allowable stress limits. PL+Pb+Q at service Level A and B exceeds allowable, however, it meets all requirements for simplified elastic-plastic analysis stipulated in NE-3228.3 of ASME B & PV Code, Sec.III.

Simplified Elastic-Plastic Analysis

The range of primary plus secondary stress intensity Sn is 798 MPa (116 ksi) and the allowable of 3Sm1 is 456 MPa (66.1 ksi) from Table 3G.1-36. Sn exceeds 3Sm1, so simplified elastic-plastic analysis is required. The results of comparison against each requirement of NE-3228.3 are as follows.

(1) NE-3228.3 (a)

The range of primary plus secondary membrane plus bending stress intensity, excluding thermal bending stress is 394 MPa (57.1 ksi) from the result of FEM analysis.

(2) NE-3228.3 (b)

The values of Sa used for entering the design fatigue curve is multiplied by the factor Ke. The values of m and n are decided as 3 and 0.2 respectively from Table NE-3228.3(b)-1 of ASME B & PV Code, Sec. III. Because Sm1 is 156 MPa (22.6 ksi) from Table 5-2, 3·m·Sm1 is calculated as 1368 MPa (198 ksi). Sn = 798 MPa (116 ksi) is between 3·Sm1 = 456 MPa (66.1 ksi) and 3·m·Sm1 = 1368 MPa (198 ksi), so Ke is calculated by the following Formula:

( ) ( ) ( )e n m1K 1.0 1 n n m 1 S 3 S 1= + − ⋅ − ⋅ ⋅ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ =2.5

(3) NE-3228.3 (c)

Fatigue evaluation is conducted as follows:

Sa = Ke·Sn = 1995 MPa (290 ksi)

E1 = 207GPa (30000 ksi)

E2 = 194GPa (28100 ksi)

Where

Page 39: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-12

E1: Modulus of elasticity given on the design fatigue curve from Figure I-9.1 of Appendix I of Sec. III.

E2: Modulus of elasticity at 340°F (170°C) from Table TM-1 of Sec. II, Part D

Sa’ = Sa·(E1/E2) = 2138 MPa (310 ksi)

Sa for 10 cycles is 3999 MPa (580 ksi) from Table I-9.1 (UTS ≤ 80 ksi) and N for Sa’ = 2138 MPa (310 ksi) is obtained as 37 from Table I-9.1, General Note (b). So the requirement of NE-3228.3 (c) is satisfied.

(4) NE-3228.3 (d)

Because an accident temperature Ta is not a cyclic load, the thermal ratcheting can be neglected.

(5) NE-3228.3 (e)

From Table NE-3228.3(b)-1, the maximum temperature Tmax is 370°C(700°F) for carbon steel. Ta is 171°C (340°F), so it satisfies this requirement.

(6) NE-3228.3 (f)

Specified minimum yield strength Sy and specified minimum tensile strength Su of SA-516 Gr. 483 MPa (70 ksi) are 262 MPa (38 ksi) and 483 MPa (70 ksi) respectively. The ratio of Sy to Su is calculated as 0.543. This value is below 0.80. So it satisfies this requirement.

Fatigue Evaluation

Fatigue evaluation is performed in accordance with ASME B&PV Code Section III, Subsection NE-3221.5(d) in which the limits on peak stress intensities as governed by fatigue are considered and satisfied when the Service Loadings meet the stipulated condtion.

3G.1.5.4.2 Containment Internal Structures

Tables 3G.1-37 through 3G.1-44 show the summary of stress analysis results for containment internal structures.

The type of analyses for various loads considered for the containment internal structures, such as diaphragm floor, vent wall, RPV support bracket (RPVSB), reactor shield wall and GDCS pool are:

(1) Dead load

Static analysis is performed for the dead load to all containment internal structures. Hydrostatic loads of pool water are also applied statically to vent wall and GDCS pool.

(2) Pressure load

Static analysis is performed for the pressure load (Po and Pa) applied to diaphragm floor and vent wall.

(3) Thermal load

Static analysis is performed for the thermal load (To and Ta) to all internal structures. All steel temperature is the same as atmospheric temperature. The temperature of the intermediate node of VW rib plate is the average value of outer and inner plate ones.

Page 40: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-13

(4) Seismic load

Static analyses are performed for the seismic load on diaphragm floor, vent wall, RPV support bracket and reactor shield wall in the integral NASTRAN model, and on GDCS pool in the GDCS pool local model.

In this response spectra analysis, it is assumed that all pool water mass is distributed uniformly on the GDCS pool wall and RCCV wall. This is considered as a conservative assumption, therefore sloshing is not considered in GDCS pool local model. For integral NASTRAN model, however, sloshing load is considered as the static pressure load on DF upper surface and static reaction load from GDCS pool wall. The results from integral NASTRAN model due to these loads are used for the structural integrity evaluation of the structures other than GDCS pool, while the results from GDCS pool local model are used for evaluation of GDCS pool itself.

(5) Hydrodynamic load

Static analysis is performed for the hydrodynamic load (CO, CH and SRV) on vent wall taking DLF = 2 into account.

(6) Pipe Break loads consist of Annulus Pressurization (AP) load, jet impingement and pipe-whip restraint loads

These loads acting on the RSW are first analyzed for dynamic response using the NASTRAN beam model. The resulting maximum values of bending moment and shear force are then applied to the integral NASTRAN static analysis model.

The Absolute Sum (ABS) method is used to combine the stresses due to dynamic loads, such as seismic, hydrodynamic and AP loads, for all steel structures except for the GDCS Pool for which the SRSS method is applied.

3G.1.5.4.2.1 Diaphragm Floor

Design of Structural Components

The design of the diaphragm floor is based on the elastic analysis results obtained from model described in Section 3G.1.4. Figure 3G.1-55 shows design details. Table 3G.1-37 summarizes the highest stresses in various structural elements of the D/F slab. All stresses are within allowable stress limits.

Design of Anchorage

Figure 3G.1-56 shows diaphragm floor anchorage into the RCCV wall. Rebars have been used for anchoring the steel plates. Threaded couplers have been used so that the anchor bars can be connected after installation of the reinforcing steel of the RCCV wall. The anchorage is designed so as to avoid interference with the RCCV reinforcing steel. Anchorage requirements for various loading combinations and the capacity of anchorage provided is shown in Table 3G.1-38.

3G.1.5.4.2.2 Vent Wall Structure

Design of Structural Components

Page 41: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-14

Figure 3G.1-57 shows the design details. Highest stresses in inner cylinder, outer cylinder and the web plates are summarized in Table 3G.1-39. The stresses are shown to be within allowable stress limits.

Design of Anchorage

Figure 3G.1-57 shows vent wall anchorage into the RCCV wall. Rebars have been used for anchoring the steel plates. Threaded couplers have been used so that the anchor bars can be connected after installation of the reinforcing steel of the RCCV wall. The anchorage is designed so as to avoid interference with the RCCV reinforcing steel. Anchorage requirements for various loading combinations and the capacity of anchorage provided is shown in Table 3G.1-42.

3G.1.5.4.2.3 Reactor Shield Wall (RSW)

The reactor shield wall is designed to resist the loads and loading combinations discussed in Subsections 3G.1.5.2. Annulus pressurization (AP) loads are also considered.

Figure 3G.1-58 shows the design details. The highest stresses are summarized in Table 3G.1-40. The stresses are well within the allowable stress limits.

3G.1.5.4.2.4 RPV Support Bracket

Design of Structural Components

Figure 3G.1-57 shows the design details. The calculated stresses in various elements of the support bracket are shown in Table 3G.1-41 and are within allowable stress limits.

Design of Anchorage

Figure 3G.1-57 shows RPV support bracket anchorage into the RCCV wall. Rebars have been used for anchoring the steel plates. Threaded couplers have been used so that the anchor bars can be connected after installation of the reinforcing steel of the RCCV wall. The anchorage is designed so as to avoid interference with the RCCV reinforcing steel. Anchorage requirements for various loading combinations and the capacity of anchorage provided is shown in Table 3G.1-42.

3G.1.5.4.2.5 Gravity Driven Cooling System (GDCS) Pool

Design of Structural Components

Figure 3G.1-59 shows the design details. Highest stresses are summarized in Table 3G.1-43. The stresses are within allowable stress limits.

Design of Anchorage

Threaded mechanical coupler with anchor bars have been used as shown in Figure 3G.1-59. Table 3G.1-44 shows the anchorage requirements and capacity of anchorage provided.

3G.1.5.4.3 Reactor Building

Tables 3G.1-45 through 3G.1-49 show the resultant combined forces and moments in accordance with the selected load combinations listed in Table 3G.1-11. Table 3G.1-50 lists the sectional

Page 42: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-15

thicknesses and rebar ratios used in the evaluation. At each section, in general, three elements are analyzed at azimuth 0°, 90° and 135° (or 45°).

Tables 3G.1-51 through 3G.1-55 show the rebar and concrete stresses at these sections for the representative elements. Table 3G.1-56 summarizes evaluation results for transverse shear in accordance with ACI 349, Chapter 11.

Sections 18 through 31 shown in Figure 3G.1-28 are analyzed for the RB outside the containment. Sections 18 to 23 are selected for the RB shear walls, Section 24 for the basemat outside the containment, Sections 25 to 27 for the RB slabs, Sections 28 to 30 for the IC/PCCS pool girders and Section 31 for the Main Steam tunnel wall and slab.

3G.1.5.4.3.1 RB Shear Walls

The maximum rebar stress of 364.9 MPa (52.9 ksi) is found in the vertical rebar at Section 21 due to the load combination RB-9b as shown in Table 3G.1-55. The maximum horizontal rebar stress is found to be 355.6 MPa (51.6 ksi) also at Section 23 due to the load combination RB-9b as shown in Table 3G.1-55. The maximum transverse shear force is found to be 5.18 MN/m (29.6 kips/in) against the shear strength of 5.29 MN/m (30.2 kips/in) at Section 20, the top of the cylindrical wall below the RCCV wall.

3G.1.5.4.3.2 RB Foundation Mat Outside Containment

Section 24 is selected for the foundation mat outside the containment at the junction with the cylindrical wall below the RCCV wall. The maximum rebar stress of 164.4 MPa (23.8 ksi) is found in the top rebar as shown in Table 3G.1-54. The maximum bottom rebar stress is found to be 134.5 MPa (19.5 ksi) also as shown in Table 3G.1-54. The maximum transverse shear force is found to be 12.67 MN/m (72.35 kips/in) against the shear strength of 14.18 MN/m (80.97 kips/in).

3G.1.5.4.3.3 RB Floor Slabs

Sections 25 to 27 are selected for the floor slabs at elevations EL 4650, EL 17500 and EL 27000 (see Figure 3G.1- 28) at their junction with the RCCV. Floor slabs are composite structures, which are reinforced by rebars at their top surfaces and by steel plates at the bottom surfaces, as described in Subsection 3.8.4.1.1. However, the slabs surrounding the Main Steam (MS) tunnel are constructed of conventional reinforced concrete. Among the elements at Sections 26 and 27, Element #96113 and 98424 are included in the MS tunnel slabs.

The maximum rebar stress of 350.8 MPa (50.9 ksi) is found at Section 26 as shown in Table 3G.1-55, whereas the maximum stress of steel plate is found to be 161.8 MPa (23.5 ksi) at Section 27 as shown in Table 3G.1-55. The maximum transverse shear force is found to be 7.54 MN/m (43.05 kips/in) against the shear strength of 7.70 MN/m (43.97 kips/in).

3G.1.5.4.3.4 Pool Girders

The maximum rebar stress of 351.0 MPa (50.9 ksi) is found in the horizontal rebar at Section 29 as shown in Table 3G.1-55, whereas the maximum vertical rebar stress is found to be 284.8 MPa (41.3 ksi) also at Section 29 as shown in Table 3G.1-55. The maximum transverse shear force is found to be 0.28 MN/m (1.6 kips/in) against the shear strength of 2.90 MN/m (16.6 kips/in).

Page 43: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-16

3G.1.5.4.3.5 Main Steam Tunnel Floors and Walls

Section 31 is selected for the MS tunnel wall (Element #150122) and slabs (Elements #96611 and #98614). The MS tunnel is composed of the reinforced concrete structures as described in Subsection 3G.1.5.4.3.3.

The maximum rebar stress is found to be 220.7 MPa (32.0 ksi) in Table 3G.1-51, and the maximum transverse shear force is found to be 0.50 MN/m (2.86 kips/in) against the shear strength of 1.55 MN/m (8.85 kips/in).

3G.1.5.5 Foundation Stability

The Reactor Building, the concrete containment and the Fuel Building share a common foundation. The stabilities of the foundation against overturning, sliding and floatation are evaluated. The energy approach is used in calculating the factor of safety against overturning.

The factors of safety against overturning, sliding and floatation are given in Table 3G.1-57. All of these meet the acceptance criteria given in Table 3.8-14. In the sliding evaluation the gap between the building and excavated soil is backfilled with concrete up to the top level of the basemat as shown in Figure 3G.1-65.

The maximum bearing stresses shown in Table 3G.1 58 are evaluated using the Energy Balance Method (Reference 3G.1 2). In order to verify the results, toe pressures obtained by the FE analyses using the RB/FB global model are compared with the values in Table 3G.1 58. As a result, the bearing pressures calculated by the Energy Balance Method envelop the pressures of FE analyses.

A series of parametric analyses are performed to verify the assumptions and results of the global FE analysis is used as the baseline for the basemat design.

• Lateral variations of soil stiffness are evaluated using the global FE model. Analyses are performed assuming “Hard spot” and “Soft spot” under the RPV Pedestal area.

• Construction loads are evaluated in the design of the basemat. The analyses focus on the response of the basemat during the early stage of construction when it could be susceptible to differential loading and deformations.

• The analyses are performed to confirm acceptability of allowable total and differential settlement that are specified over the length of the foundation.

Details are provided in Subsections 3G.1.5.5.2 through 3G.1.5.5.4.

3G.1.5.5.1 Effect of Basemat Uplift

As described in Appendix 3G.1.4.2, the foundation soil is represented by elastic soil springs which resist both compression and tension. However, actual foundation soil cannot bear tensile force. This difference may have an influence on the stresses in the basemat, if the basemat is uplifted due to design loads. Therefore, analyses to evaluate the effect of potential uplift of the basemat are performed using the RB/FB global FE model shown in Figure 3G.1 8.

An iterative approach is used. Based on the result from the initial analysis, the tension capability is removed in the next iteration for those springs that are in tension. This iterative process is continued until there are no more springs in tension.

Page 44: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-17

Analyses are performed for the horizontal SSE loads. Figures 3G.1 60 through 3G.1 64 show the comparison of the sectional deformations of the basemat and the bending moments generated in the basemat respectively at the final step of iteration. In the area close to the RCCV wall, bending moments are higher than that of the linear analysis results; however the resulting stresses in the concrete and reinforcement for the design “SSE + LOCA” load combination are still below the code allowables with large margins as shown in Table 3G.1 59. Therefore, it can be concluded that the effect of uplift is negligible to the linear analysis using the global FE model.

3G.1.5.5.2 Effect of Horizontal Variation of Soil Spring

To account for potential horizontal variation of foundation soil stiffness over the basemat width, stiff soil springs are considered under the RPV Pedestal area assuming linear variation to the edge of the mat. The RPV Pedestal was selected because it produces the largest clear span for the mat and is likely to be the first structure constructed on the mat. This is used as the “Hard Spot”. In addition, the inverted variation, i.e. softer soil springs assumed under the RPV Pedestal area, is also considered and called the “Soft Spot”. Based on the analysis results for these soil conditions, some of the “Soft Spot” case results predict larger mat bending moments than the uniform soil condition. However, the DCD design envelopes the results of horizontal variation of soil spring as long as the ratio of spring stiffness at the basemat center to that at the basemat edge does not exceed 3. This spring stiffness ratio converts to 3 (1.7) for the corresponding shear wave velocity ratio.

3G.1.5.5.3 Effect of Construction Sequence

The basemat design is checked against the loads expected during construction of the basemat. The RB/FB basemat is divided into 7 zones for concrete pour and these zones are investigated for three possible construction sequences. The moment differences between sequences considered are negligibly small in comparison with the moments used in the basemat design. In addition to basemat construction sequence, the impact of the building structures construction sequence, i.e., RPV Pedestal, RCCV and walls, on the basemat design is also investigated. The evaluation results confirm that the building structures construction sequence has negligible effect on the basemat design. These studies include horizontal soil spring variations, “Hard Spot” and “Soft Spot” as described in Subsection 3G.1.5.5.2.

3G.1.5.5.4 Foundation Settlement

The basemat design is checked against the normal and differential settlement of the RB/FB. It is found that the basemat can resist the maximum mat foundation corner settlement of 103 mm (4.0 in.) and the settlement averaged at four corners of 65 mm (2.6 in.). The allowable differential settlement specified in Section 2.0 is 77 mm (3.0 in.) across the basemat under linearly varying stiffness of soil condition (gradient condition). The estimated differential settlement between buildings (RB/FB and CB) is 85 mm (3.3 in.).

3G.1.5.6 Tornado Missile Evaluation

The minimum thickness required to prevent penetration and concrete spalling is evaluated. The methods and procedures are shown in Section 3.5.3.1.1. The minimum thickness required is less

Page 45: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-18

than the minimum 1000 and 700 mm thickness provided for the RB external walls and roof, respectively.

3G.1.6 References

3G.1-1 Burns & Roe, "State-of-the-Art Report on High Temperature Concrete Design," prepared for US. Department of Energy, Document No. DOE/CH/94000-1, November 1985.

3G.1-2 Tseng, W.S. and Liou, D.D., “Simplified Methods for Predicting Seismic basemat Uplift of Nuclear Power Plant Structures, Transactions of the 6th International Conference on SmiRT”, Paris, France, August 1981.

Page 46: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-19

Table 3G.1-1

Soil Spring Constants for the RB Analysis Model

Direction of Spring Loads Stiffness

(MN/m/m2)

X-direction All 9.107 Horizontal

Y-direction All 9.654

Horizontal Seismic Loads 38.35 Vertical

Other Loads 13.66

Page 47: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-20

Table 3G.1-2

Site Design Parameters

Parameter Value(s) Soil: Minimum shear wave velocity, m/s (ft/s) 300 (1000) Maximum Ground Water Level, m (ft) 0.61 (2.0) below grade Maximum Flood Level, m (ft) 0.30 (1.0) below grade Maximum Ground Snow Load, kPa (lbf/ft2)** 2.394 (50) Design Temperatures (0% exceedance values) Summer, °C (°F) 46.1 (115) Winter, °C (°F) -40.0 (-40) Seismology: For seismic design parameters, refer to Subsection 3.7.1. Extreme Wind Basic wind speed (100 year recurrence interval), m/s (mi/hr)* 67.1 (150) Exposure Category Exposure D Tornado Maximum Tornado wind speed, m/s (mi/hr) 147.5 (330) Maximum Rotational Speed, m/s (mi/hr) 116.2 (260) Maximum Translational Speed, m/s (mi/hr) 31.3 (70) Radius, m (ft) 45.7 (150) Maximum Pressure Drop, kPa (psi) 16.6 (2.4) Maximum Rate of Pressure Drop, kPa/s (psi/s) 11.7 (1.7) Missile Spectrum Spectra I of SRP 3.5.1.4, rev. 2

applied to full building. Maximum Rainfall** Design rainfall, cm/hr (in/hr) 49.3 (19.4)

Note * Equivalent to 62.6 m/s (140 mi/hr) 50-year recurrence interval speed with importance factor of 1.15 per ASCE 7-02.

** Based on probable maximum precipitation (PMP) for one hour over 2.6 km2 (one square mile) with a ratio of 5 minutes to one hour PMP of 0.32 as found in National Weather Source Publication Hydrometeorology Report No. 52 (HMR-52). 49.3 cm/hr (19.4 in/hr) for maximum rainfall rate is selected for design. The maximum short term rate selected is 15.7 cm (6.2 in) in 5 minutes. The roof scuppers are designed to handle the PMP. When used in combination with the snow pack on the ground, the roof is designed for 2873 Pa (60 psf) as live load category on all Seismic Category I structures. ASCE 7-02 requirements for snow are used to analyze the various roof geometries and heights.

Page 48: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-21

Table 3G.1-3

Equipment and Hydrostatic Loads inside RCCV

Description Weight Reactor Pressure Vessel (normal operating condition) 21600 kN Drywell Top Head (including refueling facilities bulkhead plate) 1100 kN

Top Slab a. Liner below slab 2.5 kN/m2 b. Miscellaneous attachments below slab 2.4 kN/m2

Upper Drywell a. Wall Liner 2.7 kN/m2 b. Personal Airlock (EL17500) 200 kN c. Equipment Hatch (EL17500) 110 kN d. Miscellaneous attachments to wall 2.4 kN/m2

GDCS Pool a. Water (H=6.8 m) 67 kN/m2

Wetwell a. Water (H=5.5 m) HWL 54 kN/m2 b. Wall Liner 1.6 kN/m2 c. Floor Liner 2.4 kN/m2 d. Access Hatch (EL13570) 90 kN e. Quenchers (12 units) 510 kN f. Miscellaneous attachments to wall 2.4 kN/m2

Lower Drywell a. Wall Liner 3.1 kN/m2 b. Floor Liner 0.6 kN/m2 c. Sacrificial (basaltic) concrete (H=1.6 m) 36 kN/m2 d. Personal Airlock (EL-6400) 200 kN e. Equipment Hatch (EL-6400) 110 kN f. Miscellaneous attachments to wall 2.4 kN/m2

RCCV Internal Structures except Diaphragm Floor a. Equipment and piping on the slab 2.4 kN/m2

Diaphragm Floor (excluding GDCS pool areas) a. Equipment and piping on the slab 9.8 kN/m2

Page 49: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-22

Table 3G.1-4

Equipment and Hydrostatic Loads in RB Pools

Description Weight Remarks Reactor Cavity Pool a. Water (H=6.7m) 66 kN/m2 b. Wall Liner 1.0 kN/m2 c. Floor Liner 1.6 kN/m2

Dryer / Separator Pool a. Water (H=6.7m) 66 kN/m2 b. Wall Liner 1.0 kN/m2 c. Floor Liner 1.6 kN/m2 d. Steam Dryer, Steam Separator 66 kN/m2 During refueling

Fuel Buffer Pool a. Water (H=6.7m) 66 kN/m2 b. Wall Liner 1.0 kN/m2 c. Floor Liner 1.6 kN/m2 d. Fuel Storage Racks 153 kN/m2 During refueling

IC / PCCS Pool a. Water (H=4.8m) 47 kN/m2 b. Wall Liner 1.0 kN/m2 c. Floor Liner 1.6 kN/m2 d. IC heat exchanger 333 kN/unit e. PCCS heat exchanger 233 kN/unit

Fuel Transfer Tube Pool a. Water (H=11.64m) 114 kN/m2 b. Wall Liner 1.0 kN/m2 c. Floor Liner 1.6 kN/m2

IC / PCCS Expansion Pools a. Water (H=4.8m) 47 kN/m2 b. Wall Liner 1.0 kN/m2 c. Floor Liner 1.6 kN/m2

Dryer/Separator Storage Pool Gate 300 kN Reactor Well Gate 50 kN Fuel Transfer Channel Pool Gate 50 kN

Page 50: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-23

Table 3G.1-5

Miscellaneous Structures, Piping, and Commodity Loads on RB Floor

Elevation (mm) Weights Remarks

52,400 2.4 kN/m2 (50psf)

34,000 2.4 kN/m2 (50psf)

27,000 2.4 kN/m2 (50psf)

17,500 2.4 kN/m2 (50psf)

20.0 kN/m2 (415psf) Main Steam Tunnel

13,570 2.4 kN/m2 (50psf)

9,060 2.4 kN/m2 (50psf)

4,650 2.4 kN/m2 (50psf)

-1,000 2.4 kN/m2 (50psf)

-6,400 2.4 kN/m2 (50psf)

-11,500 2.4 kN/m2 (50psf)

Page 51: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-24

Table 3G.1-6

Equivalent Linear Temperature Distributions at Various Sections

Equivalent Linear Temperature*3 (°C) Side*2 Normal Operation

Winter DBA (6 min)

Winter DBA (72 hr)

Winter Section*

1

1 2 Td Tg Td Tg Td Tg

C1 DW RM 33.5 38.1 34.7 45.2 58.2 127.3

C2 WW RM 26.5 26.7 27.4 32.0 47.0 101.0

C3 SP RM 28.2 29.5 28.8 32.7 45.2 90.8

C4 SP RM 28.2 29.5 28.7 32.4 45.2 90.8

C5 DW IP 49.4 12.8 50.6 17.6 83.4 36.0

C6 DW XP 49.4 12.8 50.6 17.7 83.4 36.0

C7 DW RM 33.5 39.3 34.5 45.5 53.9 121.2

M1 DW GR 27.5 23.9 27.5 23.9 27.5 23.9

M2 RM GR 12.9 -5.2 12.9 -5.2 12.9 -5.2

P1 IP DP 43.0 0.0 43.3 1.5 64.0 65.1

P2 IP XP 43.0 0.0 44.2 0.3 109.8 0.0

W1 RM RM 10.0 0.0 10.0 0.0 10.0 0.0

W2 RM GR 13.0 -4.9 13.0 -4.9 13.0 -4.9

W3 RM AT -17.7 42.3 -17.7 42.3 -17.7 42.3

S1 RM RM 10.0 0.0 10.0 0.0 10.0 0.0

S2 RM AT -20.0 36.0 -20.0 36.0 -20.0 36.0 Note *1: See Figure 3G.1-20 for the location of sections. Note *2: DW: Drywell, WW: Wetwell Air Space, SP: Suppression Pool, IP: IC/PCCS Pool, XP: Expansion Pool,

RM: RB Room outside Containment, GR: Ground, AT: Air Note *3: Td: Average Temperature

Tg: Surface Temperature Difference (positive when temperature at Side 1 is higher)

Page 52: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-25

Table 3G.1-7

Pressure Loads Inside RCCV

Event Drywell pressure

in kPag (psig) Wetwell pressure

in kPag (psig) Note

Normal operation 5.2 (0.75) 5.2 (0.75)

SIT 1 356.8 (51.8) 356.8 (51.8) Maximum pressure

SIT 2 310 (45) 32.5 (4.75) Maximum differential pressure

LOCA (6 minutes) 257 (37.3) 241 (35.0)

LOCA (72 hours) 310 (45.0) 310 (45.0)

Table 3G.1-8

Pressure Loads Inside IC/PCCS Pools

Event IC/PCCS pool pressure

in kPag (psig)

Normal operation 34.5 (5)

LOCA 48.3 (7)

Page 53: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-26

Table 3G.1-9

Maximum Vertical Acceleration

52.40 110 1.25 52.40 9101 1.2034.00 109 0.83 9102 1.8227.00 108 0.73 9103 3.1422.50 107 0.73 9104 2.2617.50 106 0.73 9105 2.3213.57 105 0.74 9106 2.999.06 104 0.73 9107 2.804.65 103 0.78 9108 2.61

-1.00 102 0.76 34.00 9091 1.29-6.40 101 0.68 9092 1.06

-11.50 2 0.63 27.00 9081 1.16-15.50 1 0.51 9082 0.99

9083 1.0934.00 209 0.90 9084 1.3127.00 208 0.88 9085 0.9717.50 206 0.73 22.50 9071 1.6013.57 205 0.78 9072 1.319.06 204 0.65 9073 2.034.65 203 0.69 9074 1.31

-1.00 202 0.59 9075 1.16-6.40 201 0.59 17.50 9061 1.79

9062 1.4917.50 701 1.10 9063 0.8214.50 702 1.04 9064 1.8411.50 703 0.92 9065 1.428.50 704 0.77 99064 1.07

7.4625 705 0.70 13.57 9051 0.814.65 706, 303 0.67 9052 1.46

2.4165 377 0.64 9.06 9041 0.88-1.00 302 0.59 9042 1.42

-2.753 376 0.51 4.65 9031 1.17-6.40 301 0.50 9032 0.97

9033 1.029034 1.519035 1.38

-1.00 9021 1.129022 1.459023 1.019024 0.899025 1.349026 1.579027 0.88

-6.40 9011 0.929012 0.929013 1.35

RPV Pedestal/Vent Wall

RCCV Wall

RB/FB Walls RB/FB Slabs

Max. VerticalAcceleration (g)

Elev.(m)

Elev.(m)

NodeNo.

Max. VerticalAcceleration (g)

NodeNo.

Note : See Figure 3A.7-4 for the node numbers.

Page 54: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-27

Table 3G.1-10

Selected Load Combinations for the RCCV

Load Combination Category

No.*2 D L Pt Pa Ta E’ Ra SRV CO CHUG AcceptanceCriteria*1

SIT (maximum pressure) CV-1 1.0 1.0 1.0 S LOCA (1.5Pa) 6 minutes CV-7a 1.0 1.0 1.5 1.0 1.0 1.0 1.5 U LOCA (1.5Pa) 72 hours CV-7b 1.0 1.0 1.5 1.0 1.0 1.0 1.5 U LOCA + SSE 6 minutes CV-11a 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 U LOCA + SSE 72 hours CV-11b 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 U

Note: *1: S = Allowable Stress as in ASME Section III, Div. 2, Subsection CC-3430 for Service Load Combination. U = Allowable Stress as in ASME Section III, Div. 2, Subsection CC-3420 for Factored Load Combination. *2: Based on Table 3.8-2

Table 3G.1-11

Selected Load Combinations for the RB

Load Combination Category

No. *2 D L Pa*3 To Ta

*3 E’ W

Acceptance Criteria*1

Severe Environmental RB-4 1.05 1.3 1.3 1.3 U LOCA (1.5Pa) 6 minutes RB-8a 1.0 1.0 1.5 1.0 U LOCA (1.5Pa) 72 hours RB-8b 1.0 1.0 1.5 1.0 U LOCA + SSE 6 minutes RB-9a 1.0 1.0 1.0 1.0 1.0 U LOCA + SSE 72 hours RB-9b 1.0 1.0 1.0 1.0 1.0 U

Note: *1: U = Required section strength based on the strength design method per ACI 349. *2: Based on Table 3.8-15 *3: Pa and Ta are accident pressure load within the containment and thermal load generated by

LOCA, respectively. Pa and Ta are indirect loads, but their effects are considered in the RB design.

Page 55: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-28

Table 3G.1-12

Material Constants for Design Calculations

Reinforced Concrete Steel Basemat Others Temperature f’c=4000psi f’c=5000psi (°C) 27.6MPa 34.5MPa

Carbon Steel Liner

Stainless Steel Liner

Structural Steel

Young’s Temperature <21 2.49×104 2.78×104

Modulus Loads 93 1.81×104 2.03×104

(MPa) 204 1.62×104 1.81×104

2.00×105

Other Loads 2.49×104 2.78×104 2.00×101 2.00×105 Poisson’s Ratio 0.17 0.3

Thermal Expansion (m/m°C) 9.90×10-6 1.17×10-5 1.52×10-5 1.17×10-5 Weight Density (MN/m3) 0.0235 0.0770

Page 56: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-29

Table 3G.1-13

Results of NASTRAN Analysis, Dead Load

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 0.064 -5.383 0.162 -0.159 -0.910 0.015 -0.024 -0.280 Pedestal 5013 -0.340 -6.070 0.256 -0.101 -0.559 -0.001 -0.013 -0.078 Bottom 5024 -0.697 -6.037 0.010 -0.060 -0.418 0.002 0.010 -0.0202 RPV 6006 0.035 -5.280 0.276 0.009 0.015 0.030 0.038 -0.039 Pedestal 6013 -0.026 -5.365 0.399 -0.053 -0.059 0.008 -0.014 0.014 Mid-Height 6024 0.068 -4.008 -0.430 0.014 -0.110 0.012 0.024 0.0753 RPV 6606 0.045 -3.874 0.723 0.237 1.691 0.149 0.009 -0.762 Pedestal 6613 0.021 -3.930 -0.042 0.173 1.593 -0.179 0.021 -0.732 Top 6624 0.111 -3.788 0.254 0.200 1.575 0.183 -0.028 -0.7094 RCCV 1806 -0.458 -4.796 0.153 -0.006 -0.134 0.007 0.000 0.017 Wetwell 1813 -0.553 -4.707 0.175 -0.017 -0.059 0.002 0.001 0.058 Bottom 1824 -0.441 -5.239 -0.086 -0.017 -0.100 0.003 -0.004 0.0375 RCCV 2606 -0.142 -4.294 0.201 0.003 -0.028 0.001 0.002 -0.074 Wetwell 2613 -0.196 -4.310 0.172 -0.026 -0.065 0.002 -0.003 -0.039 Mid-Height 2624 -0.224 -4.718 -0.043 -0.005 -0.023 0.001 0.000 -0.0696 RCCV 3406 -0.107 -3.635 0.344 0.031 0.244 0.013 0.013 -0.103 Wetwell 3413 -0.013 -4.040 0.131 -0.016 -0.082 -0.071 0.022 0.004 Top 3424 -0.070 -4.068 -0.010 0.005 0.022 -0.008 0.028 0.0037 RCCV 3606 0.025 -3.246 0.282 -0.010 0.122 0.006 0.020 0.137 Drywell 3613 0.127 -3.625 0.157 0.060 0.325 -0.067 -0.016 0.245 Bottom 3624 -0.039 -4.070 0.044 0.056 0.307 -0.005 0.024 0.1378 RCCV 4006 0.492 -2.715 0.193 -0.188 -0.473 -0.030 0.015 0.242 Drywell 4013 0.508 -3.702 0.278 -0.040 -0.379 0.008 -0.009 0.151 Mid-Height 4976 0.028 -3.324 0.148 -0.001 -0.181 -0.004 -0.008 0.1049 RCCV 4406 0.426 -2.171 -0.112 -0.357 -1.785 -0.034 -0.009 0.448 Drywell 4413 -0.353 -3.760 0.154 -0.196 -1.039 0.009 -0.007 0.230 Top 4424 0.055 -2.608 0.113 -0.047 -0.473 0.006 0.002 0.09610 Basemat 80003 -0.595 -0.810 0.121 4.897 5.313 -0.041 0.282 -0.229 @ Center 80007 -0.620 -0.834 0.110 4.916 5.313 -0.039 -0.040 -0.366

80012 -0.613 -0.880 0.111 4.908 5.307 -0.037 -0.349 -0.05411 Basemat 80206 -0.515 -0.686 0.188 1.271 1.864 1.201 1.394 -1.308 Inside 80213 -0.617 -0.863 0.198 2.480 0.266 -0.150 -0.073 -1.959 RPV Pedestal 80224 -0.692 -1.183 0.106 0.339 2.657 -0.226 -1.803 -0.16512 S/P Slab 83306 0.143 0.603 -0.221 1.342 0.958 -0.041 0.934 -0.028 @ RPV 83313 0.358 0.483 -0.106 1.364 0.962 0.038 0.943 0.029

83324 0.302 0.633 0.039 1.336 0.941 -0.043 0.931 -0.03013 S/P Slab 83406 0.169 0.502 -0.205 -0.866 0.327 -0.007 0.324 0.001 @ Center 83413 0.433 0.341 -0.001 -0.856 0.313 0.000 0.329 0.001

83424 0.352 0.525 -0.003 -0.863 0.305 -0.002 0.324 -0.00114 S/P Slab 83506 0.190 0.400 -0.199 -0.873 -0.026 -0.011 -0.139 0.003 @ RCCV 83513 0.475 0.293 0.040 -0.891 -0.042 -0.002 -0.131 0.003

83524 0.384 0.488 -0.004 -0.889 -0.040 -0.002 -0.135 -0.00115 Topslab 98120 1.121 0.285 0.420 -0.445 -0.268 -0.295 0.053 0.296 @ Drywell Head 98135 2.720 0.205 -0.181 -0.695 0.247 0.119 -0.073 0.343 Opening 98104 0.078 0.714 -0.090 -0.215 -1.358 0.287 0.011 0.26816 Topslab 98149 1.693 -0.351 0.511 -0.802 -0.379 0.114 -0.046 -0.291 @ Center 98170 1.280 -0.056 0.057 -0.802 -1.028 0.062 0.004 -0.013

98109 0.112 0.525 -0.024 -0.693 -0.901 0.156 0.095 0.06217 Topslab 98174 0.792 -0.177 0.206 -0.784 -0.782 -0.199 -0.176 0.064 @ RCCV 98197 0.263 0.022 -0.214 -0.374 1.158 0.148 0.046 0.723

98103 -0.160 0.376 0.027 1.875 0.296 0.212 0.932 0.113

Page 57: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-30

Table 3G.1-13

Results of NASTRAN Analysis, Dead Load (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 0.098 -7.187 0.532 -0.213 -1.573 0.012 -0.039 -0.487 Below RCCV 13 0.235 -5.597 0.423 -0.507 -2.677 0.003 -0.006 -0.802 Bottom 24 0.190 -6.139 -0.209 -0.540 -2.860 0.005 0.000 -0.84019 Wall 806 -0.039 -6.071 0.155 0.024 -0.035 -0.020 0.010 -0.114 Below RCCV 813 -0.215 -5.476 0.359 -0.027 -0.048 -0.010 -0.013 -0.187 Mid-Height 824 -0.156 -6.045 -0.195 -0.031 -0.008 -0.006 0.001 -0.20520 Wall 1606 -0.601 -5.326 0.088 0.105 0.505 0.004 -0.004 -0.212 Below RCCV 1613 -0.707 -5.187 0.244 0.097 0.598 0.003 0.000 -0.254 Top 1624 -0.592 -5.727 -0.141 0.095 0.561 0.001 -0.006 -0.22921 Exterior Wall 20011 -0.548 -3.821 -0.508 0.028 0.278 -0.021 0.065 0.179 @ EL-11.50 20023 -0.005 -1.413 -0.527 0.070 -0.326 -0.004 -0.137 -0.187 ~-10.50m 30010 -0.193 -2.243 -0.046 -0.303 -1.717 0.018 0.013 0.402

30020 -0.043 -1.266 -0.257 0.183 -0.649 -0.058 0.154 0.22140001 -0.040 -1.297 0.230 0.184 -0.648 0.060 -0.152 0.21140011 -0.324 -2.649 -0.012 -0.375 -2.020 -0.009 -0.001 0.487

22 Exterior Wall 22011 0.221 -3.131 0.658 -0.011 0.061 0.009 -0.018 0.056 @ EL-4.65 22023 0.020 -1.547 -0.466 -0.161 -0.010 -0.019 0.102 0.012 ~-6.60m 32010 -0.005 -1.819 0.064 0.001 0.038 0.001 0.000 -0.019

32020 -0.046 -2.033 -0.065 -0.059 -0.002 -0.005 -0.054 -0.00842001 -0.057 -2.108 -0.060 -0.076 -0.004 0.002 0.039 -0.00242011 -0.311 -2.271 -0.112 -0.002 0.031 -0.003 0.002 -0.012

23 Exterior Wall 24211 -0.192 -1.804 0.074 -0.067 -0.442 0.004 -0.006 -0.022 @ EL22.50 24224 -0.034 -1.037 0.295 0.031 -0.043 -0.043 -0.064 -0.034 ~24.60m 34210 -0.006 -0.760 0.088 0.001 -0.034 0.002 0.003 0.001

34220 0.048 -0.915 -0.153 0.052 -0.026 -0.009 0.041 0.00144201 0.026 -1.078 -0.327 0.044 -0.013 0.015 -0.047 -0.002

24 Basemat 90140 0.241 -0.797 -0.158 -1.395 -1.122 2.519 -1.759 2.016 @ Wall 90182 -0.255 -0.326 -0.066 0.661 -1.041 -0.319 0.232 0.645 Below RCCV 90111 -0.385 -0.561 0.033 -0.920 0.830 -0.397 0.692 0.13825 Slab 93140 -0.161 0.140 0.087 0.077 0.097 -0.067 0.120 -0.097 EL4.65m 93182 0.143 0.091 0.000 0.028 0.111 0.008 -0.008 -0.148 @ RCCV 93111 0.054 0.172 -0.030 0.131 0.027 0.005 -0.139 -0.00426 Slab 96144 -0.094 0.147 0.184 0.047 0.063 -0.045 0.104 -0.081 EL17.5m 96186 0.284 -0.071 -0.021 -0.003 -0.004 -0.002 -0.003 -0.035 @ RCCV 96113 -0.065 0.538 -0.051 -0.176 0.016 0.000 0.198 0.02727 Slab 98472 0.379 0.078 0.055 0.161 0.242 -0.194 0.224 -0.249 EL27.0m 98514 0.024 0.144 0.045 0.029 0.087 0.023 -0.003 -0.159 @ RCCV 98424 -0.118 0.419 0.009 0.706 0.196 -0.050 -0.981 -0.06728 Pool Girder 123054 0.442 -2.495 -0.798 0.051 0.033 0.054 -0.011 -0.028 @ Storage Pool 123154 1.379 -0.505 -0.627 0.083 0.031 0.100 0.018 0.00829 Pool Girder 123062 0.476 0.604 0.306 -0.024 -0.166 0.028 -0.001 -0.090 @ Cavity 123162 -1.398 0.167 0.181 -0.075 -0.057 0.023 0.089 0.03930 Pool Girder 123067 0.491 -2.417 1.408 0.011 -0.049 -0.076 -0.119 -0.061 @ Fuel Pool 123167 0.518 -0.609 1.216 0.038 0.027 0.015 -0.030 0.00931 MS Tunnel 150122 -0.026 0.047 0.280 0.022 0.045 0.016 -0.010 -0.042 Wall and Slab 96611 -0.011 0.296 -0.014 0.062 -0.081 -0.052 -0.073 0.017

98614 -0.021 -0.175 -0.019 0.010 -0.511 -0.062 -0.051 0.030

Page 58: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-31

Table 3G.1-14

Results of NASTRAN Analysis, Drywell Unit Pressure (1 MPa)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 -3.691 -4.672 -0.082 1.293 7.769 0.037 -0.011 3.421 Pedestal 5013 -3.771 -4.277 -0.247 1.264 7.674 -0.004 -0.002 3.458 Bottom 5024 -3.625 -3.457 0.045 1.335 7.195 -0.035 0.029 3.1092 RPV 6006 4.551 -4.403 -0.466 -0.166 -0.605 -0.012 0.044 -0.493 Pedestal 6013 4.467 -4.272 -0.254 -0.166 -0.652 -0.012 0.020 -0.489 Mid-Height 6024 5.180 -2.748 -0.354 0.183 -0.345 -0.003 -0.054 -0.2113 RPV 6606 2.350 -4.274 0.036 -0.252 -1.748 -0.293 0.218 1.031 Pedestal 6613 1.827 -4.806 -0.359 -0.255 -1.239 0.271 -0.171 0.803 Top 6624 2.250 -4.596 0.028 -0.261 -1.874 -0.239 0.162 1.0784 RCCV 1806 0.548 3.676 -0.563 0.281 1.664 0.002 -0.001 0.216 Wetwell 1813 0.515 2.795 -0.040 0.275 1.709 -0.001 -0.002 0.288 Bottom 1824 0.628 4.314 0.023 0.279 1.489 -0.007 0.003 0.2135 RCCV 2606 1.528 3.662 -0.616 0.015 0.513 0.036 -0.001 0.191 Wetwell 2613 1.262 2.468 -0.012 0.038 0.404 -0.005 -0.001 0.201 Mid-Height 2624 1.510 4.224 -0.032 0.144 0.326 -0.005 0.003 0.1156 RCCV 3406 4.379 3.739 -0.076 -1.035 -5.767 1.331 -1.003 1.977 Wetwell 3413 3.269 2.059 -0.415 -0.713 -4.144 -1.211 0.767 1.514 Top 3424 2.985 4.111 0.796 -0.667 -4.226 1.473 -0.897 1.4987 RCCV 3606 4.452 7.434 -0.032 0.160 1.050 1.441 -0.406 1.617 Drywell 3613 3.451 5.759 -0.371 0.362 2.279 -1.270 0.152 2.109 Bottom 3624 3.474 9.458 0.714 0.560 2.852 1.534 -0.152 1.9038 RCCV 4006 1.108 7.713 0.010 0.168 1.110 0.190 0.265 -1.516 Drywell 4013 1.577 5.589 0.372 -0.188 0.078 0.072 -0.031 -0.846 Mid-Height 4976 2.955 8.498 -0.503 0.112 0.457 0.002 -0.004 -1.0479 RCCV 4406 -0.539 7.823 0.930 1.550 10.447 0.000 0.047 -2.609 Drywell 4413 0.389 5.174 0.469 1.175 8.381 0.132 0.071 -2.780 Top 4424 2.733 7.185 -0.455 1.209 7.161 0.053 0.007 -2.12710 Basemat 80003 2.658 2.970 -0.031 -17.349 -16.644 0.022 -0.451 0.335 @ Center 80007 2.689 2.989 -0.021 -17.339 -16.636 0.026 0.064 0.548

80012 2.676 3.012 -0.016 -17.355 -16.630 0.025 0.541 0.07411 Basemat 80206 2.759 2.811 0.000 -12.124 -12.135 -1.542 -1.227 0.879 Inside 80213 2.814 3.036 -0.113 -13.892 -10.394 0.075 -0.011 1.558 RPV Pedestal 80224 2.812 2.787 -0.038 -10.824 -13.369 0.135 1.711 0.04712 S/P Slab 83306 -1.209 0.977 -0.125 -3.755 -2.157 -0.050 -1.321 0.019 @ RPV 83313 -1.410 0.822 -0.015 -3.752 -2.180 0.027 -1.331 -0.001

83324 -1.148 0.999 -0.001 -3.808 -2.215 0.002 -1.357 -0.00413 S/P Slab 83406 -0.659 0.353 -0.049 0.528 -1.319 -0.039 -0.919 -0.001 @ Center 83413 -0.708 0.337 -0.049 0.526 -1.337 0.011 -0.914 -0.002

83424 -0.653 0.347 0.034 0.514 -1.313 0.006 -0.933 0.00014 S/P Slab 83506 -0.458 0.124 -0.003 3.051 -0.101 -0.011 -0.699 -0.013 @ RCCV 83513 -0.452 0.198 -0.053 3.034 -0.117 0.004 -0.699 0.000

83524 -0.522 0.088 0.035 3.076 -0.066 0.003 -0.714 0.00015 Topslab 98120 -3.451 1.215 1.603 3.872 2.802 1.932 1.005 -3.076 @ Drywell Head 98135 -10.627 -1.883 -0.732 4.187 -1.235 0.130 0.675 -4.326 Opening 98104 -1.044 3.871 -1.765 2.884 11.255 -1.647 -1.381 -2.72616 Topslab 98149 -5.608 4.248 -2.829 3.306 1.495 0.396 0.330 1.923 @ Center 98170 -4.342 2.378 -1.380 4.089 4.865 -0.242 -0.150 -0.276

98109 0.320 2.192 -0.396 4.793 7.944 -1.042 -0.385 -0.92017 Topslab 98174 -0.929 2.977 -1.063 2.722 3.390 1.749 1.000 -0.642 @ RCCV 98197 -0.271 3.130 -0.121 0.773 -7.522 -0.703 -0.301 -5.157

98103 1.994 3.158 -0.433 -7.748 0.454 -1.512 -5.099 -0.911

Page 59: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-32

Table 3G.1-14

Results of NASTRAN Analysis, Drywell Unit Pressure (1 MPa) (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 -0.811 3.022 -0.520 0.541 3.152 -0.009 0.024 1.051 Below RCCV 13 -0.629 2.747 -0.123 0.574 3.275 -0.001 -0.001 1.019 Bottom 24 -0.982 3.180 0.076 0.606 3.445 -0.005 0.004 1.07519 Wall 806 0.122 3.122 -0.450 -0.007 0.032 0.012 -0.010 0.100 Below RCCV 813 0.192 2.524 -0.104 -0.004 0.033 0.006 0.024 0.196 Mid-Height 824 0.054 3.360 0.101 0.024 -0.025 0.004 -0.001 0.18120 Wall 1606 0.822 3.045 -0.486 -0.313 -1.810 0.001 0.000 0.509 Below RCCV 1613 0.798 2.208 -0.073 -0.319 -1.796 -0.004 -0.001 0.541 Top 1624 0.875 3.602 0.068 -0.317 -1.988 -0.003 0.003 0.58921 Exterior Wall 20011 0.027 0.595 0.041 0.179 0.562 0.013 0.005 0.204 @ EL-11.50 20023 0.012 -0.081 -0.105 -0.056 0.036 -0.002 0.001 0.020 ~-10.50m 30010 0.283 -0.179 -0.012 0.230 1.172 -0.028 -0.013 -0.230

30020 0.099 -0.301 -0.045 -0.096 0.024 0.029 0.034 0.00140001 0.051 -0.249 0.183 -0.088 0.099 -0.016 -0.008 -0.01740011 -0.156 0.065 -0.027 0.318 1.534 0.012 0.000 -0.332

22 Exterior Wall 22011 0.055 0.671 -0.099 0.009 0.005 0.005 0.004 -0.136 @ EL-4.65 22023 -0.005 -0.241 -0.101 -0.001 0.025 -0.005 0.015 -0.006 ~-6.60m 32010 0.212 0.107 0.003 0.011 0.091 0.002 0.000 0.044

32020 0.015 -0.457 0.369 0.016 0.035 -0.007 -0.003 0.02542001 -0.013 -0.383 0.406 0.016 0.029 -0.009 -0.001 0.00042011 0.032 0.866 -0.056 0.019 0.012 0.008 -0.004 0.081

23 Exterior Wall 24211 0.961 0.484 -0.090 0.181 0.997 0.029 0.031 -0.628 @ EL22.50 24224 0.035 -1.265 -0.349 0.006 0.169 0.061 0.107 0.114 ~24.60m 34210 1.013 0.106 0.022 -0.041 0.131 0.017 -0.008 0.073

34220 0.092 -1.192 0.475 0.033 0.112 0.006 0.031 -0.00344201 0.032 -0.899 0.666 0.069 0.082 -0.024 -0.016 -0.013

24 Basemat 90140 -0.179 0.400 0.822 2.961 2.401 -3.390 0.333 -0.649 @ Wall 90182 1.649 0.073 -0.088 -0.866 4.383 0.450 -0.077 -0.583 Below RCCV 90111 0.119 0.768 -0.104 4.456 -0.713 0.507 -0.644 -0.06725 Slab 93140 -0.060 0.041 0.046 0.082 0.056 -0.060 0.013 -0.016 EL4.65m 93182 0.103 -0.078 0.016 -0.007 0.075 0.005 0.000 0.015 @ RCCV 93111 -0.079 0.009 0.010 0.131 0.006 0.003 -0.034 -0.00226 Slab 96144 0.383 0.384 1.127 0.207 0.283 -0.200 0.044 -0.091 EL17.5m 96186 1.099 -0.517 0.123 0.029 0.359 -0.058 0.015 -0.145 @ RCCV 96113 -0.717 1.173 0.322 2.192 0.202 -0.348 -0.905 -0.09327 Slab 98472 0.043 0.845 -0.660 -0.321 -0.461 0.489 -0.235 0.261 EL27.0m 98514 0.183 -0.019 -0.075 -0.111 -0.818 -0.061 0.020 0.223 @ RCCV 98424 -0.424 2.098 -0.150 -2.932 -0.611 -0.190 1.537 0.08828 Pool Girder 123054 -0.660 7.978 5.592 0.039 -0.019 -0.475 -0.086 -0.113 @ Storage Pool 123154 -3.073 1.076 4.883 -0.014 0.046 -0.629 -0.231 0.05629 Pool Girder 123062 -0.849 -4.834 -4.220 -0.022 0.824 -0.044 0.166 0.459 @ Cavity 123162 8.265 -1.756 -3.007 0.232 0.224 -0.096 -0.266 -0.14530 Pool Girder 123067 -1.020 8.837 -6.949 -0.078 0.008 0.332 0.318 -0.068 @ Fuel Pool 123167 -2.381 1.860 -6.334 -0.051 -0.077 0.006 0.070 0.04731 MS Tunnel 150122 0.130 -0.696 0.208 -0.004 0.081 -0.012 0.009 -0.069 Wall and Slab 96611 -0.036 0.673 -0.029 -0.062 -0.110 -0.020 0.021 0.008

98614 0.010 -0.272 0.006 -0.482 -1.082 -0.164 0.146 0.052

Page 60: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-33

Table 3G.1-15

Results of NASTRAN Analysis, Wetwell Unit Pressure (1 MPa)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 -0.608 -1.082 0.028 0.141 0.842 0.002 0.002 0.391 Pedestal 5013 -0.617 -0.943 0.105 0.139 0.834 0.000 -0.001 0.398 Bottom 5024 -0.646 -0.792 0.023 0.150 0.865 -0.006 0.003 0.4132 RPV 6006 -0.383 -1.217 0.051 -0.018 -0.160 0.005 0.005 -0.061 Pedestal 6013 -0.438 -0.971 0.108 -0.024 -0.151 0.003 -0.013 -0.068 Mid-Height 6024 -0.505 -0.482 -0.011 -0.063 -0.149 -0.004 0.006 -0.0383 RPV 6606 0.238 -1.879 0.127 0.728 4.751 0.094 0.206 -1.285 Pedestal 6613 0.381 -1.609 0.122 0.681 4.526 -0.104 -0.184 -1.198 Top 6624 0.312 -1.185 -0.018 0.734 4.721 0.086 0.176 -1.2774 RCCV 1806 2.194 4.383 0.004 0.857 5.150 0.000 0.002 1.949 Wetwell 1813 2.120 4.041 -0.025 0.850 5.150 -0.006 -0.003 1.978 Bottom 1824 2.362 3.999 0.029 0.824 5.092 0.013 0.000 1.9735 RCCV 2606 6.309 4.449 -0.071 -0.457 -2.275 -0.020 0.012 -0.091 Wetwell 2613 5.859 3.895 -0.016 -0.474 -2.067 -0.002 -0.011 -0.061 Mid-Height 2624 6.107 3.815 -0.012 -0.445 -2.084 -0.006 0.005 -0.1866 RCCV 3406 2.774 4.473 -0.470 0.796 4.660 -1.229 0.929 -1.771 Wetwell 3413 2.772 3.974 0.483 0.473 3.728 1.171 -0.714 -1.508 Top 3424 2.834 4.000 -0.754 0.795 4.958 -1.376 0.827 -1.8537 RCCV 3606 2.182 0.922 -0.604 -0.216 -1.305 -1.244 0.372 -0.657 Drywell 3613 2.237 0.431 0.665 -0.555 -2.305 1.256 -0.117 -0.877 Bottom 3624 2.320 -0.311 -0.867 -0.496 -2.553 -1.437 0.134 -0.8018 RCCV 4006 2.016 0.427 -0.177 0.115 -0.582 -0.035 -0.225 0.019 Drywell 4013 1.579 0.025 -0.032 -0.070 -0.172 -0.062 0.029 -0.367 Mid-Height 4976 1.561 -0.253 0.000 -0.037 -0.041 0.006 -0.008 -0.3689 RCCV 4406 0.928 -0.133 -0.105 0.412 0.242 0.108 0.004 -0.508 Drywell 4413 0.230 -0.214 -0.110 0.147 0.684 -0.026 -0.035 -0.136 Top 4424 0.486 -0.195 0.017 0.136 0.794 -0.005 -0.011 -0.21010 Basemat 80003 0.408 0.437 -0.001 -2.029 -1.955 0.012 0.032 -0.004 @ Center 80007 0.412 0.432 -0.003 -2.005 -1.950 0.016 0.025 -0.008

80012 0.409 0.427 -0.002 -1.993 -1.949 0.013 0.015 0.00011 Basemat 80206 0.436 0.437 0.020 -2.210 -2.063 0.075 0.082 -0.041 Inside 80213 0.431 0.444 -0.001 -2.025 -2.105 0.102 0.079 -0.056 RPV Pedestal 80224 0.429 0.367 -0.011 -1.958 -2.001 0.003 0.007 -0.01212 S/P Slab 83306 1.804 1.744 -0.093 -0.725 1.218 -0.004 4.169 -0.060 @ RPV 83313 1.989 1.716 0.091 -0.648 1.243 -0.017 4.194 0.064

83324 1.727 1.771 -0.024 -0.666 1.259 -0.001 4.192 -0.05713 S/P Slab 83406 1.883 1.764 -0.040 -6.216 -1.484 -0.011 -0.326 0.001 @ Center 83413 2.058 1.708 0.041 -6.190 -1.474 -0.013 -0.318 0.001

83424 1.865 1.847 -0.004 -6.201 -1.466 0.002 -0.316 0.00114 S/P Slab 83506 1.884 1.742 -0.018 2.774 -0.378 -0.008 -3.774 -0.003 @ RCCV 83513 2.059 1.735 0.037 2.786 -0.377 -0.002 -3.771 -0.002

83524 1.940 1.900 -0.020 2.768 -0.371 -0.001 -3.769 0.00315 Topslab 98120 0.432 0.565 0.334 -0.010 -0.031 -0.006 -0.002 -0.015 @ Drywell Head 98135 0.813 0.168 -0.194 -0.050 -0.007 0.008 -0.002 -0.001 Opening 98104 0.173 1.084 -0.195 -0.002 -0.026 0.001 -0.001 0.00416 Topslab 98149 0.518 0.726 -0.005 -0.055 -0.071 0.032 0.018 -0.067 @ Center 98170 0.696 0.263 0.044 -0.083 -0.134 -0.017 -0.010 -0.027

98109 0.378 0.735 -0.003 -0.054 -0.048 -0.004 -0.020 0.00317 Topslab 98174 0.548 0.834 0.102 -0.283 -0.383 0.159 0.073 -0.092 @ RCCV 98197 0.320 0.266 -0.023 -0.201 -0.223 -0.052 -0.033 -0.011

98103 0.340 0.582 0.039 -0.219 -0.063 0.000 -0.024 -0.003

Page 61: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-34

Table 3G.1-15

Results of NASTRAN Analysis, Wetwell Unit Pressure (1 MPa) (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 -0.243 0.189 -0.085 0.105 0.634 -0.004 0.007 0.193 Below RCCV 13 -0.221 -0.024 -0.050 0.131 0.728 0.000 0.001 0.218 Bottom 24 -0.279 -0.069 0.036 0.135 0.761 -0.001 0.001 0.23019 Wall 806 0.150 0.147 0.020 0.041 0.234 0.012 0.001 -0.019 Below RCCV 813 0.194 -0.064 -0.019 0.066 0.253 0.004 0.004 0.015 Mid-Height 824 0.168 -0.093 0.037 0.047 0.251 0.000 -0.001 0.02420 Wall 1606 1.582 0.093 0.009 -0.454 -2.619 0.000 0.002 0.845 Below RCCV 1613 1.552 -0.184 -0.020 -0.468 -2.683 -0.005 -0.002 0.910 Top 1624 1.745 -0.225 0.024 -0.492 -2.729 0.008 -0.001 0.94021 Exterior Wall 20011 0.135 0.506 0.015 0.069 0.229 0.009 -0.006 0.091 @ EL-11.50 20023 0.002 -0.002 -0.016 -0.025 0.039 0.000 0.014 0.019 ~-10.50m 30010 0.176 0.255 -0.012 0.090 0.487 -0.007 -0.004 -0.100

30020 0.026 -0.145 -0.023 -0.045 0.042 0.013 0.003 -0.00840001 0.016 -0.132 0.058 -0.045 0.059 -0.009 0.002 -0.01340011 0.124 0.354 0.022 0.108 0.582 0.003 0.002 -0.125

22 Exterior Wall 22011 0.988 0.290 -0.103 -0.002 0.134 0.004 -0.015 0.308 @ EL-4.65 22023 0.115 0.346 0.199 0.296 0.060 -0.058 -0.101 -0.013 ~-6.60m 32010 1.122 0.165 -0.061 -0.014 0.105 0.016 -0.001 -0.304

32020 0.106 0.608 0.254 0.219 0.042 -0.106 0.154 0.01342001 0.146 0.653 -0.054 0.288 0.041 0.041 -0.106 0.02142011 1.033 0.244 0.147 -0.054 0.071 -0.025 0.003 -0.295

23 Exterior Wall 24211 0.412 0.468 0.003 0.032 0.214 -0.002 -0.005 -0.013 @ EL22.50 24224 0.020 0.303 -0.156 -0.040 -0.051 0.014 0.000 -0.066 ~24.60m 34210 0.476 0.175 0.002 0.014 0.165 -0.019 0.002 0.032

34220 -0.020 0.130 0.004 -0.014 0.029 0.017 -0.029 -0.01544201 -0.014 0.151 0.117 -0.008 0.021 -0.012 0.030 -0.009

24 Basemat 90140 0.067 0.126 0.143 0.061 0.035 -0.432 -0.083 0.008 @ Wall 90182 0.335 0.103 0.010 -0.304 0.000 0.061 -0.005 0.272 Below RCCV 90111 0.101 0.245 -0.016 -0.086 -0.322 0.074 0.319 0.00625 Slab 93140 0.301 0.395 0.345 0.058 0.044 -0.052 0.002 -0.003 EL4.65m 93182 0.688 0.229 -0.053 -0.007 0.087 0.005 0.002 0.067 @ RCCV 93111 0.237 0.673 -0.131 0.061 -0.014 -0.001 0.060 -0.00126 Slab 96144 -0.061 0.902 0.406 0.038 -0.087 0.044 0.008 0.024 EL17.5m 96186 0.854 -0.302 -0.427 0.019 -0.019 0.075 -0.023 -0.107 @ RCCV 96113 -0.512 1.384 -0.705 -0.863 -0.011 0.377 0.042 0.02727 Slab 98472 -0.087 0.036 0.303 0.102 0.132 -0.078 0.081 -0.072 EL27.0m 98514 0.092 0.106 0.001 0.028 0.187 0.006 0.000 -0.124 @ RCCV 98424 0.100 0.375 0.013 0.213 0.042 0.010 -0.177 -0.01128 Pool Girder 123054 0.169 0.020 -0.047 0.000 -0.013 0.003 0.016 -0.016 @ Storage Pool 123154 0.061 0.018 -0.051 0.005 0.007 0.000 0.006 0.00129 Pool Girder 123062 0.273 0.031 0.062 -0.012 -0.007 0.001 0.018 0.002 @ Cavity 123162 0.169 0.027 0.070 -0.004 0.000 -0.004 0.007 -0.00430 Pool Girder 123067 0.124 -0.617 -0.016 -0.030 -0.050 -0.024 -0.026 -0.050 @ Fuel Pool 123167 0.276 -0.169 -0.053 0.007 0.008 -0.001 -0.013 0.00031 MS Tunnel 150122 0.012 -0.082 -0.008 -0.007 0.018 0.006 0.001 -0.004 Wall and Slab 96611 -0.069 0.450 -0.054 0.004 -0.027 0.005 0.001 0.000

98614 0.009 -0.135 0.006 -0.049 -0.086 -0.019 0.013 0.005

Page 62: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-35

Table 3G.1-16

Results of NASTRAN Analysis, Temperature Load (Normal Operation: Winter)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 -3.416 -0.436 -0.238 -5.952 -6.243 -0.028 0.065 0.689 Pedestal 5013 -3.155 -0.243 -0.162 -6.057 -6.556 -0.004 0.027 0.609 Bottom 5024 -3.256 -0.080 -0.017 -6.096 -6.224 -0.019 -0.022 0.6072 RPV 6006 -1.888 -0.211 0.032 -5.713 -5.278 0.160 0.048 -0.729 Pedestal 6013 -1.987 -0.330 -0.228 -5.852 -5.207 -0.029 -0.014 -0.829 Mid-Height 6024 -2.007 -0.140 -0.005 -6.482 -3.985 -0.230 0.007 -0.7343 RPV 6606 -0.852 -0.110 0.197 -5.574 -3.430 -0.009 -0.362 -1.752 Pedestal 6613 -0.660 -0.140 -0.234 -5.555 -3.418 0.040 0.441 -1.801 Top 6624 -0.487 -0.239 0.047 -5.510 -3.225 0.025 -0.598 -1.7604 RCCV 1806 -2.358 -1.165 -0.421 -3.691 -5.525 0.051 0.067 -0.418 Wetwell 1813 -2.830 -3.329 -0.393 -3.575 -5.572 -0.013 -0.005 -0.443 Bottom 1824 -2.263 -3.895 -0.014 -3.677 -5.576 0.011 -0.055 -0.4415 RCCV 2606 -2.856 -1.338 -0.368 -3.046 -2.370 -0.002 0.047 -0.123 Wetwell 2613 -4.046 -4.137 -0.098 -2.639 -1.951 0.004 -0.050 0.067 Mid-Height 2624 -3.419 -4.641 -0.097 -2.943 -2.006 -0.020 0.049 0.0356 RCCV 3406 0.470 -1.734 0.025 -3.082 -3.544 -0.095 0.193 0.550 Wetwell 3413 -1.541 -5.105 0.245 -2.833 -3.201 0.000 0.007 0.537 Top 3424 0.137 -5.954 0.242 -2.664 -1.583 -0.006 -0.001 0.0217 RCCV 3606 -2.433 -1.900 -0.266 -4.072 -4.066 0.066 0.186 0.027 Drywell 3613 -1.821 -5.901 0.870 -2.991 -2.674 -0.069 -0.021 0.188 Bottom 3624 -13.503 -7.189 0.027 0.195 1.095 0.041 0.024 1.8158 RCCV 4006 0.430 -1.593 0.317 -4.004 -3.958 0.072 0.025 -0.043 Drywell 4013 0.904 -6.941 0.766 -3.143 -2.964 0.022 -0.090 0.112 Mid-Height 4976 -8.130 -6.549 0.417 -0.447 -1.747 0.005 0.009 -0.1829 RCCV 4406 4.610 -0.745 0.406 -4.039 -4.586 0.241 0.299 0.468 Drywell 4413 0.773 -7.522 -0.125 -3.419 -4.182 0.246 -0.068 0.634 Top 4424 -8.585 -5.738 0.624 0.049 0.695 -0.018 -0.019 -1.55710 Basemat 80003 -4.857 -5.448 0.017 -7.898 -7.846 -0.038 0.023 -0.005 @ Center 80007 -4.874 -5.410 0.050 -7.870 -7.841 -0.035 0.019 -0.007

80012 -4.878 -5.344 0.037 -7.860 -7.846 -0.031 0.014 0.00111 Basemat 80206 -4.880 -5.796 0.110 -8.292 -8.185 -0.019 0.008 -0.043 Inside 80213 -5.034 -5.446 0.111 -8.059 -8.291 -0.167 -0.052 -0.079 RPV Pedestal 80224 -4.937 -5.240 0.069 -8.070 -7.944 -0.032 -0.041 0.00912 S/P Slab 83306 -5.495 -1.113 -0.094 -2.913 -2.638 -0.002 0.165 -0.007 @ RPV 83313 -5.874 -0.758 0.026 -2.875 -2.650 -0.022 0.211 0.009

83324 -5.758 -0.544 0.382 -2.796 -2.575 -0.007 0.260 0.00713 S/P Slab 83406 -4.104 -2.465 -0.329 -3.136 -2.789 -0.010 0.088 0.004 @ Center 83413 -4.777 -1.978 0.284 -3.253 -2.846 -0.009 0.147 -0.001

83424 -4.441 -1.787 0.049 -3.257 -2.800 0.000 0.167 -0.00114 S/P Slab 83506 -3.395 -2.904 -0.296 -3.304 -2.966 -0.023 0.034 0.005 @ RCCV 83513 -4.170 -2.753 0.327 -3.681 -3.033 -0.006 0.146 0.002

83524 -3.667 -2.323 -0.003 -3.676 -3.022 0.013 0.132 -0.00515 Topslab 98120 -8.337 -6.183 -4.444 1.186 1.119 1.039 0.013 0.123 @ Drywell Head 98135 -12.892 -3.716 2.322 2.079 0.076 -0.350 0.159 -0.066 Opening 98104 -3.417 -7.424 2.577 0.229 2.121 -0.472 0.061 -0.12016 Topslab 98149 -8.148 -5.411 -1.942 1.760 1.872 0.385 0.071 0.275 @ Center 98170 -8.561 -5.053 -0.697 1.762 2.875 -0.007 0.031 0.317

98109 -7.314 -4.890 1.122 1.237 1.961 0.002 0.227 -0.04817 Topslab 98174 -6.900 -5.123 -0.762 2.423 3.574 0.010 -0.252 0.687 @ RCCV 98197 -10.270 -4.990 -0.959 1.538 2.496 0.193 0.165 -0.575

98103 -8.144 -5.619 -0.074 3.118 2.696 0.101 0.446 0.082

Page 63: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-36

Table 3G.1-16

Results of NASTRAN Analysis, Temperature Load (Normal Operation: Winter)

(Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 1.183 -0.300 -0.581 0.093 0.945 -0.030 0.017 0.053 Below RCCV 13 0.441 -2.496 -0.621 0.358 2.024 -0.003 0.017 0.440 Bottom 24 0.625 -2.602 0.113 0.368 2.055 -0.004 -0.001 0.45519 Wall 806 1.027 -1.059 0.066 0.150 0.802 0.069 -0.032 0.019 Below RCCV 813 0.606 -2.435 -0.494 0.083 0.771 -0.021 0.006 0.460 Mid-Height 824 0.486 -2.695 0.084 0.100 0.786 0.014 0.008 0.41620 Wall 1606 6.931 -1.621 0.058 -0.399 -1.816 0.061 0.067 1.357 Below RCCV 1613 6.697 -2.790 -0.429 -0.487 -2.828 -0.002 -0.010 1.700 Top 1624 7.208 -3.505 -0.098 -0.548 -2.796 -0.004 -0.051 1.74621 Exterior Wall 20011 2.574 2.597 0.476 0.200 0.736 0.056 -0.073 0.287 @ EL-11.50 20023 -0.925 -0.790 1.316 -3.134 -2.253 0.245 -0.347 0.683 ~-10.50m 30010 0.009 1.822 -0.198 0.940 3.078 -0.021 0.006 -0.537

30020 -0.117 -1.021 -0.217 0.131 1.082 0.109 -0.029 -0.27440001 -0.159 -0.676 -0.069 0.171 1.185 -0.072 0.112 -0.30640011 0.795 2.396 0.046 1.003 3.267 0.006 0.011 -0.588

22 Exterior Wall 22011 1.925 2.250 -0.099 -0.073 -0.062 0.031 0.017 0.121 @ EL-4.65 22023 1.232 -3.735 -1.275 -0.066 -0.177 -0.206 0.125 -0.014 ~-6.60m 32010 12.335 5.926 0.007 -2.697 -2.526 -0.002 -0.003 -0.172

32020 0.311 4.026 2.291 -0.572 -1.830 -0.392 0.720 0.11142001 2.251 2.853 2.394 -0.735 -1.651 -0.048 -0.662 -0.26942011 10.754 3.993 0.067 -2.795 -2.459 0.077 0.067 -0.088

23 Exterior Wall 24211 2.517 2.010 -0.424 -0.009 -0.240 0.045 -0.136 1.718 @ EL22.50 24224 0.131 3.816 -3.363 0.643 -0.242 -0.548 -0.617 -0.219 ~24.60m 34210 13.392 4.444 -0.424 -2.795 -2.684 0.027 -0.009 -0.153

34220 1.581 3.765 2.290 0.665 -1.618 -0.429 1.494 0.11744201 0.864 4.461 -0.104 0.302 -1.803 0.423 -1.817 0.106

24 Basemat 90140 0.873 1.372 1.288 0.726 -0.013 -0.887 -0.526 -0.103 @ Wall 90182 1.585 0.442 0.526 -0.091 -3.059 0.150 -0.137 2.362 Below RCCV 90111 0.524 2.382 -0.013 -3.376 -0.411 0.037 2.470 0.11425 Slab 93140 -0.669 1.616 2.623 -0.429 -0.327 0.237 -0.118 0.097 EL4.65m 93182 2.339 -2.693 -0.780 -0.291 -1.477 -0.064 0.060 1.092 @ RCCV 93111 -2.390 2.999 -0.080 -1.455 -0.267 -0.037 0.958 0.00226 Slab 96144 0.037 2.659 2.995 -0.150 -0.129 0.102 -0.027 0.043 EL17.5m 96186 2.697 -1.893 -1.088 -0.101 -0.478 -0.033 0.018 0.385 @ RCCV 96113 -4.345 -3.843 -0.730 -3.634 -2.664 -0.140 0.735 -0.03027 Slab 98472 -0.481 -0.876 4.539 -0.424 -0.140 -0.156 0.326 -0.432 EL27.0m 98514 -0.577 -2.450 -1.127 -0.529 -0.404 -0.022 0.038 -0.377 @ RCCV 98424 -7.365 -12.824 -1.255 -6.259 -1.618 0.047 -5.241 0.05428 Pool Girder 123054 0.576 -3.049 1.394 2.218 2.151 0.031 -0.307 0.545 @ Storage Pool 123154 0.880 0.664 -0.256 1.849 1.112 -0.332 -0.107 0.23429 Pool Girder 123062 -2.850 -0.164 -0.502 0.099 0.139 0.035 -0.092 0.077 @ Cavity 123162 -2.523 -0.132 -0.510 0.074 -0.199 0.056 -0.181 0.09730 Pool Girder 123067 -2.952 -4.659 -1.603 0.547 0.394 -0.075 -0.114 0.513 @ Fuel Pool 123167 -2.741 -2.321 -2.085 0.182 -0.525 -0.232 0.019 0.15331 MS Tunnel 150122 0.267 -0.537 1.825 1.079 3.150 -0.033 -0.584 0.414 Wall and Slab 96611 -0.243 2.762 -0.171 -1.125 -6.748 -0.368 0.367 0.186

98614 -0.177 2.271 -0.137 -0.721 -10.197 0.036 0.428 0.285

Page 64: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-37

Table 3G.1-17

Results of NASTRAN Analysis, Temperature Load (LOCA After 6 minutes: Winter)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 -3.477 1.650 -0.339 -6.696 -6.473 -0.045 0.110 1.009 Pedestal 5013 -3.130 1.794 -0.083 -6.863 -6.856 -0.006 0.023 0.926 Bottom 5024 -3.394 1.906 -0.001 -6.891 -6.143 -0.027 -0.034 1.0372 RPV 6006 0.067 1.755 0.162 -6.160 -4.019 0.265 0.075 -1.529 Pedestal 6013 -0.091 1.447 -0.178 -6.439 -3.908 -0.057 -0.026 -1.669 Mid-Height 6024 -0.234 2.057 0.062 -7.399 -2.300 -0.303 -0.003 -1.5513 RPV 6606 21.003 2.199 0.571 -6.642 -5.535 -0.046 -1.920 0.884 Pedestal 6613 21.062 1.960 -0.446 -6.709 -5.541 0.140 2.058 0.853 Top 6624 21.918 2.602 0.224 -6.666 -5.662 0.008 -2.345 1.0584 RCCV 1806 2.538 0.393 -0.222 -4.442 -8.116 0.066 0.081 -1.726 Wetwell 1813 1.857 -2.167 -0.444 -4.275 -7.777 -0.024 -0.007 -1.526 Bottom 1824 2.938 -2.477 0.048 -4.432 -8.139 0.019 -0.085 -1.6705 RCCV 2606 1.389 0.550 -0.146 -3.335 -1.060 0.021 0.034 0.043 Wetwell 2613 0.113 -2.558 -0.121 -3.089 -1.048 0.009 -0.074 0.369 Mid-Height 2624 0.970 -2.907 -0.086 -3.292 -0.934 -0.026 0.067 0.1896 RCCV 3406 11.700 1.428 0.353 -4.152 -8.450 -0.228 0.462 3.344 Wetwell 3413 8.031 -3.446 0.040 -4.382 -9.149 -0.403 0.539 3.335 Top 3424 10.294 -4.168 0.471 -3.680 -5.044 -0.038 -0.007 2.1657 RCCV 3606 8.481 1.351 0.705 -5.341 -9.025 0.605 0.535 -1.974 Drywell 3613 4.607 -4.166 1.002 -4.955 -6.228 -0.363 0.318 -0.820 Bottom 3624 -4.289 -6.045 0.252 -0.934 -2.499 0.068 -0.001 0.3508 RCCV 4006 5.934 2.176 0.228 -5.109 -5.059 0.011 -0.128 -0.683 Drywell 4013 4.288 -5.853 1.039 -4.672 -4.288 0.013 -0.132 -0.308 Mid-Height 4976 -2.657 -5.340 0.578 -0.953 -1.777 0.004 0.013 -0.5859 RCCV 4406 6.443 1.716 -0.228 -4.470 -3.808 0.301 0.088 -0.153 Drywell 4413 0.718 -6.633 -0.295 -4.753 -4.468 0.253 -0.244 0.644 Top 4424 -5.839 -4.178 0.764 -0.362 1.133 -0.024 -0.022 -1.46210 Basemat 80003 -4.361 -5.064 0.010 -8.115 -8.087 -0.031 0.030 -0.007 @ Center 80007 -4.380 -5.029 0.041 -8.081 -8.084 -0.028 0.028 -0.008

80012 -4.384 -4.970 0.030 -8.065 -8.094 -0.024 0.023 0.00111 Basemat 80206 -4.366 -5.447 0.114 -8.537 -8.473 0.021 0.002 -0.045 Inside 80213 -4.494 -5.044 0.109 -8.253 -8.556 -0.118 -0.004 -0.108 RPV Pedestal 80224 -4.424 -4.901 0.060 -8.160 -8.192 -0.035 -0.034 0.01012 S/P Slab 83306 -10.578 10.974 0.416 -4.708 -2.771 0.029 -0.296 0.000 @ RPV 83313 -10.828 11.228 -0.835 -4.734 -2.849 -0.041 -0.301 -0.027

83324 -10.705 11.877 1.291 -4.485 -2.653 0.007 -0.155 0.04613 S/P Slab 83406 -6.461 4.868 -0.561 -3.802 -3.176 -0.003 -0.312 0.014 @ Center 83413 -6.987 5.300 0.324 -3.901 -3.259 -0.016 -0.276 -0.011

83424 -6.636 5.835 0.088 -3.896 -3.148 -0.002 -0.210 0.00914 S/P Slab 83506 -3.917 2.321 -0.471 -2.874 -3.120 -0.034 -0.284 0.013 @ RCCV 83513 -4.564 2.411 0.445 -3.195 -3.177 -0.008 -0.190 -0.001

83524 -4.044 3.212 -0.010 -3.279 -3.153 0.013 -0.167 -0.00515 Topslab 98120 -7.159 -4.295 -0.826 0.963 0.733 2.771 -0.163 -0.005 @ Drywell Head 98135 -8.776 -5.279 0.213 3.150 -2.057 -1.132 0.380 -0.267 Opening 98104 -4.990 -1.708 0.576 -1.459 3.716 -1.501 0.186 -0.21316 Topslab 98149 -6.095 -2.564 -1.166 2.235 2.318 0.500 0.036 0.047 @ Center 98170 -5.522 -3.576 -1.068 2.144 2.867 -0.043 0.030 0.389

98109 -6.255 -0.872 0.768 1.221 2.566 -0.119 0.329 -0.00517 Topslab 98174 -4.857 -2.720 -0.479 2.355 3.217 0.258 -0.023 0.433 @ RCCV 98197 -7.582 -2.932 -1.375 1.918 3.109 0.128 0.154 -0.449

98103 -6.579 -2.446 -0.073 3.434 3.309 0.118 0.451 0.084

Page 65: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-38

Table 3G.1-17

Results of NASTRAN Analysis, Temperature Load (LOCA After 6 minutes: Winter)

(Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 1.107 -0.568 -0.679 0.118 1.100 -0.036 0.029 0.063 Below RCCV 13 0.363 -3.011 -0.654 0.407 2.278 -0.002 0.019 0.473 Bottom 24 0.428 -3.036 0.150 0.424 2.345 -0.005 -0.001 0.51219 Wall 806 1.520 -1.444 0.161 0.260 1.324 0.084 -0.040 -0.084 Below RCCV 813 1.025 -2.960 -0.498 0.172 1.284 -0.025 0.005 0.446 Mid-Height 824 0.901 -3.042 0.134 0.177 1.308 0.018 0.011 0.39720 Wall 1606 11.606 -2.114 0.220 -0.682 -3.317 0.083 0.083 2.345 Below RCCV 1613 11.216 -3.473 -0.445 -0.783 -4.373 -0.006 -0.013 2.707 Top 1624 12.199 -3.966 -0.117 -0.867 -4.482 -0.002 -0.082 2.81821 Exterior Wall 20011 2.783 3.204 0.556 0.250 0.892 0.077 -0.085 0.330 @ EL-11.50 20023 -0.928 -0.756 1.256 -3.151 -2.204 0.242 -0.326 0.699 ~-10.50m 30010 0.279 2.139 -0.239 1.005 3.442 -0.023 0.006 -0.574

30020 -0.088 -1.198 -0.236 0.082 1.103 0.123 -0.022 -0.27040001 -0.155 -0.832 0.018 0.125 1.237 -0.081 0.115 -0.31040011 0.876 2.784 0.049 1.074 3.671 0.007 0.012 -0.636

22 Exterior Wall 22011 3.512 2.672 -0.082 -0.124 -0.157 0.051 0.033 -0.023 @ EL-4.65 22023 1.402 -3.214 -1.242 0.313 -0.113 -0.213 -0.014 -0.031 ~-6.60m 32010 14.393 6.122 0.004 -2.798 -2.758 0.004 -0.008 0.041

32020 0.444 4.718 2.528 -0.284 -1.833 -0.377 0.922 0.16742001 2.452 3.605 2.538 -0.370 -1.611 -0.058 -0.794 -0.25442011 12.436 4.406 0.147 -2.976 -2.775 0.081 0.081 0.173

23 Exterior Wall 24211 3.817 2.954 -0.367 0.094 0.338 0.049 -0.142 1.510 @ EL22.50 24224 0.353 4.746 -3.617 0.874 -0.344 -0.444 -0.820 -0.411 ~24.60m 34210 15.330 4.791 -0.312 -2.778 -2.408 0.015 -0.011 0.104

34220 1.720 4.438 2.296 0.979 -1.464 -0.240 1.609 0.01344201 1.001 5.210 0.298 0.667 -1.698 0.337 -1.910 0.044

24 Basemat 90140 0.890 1.411 1.346 0.397 -0.251 -0.837 -0.696 -0.036 @ Wall 90182 1.777 0.495 0.537 -0.265 -3.839 0.161 -0.125 2.759 Below RCCV 90111 0.563 2.234 -0.012 -4.126 -0.521 0.053 2.855 0.12425 Slab 93140 -0.598 2.335 4.275 -0.542 -0.409 0.304 -0.147 0.123 EL4.65m 93182 4.223 -4.036 -1.099 -0.353 -1.823 -0.083 0.075 1.366 @ RCCV 93111 -3.605 4.959 -0.256 -1.768 -0.316 -0.047 1.178 0.00026 Slab 96144 -0.270 4.701 6.966 -0.228 -0.122 0.166 -0.072 0.023 EL17.5m 96186 6.688 -4.125 -1.417 -0.090 -0.313 -0.048 0.016 0.346 @ RCCV 96113 -8.342 2.577 -1.679 -4.480 -2.783 -0.199 1.239 -0.05927 Slab 98472 -0.766 -0.797 5.408 -0.313 0.033 -0.312 0.451 -0.562 EL27.0m 98514 0.438 -2.394 -1.401 -0.532 -0.068 -0.006 0.036 -0.727 @ RCCV 98424 -7.591 -10.575 -1.415 -5.823 -1.582 0.072 -5.617 0.02828 Pool Girder 123054 1.312 -2.833 1.438 2.280 2.119 0.026 -0.231 0.481 @ Storage Pool 123154 1.029 0.746 -0.399 1.924 1.145 -0.340 -0.086 0.24729 Pool Girder 123062 -1.258 -0.152 -0.701 0.103 0.324 0.027 0.057 0.173 @ Cavity 123162 -1.667 -0.034 -0.462 0.130 -0.117 -0.002 -0.152 0.08530 Pool Girder 123067 -2.311 -5.928 -1.779 0.647 0.431 -0.116 -0.149 0.467 @ Fuel Pool 123167 -2.108 -2.650 -2.209 0.276 -0.451 -0.231 -0.013 0.17931 MS Tunnel 150122 0.224 -0.517 1.902 1.053 3.141 -0.007 -0.584 0.363 Wall and Slab 96611 -0.447 4.104 -0.332 -1.287 -7.108 -0.423 0.426 0.209

98614 -0.188 1.992 -0.146 -0.862 -10.483 -0.011 0.470 0.303

Page 66: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-39

Table 3G.1-18

Results of NASTRAN Analysis, Temperature Load (LOCA After 72 hours: Winter)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 -12.845 0.250 -0.532 -16.012 -12.643 -0.092 0.231 4.151 Pedestal 5013 -12.361 0.340 -0.091 -16.298 -13.248 -0.007 0.018 4.060 Bottom 5024 -12.833 0.244 0.006 -16.283 -11.850 -0.073 -0.052 4.2562 RPV 6006 -2.421 0.594 0.451 -16.077 -14.899 0.436 0.156 -1.788 Pedestal 6013 -2.655 0.215 -0.207 -16.601 -14.799 -0.049 -0.033 -2.015 Mid-Height 6024 -2.716 0.675 0.078 -18.530 -11.372 -0.660 0.021 -1.7063 RPV 6606 8.843 0.688 0.583 -16.162 -12.321 0.045 -1.373 -1.999 Pedestal 6613 9.187 0.728 -0.380 -16.206 -12.531 0.030 1.514 -1.961 Top 6624 9.562 0.849 0.249 -16.169 -12.374 0.070 -1.774 -1.7984 RCCV 1806 -1.529 -1.095 -0.255 -10.252 -14.624 0.079 0.094 -1.532 Wetwell 1813 -2.046 -4.246 -0.418 -10.039 -14.124 -0.042 -0.006 -1.257 Bottom 1824 -0.999 -4.101 0.138 -10.225 -14.390 0.027 -0.105 -1.3245 RCCV 2606 -4.260 -1.284 -0.207 -9.988 -7.587 0.005 0.040 0.086 Wetwell 2613 -5.195 -5.332 -0.051 -9.724 -7.431 -0.015 -0.092 0.416 Mid-Height 2624 -4.918 -4.757 -0.110 -10.020 -7.637 -0.043 0.078 0.1936 RCCV 3406 5.175 -0.376 0.529 -10.840 -14.111 0.026 0.145 2.473 Wetwell 3413 3.430 -7.155 0.358 -10.781 -14.122 -0.110 0.133 2.640 Top 3424 2.847 -6.404 0.482 -9.992 -9.739 0.046 -0.109 0.8987 RCCV 3606 0.830 -0.284 0.115 -12.664 -14.950 0.281 0.181 -0.832 Drywell 3613 -0.941 -8.496 1.387 -12.338 -13.243 -0.243 0.025 -0.346 Bottom 3624 -10.574 -8.041 0.298 -7.214 -6.867 0.090 -0.064 1.4818 RCCV 4006 1.875 0.839 -0.303 -12.243 -12.221 0.193 -0.156 -0.809 Drywell 4013 1.199 -10.522 1.291 -12.197 -11.582 0.045 -0.165 -0.458 Mid-Height 4976 -7.090 -6.964 0.636 -7.680 -8.654 0.012 0.038 -0.3069 RCCV 4406 6.737 0.276 -1.384 -11.629 -9.857 0.511 0.461 -0.604 Drywell 4413 -0.979 -11.885 -0.375 -12.126 -10.998 0.410 -0.181 0.175 Top 4424 -10.166 -5.578 0.969 -7.106 -5.867 -0.070 -0.009 -1.76210 Basemat 80003 -1.679 -2.344 -0.012 -8.432 -8.745 -0.031 0.023 -0.009 @ Center 80007 -1.684 -2.300 0.024 -8.412 -8.747 -0.031 0.015 -0.013

80012 -1.690 -2.227 0.016 -8.402 -8.767 -0.023 0.005 0.00211 Basemat 80206 -1.712 -2.848 0.097 -8.908 -9.252 0.053 -0.011 -0.059 Inside 80213 -1.772 -2.262 0.036 -8.632 -9.316 -0.133 -0.013 -0.169 RPV Pedestal 80224 -1.625 -2.127 0.040 -8.608 -8.912 -0.042 -0.100 0.01912 S/P Slab 83306 -11.644 3.829 0.179 -9.646 -8.196 0.033 -0.080 -0.040 @ RPV 83313 -11.916 4.301 -0.412 -9.666 -8.271 -0.027 -0.074 0.012

83324 -11.700 4.708 0.978 -9.527 -8.129 -0.001 0.005 0.00613 S/P Slab 83406 -8.113 -0.586 -0.539 -9.089 -8.498 -0.001 -0.113 0.014 @ Center 83413 -8.751 0.101 0.493 -9.200 -8.593 -0.013 -0.068 -0.007

83424 -8.215 0.434 0.022 -9.166 -8.498 0.001 -0.042 0.00614 S/P Slab 83506 -6.242 -2.430 -0.408 -8.821 -8.626 -0.045 -0.143 0.019 @ RCCV 83513 -7.029 -2.087 0.617 -9.213 -8.689 -0.011 -0.020 0.001

83524 -6.242 -1.435 -0.072 -9.173 -8.644 0.017 -0.038 -0.00515 Topslab 98120 -11.552 -10.624 -5.088 7.064 5.010 5.160 -1.418 -1.083 @ Drywell Head 98135 -16.116 -6.978 2.414 10.532 -0.434 -1.821 1.058 -1.141 Opening 98104 -6.693 -12.082 2.871 2.391 11.786 -3.140 0.877 -0.61016 Topslab 98149 -11.296 -3.042 -1.890 5.802 8.895 0.962 0.549 -1.908 @ Center 98170 -9.623 -4.570 -0.897 4.305 5.412 -0.102 -0.115 0.049

98109 -7.853 -1.630 0.872 9.058 11.508 -0.323 0.767 0.07717 Topslab 98174 -9.246 -4.000 -1.475 5.058 6.605 0.114 -0.062 0.290 @ RCCV 98197 -11.730 -4.691 -1.514 4.218 6.201 0.219 0.358 -0.440

98103 -7.871 -5.553 -0.329 12.884 12.663 0.252 0.585 0.155

Page 67: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-40

Table 3G.1-18

Results of NASTRAN Analysis, Temperature Load (LOCA After 72 hours: Winter)

(Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 0.673 -1.073 -0.904 0.256 1.958 -0.049 0.048 0.311 Below RCCV 13 -0.119 -4.048 -0.748 0.603 3.352 -0.002 0.023 0.782 Bottom 24 0.118 -3.760 0.215 0.593 3.309 -0.007 -0.003 0.77619 Wall 806 1.824 -2.260 0.204 0.332 1.720 0.091 -0.055 -0.103 Below RCCV 813 1.349 -3.956 -0.557 0.219 1.696 -0.032 0.005 0.598 Mid-Height 824 1.162 -3.729 0.206 0.225 1.731 0.027 0.015 0.50320 Wall 1606 15.858 -3.186 0.301 -0.853 -4.075 0.108 0.100 3.080 Below RCCV 1613 15.698 -4.645 -0.441 -1.003 -5.526 -0.010 -0.016 3.605 Top 1624 16.701 -4.840 -0.100 -1.115 -5.550 0.000 -0.106 3.70021 Exterior Wall 20011 3.065 4.610 0.680 0.386 1.389 0.095 -0.105 0.549 @ EL-11.50 20023 -0.923 -0.709 1.214 -3.198 -2.113 0.237 -0.314 0.735 ~-10.50m 30010 0.517 3.114 -0.366 1.209 4.571 -0.033 -0.002 -0.827

30020 -0.057 -1.480 -0.391 0.022 1.207 0.144 -0.026 -0.28140001 -0.091 -1.142 0.059 0.040 1.330 -0.097 0.105 -0.32240011 1.307 3.629 0.056 1.243 4.651 0.011 0.014 -0.842

22 Exterior Wall 22011 5.013 4.358 -0.217 -0.171 -0.224 0.069 0.046 0.082 @ EL-4.65 22023 1.628 -2.769 -1.390 0.748 -0.043 -0.218 -0.198 -0.044 ~-6.60m 32010 16.724 7.722 -0.080 -2.893 -3.002 -0.001 -0.014 0.024

32020 0.652 4.868 2.520 0.104 -1.860 -0.395 1.226 0.19942001 2.721 3.799 2.647 0.131 -1.563 -0.051 -0.998 -0.23942011 14.114 5.515 0.239 -3.165 -3.047 0.073 0.090 0.170

23 Exterior Wall 24211 5.670 5.757 -0.305 0.173 0.680 0.046 -0.169 1.421 @ EL22.50 24224 1.023 5.452 -3.719 1.968 0.070 -0.635 -1.559 -0.317 ~24.60m 34210 21.820 5.544 -0.576 -2.904 -2.819 0.035 -0.002 -0.128

34220 2.793 5.435 4.410 2.628 -1.178 -0.711 2.570 0.09444201 1.791 6.589 0.558 2.230 -1.491 0.539 -2.966 0.044

24 Basemat 90140 0.676 1.652 1.723 -0.528 -1.081 -0.960 -1.149 0.173 @ Wall 90182 2.064 0.701 0.416 -0.892 -5.505 0.237 -0.094 3.815 Below RCCV 90111 0.729 2.934 -0.023 -5.319 -1.147 0.110 3.683 0.14925 Slab 93140 -0.316 3.040 5.795 -0.766 -0.578 0.430 -0.204 0.176 EL4.65m 93182 6.154 -5.153 -1.520 -0.480 -2.502 -0.114 0.105 1.898 @ RCCV 93111 -4.497 6.824 -0.447 -2.369 -0.414 -0.066 1.593 0.00126 Slab 96144 0.733 5.828 8.140 -0.230 -0.175 0.172 -0.041 0.066 EL17.5m 96186 9.998 -4.559 -2.164 -0.149 -0.672 -0.057 0.023 0.636 @ RCCV 96113 -9.167 5.153 -1.808 -4.376 -2.755 -0.236 1.009 -0.10027 Slab 98472 -3.634 -3.174 5.923 -1.728 -1.314 -0.297 0.535 -0.686 EL27.0m 98514 -2.861 -2.861 -1.575 -1.927 -1.717 -0.031 0.065 -0.722 @ RCCV 98424 -6.661 -7.075 -2.107 -3.864 -0.717 0.116 -5.743 0.00128 Pool Girder 123054 3.582 1.292 2.390 3.612 2.453 -0.343 0.113 0.316 @ Storage Pool 123154 3.638 3.573 -2.903 3.370 1.304 -0.375 -0.255 0.41329 Pool Girder 123062 0.502 0.112 -1.366 3.839 3.894 0.009 0.033 0.189 @ Cavity 123162 1.956 0.408 -1.831 3.805 2.820 0.092 -0.289 0.64430 Pool Girder 123067 -2.007 -7.205 -2.944 3.600 3.532 -0.636 0.318 0.813 @ Fuel Pool 123167 -0.584 -2.758 -3.092 2.757 1.832 -0.245 -0.178 0.61531 MS Tunnel 150122 0.316 -0.714 1.798 0.940 3.102 0.011 -0.551 0.426 Wall and Slab 96611 -0.557 4.665 -0.414 -1.253 -7.115 -0.406 0.420 0.206

98614 -0.043 0.730 -0.044 -0.852 -9.932 -0.019 0.460 0.307

Page 68: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-41

Table 3G.1-19

Results of NASTRAN Analysis, Seismic Load (Horizontal: North to South Direction)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 -3.083 -4.179 -1.043 0.834 5.074 0.047 0.056 2.171 Pedestal 5013 -0.386 1.517 -1.467 0.299 1.833 -0.045 0.184 0.677 Bottom 5024 2.337 7.411 -0.116 -0.519 -1.859 0.009 0.013 -1.0022 RPV 6006 0.378 -2.346 -0.857 -0.144 -0.036 0.005 0.128 -0.014 Pedestal 6013 -0.383 1.441 -1.462 -0.312 -0.154 -0.039 -0.054 0.014 Mid-Height 6024 -0.473 3.710 0.280 0.239 0.150 -0.040 -0.032 -0.2003 RPV 6606 0.029 -1.486 -0.173 -0.294 -2.727 -0.251 0.592 0.878 Pedestal 6613 -1.065 1.318 -1.164 -0.442 -1.612 0.330 -0.195 0.299 Top 6624 0.369 3.869 -0.083 0.207 -0.056 0.042 -0.140 -0.0764 RCCV 1806 -1.589 -1.567 -3.991 0.297 2.001 -0.076 0.034 0.745 Wetwell 1813 -0.404 2.958 -4.573 0.114 0.846 -0.039 0.019 0.342 Bottom 1824 0.815 6.234 -0.283 -0.033 -0.312 -0.008 0.003 -0.2235 RCCV 2606 -0.345 -1.042 -4.073 -0.060 -0.098 -0.121 -0.015 0.196 Wetwell 2613 -0.776 2.655 -4.531 -0.046 -0.085 -0.043 -0.029 0.156 Mid-Height 2624 -0.028 4.643 -0.272 0.074 0.157 -0.002 -0.003 -0.0366 RCCV 3406 0.035 -0.512 -3.753 -0.091 -0.204 -0.080 0.009 0.124 Wetwell 3413 -0.620 2.314 -4.329 -0.024 -0.163 -0.107 0.118 0.069 Top 3424 -0.571 3.381 -0.182 0.062 0.327 0.035 -0.019 -0.1307 RCCV 3606 0.137 -0.292 -3.729 0.109 0.815 -0.009 0.029 0.358 Drywell 3613 -0.651 2.003 -3.943 0.094 0.503 -0.015 0.112 0.203 Bottom 3624 -0.605 3.578 -0.197 -0.053 -0.253 0.053 0.003 -0.0028 RCCV 4006 1.231 -0.185 -3.299 0.006 -0.330 -0.064 -0.075 0.241 Drywell 4013 -0.220 2.270 -3.807 0.004 -0.084 -0.082 0.019 0.120 Mid-Height 4976 -0.526 2.697 -0.249 -0.081 -0.180 -0.016 0.012 -0.0359 RCCV 4406 1.239 -0.079 -2.460 -0.163 -0.892 0.064 0.079 0.184 Drywell 4413 0.678 2.558 -3.287 -0.071 -0.437 -0.022 -0.007 0.064 Top 4424 -1.004 1.993 -0.208 -0.074 -0.379 -0.022 -0.007 -0.00310 Basemat 80003 3.094 2.293 -0.511 -7.882 -6.864 0.154 0.538 0.093 @ Center 80007 3.129 2.486 -0.433 -7.171 -6.643 0.308 0.666 0.119

80012 2.801 2.812 -0.255 -6.619 -6.341 0.091 0.746 0.00411 Basemat 80206 3.728 1.278 -1.436 -9.997 -7.683 0.702 0.556 0.033 Inside 80213 3.163 2.513 -2.028 -6.085 -4.599 1.367 0.861 0.777 RPV Pedestal 80224 2.483 4.246 -0.218 -0.048 -2.844 0.233 1.886 0.11112 S/P Slab 83306 -0.353 -0.814 -1.453 -2.816 -1.585 -0.298 -1.007 0.148 @ RPV 83313 -0.392 -1.414 0.724 -1.612 -1.010 -0.429 -0.553 0.176

83324 -0.612 -0.175 0.190 -0.243 -0.272 -0.029 -0.036 0.01813 S/P Slab 83406 -0.294 -1.163 -1.325 0.403 -0.878 -0.230 -0.705 -0.010 @ Center 83413 -0.303 -1.143 0.680 0.211 -0.628 -0.292 -0.403 0.009

83424 -0.867 -0.199 0.099 0.031 -0.303 -0.018 -0.056 0.00114 S/P Slab 83506 -0.142 -1.302 -1.091 2.375 0.032 -0.032 -0.543 -0.049 @ RCCV 83513 -0.268 -0.930 0.663 1.309 -0.079 -0.045 -0.310 -0.055

83524 -0.904 -0.298 0.053 0.152 -0.213 0.000 -0.035 -0.00415 Topslab 98120 0.281 0.042 0.123 -0.067 -0.093 -0.056 -0.055 -0.029 @ Drywell Head 98135 0.983 0.099 -0.149 -0.201 -0.006 0.014 -0.024 0.022 Opening 98104 -0.055 -1.663 0.067 -0.066 -0.366 0.013 -0.045 0.01916 Topslab 98149 0.450 0.540 0.228 -0.114 0.038 -0.116 -0.056 0.024 @ Center 98170 0.223 -0.296 0.240 -0.122 -0.159 -0.014 -0.024 -0.022

98109 0.124 -1.422 -0.076 -0.251 -0.419 -0.015 -0.074 0.06717 Topslab 98174 0.057 1.170 0.209 0.166 0.142 -0.292 -0.095 0.055 @ RCCV 98197 0.190 -0.521 0.523 0.095 0.024 -0.115 0.023 0.132

98103 -0.121 -1.604 0.051 -1.192 -0.617 0.011 -0.274 0.018

Page 69: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-42

Table 3G.1-19

Results of NASTRAN Analysis, Seismic Load (Horizontal: North to South Direction)

(Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 -4.083 -2.977 -3.250 0.947 5.610 0.025 0.009 2.083 Below RCCV 13 0.052 2.819 -3.746 0.608 3.221 -0.054 0.099 0.998 Bottom 24 2.853 8.172 -0.025 0.203 1.099 -0.007 0.001 0.03719 Wall 806 -2.115 -2.451 -3.494 -0.083 -0.290 -0.011 0.023 0.210 Below RCCV 813 -0.323 3.125 -4.705 0.000 -0.041 -0.034 -0.003 0.282 Mid-Height 824 1.110 7.464 -0.158 0.028 0.187 -0.002 0.001 0.13620 Wall 1606 -1.409 -1.886 -3.817 -0.276 -1.323 -0.067 0.013 0.201 Below RCCV 1613 -0.183 2.987 -4.708 -0.232 -1.215 -0.026 0.007 0.350 Top 1624 0.878 6.181 -0.226 -0.043 -0.345 -0.008 0.003 0.18221 Exterior Wall 20011 -0.512 -1.066 0.964 1.452 5.558 -0.070 0.112 2.751 @ EL-11.50 20023 0.146 -0.892 -1.069 -0.799 1.249 0.157 1.180 0.822 ~-10.50m 30010 1.188 1.837 -3.871 0.447 2.431 -0.047 -0.047 -0.675

30020 0.106 2.162 -0.478 0.057 1.102 0.015 -0.290 -0.25040001 0.368 1.941 -0.759 -0.170 0.567 -0.075 0.005 -0.16240011 3.316 3.611 -0.077 0.120 1.040 0.010 0.003 -0.191

22 Exterior Wall 22011 -0.376 -6.628 2.328 0.102 0.902 0.147 -0.031 0.818 @ EL-4.65 22023 -0.012 -4.348 -1.292 -0.263 0.155 -0.135 0.325 0.120 ~-6.60m 32010 -0.882 1.251 -4.092 -0.010 -0.012 -0.003 -0.001 -0.103

32020 -0.043 3.040 -1.628 0.150 0.029 0.005 0.127 -0.00542001 0.119 3.229 -1.627 0.200 -0.013 -0.015 -0.074 -0.00642011 0.725 3.106 0.252 0.005 -0.066 0.008 0.000 0.083

23 Exterior Wall 24211 -0.997 -4.957 0.239 -0.188 -0.707 -0.045 0.002 0.879 @ EL22.50 24224 -0.236 -6.918 0.356 0.662 0.954 -0.281 0.148 1.032 ~24.60m 34210 -1.180 0.230 -3.572 -0.029 -0.186 -0.009 0.011 -0.087

34220 -0.063 1.557 -1.273 -0.005 0.005 0.001 0.002 -0.00844201 -0.115 1.861 -1.070 0.020 0.037 -0.013 0.025 -0.016

24 Basemat 90140 0.225 1.227 -1.955 -7.003 -0.836 -0.227 -2.968 1.213 @ Wall 90182 3.258 0.671 -1.457 -1.578 -0.618 1.400 -1.589 0.692 Below RCCV 90111 1.123 5.945 -0.260 0.284 -1.147 0.352 -1.960 -0.12225 Slab 93140 -2.210 0.336 -0.123 -0.395 -0.241 0.172 -0.091 0.120 EL4.65m 93182 -0.562 -0.143 -0.464 -0.087 -0.334 -0.010 0.019 0.309 @ RCCV 93111 -0.075 -0.104 0.020 0.080 0.000 0.008 -0.054 0.00226 Slab 96144 -0.484 0.162 0.142 -0.313 -0.251 0.168 -0.065 0.077 EL17.5m 96186 -0.592 -0.131 -0.041 -0.074 -0.340 -0.010 0.025 0.271 @ RCCV 96113 0.214 -1.016 -0.015 0.456 -0.039 -0.008 -0.426 -0.06427 Slab 98472 1.002 -0.251 -0.205 -0.189 -0.233 0.105 -0.091 0.122 EL27.0m 98514 -0.239 -0.147 -0.193 -0.069 -0.240 0.005 0.008 0.255 @ RCCV 98424 0.935 -1.153 0.103 0.127 -0.148 0.099 1.044 0.05028 Pool Girder 123054 -0.161 1.563 -0.510 -0.070 -0.003 0.024 -0.010 0.023 @ Storage Pool 123154 -1.233 0.501 -0.406 -0.103 -0.035 0.015 -0.033 0.00329 Pool Girder 123062 -0.152 -0.112 0.300 -0.072 -0.019 -0.024 0.025 0.017 @ Cavity 123162 -0.923 -0.130 0.184 -0.152 -0.036 -0.019 0.056 0.00230 Pool Girder 123067 -0.644 1.895 0.900 0.094 0.043 0.024 0.036 0.041 @ Fuel Pool 123167 -1.125 0.351 1.205 0.031 0.033 0.004 0.006 0.00331 MS Tunnel 150122 -0.011 0.177 -0.048 -0.038 -0.144 -0.009 0.008 -0.030 Wall and Slab 96611 0.034 -0.291 0.032 -0.098 -0.390 -0.021 0.042 0.016

98614 0.043 -0.218 0.034 0.124 0.444 0.050 -0.039 -0.018

Page 70: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-43

Table 3G.1-20

Results of NASTRAN Analysis, Seismic Load (Horizontal: East to West Direction)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 3.619 7.901 -1.996 -0.849 -4.472 -0.071 0.270 -1.900 Pedestal 5013 5.109 12.272 0.228 -1.290 -6.832 -0.010 0.019 -3.065 Bottom 5024 0.410 0.732 3.303 -0.102 -0.451 0.017 -0.296 -0.1972 RPV 6006 -0.516 4.034 -2.798 0.015 0.148 -0.181 -0.003 -0.069 Pedestal 6013 -0.993 6.128 0.364 0.228 0.113 -0.037 0.000 -0.218 Mid-Height 6024 -0.166 1.388 5.021 0.017 0.037 0.335 0.177 0.0353 RPV 6606 -0.943 2.275 -2.277 0.229 1.650 0.166 -0.115 -0.730 Pedestal 6613 -0.781 3.355 0.060 0.555 2.494 -0.059 -0.144 -1.078 Top 6624 -0.105 0.242 3.332 0.039 0.167 -0.210 0.271 -0.0864 RCCV 1806 0.712 5.471 -4.584 -0.208 -1.031 -0.020 0.000 -0.390 Wetwell 1813 1.099 7.041 0.944 -0.272 -1.620 -0.014 0.005 -0.662 Bottom 1824 0.050 0.540 7.271 -0.030 -0.115 0.089 -0.054 -0.0585 RCCV 2606 0.056 3.854 -4.125 0.016 0.080 -0.051 -0.010 -0.106 Wetwell 2613 0.047 5.263 0.953 0.047 0.137 -0.018 -0.009 -0.248 Mid-Height 2624 0.046 0.286 6.675 0.010 0.038 0.110 0.036 -0.0146 RCCV 3406 -0.400 2.524 -3.902 0.041 0.167 -0.199 0.173 -0.106 Wetwell 3413 -0.307 3.941 0.989 0.062 0.358 0.039 -0.073 -0.250 Top 3424 -0.181 0.192 5.779 0.027 0.036 0.019 0.008 -0.0057 RCCV 3606 -0.454 2.351 -3.569 -0.046 -0.350 -0.056 0.169 -0.148 Drywell 3613 -0.308 4.113 1.140 -0.137 -0.788 -0.006 -0.061 -0.287 Bottom 3624 -0.122 0.244 5.541 -0.030 -0.089 0.021 0.023 -0.0428 RCCV 4006 -0.959 1.376 -3.273 0.015 0.139 -0.099 0.035 -0.108 Drywell 4013 -1.098 3.208 0.977 0.058 0.301 0.006 -0.047 -0.317 Mid-Height 4976 0.128 0.107 5.745 0.044 0.036 0.022 0.038 -0.0149 RCCV 4406 -1.375 0.545 -2.740 0.133 0.526 -0.006 0.010 -0.237 Drywell 4413 -0.921 2.447 0.853 0.030 0.949 0.160 0.056 -0.036 Top 4424 0.263 0.047 6.065 0.046 -0.005 -0.003 0.040 0.02910 Basemat 80003 0.038 0.223 1.347 0.305 0.542 -0.514 0.018 0.897 @ Center 80007 0.573 -0.211 0.796 0.709 0.790 -0.262 -0.006 0.862

80012 -0.120 0.176 0.666 0.115 0.115 0.122 -0.008 0.90011 Basemat 80206 1.779 -0.230 2.679 3.698 4.686 -2.110 -0.626 1.546 Inside 80213 2.987 -0.462 0.727 4.768 7.922 -0.214 0.021 2.209 RPV Pedestal 80224 0.147 0.114 -1.880 0.484 0.394 1.018 0.080 0.43212 S/P Slab 83306 -0.493 -0.422 0.892 1.324 0.614 -0.365 0.518 0.182 @ RPV 83313 -0.972 -0.307 0.265 1.940 0.952 0.057 0.747 -0.005

83324 -0.058 -0.047 -1.474 0.134 0.059 0.519 0.051 -0.25113 S/P Slab 83406 -0.360 -0.133 0.349 -0.242 0.242 -0.260 0.338 0.008 @ Center 83413 -1.017 -0.152 0.191 -0.305 0.399 0.036 0.490 0.001

83424 -0.070 -0.035 -0.750 -0.021 0.021 0.360 0.034 0.00514 S/P Slab 83506 -0.145 -0.182 0.082 -1.213 -0.197 -0.032 0.273 -0.057 @ RCCV 83513 -0.917 -0.245 0.143 -1.685 -0.241 0.013 0.385 0.006

83524 -0.040 -0.061 -0.420 -0.124 -0.023 0.009 0.029 0.09215 Topslab 98120 -1.127 -0.929 -0.811 -0.056 -0.437 -0.148 -0.111 -0.105 @ Drywell Head 98135 0.030 0.279 -0.487 -0.182 -0.215 0.083 0.029 -0.102 Opening 98104 0.347 0.488 -0.530 -0.010 -0.417 -0.023 0.037 -0.35216 Topslab 98149 -1.027 -0.287 -0.558 -0.032 -0.226 -0.014 0.056 0.021 @ Center 98170 -1.067 0.053 -0.811 -0.018 -0.040 -0.012 0.021 -0.024

98109 0.103 -0.009 -0.648 -0.025 -0.205 -0.121 0.002 -0.11917 Topslab 98174 -1.558 -0.285 -0.734 -0.271 -0.272 0.089 0.119 -0.126 @ RCCV 98197 -1.467 -0.076 -0.703 -0.032 -0.316 -0.032 -0.036 -0.007

98103 -0.205 0.204 -1.155 -0.035 -0.053 -0.209 0.040 -0.046

Page 71: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-44

Table 3G.1-20

Results of NASTRAN Analysis, Seismic Load (Horizontal: East to West Direction)

(Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 4.233 10.965 -4.292 -0.722 -3.492 -0.050 0.149 -1.466 Below RCCV 13 4.825 10.405 0.411 -0.322 -2.045 -0.014 0.031 -1.063 Bottom 24 0.620 0.744 6.330 0.012 -0.156 0.097 -0.142 -0.10019 Wall 806 0.709 8.375 -5.149 -0.027 0.177 -0.138 -0.023 0.007 Below RCCV 813 2.014 9.099 0.735 0.003 0.271 -0.015 -0.012 -0.119 Mid-Height 824 0.182 0.748 7.529 0.025 0.045 0.096 0.050 0.01920 Wall 1606 0.575 5.838 -5.328 0.080 0.660 -0.014 -0.018 -0.147 Below RCCV 1613 0.955 7.092 0.918 0.184 1.109 -0.006 0.009 -0.240 Top 1624 0.049 0.603 7.470 -0.009 0.017 0.051 -0.040 0.01821 Exterior Wall 20011 -0.564 -1.392 -9.721 -0.075 0.353 -0.043 0.146 0.140 @ EL-11.50 20023 -0.001 5.315 -0.104 0.230 0.272 -0.071 -0.017 0.073 ~-10.50m 30010 3.433 4.595 1.613 -0.245 -0.714 -0.024 -0.053 0.238

30020 0.484 3.247 1.307 -0.086 0.523 0.039 0.023 -0.16040001 -0.010 3.553 0.797 0.338 1.289 0.004 0.411 -0.23540011 -0.266 -0.415 4.311 0.014 -0.081 0.083 0.119 -0.014

22 Exterior Wall 22011 0.539 3.319 -6.600 0.042 -0.014 -0.019 0.032 0.006 @ EL-4.65 22023 0.113 5.590 -3.163 0.088 -0.083 0.066 -0.177 -0.075 ~-6.60m 32010 0.672 4.353 1.027 -0.012 -0.086 -0.013 0.000 0.204

32020 0.056 3.984 2.778 0.123 -0.061 0.010 0.091 0.01742001 -0.010 3.742 2.914 0.166 0.068 -0.011 -0.064 -0.03042011 0.192 -0.627 5.808 0.041 0.003 0.018 0.036 -0.014

23 Exterior Wall 24211 0.053 0.269 -5.636 -0.006 0.032 0.014 0.006 0.033 @ EL22.50 24224 0.330 5.457 -4.142 -0.306 -0.138 -0.007 0.293 -0.060 ~24.60m 34210 -0.158 1.713 0.814 0.068 0.380 -0.007 -0.004 0.144

34220 -0.136 1.761 2.503 0.147 0.144 0.006 0.041 -0.01744201 0.125 1.808 3.005 0.096 0.015 0.058 -0.091 0.023

24 Basemat 90140 0.196 4.886 3.019 0.180 3.227 -2.914 3.394 -5.502 @ Wall 90182 5.515 0.685 0.434 0.172 -0.757 -0.215 -0.079 -3.641 Below RCCV 90111 -0.237 0.778 -0.620 -0.499 0.380 1.210 -0.063 -2.79625 Slab 93140 0.740 -0.260 -0.201 0.173 0.132 -0.099 0.050 -0.041 EL4.65m 93182 -0.084 -0.021 -0.148 0.083 0.458 0.014 -0.022 -0.413 @ RCCV 93111 0.141 0.032 -0.216 0.000 -0.009 -0.025 0.011 0.00426 Slab 96144 -0.135 -0.266 -0.205 0.151 0.125 -0.096 0.048 -0.018 EL17.5m 96186 -0.434 0.196 -0.261 0.112 0.623 0.022 -0.033 -0.498 @ RCCV 96113 0.084 -0.188 0.581 0.078 0.029 0.003 -0.024 0.03927 Slab 98472 0.134 -0.988 -0.434 -0.014 -0.032 0.005 -0.041 0.047 EL27.0m 98514 -0.426 0.174 -0.383 0.063 0.485 -0.007 -0.011 -0.326 @ RCCV 98424 0.236 -0.165 -5.772 0.064 0.050 -0.180 0.048 0.09828 Pool Girder 123054 0.346 0.142 0.151 0.329 0.157 -0.068 0.025 0.209 @ Storage Pool 123154 -0.375 0.352 0.698 0.191 -0.067 -0.089 0.037 -0.00829 Pool Girder 123062 -0.434 0.924 0.205 0.076 0.040 -0.040 -0.059 0.058 @ Cavity 123162 -0.560 0.907 0.222 0.102 -0.017 0.008 -0.115 -0.01830 Pool Girder 123067 0.073 0.122 0.288 0.162 0.144 0.059 0.023 0.256 @ Fuel Pool 123167 -0.405 0.440 -0.305 0.042 -0.117 0.066 -0.051 -0.01831 MS Tunnel 150122 -0.002 0.117 -0.022 -0.031 -0.114 -0.044 0.008 0.254 Wall and Slab 96611 0.034 -0.078 -0.059 -0.013 -0.065 0.102 -0.004 -0.075

98614 0.016 0.007 -0.009 0.034 0.114 0.346 -0.032 -0.021

Page 72: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-45

Table 3G.1-21

Results of NASTRAN Analysis, Seismic Load (Vertical: Upward Direction)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 -1.345 2.103 -0.142 0.415 2.396 -0.007 0.016 1.001 Pedestal 5013 -1.093 2.640 -0.205 0.361 2.148 0.000 0.011 0.870 Bottom 5024 -0.809 2.853 -0.014 0.334 1.966 -0.008 -0.003 0.7912 RPV 6006 0.148 2.127 -0.204 -0.015 -0.066 -0.022 -0.020 0.014 Pedestal 6013 0.166 2.267 -0.308 0.018 -0.024 -0.009 0.013 -0.025 Mid-Height 6024 0.050 1.699 0.177 -0.004 0.032 -0.006 -0.014 -0.0533 RPV 6606 0.340 1.738 -0.317 -0.388 -2.605 -0.100 -0.083 0.872 Pedestal 6613 0.364 1.780 -0.164 -0.345 -2.530 0.118 0.054 0.844 Top 6624 0.262 1.713 -0.051 -0.364 -2.531 -0.122 -0.050 0.8314 RCCV 1806 0.411 4.305 -0.145 0.086 0.579 -0.010 0.000 0.124 Wetwell 1813 0.526 4.230 -0.135 0.092 0.505 -0.004 0.000 0.093 Bottom 1824 0.435 4.683 0.049 0.092 0.546 -0.002 0.003 0.1115 RCCV 2606 0.220 3.890 -0.198 -0.003 0.025 -0.007 0.000 0.093 Wetwell 2613 0.257 3.949 -0.137 0.023 0.051 -0.002 0.001 0.069 Mid-Height 2624 0.283 4.302 0.008 -0.001 0.004 -0.002 0.001 0.1006 RCCV 3406 0.300 3.275 -0.281 -0.098 -0.605 0.063 -0.097 0.217 Wetwell 3413 0.082 3.767 -0.143 -0.036 -0.290 -0.033 0.040 0.112 Top 3424 0.163 3.711 -0.005 -0.045 -0.310 0.068 -0.075 0.0887 RCCV 3606 0.145 3.079 -0.156 0.015 -0.027 0.058 -0.076 -0.104 Drywell 3613 -0.085 3.710 -0.179 0.015 0.042 -0.050 0.023 -0.136 Bottom 3624 0.100 3.861 -0.050 0.000 -0.055 0.070 -0.040 -0.0768 RCCV 4006 -0.475 2.621 -0.082 0.173 0.558 0.047 -0.008 -0.247 Drywell 4013 -0.520 3.947 -0.244 0.053 0.440 0.001 0.007 -0.087 Mid-Height 4976 -0.013 3.207 -0.184 0.019 0.202 0.005 0.007 -0.0559 RCCV 4406 -0.487 2.126 0.200 0.310 1.746 0.030 0.014 -0.374 Drywell 4413 0.508 4.138 -0.095 0.163 0.891 -0.006 0.007 -0.163 Top 4424 0.015 2.545 -0.148 0.030 0.339 -0.004 -0.001 -0.03910 Basemat 80003 1.110 1.331 -0.056 -7.799 -8.005 0.028 -0.247 0.194 @ Center 80007 1.132 1.351 -0.047 -7.810 -8.003 0.027 0.036 0.313

80012 1.129 1.387 -0.047 -7.807 -8.000 0.026 0.303 0.04411 Basemat 80206 1.057 1.206 -0.090 -5.055 -5.495 -0.898 -1.046 0.926 Inside 80213 1.134 1.393 -0.134 -5.967 -4.328 0.102 0.047 1.428 RPV Pedestal 80224 1.230 1.557 -0.051 -4.333 -6.041 0.156 1.375 0.11212 S/P Slab 83306 -0.129 -0.373 0.192 -1.917 -1.346 0.009 -1.085 0.025 @ RPV 83313 -0.284 -0.266 0.051 -1.928 -1.341 -0.009 -1.090 -0.024

83324 -0.256 -0.391 0.019 -1.925 -1.341 0.015 -1.089 0.02313 S/P Slab 83406 -0.187 -0.348 0.142 0.901 -0.610 0.001 -0.486 0.000 @ Center 83413 -0.380 -0.198 0.016 0.891 -0.590 0.001 -0.490 -0.002

83424 -0.327 -0.343 0.005 0.897 -0.590 0.002 -0.491 0.00114 S/P Slab 83506 -0.183 -0.303 0.139 1.509 -0.005 0.009 -0.061 -0.005 @ RCCV 83513 -0.395 -0.180 -0.010 1.525 0.016 0.003 -0.070 -0.003

83524 -0.326 -0.339 0.001 1.536 0.015 0.001 -0.070 0.00115 Topslab 98120 -1.049 -0.279 -0.390 0.418 0.251 0.276 -0.051 -0.286 @ Drywell Head 98135 -2.538 -0.166 0.136 0.662 -0.249 -0.110 0.072 -0.336 Opening 98104 -0.044 -0.600 0.042 0.204 1.305 -0.272 -0.011 -0.25716 Topslab 98149 -1.573 0.293 -0.499 0.768 0.364 -0.128 0.039 0.289 @ Center 98170 -1.210 0.089 -0.101 0.785 0.972 -0.053 -0.003 0.014

98109 -0.064 -0.446 -0.020 0.667 0.868 -0.147 -0.090 -0.06017 Topslab 98174 -0.712 0.087 -0.213 0.774 0.772 0.157 0.163 -0.060 @ RCCV 98197 -0.153 0.023 0.169 0.425 -1.039 -0.134 -0.048 -0.662

98103 0.196 -0.283 -0.064 -1.812 -0.296 -0.205 -0.905 -0.109

Page 73: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-46

Table 3G.1-21

Results of NASTRAN Analysis, Seismic Load (Vertical: Upward Direction) (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 -0.369 6.045 -0.433 0.327 2.162 -0.011 0.033 0.697 Below RCCV 13 -0.498 4.718 -0.323 0.569 3.088 -0.003 0.004 0.952 Bottom 24 -0.464 5.193 0.150 0.595 3.234 -0.005 0.001 0.97619 Wall 806 -0.057 5.223 -0.089 -0.016 0.030 0.023 -0.007 0.122 Below RCCV 813 0.110 4.678 -0.266 0.023 0.034 0.009 0.017 0.211 Mid-Height 824 0.060 5.154 0.138 0.028 -0.004 0.006 -0.001 0.22020 Wall 1606 0.592 4.611 -0.068 -0.168 -0.903 -0.009 0.004 0.312 Below RCCV 1613 0.717 4.487 -0.182 -0.163 -0.990 -0.005 0.000 0.358 Top 1624 0.624 4.934 0.094 -0.163 -0.963 0.000 0.005 0.34121 Exterior Wall 20011 0.492 3.325 0.340 0.048 0.031 0.019 -0.049 -0.032 @ EL-11.50 20023 0.002 1.060 0.425 -0.108 0.221 0.007 0.092 0.139 ~-10.50m 30010 0.228 1.737 0.025 0.322 1.788 -0.022 -0.014 -0.417

30020 0.047 0.816 0.159 -0.174 0.513 0.054 -0.113 -0.17440001 0.049 0.841 -0.148 -0.182 0.520 -0.053 0.112 -0.16940011 0.328 2.098 0.008 0.394 2.089 0.010 0.001 -0.500

22 Exterior Wall 22011 -0.178 2.690 -0.603 0.011 -0.021 0.002 0.022 -0.021 @ EL-4.65 22023 -0.004 1.365 0.331 0.115 0.002 0.013 -0.073 -0.012 ~-6.60m 32010 0.012 1.478 -0.046 -0.001 -0.033 -0.002 0.000 0.007

32020 0.040 1.566 0.054 0.052 0.002 0.007 0.047 0.00742001 0.049 1.628 0.032 0.067 0.004 -0.002 -0.034 0.00242011 0.251 1.839 0.087 0.001 -0.025 0.003 -0.002 0.004

23 Exterior Wall 24211 0.133 1.429 -0.116 0.085 0.587 -0.013 0.004 0.143 @ EL22.50 24224 0.047 1.075 -0.329 -0.021 0.047 0.060 0.054 0.030 ~24.60m 34210 0.008 0.651 -0.050 -0.005 0.004 -0.001 -0.004 -0.013

34220 -0.039 0.802 0.142 -0.038 0.021 0.004 -0.032 0.00044201 -0.023 0.949 0.280 -0.032 0.012 -0.013 0.037 0.001

24 Basemat 90140 -0.090 0.743 0.430 1.673 1.226 -2.811 1.354 -1.582 @ Wall 90182 0.637 0.337 0.029 -0.857 1.734 0.351 -0.170 -0.448 Below RCCV 90111 0.384 0.879 -0.046 1.649 -0.996 0.430 -0.499 -0.09725 Slab 93140 0.063 -0.102 -0.056 -0.091 -0.107 0.070 -0.132 0.109 EL4.65m 93182 -0.101 -0.089 -0.021 -0.034 -0.118 -0.007 0.009 0.174 @ RCCV 93111 -0.058 -0.120 0.023 -0.136 -0.034 -0.005 0.160 0.00326 Slab 96144 0.239 -0.170 -0.124 -0.056 -0.058 0.040 -0.097 0.074 EL17.5m 96186 -0.239 0.093 0.038 -0.003 -0.002 -0.005 0.006 0.052 @ RCCV 96113 0.067 -0.427 0.079 0.132 -0.032 -0.016 -0.157 -0.02027 Slab 98472 -0.341 0.011 -0.110 -0.186 -0.285 0.206 -0.230 0.258 EL27.0m 98514 0.034 -0.088 -0.059 -0.037 -0.115 -0.024 0.000 0.171 @ RCCV 98424 0.218 -0.319 -0.008 -0.719 -0.214 0.047 1.004 0.06428 Pool Girder 123054 -0.418 2.390 0.732 -0.048 -0.028 -0.052 0.007 0.024 @ Storage Pool 123154 -1.388 0.436 0.560 -0.072 -0.034 -0.096 -0.022 -0.00729 Pool Girder 123062 -0.465 -0.598 -0.336 0.024 0.163 -0.031 0.000 0.087 @ Cavity 123162 1.265 -0.170 -0.200 0.073 0.059 -0.027 -0.090 -0.03930 Pool Girder 123067 -0.503 2.667 -1.237 -0.015 0.047 0.078 0.118 0.054 @ Fuel Pool 123167 -0.679 0.641 -1.015 -0.040 -0.022 -0.011 0.032 -0.00831 MS Tunnel 150122 0.026 -0.083 -0.250 -0.017 -0.020 -0.016 0.010 0.049 Wall and Slab 96611 0.014 -0.303 0.015 -0.044 0.161 0.065 0.071 -0.022

98614 0.016 0.219 0.015 0.003 0.460 0.054 0.039 -0.029

Page 74: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-47

Table 3G.1-22

Combined Forces and Moments: RCCV, Selected Load Combination CV-1

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 OTHR -2.179 -7.664 -0.044 0.372 2.180 0.033 -0.011 1.260 Pedestal TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Bottom 5013 OTHR -2.702 -8.067 0.048 0.310 2.378 -0.003 -0.005 1.446

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0005024 OTHR -2.542 -7.478 0.051 0.482 2.127 -0.010 0.011 1.240

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0002 RPV 6006 OTHR 1.178 -7.401 0.008 -0.051 -0.211 0.024 0.075 -0.347 Pedestal TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mid-Height 6013 OTHR 0.890 -7.369 0.188 -0.205 -0.269 0.004 -0.002 -0.329

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006024 OTHR 1.233 -5.428 -0.513 0.296 0.070 0.015 -0.008 -0.265

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0003 RPV 6606 OTHR 0.578 -6.185 0.793 0.431 2.798 0.035 0.233 -0.992 Pedestal TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Top 6613 OTHR 0.262 -6.369 -0.098 0.291 2.824 -0.105 -0.093 -1.045

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006624 OTHR 0.816 -6.021 0.318 0.407 2.485 0.144 0.061 -0.803

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0004 RCCV 1806 OTHR 0.294 -1.968 -0.043 0.371 2.210 0.018 0.011 0.785 Wetwell TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Bottom 1813 OTHR 0.100 -2.364 0.195 0.364 2.331 -0.001 -0.003 0.895

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0001824 OTHR 0.537 -2.271 0.002 0.363 2.112 0.008 -0.005 0.824

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0005 RCCV 2606 OTHR 2.620 -1.497 -0.092 -0.167 -0.662 -0.001 0.008 -0.046 Wetwell TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mid-Height 2613 OTHR 2.292 -2.136 0.184 -0.192 -0.683 0.000 -0.007 0.013

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0002624 OTHR 2.619 -1.806 -0.015 -0.120 -0.694 -0.003 0.004 -0.082

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 RCCV 3406 OTHR 2.444 -0.818 0.117 -0.070 -0.222 0.069 -0.031 -0.014 Wetwell TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Top 3413 OTHR 2.125 -1.980 0.135 -0.107 -0.259 -0.095 0.048 0.018

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0003424 OTHR 2.106 -1.152 0.048 0.023 0.078 0.059 -0.019 -0.054

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0007 RCCV 3606 OTHR 2.397 -0.272 0.027 -0.020 0.093 0.100 0.003 0.496 Drywell TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Bottom 3613 OTHR 2.138 -1.511 0.222 -0.001 0.364 -0.080 0.001 0.698

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0003624 OTHR 2.089 -0.761 0.040 0.112 0.559 0.059 0.011 0.563

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008 RCCV 4006 OTHR 1.606 0.170 0.101 -0.086 -0.271 0.024 0.033 -0.282 Drywell TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mid-Height 4013 OTHR 1.637 -1.776 0.362 -0.132 -0.408 0.009 -0.010 -0.271

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0004976 OTHR 1.629 -0.340 -0.007 0.037 -0.016 0.001 -0.013 -0.375

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0009 RCCV 4406 OTHR 0.583 0.552 0.151 0.331 1.982 0.002 0.010 -0.641 Drywell TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Top 4413 OTHR -0.112 -2.054 0.252 0.270 2.156 0.046 0.005 -0.797

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0004424 OTHR 1.198 -0.078 -0.023 0.427 2.309 0.024 0.003 -0.714

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 OTHR: Loads other than thermal loads TEMP: Thermal loads

Page 75: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-48

Table 3G.1-22

Combined Forces and Moments: RCCV, Selected Load Combination CV-1 (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

10 Basemat 80003 OTHR -2.855 -1.584 0.149 -0.654 -0.071 -0.045 0.163 -0.110 @ Center TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

80007 OTHR -2.881 -1.591 0.133 -0.578 -0.049 -0.028 0.005 -0.179TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

80012 OTHR -2.933 -1.579 0.135 -0.572 -0.046 -0.031 -0.151 -0.018TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

11 Basemat 80206 OTHR -2.522 -1.736 0.229 -2.544 -2.331 0.704 0.961 -1.141 Inside TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 RPV Pedestal 80213 OTHR -2.623 -1.585 0.088 -1.661 -3.097 -0.111 -0.079 -1.522

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00080224 OTHR -3.106 -1.997 0.060 -2.752 -1.746 -0.161 -1.211 -0.143

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00012 S/P Slab 83306 OTHR 0.000 1.180 -0.424 -0.272 0.607 -0.065 1.932 -0.038 @ RPV TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

83313 OTHR 0.198 0.925 -0.089 -0.214 0.621 0.041 1.945 0.051TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

83324 OTHR 0.228 1.415 0.052 -0.307 0.573 -0.038 1.893 -0.055TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

13 S/P Slab 83406 OTHR 0.249 0.879 -0.317 -2.852 -0.673 -0.030 -0.134 0.003 @ Center TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

83413 OTHR 0.577 0.668 -0.017 -2.824 -0.680 -0.004 -0.125 0.002TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

83424 OTHR 0.416 1.101 0.029 -2.793 -0.672 0.005 -0.155 0.000TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

14 S/P Slab 83506 OTHR 0.380 0.724 -0.243 1.283 -0.178 -0.026 -1.744 0.000 @ RCCV TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

83513 OTHR 0.745 0.609 0.005 1.267 -0.185 -0.005 -1.734 0.002TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

83524 OTHR 0.481 0.995 0.030 1.391 -0.133 -0.001 -1.763 0.001TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

15 Topslab 98120 OTHR 0.089 0.956 1.143 0.925 0.713 0.387 0.410 -0.808 @ Drywell Head TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Opening 98135 OTHR -0.763 -0.415 -0.496 0.767 -0.198 0.170 0.167 -1.200

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00098104 OTHR -0.244 2.457 -0.771 0.811 2.636 -0.298 -0.482 -0.707

TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00016 Topslab 98149 OTHR -0.094 1.438 -0.475 0.346 0.112 0.267 0.077 0.368 @ Center TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

98170 OTHR 0.007 0.882 -0.384 0.610 0.623 -0.030 -0.054 -0.128TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

98109 OTHR 0.356 1.560 -0.142 0.993 1.907 -0.220 -0.050 -0.266TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

17 Topslab 98174 OTHR 0.674 1.192 -0.120 0.082 0.272 0.472 0.200 -0.196 @ RCCV TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

98197 OTHR 0.314 1.223 -0.231 -0.172 -1.587 -0.120 -0.070 -1.106TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

98103 OTHR 0.666 1.694 -0.091 -0.975 0.421 -0.330 -0.897 -0.215TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Page 76: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-49

Table 3G.1-23

Combined Forces and Moments: RCCV, Selected Load Combination CV-7a

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 OTHR -4.668 -14.875 0.110 0.890 5.358 0.054 -0.034 2.723 Pedestal TEMP -3.477 1.650 -0.339 -6.696 -6.473 -0.045 0.110 1.009 Bottom 5013 OTHR -5.406 -15.133 0.780 0.879 5.760 -0.001 -0.020 3.066

TEMP -3.130 1.794 -0.083 -6.863 -6.856 -0.006 0.023 0.9265024 OTHR -5.194 -12.672 0.419 1.023 5.176 -0.025 0.032 2.728

TEMP -3.394 1.906 -0.001 -6.891 -6.143 -0.027 -0.034 1.0372 RPV 6006 OTHR 1.121 -15.601 0.332 -0.123 -0.386 0.059 0.130 -0.465 Pedestal TEMP 0.067 1.755 0.162 -6.160 -4.019 0.265 0.075 -1.529 Mid-Height 6013 OTHR 0.645 -14.564 0.924 -0.334 -0.581 0.005 -0.017 -0.419

TEMP -0.091 1.447 -0.178 -6.439 -3.908 -0.057 -0.026 -1.6696024 OTHR 0.871 -8.831 -0.559 0.242 -0.409 -0.003 0.018 -0.250

TEMP -0.234 2.057 0.062 -7.399 -2.300 -0.303 -0.003 -1.5513 RPV 6606 OTHR 0.727 -13.440 2.026 0.789 5.730 0.184 0.196 -2.248 Pedestal TEMP 21.003 2.199 0.571 -6.642 -5.535 -0.046 -1.920 0.884 Top 6613 OTHR 0.235 -12.926 0.206 0.652 6.093 -0.043 -0.073 -2.278

TEMP 21.062 1.960 -0.446 -6.709 -5.541 0.140 2.058 0.8536624 OTHR 0.245 -10.604 0.776 1.133 6.855 0.213 0.615 -2.060

TEMP 21.918 2.602 0.224 -6.666 -5.662 0.008 -2.345 1.0584 RCCV 1806 OTHR 1.582 -0.944 -0.099 1.063 6.451 0.010 0.019 2.495 Wetwell TEMP 2.538 0.393 -0.222 -4.442 -8.116 0.066 0.081 -1.726 Bottom 1813 OTHR 1.319 -1.275 0.130 1.070 6.590 -0.002 -0.007 2.686

TEMP 1.857 -2.167 -0.444 -4.275 -7.777 -0.024 -0.007 -1.5261824 OTHR 1.433 -1.281 -0.252 1.096 6.510 0.023 -0.016 2.686

TEMP 2.938 -2.477 0.048 -4.432 -8.139 0.019 -0.085 -1.6705 RCCV 2606 OTHR 4.272 -0.658 -0.236 -0.253 -0.839 -0.022 0.013 -0.298 Wetwell TEMP 1.389 0.550 -0.146 -3.335 -1.060 0.021 0.034 0.043 Mid-Height 2613 OTHR 3.800 -1.154 0.034 -0.266 -0.973 -0.009 -0.009 -0.168

TEMP 0.113 -2.558 -0.121 -3.089 -1.048 0.009 -0.074 0.3692624 OTHR 4.161 -0.812 -0.242 -0.227 -1.099 -0.004 0.012 -0.306

TEMP 0.970 -2.907 -0.086 -3.292 -0.934 -0.026 0.067 0.1896 RCCV 3406 OTHR 3.510 -0.027 0.097 -0.207 -0.741 0.172 -0.216 0.337 Wetwell TEMP 11.700 1.428 0.353 -4.152 -8.450 -0.228 0.462 3.344 Top 3413 OTHR 2.736 -1.043 -0.049 -0.113 -0.435 -0.187 0.149 0.241

TEMP 8.031 -3.446 0.040 -4.382 -9.149 -0.403 0.539 3.3353424 OTHR 2.557 -0.251 -0.157 -0.009 -0.222 0.078 -0.037 0.133

TEMP 10.294 -4.168 0.471 -3.680 -5.044 -0.038 -0.007 2.1657 RCCV 3606 OTHR 3.445 0.682 -0.061 -0.031 0.217 0.129 -0.170 0.682 Drywell TEMP 8.481 1.351 0.705 -5.341 -9.025 0.605 0.535 -1.974 Bottom 3613 OTHR 2.631 -0.651 0.113 0.131 0.945 -0.085 0.074 0.848

TEMP 4.607 -4.166 1.002 -4.955 -6.228 -0.363 0.318 -0.8203624 OTHR 2.353 -0.034 -0.156 0.250 1.195 0.130 0.019 0.763

TEMP -4.289 -6.045 0.252 -0.934 -2.499 0.068 -0.001 0.3508 RCCV 4006 OTHR 2.480 0.945 -0.005 -0.017 -0.392 0.059 -0.076 -0.394 Drywell TEMP 5.934 2.176 0.228 -5.109 -5.059 0.011 -0.128 -0.683 Mid-Height 4013 OTHR 2.173 -0.655 0.319 -0.091 -0.337 0.056 0.034 -0.144

TEMP 4.288 -5.853 1.039 -4.672 -4.288 0.013 -0.132 -0.3084976 OTHR 1.755 0.318 -0.196 0.063 -0.013 0.000 -0.014 -0.285

TEMP -2.657 -5.340 0.578 -0.953 -1.777 0.004 0.013 -0.5859 RCCV 4406 OTHR 0.815 1.018 0.145 0.443 2.562 0.049 0.018 -0.849 Drywell TEMP 6.443 1.716 -0.228 -4.470 -3.808 0.301 0.088 -0.153 Top 4413 OTHR 0.649 -0.712 0.456 0.313 1.956 -0.061 0.082 -0.884

TEMP 0.718 -6.633 -0.295 -4.753 -4.468 0.253 -0.244 0.6444424 OTHR 1.269 0.472 -0.155 0.401 2.127 0.024 0.002 -0.649

TEMP -5.839 -4.178 0.764 -0.362 1.133 -0.024 -0.022 -1.462

Page 77: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-50

Table 3G.1-23

Combined Forces and Moments: RCCV, Selected Load Combination CV-7a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

10 Basemat 80003 OTHR -1.188 -0.059 0.055 -6.784 -5.675 0.041 0.502 -0.427 @ Center TEMP -4.361 -5.064 0.010 -8.115 -8.087 -0.031 0.030 -0.007

80007 OTHR -1.228 -0.091 0.034 -6.566 -5.647 0.058 0.210 -0.561TEMP -4.380 -5.029 0.041 -8.081 -8.084 -0.028 0.028 -0.008

80012 OTHR -1.307 -0.160 0.066 -6.355 -5.458 -0.055 -0.106 -0.260TEMP -4.384 -4.970 0.030 -8.065 -8.094 -0.024 0.023 0.001

11 Basemat 80206 OTHR -0.615 -0.002 0.181 -11.489 -10.593 2.002 1.992 -2.161 Inside TEMP -4.366 -5.447 0.114 -8.537 -8.473 0.021 0.002 -0.045 RPV Pedestal 80213 OTHR -0.899 -0.010 0.030 -9.056 -12.395 0.551 0.451 -2.835

TEMP -4.494 -5.044 0.109 -8.253 -8.556 -0.118 -0.004 -0.10880224 OTHR -1.547 -0.974 0.048 -9.492 -8.223 -0.752 -1.735 -0.660

TEMP -4.424 -4.901 0.060 -8.160 -8.192 -0.035 -0.034 0.01012 S/P Slab 83306 OTHR 0.378 2.646 -0.650 -2.181 0.902 -0.139 5.119 -0.081 @ RPV TEMP -10.578 10.974 0.416 -4.708 -2.771 0.029 -0.296 0.000

83313 OTHR 1.062 2.305 -0.472 -2.045 0.995 -0.078 5.163 0.101TEMP -10.828 11.228 -0.835 -4.734 -2.849 -0.041 -0.301 -0.027

83324 OTHR 2.158 2.654 -0.345 -1.772 1.236 -0.180 5.283 -0.100TEMP -10.705 11.877 1.291 -4.485 -2.653 0.007 -0.155 0.046

13 S/P Slab 83406 OTHR 0.829 2.331 -0.555 -8.174 -2.476 -0.051 -0.694 0.000 @ Center TEMP -6.461 4.868 -0.561 -3.802 -3.176 -0.003 -0.312 0.014

83413 OTHR 1.627 2.055 -0.151 -8.167 -2.433 -0.086 -0.661 0.004TEMP -6.987 5.300 0.324 -3.901 -3.259 -0.016 -0.276 -0.011

83424 OTHR 2.292 2.289 -0.179 -8.176 -2.274 -0.070 -0.610 0.004TEMP -6.636 5.835 0.088 -3.896 -3.148 -0.002 -0.210 0.009

14 S/P Slab 83506 OTHR 1.194 2.141 -0.412 4.503 -0.651 -0.040 -5.223 -0.006 @ RCCV TEMP -3.917 2.321 -0.471 -2.874 -3.120 -0.034 -0.284 0.013

83513 OTHR 1.917 2.016 -0.053 4.402 -0.627 -0.033 -5.201 -0.006TEMP -4.564 2.411 0.445 -3.195 -3.177 -0.008 -0.190 -0.001

83524 OTHR 2.270 2.165 -0.168 4.287 -0.558 -0.024 -5.166 -0.006TEMP -4.044 3.212 -0.010 -3.279 -3.153 0.013 -0.167 -0.005

15 Topslab 98120 OTHR 0.371 1.023 1.372 0.960 0.721 0.390 0.443 -0.867 @ Drywell Head TEMP -7.159 -4.295 -0.826 0.963 0.733 2.771 -0.163 -0.005 Opening 98135 OTHR -0.445 -0.406 -0.554 0.782 -0.252 0.195 0.187 -1.320

TEMP -8.776 -5.279 0.213 3.150 -2.057 -1.132 0.380 -0.26798104 OTHR -0.255 2.248 -0.867 0.855 2.729 -0.313 -0.524 -0.825

TEMP -4.990 -1.708 0.576 -1.459 3.716 -1.501 0.186 -0.21316 Topslab 98149 OTHR 0.316 1.668 -0.530 0.421 0.255 0.245 0.061 0.334 @ Center TEMP -6.095 -2.564 -1.166 2.235 2.318 0.500 0.036 0.047

98170 OTHR 0.362 1.279 -0.362 0.682 0.753 -0.016 -0.018 -0.065TEMP -5.522 -3.576 -1.068 2.144 2.867 -0.043 0.030 0.389

98109 OTHR 0.375 1.479 -0.307 1.092 1.979 -0.265 -0.050 -0.291TEMP -6.255 -0.872 0.768 1.221 2.566 -0.119 0.329 -0.005

17 Topslab 98174 OTHR 1.172 1.471 -0.135 0.197 0.382 0.445 0.236 -0.194 @ RCCV TEMP -4.857 -2.720 -0.479 2.355 3.217 0.258 -0.023 0.433

98197 OTHR 1.027 1.568 -0.065 -0.144 -1.939 -0.108 -0.088 -1.130TEMP -7.582 -2.932 -1.375 1.918 3.109 0.128 0.154 -0.449

98103 OTHR 0.717 1.645 -0.279 -1.334 0.288 -0.381 -1.079 -0.239TEMP -6.579 -2.446 -0.073 3.434 3.309 0.118 0.451 0.084

Page 78: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-51

Table 3G.1-24

Combined Forces and Moments: RCCV, Selected Load Combination CV-7b

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 OTHR -4.411 -13.617 0.086 0.885 5.319 0.052 -0.028 2.678 Pedestal TEMP -12.845 0.250 -0.532 -16.012 -12.643 -0.092 0.231 4.151 Bottom 5013 OTHR -5.076 -13.708 0.712 0.857 5.634 -0.001 -0.016 2.975

TEMP -12.361 0.340 -0.091 -16.298 -13.248 -0.007 0.018 4.0605024 OTHR -4.771 -11.231 0.421 0.997 4.999 -0.024 0.029 2.608

TEMP -12.833 0.244 0.006 -16.283 -11.850 -0.073 -0.052 4.2562 RPV 6006 OTHR 1.571 -14.237 0.234 -0.120 -0.342 0.052 0.121 -0.478 Pedestal TEMP -2.421 0.594 0.451 -16.077 -14.899 0.436 0.156 -1.788 Mid-Height 6013 OTHR 1.106 -13.184 0.833 -0.318 -0.527 0.003 -0.011 -0.439

TEMP -2.655 0.215 -0.207 -16.601 -14.799 -0.049 -0.033 -2.0156024 OTHR 1.383 -7.733 -0.459 0.272 -0.332 -0.004 0.007 -0.275

TEMP -2.716 0.675 0.078 -18.530 -11.372 -0.660 0.021 -1.7063 RPV 6606 OTHR 1.080 -12.204 1.849 0.635 4.679 0.144 0.168 -1.856 Pedestal TEMP 8.843 0.688 0.583 -16.162 -12.321 0.045 -1.373 -1.999 Top 6613 OTHR 0.550 -11.708 0.210 0.513 5.097 0.001 -0.045 -1.908

TEMP 9.187 0.728 -0.380 -16.206 -12.531 0.030 1.514 -1.9616624 OTHR 0.563 -9.371 0.728 0.997 5.847 0.163 0.596 -1.687

TEMP 9.562 0.849 0.249 -16.169 -12.374 0.070 -1.774 -1.7984 RCCV 1806 OTHR 1.538 -0.500 -0.136 0.950 5.769 0.011 0.018 2.147 Wetwell TEMP -1.529 -1.095 -0.255 -10.252 -14.624 0.079 0.094 -1.532 Bottom 1813 OTHR 1.245 -0.942 0.086 0.954 5.915 -0.001 -0.008 2.334

TEMP -2.046 -4.246 -0.418 -10.039 -14.124 -0.042 -0.006 -1.2571824 OTHR 1.362 -0.761 -0.231 0.978 5.791 0.022 -0.014 2.325

TEMP -0.999 -4.101 0.138 -10.225 -14.390 0.027 -0.105 -1.3245 RCCV 2606 OTHR 4.582 -0.139 -0.265 -0.272 -0.948 -0.016 0.013 -0.208 Wetwell TEMP -4.260 -1.284 -0.207 -9.988 -7.587 0.005 0.040 0.086 Mid-Height 2613 OTHR 4.063 -0.821 0.019 -0.291 -1.060 -0.010 -0.008 -0.096

TEMP -5.195 -5.332 -0.051 -9.724 -7.431 -0.015 -0.092 0.4162624 OTHR 4.417 -0.330 -0.222 -0.229 -1.178 -0.003 0.012 -0.247

TEMP -4.918 -4.757 -0.110 -10.020 -7.637 -0.043 0.078 0.1936 RCCV 3406 OTHR 3.976 0.540 0.051 -0.192 -0.669 0.136 -0.169 0.254 Wetwell TEMP 5.175 -0.376 0.529 -10.840 -14.111 0.026 0.145 2.473 Top 3413 OTHR 3.169 -0.722 -0.027 -0.124 -0.362 -0.152 0.122 0.155

TEMP 3.430 -7.155 0.358 -10.781 -14.122 -0.110 0.133 2.6403424 OTHR 2.929 0.267 -0.139 0.028 0.039 0.051 -0.014 0.000

TEMP 2.847 -6.404 0.482 -9.992 -9.739 0.046 -0.109 0.8987 RCCV 3606 OTHR 3.877 1.165 -0.103 -0.047 0.099 0.111 -0.135 0.715 Drywell TEMP 0.830 -0.284 0.115 -12.664 -14.950 0.281 0.181 -0.832 Bottom 3613 OTHR 3.066 -0.360 0.164 0.067 0.733 -0.052 0.065 0.894

TEMP -0.941 -8.496 1.387 -12.338 -13.243 -0.243 0.025 -0.3463624 OTHR 2.775 0.562 -0.164 0.206 0.993 0.097 0.027 0.791

TEMP -10.574 -8.041 0.298 -7.214 -6.867 0.090 -0.064 1.4818 RCCV 4006 OTHR 2.663 1.445 0.001 -0.001 -0.368 0.065 -0.068 -0.512 Drywell TEMP 1.875 0.839 -0.303 -12.243 -12.221 0.193 -0.156 -0.809 Mid-Height 4013 OTHR 2.393 -0.487 0.358 -0.126 -0.376 0.049 0.029 -0.287

TEMP 1.199 -10.522 1.291 -12.197 -11.582 0.045 -0.165 -0.4584976 OTHR 2.124 0.850 -0.209 0.059 0.018 -0.001 -0.014 -0.443

TEMP -7.090 -6.964 0.636 -7.680 -8.654 0.012 0.038 -0.3069 RCCV 4406 OTHR 0.859 1.521 0.211 0.612 3.415 0.056 0.019 -1.114 Drywell TEMP 6.737 0.276 -1.384 -11.629 -9.857 0.511 0.461 -0.604 Top 4413 OTHR 0.545 -0.657 0.449 0.426 2.799 -0.041 0.074 -1.142

TEMP -0.979 -11.885 -0.375 -12.126 -10.998 0.410 -0.181 0.1754424 OTHR 1.536 0.921 -0.169 0.529 2.896 0.028 0.001 -0.881

TEMP -10.166 -5.578 0.969 -7.106 -5.867 -0.070 -0.009 -1.762

Page 79: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-52

Table 3G.1-24

Combined Forces and Moments: RCCV, Selected Load Combination CV-7b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

10 Basemat 80003 OTHR -1.364 -0.171 0.064 -6.933 -5.897 0.037 0.424 -0.357 @ Center TEMP -1.679 -2.344 -0.012 -8.432 -8.745 -0.031 0.023 -0.009

80007 OTHR -1.398 -0.198 0.045 -6.715 -5.867 0.057 0.227 -0.452TEMP -1.684 -2.300 0.024 -8.412 -8.747 -0.031 0.015 -0.013

80012 OTHR -1.479 -0.254 0.073 -6.503 -5.677 -0.056 0.000 -0.242TEMP -1.690 -2.227 0.016 -8.402 -8.767 -0.023 0.005 0.002

11 Basemat 80206 OTHR -0.813 -0.146 0.179 -10.649 -9.866 1.666 1.676 -1.854 Inside TEMP -1.712 -2.848 0.097 -8.908 -9.252 0.053 -0.011 -0.059 RPV Pedestal 80213 OTHR -1.064 -0.119 0.026 -8.528 -11.223 0.571 0.464 -2.374

TEMP -1.772 -2.262 0.036 -8.632 -9.316 -0.133 -0.013 -0.16980224 OTHR -1.711 -0.998 0.046 -8.359 -7.721 -0.707 -1.305 -0.623

TEMP -1.625 -2.127 0.040 -8.608 -8.912 -0.042 -0.100 0.01912 S/P Slab 83306 OTHR 0.078 2.486 -0.580 -2.132 0.609 -0.138 4.311 -0.071 @ RPV TEMP -11.644 3.829 0.179 -9.646 -8.196 0.033 -0.080 -0.040

83313 OTHR 0.716 2.127 -0.472 -1.987 0.705 -0.086 4.359 0.093TEMP -11.916 4.301 -0.412 -9.666 -8.271 -0.027 -0.074 0.012

83324 OTHR 1.806 2.458 -0.339 -1.706 0.956 -0.172 4.486 -0.090TEMP -11.700 4.708 0.978 -9.527 -8.129 -0.001 0.005 0.006

13 S/P Slab 83406 OTHR 0.544 2.144 -0.504 -6.983 -2.224 -0.050 -0.671 0.000 @ Center TEMP -8.113 -0.586 -0.539 -9.089 -8.498 -0.001 -0.113 0.014

83413 OTHR 1.308 1.847 -0.170 -6.976 -2.182 -0.087 -0.635 0.004TEMP -8.751 0.101 0.493 -9.200 -8.593 -0.013 -0.068 -0.007

83424 OTHR 1.954 2.057 -0.174 -6.994 -2.019 -0.069 -0.580 0.004TEMP -8.215 0.434 0.022 -9.166 -8.498 0.001 -0.042 0.006

14 S/P Slab 83506 OTHR 0.912 1.947 -0.370 4.158 -0.545 -0.037 -4.567 -0.006 @ RCCV TEMP -6.242 -2.430 -0.408 -8.821 -8.626 -0.045 -0.143 0.019

83513 OTHR 1.617 1.799 -0.085 4.053 -0.531 -0.033 -4.541 -0.007TEMP -7.029 -2.087 0.617 -9.213 -8.689 -0.011 -0.020 0.001

83524 OTHR 1.938 1.917 -0.160 3.916 -0.463 -0.024 -4.504 -0.006TEMP -6.242 -1.435 -0.072 -9.173 -8.644 0.017 -0.038 -0.005

15 Topslab 98120 OTHR 0.078 1.187 1.509 1.289 0.957 0.557 0.521 -1.119 @ Drywell Head TEMP -11.552 -10.624 -5.088 7.064 5.010 5.160 -1.418 -1.083 Opening 98135 OTHR -1.302 -0.543 -0.634 1.138 -0.347 0.201 0.242 -1.665

TEMP -16.116 -6.978 2.414 10.532 -0.434 -1.821 1.058 -1.14198104 OTHR -0.316 2.738 -1.028 1.094 3.671 -0.453 -0.633 -1.037

TEMP -6.693 -12.082 2.871 2.391 11.786 -3.140 0.877 -0.61016 Topslab 98149 OTHR -0.171 2.117 -0.756 0.696 0.363 0.293 0.095 0.476 @ Center TEMP -11.296 -3.042 -1.890 5.802 8.895 0.962 0.549 -1.908

98170 OTHR 0.020 1.502 -0.489 1.011 1.141 -0.043 -0.033 -0.090TEMP -9.623 -4.570 -0.897 4.305 5.412 -0.102 -0.115 0.049

98109 OTHR 0.451 1.768 -0.319 1.483 2.643 -0.346 -0.084 -0.365TEMP -7.853 -1.630 0.872 9.058 11.508 -0.323 0.767 0.077

17 Topslab 98174 OTHR 1.078 1.824 -0.199 0.383 0.615 0.626 0.325 -0.249 @ RCCV TEMP -9.246 -4.000 -1.475 5.058 6.605 0.114 -0.062 0.290

98197 OTHR 0.918 1.883 -0.115 -0.118 -2.566 -0.178 -0.113 -1.554TEMP -11.730 -4.691 -1.514 4.218 6.201 0.219 0.358 -0.440

98103 OTHR 0.925 1.998 -0.285 -1.928 0.361 -0.501 -1.476 -0.312TEMP -7.871 -5.553 -0.329 12.884 12.663 0.252 0.585 0.155

Page 80: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-53

Table 3G.1-25

Combined Forces and Moments: RCCV, Selected Load Combination CV-11a

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 OTHR -3.677 -12.938 0.097 0.616 3.714 0.045 -0.028 1.979 Pedestal TEMP -3.477 1.650 -0.339 -6.696 -6.473 -0.045 0.110 1.009 Bottom EQEW 3.619 7.901 -1.996 -0.849 -4.472 -0.071 0.270 -1.900

EQNS -3.083 -4.179 -1.043 0.834 5.074 0.047 0.056 2.171EQZ -1.345 2.103 -0.142 0.415 2.396 -0.007 0.016 1.001EQT 0.321 0.181 0.237 0.002 -0.172 -0.018 0.038 -0.099

SPKW -0.273 0.022 0.188 -0.025 -0.020 -0.035 0.019 0.062SPKN -0.244 -0.027 -0.214 0.030 0.053 0.027 -0.005 0.084

5013 OTHR -4.360 -13.196 0.764 0.601 4.083 0.000 -0.017 2.286TEMP -3.130 1.794 -0.083 -6.863 -6.856 -0.006 0.023 0.926EQEW 5.109 12.272 0.228 -1.290 -6.832 -0.010 0.019 -3.065EQNS -0.386 1.517 -1.467 0.299 1.833 -0.045 0.184 0.677EQZ -1.093 2.640 -0.205 0.361 2.148 0.000 0.011 0.870EQT 0.245 0.242 0.274 -0.072 -0.267 -0.017 0.037 -0.137

SPKW 0.269 0.346 0.022 0.130 -0.289 0.004 -0.002 -0.118SPKN -0.734 -0.262 -0.099 -0.140 0.211 -0.006 0.011 0.212

5024 OTHR -4.153 -11.003 0.425 0.738 3.603 -0.017 0.023 2.014TEMP -3.394 1.906 -0.001 -6.891 -6.143 -0.027 -0.034 1.037EQEW 0.410 0.732 3.303 -0.102 -0.451 0.017 -0.296 -0.197EQNS 2.337 7.411 -0.116 -0.519 -1.859 0.009 0.013 -1.002EQZ -0.809 2.853 -0.014 0.334 1.966 -0.008 -0.003 0.791EQT 0.018 0.009 0.449 -0.008 -0.020 -0.013 0.008 -0.008

SPKW -0.691 -0.252 -0.020 -0.142 0.239 0.004 -0.002 0.216SPKN 0.336 0.365 -0.009 0.117 -0.385 0.000 -0.006 -0.157

2 RPV 6006 OTHR 0.669 -13.647 0.329 -0.085 -0.214 0.054 0.115 -0.374 Pedestal TEMP 0.067 1.755 0.162 -6.160 -4.019 0.265 0.075 -1.529 Mid-Height EQEW -0.516 4.034 -2.798 0.015 0.148 -0.181 -0.003 -0.069

EQNS 0.378 -2.346 -0.857 -0.144 -0.036 0.005 0.128 -0.014EQZ 0.148 2.127 -0.204 -0.015 -0.066 -0.022 -0.020 0.014EQT -0.020 0.000 0.137 0.021 0.031 -0.038 -0.006 -0.012

SPKW -0.476 0.064 -0.279 -0.053 0.057 -0.063 -0.169 -0.094SPKN -0.207 0.093 0.212 -0.014 -0.003 0.049 0.131 -0.050

6013 OTHR 0.226 -12.690 0.905 -0.286 -0.394 0.007 -0.014 -0.333TEMP -0.091 1.447 -0.178 -6.439 -3.908 -0.057 -0.026 -1.669EQEW -0.993 6.128 0.364 0.228 0.113 -0.037 0.000 -0.218EQNS -0.383 1.441 -1.462 -0.312 -0.154 -0.039 -0.054 0.014EQZ 0.166 2.267 -0.308 0.018 -0.024 -0.009 0.013 -0.025EQT -0.035 -0.012 0.336 0.013 0.043 -0.038 0.000 -0.017

SPKW 0.050 0.002 0.080 0.544 0.319 0.016 0.043 -0.226SPKN -0.621 0.082 -0.143 -0.432 -0.140 -0.018 -0.026 -0.002

6024 OTHR 0.368 -7.541 -0.392 0.240 -0.266 -0.001 0.020 -0.221TEMP -0.234 2.057 0.062 -7.399 -2.300 -0.303 -0.003 -1.551EQEW -0.166 1.388 5.021 0.017 0.037 0.335 0.177 0.035EQNS -0.473 3.710 0.280 0.239 0.150 -0.040 -0.032 -0.200EQZ 0.050 1.699 0.177 -0.004 0.032 -0.006 -0.014 -0.053EQT -0.021 0.115 0.612 -0.005 0.000 -0.001 0.012 0.001

SPKW -0.658 0.103 0.041 -0.483 -0.126 -0.003 0.026 -0.022SPKN -0.132 -0.158 -0.041 0.556 0.405 0.003 -0.028 -0.231

OTHR: Loads other than thermal and seismic loads TEMP: Thermal loads EQEW: Horizontal seismic loads in the E-W direction EQNS: Horizontal seismic loads in the N-S direction EQZ: Vertical seismic loads EQT: Torsional seismic loads SPKW: Dynamic soil pressure during a horizontal earthquake in the E-W direction SPKN: Dynamic soil pressure during a horizontal earthquake in the N-S direction

Page 81: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-54

Table 3G.1-25

Combined Forces and Moments: RCCV, Selected Load Combination CV-11a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

3 RPV 6606 OTHR 0.529 -11.477 1.846 0.594 4.466 0.208 0.085 -1.927 Pedestal TEMP 21.003 2.199 0.571 -6.642 -5.535 -0.046 -1.920 0.884 Top EQEW -0.943 2.275 -2.277 0.229 1.650 0.166 -0.115 -0.730

EQNS 0.029 -1.486 -0.173 -0.294 -2.727 -0.251 0.592 0.878EQZ 0.340 1.738 -0.317 -0.388 -2.605 -0.100 -0.083 0.872EQT -0.054 -0.058 0.212 0.004 0.080 -0.032 -0.001 -0.026

SPKW -0.707 0.028 -0.415 -0.097 0.046 0.252 -0.579 -0.151SPKN -0.309 0.064 0.339 0.062 0.038 -0.231 0.468 -0.127

6613 OTHR 0.071 -10.951 0.285 0.477 4.822 -0.059 0.028 -1.949TEMP 21.062 1.960 -0.446 -6.709 -5.541 0.140 2.058 0.853EQEW -0.781 3.355 0.060 0.555 2.494 -0.059 -0.144 -1.078EQNS -1.065 1.318 -1.164 -0.442 -1.612 0.330 -0.195 0.299EQZ 0.364 1.780 -0.164 -0.345 -2.530 0.118 0.054 0.844EQT -0.016 -0.104 0.277 0.035 0.157 -0.049 -0.006 -0.052

SPKW 0.421 -0.022 -0.017 0.292 0.038 -0.034 0.079 -0.010SPKN -1.101 0.093 0.050 -0.219 0.032 0.054 -0.064 -0.242

6624 OTHR 0.021 -8.747 0.753 0.948 5.634 0.217 0.529 -1.757TEMP 21.918 2.602 0.224 -6.666 -5.662 0.008 -2.345 1.058EQEW -0.105 0.242 3.332 0.039 0.167 -0.210 0.271 -0.086EQNS 0.369 3.869 -0.083 0.207 -0.056 0.042 -0.140 -0.076EQZ 0.262 1.713 -0.051 -0.364 -2.531 -0.122 -0.050 0.831EQT -0.016 -0.007 0.424 0.003 0.013 -0.048 0.038 -0.009

SPKW -1.384 0.137 0.034 -0.266 0.016 -0.044 0.041 -0.265SPKN 0.423 -0.077 0.004 0.260 -0.015 0.017 -0.038 0.032

4 RCCV 1806 OTHR 1.070 -2.091 -0.023 0.772 4.703 0.011 0.018 1.852 Wetwell TEMP 2.538 0.393 -0.222 -4.442 -8.116 0.066 0.081 -1.726 Bottom EQEW 0.712 5.471 -4.584 -0.208 -1.031 -0.020 0.000 -0.390

EQNS -1.589 -1.567 -3.991 0.297 2.001 -0.076 0.034 0.745EQZ 0.411 4.305 -0.145 0.086 0.579 -0.010 0.000 0.124EQT 0.102 0.070 0.791 -0.006 -0.047 -0.017 -0.001 -0.025

SPKW -0.491 0.082 0.290 -0.008 0.010 0.058 0.006 0.057SPKN -0.148 0.090 0.003 -0.038 -0.052 -0.023 0.001 -0.005

1813 OTHR 0.791 -2.301 0.166 0.781 4.851 0.001 -0.008 2.024TEMP 1.857 -2.167 -0.444 -4.275 -7.777 -0.024 -0.007 -1.526EQEW 1.099 7.041 0.944 -0.272 -1.620 -0.014 0.005 -0.662EQNS -0.404 2.958 -4.573 0.114 0.846 -0.039 0.019 0.342EQZ 0.526 4.230 -0.135 0.092 0.505 -0.004 0.000 0.093EQT 0.105 -0.037 0.893 -0.008 -0.053 -0.029 0.001 -0.038

SPKW 0.021 -0.033 -0.072 0.039 -0.035 -0.003 0.002 0.030SPKN -0.495 0.023 0.169 -0.034 0.032 0.003 -0.005 0.052

1824 OTHR 0.829 -2.506 -0.193 0.814 4.815 0.021 -0.015 2.041TEMP 2.938 -2.477 0.048 -4.432 -8.139 0.019 -0.085 -1.670EQEW 0.050 0.540 7.271 -0.030 -0.115 0.089 -0.054 -0.058EQNS 0.815 6.234 -0.283 -0.033 -0.312 -0.008 0.003 -0.223EQZ 0.435 4.683 0.049 0.092 0.546 -0.002 0.003 0.111EQT 0.002 -0.002 1.137 -0.003 -0.006 -0.012 -0.005 -0.004

SPKW -0.616 0.125 -0.039 -0.049 0.042 -0.002 0.005 0.064SPKN -0.027 -0.021 0.069 0.051 -0.022 0.004 -0.013 0.038

Page 82: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-55

Table 3G.1-25

Combined Forces and Moments: RCCV, Selected Load Combination CV-11a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

5 RCCV 2606 OTHR 3.004 -1.784 -0.128 -0.182 -0.592 -0.020 0.011 -0.260 Wetwell TEMP 1.389 0.550 -0.146 -3.335 -1.060 0.021 0.034 0.043 Mid-Height EQEW 0.056 3.854 -4.125 0.016 0.080 -0.051 -0.010 -0.106

EQNS -0.345 -1.042 -4.073 -0.060 -0.098 -0.121 -0.015 0.196EQZ 0.220 3.890 -0.198 -0.003 0.025 -0.007 0.000 0.093EQT -0.001 0.064 0.752 0.002 0.002 -0.019 0.005 -0.005

SPKW -0.091 0.053 0.134 -0.014 -0.045 0.019 0.004 0.001SPKN -0.081 0.032 0.001 -0.017 0.003 -0.017 -0.003 -0.003

2613 OTHR 2.637 -2.104 0.093 -0.201 -0.716 -0.004 -0.007 -0.151TEMP 0.113 -2.558 -0.121 -3.089 -1.048 0.009 -0.074 0.369EQEW 0.047 5.263 0.953 0.047 0.137 -0.018 -0.009 -0.248EQNS -0.776 2.655 -4.531 -0.046 -0.085 -0.043 -0.029 0.156EQZ 0.257 3.949 -0.137 0.023 0.051 -0.002 0.001 0.069EQT 0.110 -0.092 0.860 0.011 0.024 -0.025 -0.002 -0.012

SPKW 0.236 0.085 -0.048 0.027 -0.048 -0.003 0.000 0.016SPKN -0.300 -0.037 0.161 -0.036 -0.018 0.005 0.002 -0.008

2624 OTHR 2.924 -2.004 -0.167 -0.169 -0.815 -0.002 0.010 -0.252TEMP 0.970 -2.907 -0.086 -3.292 -0.934 -0.026 0.067 0.189EQEW 0.046 0.286 6.675 0.010 0.038 0.110 0.036 -0.014EQNS -0.028 4.643 -0.272 0.074 0.157 -0.002 -0.003 -0.036EQZ 0.283 4.302 0.008 -0.001 0.004 -0.002 0.001 0.100EQT 0.000 -0.017 0.943 0.000 0.006 -0.016 0.004 -0.001

SPKW -0.305 -0.006 -0.022 -0.046 -0.030 -0.005 0.005 -0.022SPKN 0.210 0.107 0.028 0.024 -0.050 0.002 -0.003 0.029

6 RCCV 3406 OTHR 2.400 -1.168 0.155 -0.143 -0.471 0.133 -0.162 0.229 Wetwell TEMP 11.700 1.428 0.353 -4.152 -8.450 -0.228 0.462 3.344 Top EQEW -0.400 2.524 -3.902 0.041 0.167 -0.199 0.173 -0.106

EQNS 0.035 -0.512 -3.753 -0.091 -0.204 -0.080 0.009 0.124EQZ 0.300 3.275 -0.281 -0.098 -0.605 0.063 -0.097 0.217EQT 0.053 0.038 0.722 -0.008 -0.026 -0.024 -0.004 0.009

SPKW -0.020 0.037 0.040 -0.006 -0.011 0.016 -0.012 -0.007SPKN -0.029 0.001 0.041 -0.001 0.014 -0.012 0.007 -0.006

3413 OTHR 1.865 -1.949 0.000 -0.082 -0.335 -0.157 0.119 0.188TEMP 8.031 -3.446 0.040 -4.382 -9.149 -0.403 0.539 3.335EQEW -0.307 3.941 0.989 0.062 0.358 0.039 -0.073 -0.250EQNS -0.620 2.314 -4.329 -0.024 -0.163 -0.107 0.118 0.069EQZ 0.082 3.767 -0.143 -0.036 -0.290 -0.033 0.040 0.112EQT 0.099 -0.114 0.879 0.007 0.027 -0.012 -0.010 -0.005

SPKW 0.140 0.130 -0.024 0.009 -0.055 -0.004 0.004 0.031SPKN -0.166 -0.068 0.090 -0.011 0.022 0.000 -0.002 -0.021

3424 OTHR 1.765 -1.428 -0.103 -0.016 -0.240 0.059 -0.023 0.133TEMP 10.294 -4.168 0.471 -3.680 -5.044 -0.038 -0.007 2.165EQEW -0.181 0.192 5.779 0.027 0.036 0.019 0.008 -0.005EQNS -0.571 3.381 -0.182 0.062 0.327 0.035 -0.019 -0.130EQZ 0.163 3.711 -0.005 -0.045 -0.310 0.068 -0.075 0.088EQT -0.030 -0.005 0.786 0.002 0.000 -0.028 0.000 0.002

SPKW -0.158 -0.065 -0.004 -0.006 0.050 -0.005 0.003 -0.033SPKN 0.178 0.141 0.005 -0.005 -0.121 0.003 -0.004 0.046

Page 83: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-56

Table 3G.1-25

Combined Forces and Moments: RCCV, Selected Load Combination CV-11a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

7 RCCV 3606 OTHR 2.393 -0.526 0.025 -0.019 0.233 0.099 -0.123 0.517 Drywell TEMP 8.481 1.351 0.705 -5.341 -9.025 0.605 0.535 -1.974 Bottom EQEW -0.454 2.351 -3.569 -0.046 -0.350 -0.056 0.169 -0.148

EQNS 0.137 -0.292 -3.729 0.109 0.815 -0.009 0.029 0.358EQZ 0.145 3.079 -0.156 0.015 -0.027 0.058 -0.076 -0.104EQT 0.058 0.033 0.666 -0.014 -0.052 -0.022 -0.003 -0.017

SPKW -0.017 0.035 0.021 -0.003 0.001 -0.002 -0.012 0.001SPKN -0.024 0.000 0.032 0.000 0.010 0.001 0.008 0.004

3613 OTHR 1.823 -1.573 0.108 0.123 0.816 -0.080 0.054 0.662TEMP 4.607 -4.166 1.002 -4.955 -6.228 -0.363 0.318 -0.820EQEW -0.308 4.113 1.140 -0.137 -0.788 -0.006 -0.061 -0.287EQNS -0.651 2.003 -3.943 0.094 0.503 -0.015 0.112 0.203EQZ -0.085 3.710 -0.179 0.015 0.042 -0.050 0.023 -0.136EQT 0.104 -0.094 0.800 -0.002 -0.018 -0.014 -0.009 -0.007

SPKW 0.111 0.104 -0.015 0.021 0.024 -0.002 0.003 0.001SPKN -0.142 -0.069 0.047 -0.011 0.012 -0.001 -0.001 0.013

3624 OTHR 1.601 -1.315 -0.080 0.214 1.021 0.099 0.019 0.584TEMP -4.289 -6.045 0.252 -0.934 -2.499 0.068 -0.001 0.350EQEW -0.122 0.244 5.541 -0.030 -0.089 0.021 0.023 -0.042EQNS -0.605 3.578 -0.197 -0.053 -0.253 0.053 0.003 -0.002EQZ 0.100 3.861 -0.050 0.000 -0.055 0.070 -0.040 -0.076EQT -0.018 -0.005 0.801 -0.005 -0.008 -0.025 0.002 -0.005

SPKW -0.132 -0.047 -0.003 -0.013 -0.003 -0.001 0.003 0.003SPKN 0.139 0.069 0.003 0.021 0.040 -0.001 -0.004 0.007

8 RCCV 4006 OTHR 1.885 -0.202 0.033 -0.067 -0.416 0.030 -0.052 -0.179 Drywell TEMP 5.934 2.176 0.228 -5.109 -5.059 0.011 -0.128 -0.683 Mid-Height EQEW -0.959 1.376 -3.273 0.015 0.139 -0.099 0.035 -0.108

EQNS 1.231 -0.185 -3.299 0.006 -0.330 -0.064 -0.075 0.241EQZ -0.475 2.621 -0.082 0.173 0.558 0.047 -0.008 -0.247EQT 0.007 0.017 0.636 -0.005 -0.014 -0.024 0.001 -0.009

SPKW -0.011 0.024 -0.010 -0.002 0.000 0.010 -0.002 -0.002SPKN -0.012 0.001 0.054 0.001 -0.004 -0.005 0.001 0.002

4013 OTHR 1.653 -1.571 0.289 -0.069 -0.339 0.042 0.023 -0.027TEMP 4.288 -5.853 1.039 -4.672 -4.288 0.013 -0.132 -0.308EQEW -1.098 3.208 0.977 0.058 0.301 0.006 -0.047 -0.317EQNS -0.220 2.270 -3.807 0.004 -0.084 -0.082 0.019 0.120EQZ -0.520 3.947 -0.244 0.053 0.440 0.001 0.007 -0.087EQT 0.087 -0.138 0.787 -0.005 -0.021 -0.003 -0.001 0.009

SPKW 0.058 0.138 -0.015 0.012 0.004 -0.002 0.000 0.012SPKN -0.060 -0.076 0.037 -0.010 -0.008 -0.001 0.000 -0.003

4976 OTHR 1.182 -0.834 -0.078 0.048 -0.066 0.000 -0.012 -0.130TEMP -2.657 -5.340 0.578 -0.953 -1.777 0.004 0.013 -0.585EQEW 0.128 0.107 5.745 0.044 0.036 0.022 0.038 -0.014EQNS -0.526 2.697 -0.249 -0.081 -0.180 -0.016 0.012 -0.035EQZ -0.013 3.207 -0.184 0.019 0.202 0.005 0.007 -0.055EQT 0.037 -0.016 0.857 0.007 0.002 -0.027 0.007 0.000

SPKW -0.054 -0.052 0.004 -0.004 0.010 -0.002 0.000 -0.011SPKN 0.061 0.074 -0.005 0.006 -0.009 0.002 0.000 0.018

Page 84: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-57

Table 3G.1-25

Combined Forces and Moments: RCCV, Selected Load Combination CV-11a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

9 RCCV 4406 OTHR 0.706 -0.002 0.042 0.174 1.102 0.023 0.010 -0.409 Drywell TEMP 6.443 1.716 -0.228 -4.470 -3.808 0.301 0.088 -0.153 Top EQEW -1.375 0.545 -2.740 0.133 0.526 -0.006 0.010 -0.237

EQNS 1.239 -0.079 -2.460 -0.163 -0.892 0.064 0.079 0.184EQZ -0.487 2.126 0.200 0.310 1.746 0.030 0.014 -0.374EQT -0.061 -0.009 0.759 0.014 0.098 -0.019 -0.032 -0.039

SPKW -0.008 0.013 -0.021 0.001 0.009 0.006 0.008 -0.004SPKN -0.013 0.000 0.060 0.000 -0.007 -0.003 -0.004 0.000

4413 OTHR 0.389 -1.604 0.366 0.140 0.902 -0.045 0.058 -0.503TEMP 0.718 -6.633 -0.295 -4.753 -4.468 0.253 -0.244 0.644EQEW -0.921 2.447 0.853 0.030 0.949 0.160 0.056 -0.036EQNS 0.678 2.558 -3.287 -0.071 -0.437 -0.022 -0.007 0.064EQZ 0.508 4.138 -0.095 0.163 0.891 -0.006 0.007 -0.163EQT -0.015 -0.177 1.005 0.006 0.062 -0.009 0.001 -0.034

SPKW 0.077 0.159 -0.005 -0.004 -0.055 0.001 0.000 0.024SPKN -0.048 -0.073 0.032 -0.002 0.014 -0.001 0.000 -0.012

4424 OTHR 0.860 -0.500 -0.059 0.241 1.188 0.018 0.003 -0.376TEMP -5.839 -4.178 0.764 -0.362 1.133 -0.024 -0.022 -1.462EQEW 0.263 0.047 6.065 0.046 -0.005 -0.003 0.040 0.029EQNS -1.004 1.993 -0.208 -0.074 -0.379 -0.022 -0.007 -0.003EQZ 0.015 2.545 -0.148 0.030 0.339 -0.004 -0.001 -0.039EQT 0.063 -0.014 1.211 0.008 0.002 -0.018 -0.015 0.003

SPKW -0.012 -0.046 0.005 0.008 0.055 0.000 -0.001 -0.018SPKN 0.017 0.066 -0.005 -0.012 -0.078 0.000 0.001 0.027

10 Basemat 80003 OTHR -1.881 -0.766 0.079 -3.304 -2.387 0.029 0.522 -0.436 @ Center TEMP -4.361 -5.064 0.010 -8.115 -8.087 -0.031 0.030 -0.007

EQEW 0.038 0.223 1.347 0.305 0.542 -0.514 0.018 0.897EQNS 3.094 2.293 -0.511 -7.882 -6.864 0.154 0.538 0.093EQZ 1.110 1.331 -0.056 -7.799 -8.005 0.028 -0.247 0.194EQT 0.031 -0.005 0.478 0.009 0.025 -0.083 0.014 0.032

SPKW 0.652 -2.463 -0.002 0.452 0.434 -0.004 -0.011 -0.004SPKN -2.623 0.639 0.027 0.492 0.405 -0.035 0.016 0.003

80007 OTHR -1.920 -0.801 0.054 -3.095 -2.360 0.047 0.199 -0.582TEMP -4.380 -5.029 0.041 -8.081 -8.084 -0.028 0.028 -0.008EQEW 0.573 -0.211 0.796 0.709 0.790 -0.262 -0.006 0.862EQNS 3.129 2.486 -0.433 -7.171 -6.643 0.308 0.666 0.119EQZ 1.132 1.351 -0.047 -7.810 -8.003 0.027 0.036 0.313EQT 0.069 -0.063 0.398 0.033 0.042 -0.065 0.018 0.018

SPKW 0.653 -2.466 -0.002 0.434 0.430 -0.005 -0.005 -0.003SPKN -2.618 0.652 0.033 0.511 0.414 -0.029 0.011 0.003

80012 OTHR -1.999 -0.865 0.081 -2.891 -2.179 -0.061 -0.143 -0.255TEMP -4.384 -4.970 0.030 -8.065 -8.094 -0.024 0.023 0.001EQEW -0.120 0.176 0.666 0.115 0.115 0.122 -0.008 0.900EQNS 2.801 2.812 -0.255 -6.619 -6.341 0.091 0.746 0.004EQZ 1.129 1.387 -0.047 -7.807 -8.000 0.026 0.303 0.044EQT 0.014 -0.012 0.364 0.006 0.008 -0.044 0.005 0.010

SPKW 0.663 -2.458 -0.001 0.438 0.437 -0.007 -0.002 -0.002SPKN -2.621 0.659 0.031 0.509 0.419 -0.031 0.010 0.000

Page 85: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-58

Table 3G.1-25

Combined Forces and Moments: RCCV, Selected Load Combination CV-11a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

11 Basemat 80206 OTHR -1.341 -0.698 0.202 -8.237 -7.452 2.028 1.983 -2.104 Inside TEMP -4.366 -5.447 0.114 -8.537 -8.473 0.021 0.002 -0.045 RPV Pedestal EQEW 1.779 -0.230 2.679 3.698 4.686 -2.110 -0.626 1.546

EQNS 3.728 1.278 -1.436 -9.997 -7.683 0.702 0.556 0.033EQZ 1.057 1.206 -0.090 -5.055 -5.495 -0.898 -1.046 0.926EQT 0.135 -0.069 0.661 -0.169 0.364 -0.276 0.124 0.220

SPKW 0.476 -2.265 -0.017 0.007 0.953 -0.017 0.220 0.234SPKN -2.505 0.389 0.007 0.952 -0.156 -0.016 -0.224 -0.233

80213 OTHR -1.601 -0.735 0.066 -5.747 -9.269 0.516 0.436 -2.798TEMP -4.494 -5.044 0.109 -8.253 -8.556 -0.118 -0.004 -0.108EQEW 2.987 -0.462 0.727 4.768 7.922 -0.214 0.021 2.209EQNS 3.163 2.513 -2.028 -6.085 -4.599 1.367 0.861 0.777EQZ 1.134 1.393 -0.134 -5.967 -4.328 0.102 0.047 1.428EQT 0.300 -0.034 0.462 0.210 0.275 -0.002 0.129 0.033

SPKW 0.327 -2.467 -0.041 -0.032 0.632 0.013 -0.011 0.124SPKN -2.299 0.654 0.010 0.980 0.226 -0.032 0.001 -0.117

80224 OTHR -2.258 -1.591 0.046 -6.425 -5.076 -0.740 -1.779 -0.639TEMP -4.424 -4.901 0.060 -8.160 -8.192 -0.035 -0.034 0.010EQEW 0.147 0.114 -1.880 0.484 0.394 1.018 0.080 0.432EQNS 2.483 4.246 -0.218 -0.048 -2.844 0.233 1.886 0.111EQZ 1.230 1.557 -0.051 -4.333 -6.041 0.156 1.375 0.112EQT 0.029 -0.009 -0.127 0.055 0.006 -0.149 0.011 -0.195

SPKW 0.705 -2.121 0.002 0.206 0.885 0.018 -0.126 0.032SPKN -2.626 0.377 0.026 0.753 0.024 -0.027 0.129 -0.015

12 S/P Slab 83306 OTHR 0.042 2.065 -0.558 -1.298 0.889 -0.128 4.059 -0.066 @ RPV TEMP -10.578 10.974 0.416 -4.708 -2.771 0.029 -0.296 0.000

EQEW -0.493 -0.422 0.892 1.324 0.614 -0.365 0.518 0.182EQNS -0.353 -0.814 -1.453 -2.816 -1.585 -0.298 -1.007 0.148EQZ -0.129 -0.373 0.192 -1.917 -1.346 0.009 -1.085 0.025EQT -0.001 0.008 -0.051 0.058 0.025 -0.025 0.018 0.012

SPKW -0.525 -0.661 1.219 -0.042 -0.032 0.005 -0.031 0.007SPKN -0.226 -0.402 -0.984 -0.010 -0.008 0.006 -0.004 -0.004

83313 OTHR 0.694 1.738 -0.495 -1.180 0.979 -0.082 4.099 0.082TEMP -10.828 11.228 -0.835 -4.734 -2.849 -0.041 -0.301 -0.027EQEW -0.972 -0.307 0.265 1.940 0.952 0.057 0.747 -0.005EQNS -0.392 -1.414 0.724 -1.612 -1.010 -0.429 -0.553 0.176EQZ -0.284 -0.266 0.051 -1.928 -1.341 -0.009 -1.090 -0.024EQT -0.016 0.052 -0.095 0.101 0.051 0.003 0.036 0.003

SPKW -0.712 0.270 -0.098 -0.049 -0.025 0.000 -0.055 0.002SPKN -0.210 -0.989 0.111 -0.022 -0.014 0.000 -0.001 -0.004

83324 OTHR 1.798 2.031 -0.340 -0.911 1.221 -0.172 4.220 -0.083TEMP -10.705 11.877 1.291 -4.485 -2.653 0.007 -0.155 0.046EQEW -0.058 -0.047 -1.474 0.134 0.059 0.519 0.051 -0.251EQNS -0.612 -0.175 0.190 -0.243 -0.272 -0.029 -0.036 0.018EQZ -0.256 -0.391 0.019 -1.925 -1.341 0.015 -1.089 0.023EQT 0.002 -0.010 -0.243 0.009 0.005 0.028 0.003 -0.014

SPKW -0.226 -1.287 -0.130 -0.040 -0.036 0.000 -0.008 0.005SPKN -0.524 0.272 0.062 -0.042 -0.013 -0.001 -0.050 -0.002

Page 86: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-59

Table 3G.1-25

Combined Forces and Moments: RCCV, Selected Load Combination CV-11a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

13 S/P Slab 83406 OTHR 0.399 1.835 -0.499 -6.327 -1.785 -0.041 -0.443 0.000 @ Center TEMP -6.461 4.868 -0.561 -3.802 -3.176 -0.003 -0.312 0.014

EQEW -0.360 -0.133 0.349 -0.242 0.242 -0.260 0.338 0.008EQNS -0.294 -1.163 -1.325 0.403 -0.878 -0.230 -0.705 -0.010EQZ -0.187 -0.348 0.142 0.901 -0.610 0.001 -0.486 0.000EQT 0.001 0.050 -0.002 0.005 0.010 -0.018 0.012 0.001

SPKW -0.448 -0.645 0.909 0.056 -0.005 -0.009 -0.024 0.012SPKN -0.219 -0.371 -0.667 0.007 -0.005 0.011 -0.004 -0.005

83413 OTHR 1.149 1.550 -0.172 -6.323 -1.744 -0.084 -0.413 0.004TEMP -6.987 5.300 0.324 -3.901 -3.259 -0.016 -0.276 -0.011EQEW -1.017 -0.152 0.191 -0.305 0.399 0.036 0.490 0.001EQNS -0.303 -1.143 0.680 0.211 -0.628 -0.292 -0.403 0.009EQZ -0.380 -0.198 0.016 0.891 -0.590 0.001 -0.490 -0.002EQT -0.017 0.077 -0.041 -0.007 0.023 0.003 0.024 -0.001

SPKW -1.035 0.099 -0.050 0.123 0.022 0.001 -0.041 -0.001SPKN -0.004 -0.786 0.023 -0.014 -0.013 -0.004 -0.002 0.001

83424 OTHR 1.837 1.736 -0.179 -6.331 -1.591 -0.068 -0.361 0.004TEMP -6.636 5.835 0.088 -3.896 -3.148 -0.002 -0.210 0.009EQEW -0.070 -0.035 -0.750 -0.021 0.021 0.360 0.034 0.005EQNS -0.867 -0.199 0.099 0.031 -0.303 -0.018 -0.056 0.001EQZ -0.327 -0.343 0.005 0.897 -0.590 0.002 -0.491 0.001EQT 0.002 -0.008 -0.137 -0.001 0.002 0.020 0.002 0.000

SPKW 0.046 -1.045 -0.106 -0.012 -0.028 0.001 -0.006 -0.001SPKN -0.830 0.080 0.053 0.113 0.027 -0.001 -0.036 0.001

14 S/P Slab 83506 OTHR 0.733 1.684 -0.378 3.176 -0.494 -0.035 -3.952 -0.003 @ RCCV TEMP -3.917 2.321 -0.471 -2.874 -3.120 -0.034 -0.284 0.013

EQEW -0.145 -0.182 0.082 -1.213 -0.197 -0.032 0.273 -0.057EQNS -0.142 -1.302 -1.091 2.375 0.032 -0.032 -0.543 -0.049EQZ -0.183 -0.303 0.139 1.509 -0.005 0.009 -0.061 -0.005EQT -0.008 0.086 0.017 -0.029 -0.006 -0.006 0.009 -0.002

SPKW -0.424 -0.631 0.740 0.114 0.030 -0.036 -0.017 0.012SPKN -0.144 -0.282 -0.455 0.012 0.001 0.017 -0.001 -0.002

83513 OTHR 1.409 1.521 -0.081 3.081 -0.474 -0.033 -3.930 -0.006TEMP -4.564 2.411 0.445 -3.195 -3.177 -0.008 -0.190 -0.001EQEW -0.917 -0.245 0.143 -1.685 -0.241 0.013 0.385 0.006EQNS -0.268 -0.930 0.663 1.309 -0.079 -0.045 -0.310 -0.055EQZ -0.395 -0.180 -0.010 1.525 0.016 0.003 -0.070 -0.003EQT -0.012 0.098 -0.025 -0.076 -0.008 0.006 0.019 -0.001

SPKW -1.157 -0.104 -0.028 0.243 0.075 0.002 -0.033 0.000SPKN 0.097 -0.595 -0.048 -0.021 -0.007 -0.006 0.001 0.000

83524 OTHR 1.783 1.635 -0.161 2.966 -0.412 -0.024 -3.895 -0.006TEMP -4.044 3.212 -0.010 -3.279 -3.153 0.013 -0.167 -0.005EQEW -0.040 -0.061 -0.420 -0.124 -0.023 0.009 0.029 0.092EQNS -0.904 -0.298 0.053 0.152 -0.213 0.000 -0.035 -0.004EQZ -0.326 -0.339 0.001 1.536 0.015 0.001 -0.070 0.001EQT 0.008 -0.007 -0.092 -0.008 -0.001 0.001 0.002 0.005

SPKW 0.176 -0.780 -0.090 -0.013 -0.012 0.003 -0.001 0.000SPKN -0.976 -0.119 0.071 0.227 0.074 -0.003 -0.032 0.001

Page 87: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-60

Table 3G.1-25

Combined Forces and Moments: RCCV, Selected Load Combination CV-11a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

15 Topslab 98120 OTHR 0.672 0.795 1.084 0.479 0.379 0.153 0.313 -0.478 @ Drywell Head TEMP -7.159 -4.295 -0.826 0.963 0.733 2.771 -0.163 -0.005 Opening EQEW -1.127 -0.929 -0.811 -0.056 -0.437 -0.148 -0.111 -0.105

EQNS 0.281 0.042 0.123 -0.067 -0.093 -0.056 -0.055 -0.029EQZ -1.049 -0.279 -0.390 0.418 0.251 0.276 -0.051 -0.286EQT 0.082 0.043 0.048 0.013 0.045 0.013 -0.005 -0.003

SPKW 0.030 -0.009 0.008 -0.005 0.004 0.000 0.002 0.001SPKN -0.032 -0.003 -0.013 0.003 -0.005 -0.001 -0.001 0.001

98135 OTHR 0.653 -0.205 -0.419 0.271 -0.089 0.173 0.100 -0.765TEMP -8.776 -5.279 0.213 3.150 -2.057 -1.132 0.380 -0.267EQEW 0.030 0.279 -0.487 -0.182 -0.215 0.083 0.029 -0.102EQNS 0.983 0.099 -0.149 -0.201 -0.006 0.014 -0.024 0.022EQZ -2.538 -0.166 0.136 0.662 -0.249 -0.110 0.072 -0.336EQT 0.018 -0.014 0.031 0.002 0.007 -0.011 -0.012 0.005

SPKW 0.085 0.008 -0.008 -0.008 0.002 -0.001 -0.001 0.002SPKN -0.089 -0.011 0.013 0.005 -0.002 0.001 0.001 -0.001

98104 OTHR -0.151 1.700 -0.599 0.493 1.339 -0.108 -0.346 -0.465TEMP -4.990 -1.708 0.576 -1.459 3.716 -1.501 0.186 -0.213EQEW 0.347 0.488 -0.530 -0.010 -0.417 -0.023 0.037 -0.352EQNS -0.055 -1.663 0.067 -0.066 -0.366 0.013 -0.045 0.019EQZ -0.044 -0.600 0.042 0.204 1.305 -0.272 -0.011 -0.257EQT -0.018 -0.021 0.028 -0.009 -0.022 0.014 -0.003 -0.009

SPKW -0.001 -0.048 0.001 -0.002 0.014 -0.001 -0.002 0.000SPKN -0.004 0.029 0.004 0.000 -0.020 0.002 0.002 0.000

16 Topslab 98149 OTHR 0.830 0.991 -0.172 0.001 0.038 0.196 0.023 0.126 @ Center TEMP -6.095 -2.564 -1.166 2.235 2.318 0.500 0.036 0.047

EQEW -1.027 -0.287 -0.558 -0.032 -0.226 -0.014 0.056 0.021EQNS 0.450 0.540 0.228 -0.114 0.038 -0.116 -0.056 0.024EQZ -1.573 0.293 -0.499 0.768 0.364 -0.128 0.039 0.289EQT 0.089 -0.037 -0.014 0.007 0.017 -0.005 -0.009 -0.011

SPKW 0.045 -0.022 -0.004 -0.006 0.009 -0.003 0.000 0.000SPKN -0.046 -0.003 0.004 0.005 -0.006 0.001 -0.001 0.000

98170 OTHR 0.708 0.832 -0.196 0.176 0.140 0.013 -0.010 -0.050TEMP -5.522 -3.576 -1.068 2.144 2.867 -0.043 0.030 0.389EQEW -1.067 0.053 -0.811 -0.018 -0.040 -0.012 0.021 -0.024EQNS 0.223 -0.296 0.240 -0.122 -0.159 -0.014 -0.024 -0.022EQZ -1.210 0.089 -0.101 0.785 0.972 -0.053 -0.003 0.014EQT 0.067 0.032 -0.003 -0.002 0.008 -0.010 0.004 0.001

SPKW 0.046 -0.007 -0.001 -0.003 0.012 0.001 0.000 0.003SPKN -0.045 -0.003 0.009 0.003 -0.012 0.001 0.000 -0.002

98109 OTHR 0.278 1.142 -0.210 0.490 0.999 -0.127 -0.001 -0.174TEMP -6.255 -0.872 0.768 1.221 2.566 -0.119 0.329 -0.005EQEW 0.103 -0.009 -0.648 -0.025 -0.205 -0.121 0.002 -0.119EQNS 0.124 -1.422 -0.076 -0.251 -0.419 -0.015 -0.074 0.067EQZ -0.064 -0.446 -0.020 0.667 0.868 -0.147 -0.090 -0.060EQT 0.001 0.037 -0.011 -0.009 -0.019 0.006 -0.002 -0.013

SPKW 0.017 -0.010 -0.002 -0.008 0.014 0.000 0.000 -0.001SPKN -0.024 0.004 0.004 0.005 -0.019 -0.001 0.000 0.002

Page 88: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-61

Table 3G.1-25

Combined Forces and Moments: RCCV, Selected Load Combination CV-11a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

17 Topslab 98174 OTHR 1.088 0.919 -0.015 -0.132 -0.015 0.217 0.096 -0.111 @ RCCV TEMP -4.857 -2.720 -0.479 2.355 3.217 0.258 -0.023 0.433

EQEW -1.558 -0.285 -0.734 -0.271 -0.272 0.089 0.119 -0.126EQNS 0.057 1.170 0.209 0.166 0.142 -0.292 -0.095 0.055EQZ -0.712 0.087 -0.213 0.774 0.772 0.157 0.163 -0.060EQT 0.144 -0.096 -0.013 -0.008 -0.045 0.014 0.000 -0.020

SPKW 0.030 -0.011 -0.012 -0.009 0.013 -0.002 0.003 0.001SPKN -0.033 -0.018 0.008 0.009 -0.010 -0.001 -0.002 -0.001

98197 OTHR 0.837 1.037 -0.081 -0.217 -0.901 -0.018 -0.044 -0.503TEMP -7.582 -2.932 -1.375 1.918 3.109 0.128 0.154 -0.449EQEW -1.467 -0.076 -0.703 -0.032 -0.316 -0.032 -0.036 -0.007EQNS 0.190 -0.521 0.523 0.095 0.024 -0.115 0.023 0.132EQZ -0.153 0.023 0.169 0.425 -1.039 -0.134 -0.048 -0.662EQT 0.039 0.081 -0.033 -0.018 -0.020 0.007 -0.004 -0.011

SPKW 0.054 -0.024 0.001 0.004 0.005 0.002 0.001 0.000SPKN -0.040 0.005 0.009 0.003 -0.003 0.000 0.000 0.002

98103 OTHR 0.414 1.197 -0.179 -0.283 0.269 -0.185 -0.413 -0.122TEMP -6.579 -2.446 -0.073 3.434 3.309 0.118 0.451 0.084EQEW -0.205 0.204 -1.155 -0.035 -0.053 -0.209 0.040 -0.046EQNS -0.121 -1.604 0.051 -1.192 -0.617 0.011 -0.274 0.018EQZ 0.196 -0.283 -0.064 -1.812 -0.296 -0.205 -0.905 -0.109EQT -0.018 0.057 -0.193 0.003 0.005 -0.004 0.010 0.007

SPKW 0.018 0.008 0.003 0.003 0.019 0.000 0.005 -0.001SPKN -0.024 -0.011 -0.002 -0.015 -0.027 0.000 -0.008 0.001

Page 89: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-62

Table 3G.1-26

Combined Forces and Moments: RCCV, Selected Load Combination CV-11b

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 RPV 5006 OTHR -3.506 -12.100 0.081 0.613 3.689 0.044 -0.024 1.949 Pedestal TEMP -12.845 0.250 -0.532 -16.012 -12.643 -0.092 0.231 4.151 Bottom EQEW 3.619 7.901 -1.996 -0.849 -4.472 -0.071 0.270 -1.900

EQNS -3.083 -4.179 -1.043 0.834 5.074 0.047 0.056 2.171EQZ -1.345 2.103 -0.142 0.415 2.396 -0.007 0.016 1.001EQT 0.321 0.181 0.237 0.002 -0.172 -0.018 0.038 -0.099

SPKW -0.273 0.022 0.188 -0.025 -0.020 -0.035 0.019 0.062SPKN -0.244 -0.027 -0.214 0.030 0.053 0.027 -0.005 0.084

5013 OTHR -4.140 -12.246 0.718 0.586 3.998 -0.001 -0.015 2.225TEMP -12.361 0.340 -0.091 -16.298 -13.248 -0.007 0.018 4.060EQEW 5.109 12.272 0.228 -1.290 -6.832 -0.010 0.019 -3.065EQNS -0.386 1.517 -1.467 0.299 1.833 -0.045 0.184 0.677EQZ -1.093 2.640 -0.205 0.361 2.148 0.000 0.011 0.870EQT 0.245 0.242 0.274 -0.072 -0.267 -0.017 0.037 -0.137

SPKW 0.269 0.346 0.022 0.130 -0.289 0.004 -0.002 -0.118SPKN -0.734 -0.262 -0.099 -0.140 0.211 -0.006 0.011 0.212

5024 OTHR -3.871 -10.042 0.426 0.720 3.485 -0.016 0.021 1.933TEMP -12.833 0.244 0.006 -16.283 -11.850 -0.073 -0.052 4.256EQEW 0.410 0.732 3.303 -0.102 -0.451 0.017 -0.296 -0.197EQNS 2.337 7.411 -0.116 -0.519 -1.859 0.009 0.013 -1.002EQZ -0.809 2.853 -0.014 0.334 1.966 -0.008 -0.003 0.791EQT 0.018 0.009 0.449 -0.008 -0.020 -0.013 0.008 -0.008

SPKW -0.691 -0.252 -0.020 -0.142 0.239 0.004 -0.002 0.216SPKN 0.336 0.365 -0.009 0.117 -0.385 0.000 -0.006 -0.157

2 RPV 6006 OTHR 0.969 -12.738 0.264 -0.083 -0.184 0.049 0.109 -0.383 Pedestal TEMP -2.421 0.594 0.451 -16.077 -14.899 0.436 0.156 -1.788 Mid-Height EQEW -0.516 4.034 -2.798 0.015 0.148 -0.181 -0.003 -0.069

EQNS 0.378 -2.346 -0.857 -0.144 -0.036 0.005 0.128 -0.014EQZ 0.148 2.127 -0.204 -0.015 -0.066 -0.022 -0.020 0.014EQT -0.020 0.000 0.137 0.021 0.031 -0.038 -0.006 -0.012

SPKW -0.476 0.064 -0.279 -0.053 0.057 -0.063 -0.169 -0.094SPKN -0.207 0.093 0.212 -0.014 -0.003 0.049 0.131 -0.050

6013 OTHR 0.533 -11.770 0.844 -0.275 -0.358 0.005 -0.010 -0.346TEMP -2.655 0.215 -0.207 -16.601 -14.799 -0.049 -0.033 -2.015EQEW -0.993 6.128 0.364 0.228 0.113 -0.037 0.000 -0.218EQNS -0.383 1.441 -1.462 -0.312 -0.154 -0.039 -0.054 0.014EQZ 0.166 2.267 -0.308 0.018 -0.024 -0.009 0.013 -0.025EQT -0.035 -0.012 0.336 0.013 0.043 -0.038 0.000 -0.017

SPKW 0.050 0.002 0.080 0.544 0.319 0.016 0.043 -0.226SPKN -0.621 0.082 -0.143 -0.432 -0.140 -0.018 -0.026 -0.002

6024 OTHR 0.710 -6.809 -0.324 0.261 -0.214 -0.001 0.013 -0.237TEMP -2.716 0.675 0.078 -18.530 -11.372 -0.660 0.021 -1.706EQEW -0.166 1.388 5.021 0.017 0.037 0.335 0.177 0.035EQNS -0.473 3.710 0.280 0.239 0.150 -0.040 -0.032 -0.200EQZ 0.050 1.699 0.177 -0.004 0.032 -0.006 -0.014 -0.053EQT -0.021 0.115 0.612 -0.005 0.000 -0.001 0.012 0.001

SPKW -0.658 0.103 0.041 -0.483 -0.126 -0.003 0.026 -0.022SPKN -0.132 -0.158 -0.041 0.556 0.405 0.003 -0.028 -0.231

Page 90: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-63

Table 3G.1-26

Combined Forces and Moments: RCCV, Selected Load Combination CV-11b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

3 RPV 6606 OTHR 0.765 -10.653 1.728 0.492 3.765 0.181 0.067 -1.666 Pedestal TEMP 8.843 0.688 0.583 -16.162 -12.321 0.045 -1.373 -1.999 Top EQEW -0.943 2.275 -2.277 0.229 1.650 0.166 -0.115 -0.730

EQNS 0.029 -1.486 -0.173 -0.294 -2.727 -0.251 0.592 0.878EQZ 0.340 1.738 -0.317 -0.388 -2.605 -0.100 -0.083 0.872EQT -0.054 -0.058 0.212 0.004 0.080 -0.032 -0.001 -0.026

SPKW -0.707 0.028 -0.415 -0.097 0.046 0.252 -0.579 -0.151SPKN -0.309 0.064 0.339 0.062 0.038 -0.231 0.468 -0.127

6613 OTHR 0.281 -10.139 0.288 0.385 4.158 -0.030 0.047 -1.703TEMP 9.187 0.728 -0.380 -16.206 -12.531 0.030 1.514 -1.961EQEW -0.781 3.355 0.060 0.555 2.494 -0.059 -0.144 -1.078EQNS -1.065 1.318 -1.164 -0.442 -1.612 0.330 -0.195 0.299EQZ 0.364 1.780 -0.164 -0.345 -2.530 0.118 0.054 0.844EQT -0.016 -0.104 0.277 0.035 0.157 -0.049 -0.006 -0.052

SPKW 0.421 -0.022 -0.017 0.292 0.038 -0.034 0.079 -0.010SPKN -1.101 0.093 0.050 -0.219 0.032 0.054 -0.064 -0.242

6624 OTHR 0.233 -7.925 0.721 0.858 4.963 0.184 0.516 -1.509TEMP 9.562 0.849 0.249 -16.169 -12.374 0.070 -1.774 -1.798EQEW -0.105 0.242 3.332 0.039 0.167 -0.210 0.271 -0.086EQNS 0.369 3.869 -0.083 0.207 -0.056 0.042 -0.140 -0.076EQZ 0.262 1.713 -0.051 -0.364 -2.531 -0.122 -0.050 0.831EQT -0.016 -0.007 0.424 0.003 0.013 -0.048 0.038 -0.009

SPKW -1.384 0.137 0.034 -0.266 0.016 -0.044 0.041 -0.265SPKN 0.423 -0.077 0.004 0.260 -0.015 0.017 -0.038 0.032

4 RCCV 1806 OTHR 1.040 -1.794 -0.048 0.696 4.248 0.012 0.017 1.621 Wetwell TEMP -1.529 -1.095 -0.255 -10.252 -14.624 0.079 0.094 -1.532 Bottom EQEW 0.712 5.471 -4.584 -0.208 -1.031 -0.020 0.000 -0.390

EQNS -1.589 -1.567 -3.991 0.297 2.001 -0.076 0.034 0.745EQZ 0.411 4.305 -0.145 0.086 0.579 -0.010 0.000 0.124EQT 0.102 0.070 0.791 -0.006 -0.047 -0.017 -0.001 -0.025

SPKW -0.491 0.082 0.290 -0.008 0.010 0.058 0.006 0.057SPKN -0.148 0.090 0.003 -0.038 -0.052 -0.023 0.001 -0.005

1813 OTHR 0.742 -2.079 0.137 0.704 4.401 0.002 -0.008 1.790TEMP -2.046 -4.246 -0.418 -10.039 -14.124 -0.042 -0.006 -1.257EQEW 1.099 7.041 0.944 -0.272 -1.620 -0.014 0.005 -0.662EQNS -0.404 2.958 -4.573 0.114 0.846 -0.039 0.019 0.342EQZ 0.526 4.230 -0.135 0.092 0.505 -0.004 0.000 0.093EQT 0.105 -0.037 0.893 -0.008 -0.053 -0.029 0.001 -0.038

SPKW 0.021 -0.033 -0.072 0.039 -0.035 -0.003 0.002 0.030SPKN -0.495 0.023 0.169 -0.034 0.032 0.003 -0.005 0.052

1824 OTHR 0.781 -2.159 -0.179 0.736 4.336 0.020 -0.014 1.800TEMP -0.999 -4.101 0.138 -10.225 -14.390 0.027 -0.105 -1.324EQEW 0.050 0.540 7.271 -0.030 -0.115 0.089 -0.054 -0.058EQNS 0.815 6.234 -0.283 -0.033 -0.312 -0.008 0.003 -0.223EQZ 0.435 4.683 0.049 0.092 0.546 -0.002 0.003 0.111EQT 0.002 -0.002 1.137 -0.003 -0.006 -0.012 -0.005 -0.004

SPKW -0.616 0.125 -0.039 -0.049 0.042 -0.002 0.005 0.064SPKN -0.027 -0.021 0.069 0.051 -0.022 0.004 -0.013 0.038

Page 91: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-64

Table 3G.1-26

Combined Forces and Moments: RCCV, Selected Load Combination CV-11b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

5 RCCV 2606 OTHR 3.211 -1.438 -0.148 -0.195 -0.665 -0.016 0.011 -0.200 Wetwell TEMP -4.260 -1.284 -0.207 -9.988 -7.587 0.005 0.040 0.086 Mid-Height EQEW 0.056 3.854 -4.125 0.016 0.080 -0.051 -0.010 -0.106

EQNS -0.345 -1.042 -4.073 -0.060 -0.098 -0.121 -0.015 0.196EQZ 0.220 3.890 -0.198 -0.003 0.025 -0.007 0.000 0.093EQT -0.001 0.064 0.752 0.002 0.002 -0.019 0.005 -0.005

SPKW -0.091 0.053 0.134 -0.014 -0.045 0.019 0.004 0.001SPKN -0.081 0.032 0.001 -0.017 0.003 -0.017 -0.003 -0.003

2613 OTHR 2.812 -1.882 0.083 -0.217 -0.774 -0.004 -0.006 -0.103TEMP -5.195 -5.332 -0.051 -9.724 -7.431 -0.015 -0.092 0.416EQEW 0.047 5.263 0.953 0.047 0.137 -0.018 -0.009 -0.248EQNS -0.776 2.655 -4.531 -0.046 -0.085 -0.043 -0.029 0.156EQZ 0.257 3.949 -0.137 0.023 0.051 -0.002 0.001 0.069EQT 0.110 -0.092 0.860 0.011 0.024 -0.025 -0.002 -0.012

SPKW 0.236 0.085 -0.048 0.027 -0.048 -0.003 0.000 0.016SPKN -0.300 -0.037 0.161 -0.036 -0.018 0.005 0.002 -0.008

2624 OTHR 3.095 -1.682 -0.154 -0.170 -0.868 -0.001 0.009 -0.213TEMP -4.918 -4.757 -0.110 -10.020 -7.637 -0.043 0.078 0.193EQEW 0.046 0.286 6.675 0.010 0.038 0.110 0.036 -0.014EQNS -0.028 4.643 -0.272 0.074 0.157 -0.002 -0.003 -0.036EQZ 0.283 4.302 0.008 -0.001 0.004 -0.002 0.001 0.100EQT 0.000 -0.017 0.943 0.000 0.006 -0.016 0.004 -0.001

SPKW -0.305 -0.006 -0.022 -0.046 -0.030 -0.005 0.005 -0.022SPKN 0.210 0.107 0.028 0.024 -0.050 0.002 -0.003 0.029

6 RCCV 3406 OTHR 2.710 -0.790 0.125 -0.133 -0.423 0.109 -0.131 0.174 Wetwell TEMP 5.175 -0.376 0.529 -10.840 -14.111 0.026 0.145 2.473 Top EQEW -0.400 2.524 -3.902 0.041 0.167 -0.199 0.173 -0.106

EQNS 0.035 -0.512 -3.753 -0.091 -0.204 -0.080 0.009 0.124EQZ 0.300 3.275 -0.281 -0.098 -0.605 0.063 -0.097 0.217EQT 0.053 0.038 0.722 -0.008 -0.026 -0.024 -0.004 0.009

SPKW -0.020 0.037 0.040 -0.006 -0.011 0.016 -0.012 -0.007SPKN -0.029 0.001 0.041 -0.001 0.014 -0.012 0.007 -0.006

3413 OTHR 2.153 -1.735 0.015 -0.090 -0.287 -0.134 0.101 0.131TEMP 3.430 -7.155 0.358 -10.781 -14.122 -0.110 0.133 2.640EQEW -0.307 3.941 0.989 0.062 0.358 0.039 -0.073 -0.250EQNS -0.620 2.314 -4.329 -0.024 -0.163 -0.107 0.118 0.069EQZ 0.082 3.767 -0.143 -0.036 -0.290 -0.033 0.040 0.112EQT 0.099 -0.114 0.879 0.007 0.027 -0.012 -0.010 -0.005

SPKW 0.140 0.130 -0.024 0.009 -0.055 -0.004 0.004 0.031SPKN -0.166 -0.068 0.090 -0.011 0.022 0.000 -0.002 -0.021

3424 OTHR 2.013 -1.082 -0.091 0.009 -0.066 0.041 -0.008 0.045TEMP 2.847 -6.404 0.482 -9.992 -9.739 0.046 -0.109 0.898EQEW -0.181 0.192 5.779 0.027 0.036 0.019 0.008 -0.005EQNS -0.571 3.381 -0.182 0.062 0.327 0.035 -0.019 -0.130EQZ 0.163 3.711 -0.005 -0.045 -0.310 0.068 -0.075 0.088EQT -0.030 -0.005 0.786 0.002 0.000 -0.028 0.000 0.002

SPKW -0.158 -0.065 -0.004 -0.006 0.050 -0.005 0.003 -0.033SPKN 0.178 0.141 0.005 -0.005 -0.121 0.003 -0.004 0.046

Page 92: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-65

Table 3G.1-26

Combined Forces and Moments: RCCV, Selected Load Combination CV-11b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

7 RCCV 3606 OTHR 2.681 -0.204 -0.003 -0.029 0.154 0.087 -0.100 0.539 Drywell TEMP 0.830 -0.284 0.115 -12.664 -14.950 0.281 0.181 -0.832 Bottom EQEW -0.454 2.351 -3.569 -0.046 -0.350 -0.056 0.169 -0.148

EQNS 0.137 -0.292 -3.729 0.109 0.815 -0.009 0.029 0.358EQZ 0.145 3.079 -0.156 0.015 -0.027 0.058 -0.076 -0.104EQT 0.058 0.033 0.666 -0.014 -0.052 -0.022 -0.003 -0.017

SPKW -0.017 0.035 0.021 -0.003 0.001 -0.002 -0.012 0.001SPKN -0.024 0.000 0.032 0.000 0.010 0.001 0.008 0.004

3613 OTHR 2.113 -1.379 0.142 0.080 0.674 -0.058 0.047 0.693TEMP -0.941 -8.496 1.387 -12.338 -13.243 -0.243 0.025 -0.346EQEW -0.308 4.113 1.140 -0.137 -0.788 -0.006 -0.061 -0.287EQNS -0.651 2.003 -3.943 0.094 0.503 -0.015 0.112 0.203EQZ -0.085 3.710 -0.179 0.015 0.042 -0.050 0.023 -0.136EQT 0.104 -0.094 0.800 -0.002 -0.018 -0.014 -0.009 -0.007

SPKW 0.111 0.104 -0.015 0.021 0.024 -0.002 0.003 0.001SPKN -0.142 -0.069 0.047 -0.011 0.012 -0.001 -0.001 0.013

3624 OTHR 1.882 -0.918 -0.085 0.184 0.886 0.077 0.024 0.603TEMP -10.574 -8.041 0.298 -7.214 -6.867 0.090 -0.064 1.481EQEW -0.122 0.244 5.541 -0.030 -0.089 0.021 0.023 -0.042EQNS -0.605 3.578 -0.197 -0.053 -0.253 0.053 0.003 -0.002EQZ 0.100 3.861 -0.050 0.000 -0.055 0.070 -0.040 -0.076EQT -0.018 -0.005 0.801 -0.005 -0.008 -0.025 0.002 -0.005

SPKW -0.132 -0.047 -0.003 -0.013 -0.003 -0.001 0.003 0.003SPKN 0.139 0.069 0.003 0.021 0.040 -0.001 -0.004 0.007

8 RCCV 4006 OTHR 2.007 0.131 0.037 -0.057 -0.400 0.035 -0.046 -0.258 Drywell TEMP 1.875 0.839 -0.303 -12.243 -12.221 0.193 -0.156 -0.809 Mid-Height EQEW -0.959 1.376 -3.273 0.015 0.139 -0.099 0.035 -0.108

EQNS 1.231 -0.185 -3.299 0.006 -0.330 -0.064 -0.075 0.241EQZ -0.475 2.621 -0.082 0.173 0.558 0.047 -0.008 -0.247EQT 0.007 0.017 0.636 -0.005 -0.014 -0.024 0.001 -0.009

SPKW -0.011 0.024 -0.010 -0.002 0.000 0.010 -0.002 -0.002SPKN -0.012 0.001 0.054 0.001 -0.004 -0.005 0.001 0.002

4013 OTHR 1.800 -1.459 0.315 -0.093 -0.365 0.037 0.019 -0.122TEMP 1.199 -10.522 1.291 -12.197 -11.582 0.045 -0.165 -0.458EQEW -1.098 3.208 0.977 0.058 0.301 0.006 -0.047 -0.317EQNS -0.220 2.270 -3.807 0.004 -0.084 -0.082 0.019 0.120EQZ -0.520 3.947 -0.244 0.053 0.440 0.001 0.007 -0.087EQT 0.087 -0.138 0.787 -0.005 -0.021 -0.003 -0.001 0.009

SPKW 0.058 0.138 -0.015 0.012 0.004 -0.002 0.000 0.012SPKN -0.060 -0.076 0.037 -0.010 -0.008 -0.001 0.000 -0.003

4976 OTHR 1.428 -0.479 -0.087 0.046 -0.045 0.000 -0.013 -0.236TEMP -7.090 -6.964 0.636 -7.680 -8.654 0.012 0.038 -0.306EQEW 0.128 0.107 5.745 0.044 0.036 0.022 0.038 -0.014EQNS -0.526 2.697 -0.249 -0.081 -0.180 -0.016 0.012 -0.035EQZ -0.013 3.207 -0.184 0.019 0.202 0.005 0.007 -0.055EQT 0.037 -0.016 0.857 0.007 0.002 -0.027 0.007 0.000

SPKW -0.054 -0.052 0.004 -0.004 0.010 -0.002 0.000 -0.011SPKN 0.061 0.074 -0.005 0.006 -0.009 0.002 0.000 0.018

Page 93: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-66

Table 3G.1-26

Combined Forces and Moments: RCCV, Selected Load Combination CV-11b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

9 RCCV 4406 OTHR 0.735 0.333 0.086 0.286 1.671 0.028 0.011 -0.586 Drywell TEMP 6.737 0.276 -1.384 -11.629 -9.857 0.511 0.461 -0.604 Top EQEW -1.375 0.545 -2.740 0.133 0.526 -0.006 0.010 -0.237

EQNS 1.239 -0.079 -2.460 -0.163 -0.892 0.064 0.079 0.184EQZ -0.487 2.126 0.200 0.310 1.746 0.030 0.014 -0.374EQT -0.061 -0.009 0.759 0.014 0.098 -0.019 -0.032 -0.039

SPKW -0.008 0.013 -0.021 0.001 0.009 0.006 0.008 -0.004SPKN -0.013 0.000 0.060 0.000 -0.007 -0.003 -0.004 0.000

4413 OTHR 0.320 -1.567 0.362 0.216 1.465 -0.031 0.052 -0.675TEMP -0.979 -11.885 -0.375 -12.126 -10.998 0.410 -0.181 0.175EQEW -0.921 2.447 0.853 0.030 0.949 0.160 0.056 -0.036EQNS 0.678 2.558 -3.287 -0.071 -0.437 -0.022 -0.007 0.064EQZ 0.508 4.138 -0.095 0.163 0.891 -0.006 0.007 -0.163EQT -0.015 -0.177 1.005 0.006 0.062 -0.009 0.001 -0.034

SPKW 0.077 0.159 -0.005 -0.004 -0.055 0.001 0.000 0.024SPKN -0.048 -0.073 0.032 -0.002 0.014 -0.001 0.000 -0.012

4424 OTHR 1.039 -0.201 -0.069 0.327 1.701 0.021 0.002 -0.530TEMP -10.166 -5.578 0.969 -7.106 -5.867 -0.070 -0.009 -1.762EQEW 0.263 0.047 6.065 0.046 -0.005 -0.003 0.040 0.029EQNS -1.004 1.993 -0.208 -0.074 -0.379 -0.022 -0.007 -0.003EQZ 0.015 2.545 -0.148 0.030 0.339 -0.004 -0.001 -0.039EQT 0.063 -0.014 1.211 0.008 0.002 -0.018 -0.015 0.003

SPKW -0.012 -0.046 0.005 0.008 0.055 0.000 -0.001 -0.018SPKN 0.017 0.066 -0.005 -0.012 -0.078 0.000 0.001 0.027

10 Basemat 80003 OTHR -1.998 -0.840 0.085 -3.403 -2.535 0.027 0.470 -0.389 @ Center TEMP -1.679 -2.344 -0.012 -8.432 -8.745 -0.031 0.023 -0.009

EQEW 0.038 0.223 1.347 0.305 0.542 -0.514 0.018 0.897EQNS 3.094 2.293 -0.511 -7.882 -6.864 0.154 0.538 0.093EQZ 1.110 1.331 -0.056 -7.799 -8.005 0.028 -0.247 0.194EQT 0.031 -0.005 0.478 0.009 0.025 -0.083 0.014 0.032

SPKW 0.652 -2.463 -0.002 0.452 0.434 -0.004 -0.011 -0.004SPKN -2.623 0.639 0.027 0.492 0.405 -0.035 0.016 0.003

80007 OTHR -2.034 -0.872 0.061 -3.194 -2.507 0.046 0.210 -0.509TEMP -1.684 -2.300 0.024 -8.412 -8.747 -0.031 0.015 -0.013EQEW 0.573 -0.211 0.796 0.709 0.790 -0.262 -0.006 0.862EQNS 3.129 2.486 -0.433 -7.171 -6.643 0.308 0.666 0.119EQZ 1.132 1.351 -0.047 -7.810 -8.003 0.027 0.036 0.313EQT 0.069 -0.063 0.398 0.033 0.042 -0.065 0.018 0.018

SPKW 0.653 -2.466 -0.002 0.434 0.430 -0.005 -0.005 -0.003SPKN -2.618 0.652 0.033 0.511 0.414 -0.029 0.011 0.003

80012 OTHR -2.113 -0.927 0.085 -2.990 -2.325 -0.062 -0.073 -0.243TEMP -1.690 -2.227 0.016 -8.402 -8.767 -0.023 0.005 0.002EQEW -0.120 0.176 0.666 0.115 0.115 0.122 -0.008 0.900EQNS 2.801 2.812 -0.255 -6.619 -6.341 0.091 0.746 0.004EQZ 1.129 1.387 -0.047 -7.807 -8.000 0.026 0.303 0.044EQT 0.014 -0.012 0.364 0.006 0.008 -0.044 0.005 0.010

SPKW 0.663 -2.458 -0.001 0.438 0.437 -0.007 -0.002 -0.002SPKN -2.621 0.659 0.031 0.509 0.419 -0.031 0.010 0.000

Page 94: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-67

Table 3G.1-26

Combined Forces and Moments: RCCV, Selected Load Combination CV-11b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

11 Basemat 80206 OTHR -1.473 -0.794 0.200 -7.677 -6.967 1.804 1.773 -1.900 Inside TEMP -1.712 -2.848 0.097 -8.908 -9.252 0.053 -0.011 -0.059 RPV Pedestal EQEW 1.779 -0.230 2.679 3.698 4.686 -2.110 -0.626 1.546

EQNS 3.728 1.278 -1.436 -9.997 -7.683 0.702 0.556 0.033EQZ 1.057 1.206 -0.090 -5.055 -5.495 -0.898 -1.046 0.926EQT 0.135 -0.069 0.661 -0.169 0.364 -0.276 0.124 0.220

SPKW 0.476 -2.265 -0.017 0.007 0.953 -0.017 0.220 0.234SPKN -2.505 0.389 0.007 0.952 -0.156 -0.016 -0.224 -0.233

80213 OTHR -1.711 -0.807 0.063 -5.395 -8.487 0.529 0.444 -2.491TEMP -1.772 -2.262 0.036 -8.632 -9.316 -0.133 -0.013 -0.169EQEW 2.987 -0.462 0.727 4.768 7.922 -0.214 0.021 2.209EQNS 3.163 2.513 -2.028 -6.085 -4.599 1.367 0.861 0.777EQZ 1.134 1.393 -0.134 -5.967 -4.328 0.102 0.047 1.428EQT 0.300 -0.034 0.462 0.210 0.275 -0.002 0.129 0.033

SPKW 0.327 -2.467 -0.041 -0.032 0.632 0.013 -0.011 0.124SPKN -2.299 0.654 0.010 0.980 0.226 -0.032 0.001 -0.117

80224 OTHR -2.367 -1.607 0.045 -5.669 -4.741 -0.710 -1.492 -0.614TEMP -1.625 -2.127 0.040 -8.608 -8.912 -0.042 -0.100 0.019EQEW 0.147 0.114 -1.880 0.484 0.394 1.018 0.080 0.432EQNS 2.483 4.246 -0.218 -0.048 -2.844 0.233 1.886 0.111EQZ 1.230 1.557 -0.051 -4.333 -6.041 0.156 1.375 0.112EQT 0.029 -0.009 -0.127 0.055 0.006 -0.149 0.011 -0.195

SPKW 0.705 -2.121 0.002 0.206 0.885 0.018 -0.126 0.032SPKN -2.626 0.377 0.026 0.753 0.024 -0.027 0.129 -0.015

12 S/P Slab 83306 OTHR -0.158 1.958 -0.511 -1.266 0.693 -0.126 3.520 -0.059 @ RPV TEMP -11.644 3.829 0.179 -9.646 -8.196 0.033 -0.080 -0.040

EQEW -0.493 -0.422 0.892 1.324 0.614 -0.365 0.518 0.182EQNS -0.353 -0.814 -1.453 -2.816 -1.585 -0.298 -1.007 0.148EQZ -0.129 -0.373 0.192 -1.917 -1.346 0.009 -1.085 0.025EQT -0.001 0.008 -0.051 0.058 0.025 -0.025 0.018 0.012

SPKW -0.525 -0.661 1.219 -0.042 -0.032 0.005 -0.031 0.007SPKN -0.226 -0.402 -0.984 -0.010 -0.008 0.006 -0.004 -0.004

83313 OTHR 0.463 1.619 -0.496 -1.142 0.786 -0.087 3.563 0.076TEMP -11.916 4.301 -0.412 -9.666 -8.271 -0.027 -0.074 0.012EQEW -0.972 -0.307 0.265 1.940 0.952 0.057 0.747 -0.005EQNS -0.392 -1.414 0.724 -1.612 -1.010 -0.429 -0.553 0.176EQZ -0.284 -0.266 0.051 -1.928 -1.341 -0.009 -1.090 -0.024EQT -0.016 0.052 -0.095 0.101 0.051 0.003 0.036 0.003

SPKW -0.712 0.270 -0.098 -0.049 -0.025 0.000 -0.055 0.002SPKN -0.210 -0.989 0.111 -0.022 -0.014 0.000 -0.001 -0.004

83324 OTHR 1.563 1.900 -0.336 -0.866 1.034 -0.167 3.689 -0.077TEMP -11.700 4.708 0.978 -9.527 -8.129 -0.001 0.005 0.006EQEW -0.058 -0.047 -1.474 0.134 0.059 0.519 0.051 -0.251EQNS -0.612 -0.175 0.190 -0.243 -0.272 -0.029 -0.036 0.018EQZ -0.256 -0.391 0.019 -1.925 -1.341 0.015 -1.089 0.023EQT 0.002 -0.010 -0.243 0.009 0.005 0.028 0.003 -0.014

SPKW -0.226 -1.287 -0.130 -0.040 -0.036 0.000 -0.008 0.005SPKN -0.524 0.272 0.062 -0.042 -0.013 -0.001 -0.050 -0.002

Page 95: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-68

Table 3G.1-26

Combined Forces and Moments: RCCV, Selected Load Combination CV-11b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

13 S/P Slab 83406 OTHR 0.209 1.711 -0.465 -5.533 -1.617 -0.040 -0.428 0.001 @ Center TEMP -8.113 -0.586 -0.539 -9.089 -8.498 -0.001 -0.113 0.014

EQEW -0.360 -0.133 0.349 -0.242 0.242 -0.260 0.338 0.008EQNS -0.294 -1.163 -1.325 0.403 -0.878 -0.230 -0.705 -0.010EQZ -0.187 -0.348 0.142 0.901 -0.610 0.001 -0.486 0.000EQT 0.001 0.050 -0.002 0.005 0.010 -0.018 0.012 0.001

SPKW -0.448 -0.645 0.909 0.056 -0.005 -0.009 -0.024 0.012SPKN -0.219 -0.371 -0.667 0.007 -0.005 0.011 -0.004 -0.005

83413 OTHR 0.936 1.411 -0.184 -5.529 -1.576 -0.084 -0.396 0.004TEMP -8.751 0.101 0.493 -9.200 -8.593 -0.013 -0.068 -0.007EQEW -1.017 -0.152 0.191 -0.305 0.399 0.036 0.490 0.001EQNS -0.303 -1.143 0.680 0.211 -0.628 -0.292 -0.403 0.009EQZ -0.380 -0.198 0.016 0.891 -0.590 0.001 -0.490 -0.002EQT -0.017 0.077 -0.041 -0.007 0.023 0.003 0.024 -0.001

SPKW -1.035 0.099 -0.050 0.123 0.022 0.001 -0.041 -0.001SPKN -0.004 -0.786 0.023 -0.014 -0.013 -0.004 -0.002 0.001

83424 OTHR 1.612 1.581 -0.176 -5.543 -1.421 -0.068 -0.341 0.004TEMP -8.215 0.434 0.022 -9.166 -8.498 0.001 -0.042 0.006EQEW -0.070 -0.035 -0.750 -0.021 0.021 0.360 0.034 0.005EQNS -0.867 -0.199 0.099 0.031 -0.303 -0.018 -0.056 0.001EQZ -0.327 -0.343 0.005 0.897 -0.590 0.002 -0.491 0.001EQT 0.002 -0.008 -0.137 -0.001 0.002 0.020 0.002 0.000

SPKW 0.046 -1.045 -0.106 -0.012 -0.028 0.001 -0.006 -0.001SPKN -0.830 0.080 0.053 0.113 0.027 -0.001 -0.036 0.001

14 S/P Slab 83506 OTHR 0.545 1.554 -0.350 2.946 -0.424 -0.033 -3.515 -0.003 @ RCCV TEMP -6.242 -2.430 -0.408 -8.821 -8.626 -0.045 -0.143 0.019

EQEW -0.145 -0.182 0.082 -1.213 -0.197 -0.032 0.273 -0.057EQNS -0.142 -1.302 -1.091 2.375 0.032 -0.032 -0.543 -0.049EQZ -0.183 -0.303 0.139 1.509 -0.005 0.009 -0.061 -0.005EQT -0.008 0.086 0.017 -0.029 -0.006 -0.006 0.009 -0.002

SPKW -0.424 -0.631 0.740 0.114 0.030 -0.036 -0.017 0.012SPKN -0.144 -0.282 -0.455 0.012 0.001 0.017 -0.001 -0.002

83513 OTHR 1.209 1.376 -0.102 2.848 -0.410 -0.033 -3.490 -0.006TEMP -7.029 -2.087 0.617 -9.213 -8.689 -0.011 -0.020 0.001EQEW -0.917 -0.245 0.143 -1.685 -0.241 0.013 0.385 0.006EQNS -0.268 -0.930 0.663 1.309 -0.079 -0.045 -0.310 -0.055EQZ -0.395 -0.180 -0.010 1.525 0.016 0.003 -0.070 -0.003EQT -0.012 0.098 -0.025 -0.076 -0.008 0.006 0.019 -0.001

SPKW -1.157 -0.104 -0.028 0.243 0.075 0.002 -0.033 0.000SPKN 0.097 -0.595 -0.048 -0.021 -0.007 -0.006 0.001 0.000

83524 OTHR 1.562 1.470 -0.156 2.719 -0.349 -0.024 -3.453 -0.006TEMP -6.242 -1.435 -0.072 -9.173 -8.644 0.017 -0.038 -0.005EQEW -0.040 -0.061 -0.420 -0.124 -0.023 0.009 0.029 0.092EQNS -0.904 -0.298 0.053 0.152 -0.213 0.000 -0.035 -0.004EQZ -0.326 -0.339 0.001 1.536 0.015 0.001 -0.070 0.001EQT 0.008 -0.007 -0.092 -0.008 -0.001 0.001 0.002 0.005

SPKW 0.176 -0.780 -0.090 -0.013 -0.012 0.003 -0.001 0.000SPKN -0.976 -0.119 0.071 0.227 0.074 -0.003 -0.032 0.001

Page 96: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-69

Table 3G.1-26

Combined Forces and Moments: RCCV, Selected Load Combination CV-11b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

15 Topslab 98120 OTHR 0.477 0.904 1.175 0.698 0.537 0.265 0.365 -0.646 @ Drywell Head TEMP -11.552 -10.624 -5.088 7.064 5.010 5.160 -1.418 -1.083 Opening EQEW -1.127 -0.929 -0.811 -0.056 -0.437 -0.148 -0.111 -0.105

EQNS 0.281 0.042 0.123 -0.067 -0.093 -0.056 -0.055 -0.029EQZ -1.049 -0.279 -0.390 0.418 0.251 0.276 -0.051 -0.286EQT 0.082 0.043 0.048 0.013 0.045 0.013 -0.005 -0.003

SPKW 0.030 -0.009 0.008 -0.005 0.004 0.000 0.002 0.001SPKN -0.032 -0.003 -0.013 0.003 -0.005 -0.001 -0.001 0.001

98135 OTHR 0.081 -0.296 -0.473 0.509 -0.152 0.177 0.137 -0.995TEMP -16.116 -6.978 2.414 10.532 -0.434 -1.821 1.058 -1.141EQEW 0.030 0.279 -0.487 -0.182 -0.215 0.083 0.029 -0.102EQNS 0.983 0.099 -0.149 -0.201 -0.006 0.014 -0.024 0.022EQZ -2.538 -0.166 0.136 0.662 -0.249 -0.110 0.072 -0.336EQT 0.018 -0.014 0.031 0.002 0.007 -0.011 -0.012 0.005

SPKW 0.085 0.008 -0.008 -0.008 0.002 -0.001 -0.001 0.002SPKN -0.089 -0.011 0.013 0.005 -0.002 0.001 0.001 -0.001

98104 OTHR -0.192 2.027 -0.707 0.652 1.967 -0.201 -0.419 -0.607TEMP -6.693 -12.082 2.871 2.391 11.786 -3.140 0.877 -0.610EQEW 0.347 0.488 -0.530 -0.010 -0.417 -0.023 0.037 -0.352EQNS -0.055 -1.663 0.067 -0.066 -0.366 0.013 -0.045 0.019EQZ -0.044 -0.600 0.042 0.204 1.305 -0.272 -0.011 -0.257EQT -0.018 -0.021 0.028 -0.009 -0.022 0.014 -0.003 -0.009

SPKW -0.001 -0.048 0.001 -0.002 0.014 -0.001 -0.002 0.000SPKN -0.004 0.029 0.004 0.000 -0.020 0.002 0.002 0.000

16 Topslab 98149 OTHR 0.505 1.290 -0.322 0.185 0.111 0.228 0.045 0.221 @ Center TEMP -11.296 -3.042 -1.890 5.802 8.895 0.962 0.549 -1.908

EQEW -1.027 -0.287 -0.558 -0.032 -0.226 -0.014 0.056 0.021EQNS 0.450 0.540 0.228 -0.114 0.038 -0.116 -0.056 0.024EQZ -1.573 0.293 -0.499 0.768 0.364 -0.128 0.039 0.289EQT 0.089 -0.037 -0.014 0.007 0.017 -0.005 -0.009 -0.011

SPKW 0.045 -0.022 -0.004 -0.006 0.009 -0.003 0.000 0.000SPKN -0.046 -0.003 0.004 0.005 -0.006 0.001 -0.001 0.000

98170 OTHR 0.480 0.981 -0.280 0.395 0.398 -0.005 -0.020 -0.067TEMP -9.623 -4.570 -0.897 4.305 5.412 -0.102 -0.115 0.049EQEW -1.067 0.053 -0.811 -0.018 -0.040 -0.012 0.021 -0.024EQNS 0.223 -0.296 0.240 -0.122 -0.159 -0.014 -0.024 -0.022EQZ -1.210 0.089 -0.101 0.785 0.972 -0.053 -0.003 0.014EQT 0.067 0.032 -0.003 -0.002 0.008 -0.010 0.004 0.001

SPKW 0.046 -0.007 -0.001 -0.003 0.012 0.001 0.000 0.003SPKN -0.045 -0.003 0.009 0.003 -0.012 0.001 0.000 -0.002

98109 OTHR 0.328 1.335 -0.218 0.750 1.442 -0.181 -0.024 -0.223TEMP -7.853 -1.630 0.872 9.058 11.508 -0.323 0.767 0.077EQEW 0.103 -0.009 -0.648 -0.025 -0.205 -0.121 0.002 -0.119EQNS 0.124 -1.422 -0.076 -0.251 -0.419 -0.015 -0.074 0.067EQZ -0.064 -0.446 -0.020 0.667 0.868 -0.147 -0.090 -0.060EQT 0.001 0.037 -0.011 -0.009 -0.019 0.006 -0.002 -0.013

SPKW 0.017 -0.010 -0.002 -0.008 0.014 0.000 0.000 -0.001SPKN -0.024 0.004 0.004 0.005 -0.019 -0.001 0.000 0.002

Page 97: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-70

Table 3G.1-26

Combined Forces and Moments: RCCV, Selected Load Combination CV-11b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

17 Topslab 98174 OTHR 1.026 1.154 -0.058 -0.008 0.140 0.337 0.155 -0.147 @ RCCV TEMP -9.246 -4.000 -1.475 5.058 6.605 0.114 -0.062 0.290

EQEW -1.558 -0.285 -0.734 -0.271 -0.272 0.089 0.119 -0.126EQNS 0.057 1.170 0.209 0.166 0.142 -0.292 -0.095 0.055EQZ -0.712 0.087 -0.213 0.774 0.772 0.157 0.163 -0.060EQT 0.144 -0.096 -0.013 -0.008 -0.045 0.014 0.000 -0.020

SPKW 0.030 -0.011 -0.012 -0.009 0.013 -0.002 0.003 0.001SPKN -0.033 -0.018 0.008 0.009 -0.010 -0.001 -0.002 -0.001

98197 OTHR 0.764 1.247 -0.114 -0.199 -1.319 -0.065 -0.061 -0.785TEMP -11.730 -4.691 -1.514 4.218 6.201 0.219 0.358 -0.440EQEW -1.467 -0.076 -0.703 -0.032 -0.316 -0.032 -0.036 -0.007EQNS 0.190 -0.521 0.523 0.095 0.024 -0.115 0.023 0.132EQZ -0.153 0.023 0.169 0.425 -1.039 -0.134 -0.048 -0.662EQT 0.039 0.081 -0.033 -0.018 -0.020 0.007 -0.004 -0.011

SPKW 0.054 -0.024 0.001 0.004 0.005 0.002 0.001 0.000SPKN -0.040 0.005 0.009 0.003 -0.003 0.000 0.000 0.002

98103 OTHR 0.553 1.433 -0.183 -0.679 0.317 -0.265 -0.677 -0.171TEMP -7.871 -5.553 -0.329 12.884 12.663 0.252 0.585 0.155EQEW -0.205 0.204 -1.155 -0.035 -0.053 -0.209 0.040 -0.046EQNS -0.121 -1.604 0.051 -1.192 -0.617 0.011 -0.274 0.018EQZ 0.196 -0.283 -0.064 -1.812 -0.296 -0.205 -0.905 -0.109EQT -0.018 0.057 -0.193 0.003 0.005 -0.004 0.010 0.007

SPKW 0.018 0.008 0.003 0.003 0.019 0.000 0.005 -0.001SPKN -0.024 -0.011 -0.002 -0.015 -0.027 0.000 -0.008 0.001

Page 98: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-71

Table 3G.1-27

Sectional Thicknesses and Rebar Ratios of RCCV Used in the Evaluation Primary Reinforcement Shear Tie

Direction 1*1 Direction2*1 Location Element

ID Thickness

(m) Position Arrangement*2 Ratio

(%) Arrangement*2 Ratio (%) Arrangement Ratio

(%)

Inside 2-#18@300 0.717 3-#[email protected]º 0.755 1 RPV Pedestal Bottom

5006 5013 5024

2.4 Outside 3-#18@300 1.075 3-#[email protected]º 1.510

#[email protected]ºx300 1.007

Inside 2-#18@300 0.717 3-#[email protected]º 0.755 2 RPV Pedestal Mid-Height

6006 6013 6024

2.4 Outside 3-#18@300 1.075 3-#[email protected]º 1.510

#[email protected]ºx600 0.252

Inside 2-#18@300+1-#18@600 0.896 3-#[email protected]º 0.755

3 RPV Pedestal Top

6606 6613 6624

2.4 Outside 3-#18@300 1.075 3-#[email protected]º 1.510

#[email protected]ºx300 1.007

Inside 2-#18@300 0.860 3-#[email protected]º+1-#[email protected] 1.405

4 RCCV Wetwell Bottom

1806 1813 1824

2.0 Outside 3-#18@300 1.290 3-#[email protected]º

+1-#[email protected]º1.513

#[email protected]ºx300 0.540

Inside 2-#18@300 0.860 2-#[email protected]º 0.865 5 RCCV Wetwell Mid-Height

2606 2613 2624

2.0 Outside 3-#18@300 1.290 3-#[email protected]º 1.297

#[email protected]ºx600 0.270

Inside 2-#18@300 +2-#18@600

1.290 2-#[email protected]º 0.865 6 RCCV Wetwell Top

3406 3413 3424

2.0 Outside 3-#18@300

+1-#[email protected] 3-#[email protected]º

+1-#[email protected]º1.729

#[email protected]ºx300 0.721

Inside 2-#18@300+1-#18@600 1.075 2-#[email protected]º 0.865

7 RCCV Drywell Bottom

3606 3613 3624

2.0 Outside 3-#18@300

+1-#[email protected] 3-#[email protected]º

+1-#[email protected]º1.729

#[email protected]ºx300 0.721

Inside 2-#18@300 0.860 2-#[email protected]º 0.865 8 RCCV Drywell Mid-Height

4006 4013 4976

2.0 Outside 3-#18@300 1.290 3-#[email protected]º 1.297

#[email protected]ºx600 0.270

Inside 2-#18@300 0.860 2-#[email protected]º 0.865 4406 4413 2.0

Outside 3-#18@300 1.290 3-#[email protected]º 1.297 #[email protected]ºx300 0.540

Inside 2-#18@300 0.860 2-#[email protected]º (+1-#[email protected]º)

1.081

9 RCCV Drywell Top

4424 2.0 Outside 3-#18@300 1.290 3-#[email protected]º 1.297

#[email protected]ºx300 0.540

Note *1: RCCV, Pedestal Direction1 : Hoop, Direction2 : Vertical, S/P Slab Direction1 : Radial, Direction2 : Circumferential, Top slab Direction1 : N-S, Direction2 : E-W, Basemat @center Direction1 : N-S, Direction2 : E-W, Basemat Inside RPV Pedestal Direction1 : Top :Radial, Bottom : N-S, Direction2 Top : Circumferential, Bottom : E-W Note *2: Rebar in parentheses indicates additional bars locally required.

Page 99: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-72

Table 3G.1-27

Sectional Thicknesses and Rebar Ratios of RCCV Used in the Evaluation (Continued) Primary Reinforcement Direction 1* Direction2*

Shear Tie Location Element

ID Thickness

(m) Position Arrangement Ratio

(%) Arrangement Ratio (%) Arrangement Ratio

(%)

Top 2-#11@120 0.329 2-#11@120 0.329 10 Basemat @ Center 80003

80007 80012

5.1 Bottom 5-#11@200 0.493 5-#11@200 0.493

#9@600x600 0.179

Top 4-#[email protected]° 0.405 2-#11@200 +2-#11@400

0.296 11 Basemat Inside RPV Pedestal

80206 80213 80224

5.1 Bottom 5-#11@200 0.493 5-#11@200 0.493

#[email protected]°x400 1.292

Top 2-#[email protected]º 0.913 2-#18@300 0.860 12 S/P Slab @ RPV

83306 83313 83324

2.0 Bottom 2-#[email protected]º 0.913 2-#18@300 0.860

#[email protected]ºx300 1.141

Top 2-#[email protected]º 1.264 2-#18@300 0.860 13 S/P Slab @ Center

83406 83413 83424

2.0 Bottom 2-#[email protected]º 1.264 2-#18@300 0.860

#[email protected]ºx600 0.263

Top 2-#[email protected]º 0.966 2-#18@300 0.860 14 S/P Slab @ RCCV 83506

83513 83524

2.0 Bottom 2-#[email protected]º 0.966 2-#18@300 0.860

#[email protected]ºx300 1.007

Top 3-#14@300 0.605 3-#14@300 0.605 98120 98135

2.4

Bottom 3-#14@300 0.605 3-#14@300 0.605 #9@600x300 0.358

Top 3-#14@300 0.605 3-#14@300+1-#14#300 0.806

15 Top slab @ Drywell Head Opening

98104 2.4

Bottom 3-#14@300 0.605 3-#14@300 0.605

#9@600x300 0.358

Top 3-#14@300 0.605 3-#14@300 +1-#14@300

0.806 98149 93109 2.4

Bottom 3-#14@300 0.605 3-#14@300 0.605 #9@600x600 0.179

Top 3-#14@300 0.605 3-#14@300 0.605

16 Top slab @ Center

98170 2.4 Bottom 3-#14@300 0.605 3-#14@300 0.605

#9@600x600 0.179

Top 3-#14@300 0.605 3-#14@300 0.605 98174 2.4

Bottom 3-#14@300 0.605 3-#14@300 0.605 #9@600x600 0.179

Top 3-#14@300 0.605 3-#14@300 0.605 98197 2.4

Bottom 3-#14@300 0.605 3-#14@300 0.605 #9@300x300 0.717

Top 3-#14@300 0.605 3-#14@300 +1-#14@300

0.806

17 Top slab @ RCCV

98103 2.4 Bottom 3-#14@300 0.605 3-#14@300 0.605

#9@300x300 0.717

Note *: RCCV, Pedestal Direction1 : Hoop, Direction2 : Vertical, S/P Slab Direction1 : Radial, Direction2 : Circumferential, Top slab Direction1 : N-S, Direction2 : E-W, Basemat @center Direction1 : N-S, Direction2 : E-W, Basemat Inside RPV Pedestal Direction1 : Top :Radial, Bottom : N-S, Direction2 Top : Circumferential, Bottom : E-W

Page 100: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-73

Table 3G.1-28

Rebar and Concrete Stresses of RCCV: Selected Load Combination CV-1

In/Top Out/Bottom In/Top Out/Bottom1 RPV 5006 -4.4 -15.5 -2.5 -3.1 -10.9 -25.8 310.2 Pedestal 5013 -4.7 -15.5 -4.2 -3.9 -10.9 -27.4 310.2 Bottom 5024 -4.3 -15.5 -3.1 -4.6 -10.5 -25.0 310.22 RPV 6006 -3.1 -15.5 33.4 23.2 -21.0 -17.4 310.2 Pedestal 6013 -3.1 -15.5 19.4 21.6 -21.1 -17.1 310.2 Mid-Height 6024 -2.1 -15.5 49.0 17.0 -13.8 -12.9 310.23 RPV 6606 -4.7 -15.5 29.6 6.6 -0.8 -25.4 310.2 Pedestal 6613 -4.6 -15.5 13.9 3.9 -5.2 -25.9 310.2 Top 6624 -4.3 -15.5 31.6 7.8 -4.6 -24.1 310.24 RCCV 1806 -4.8 -15.5 24.1 3.6 24.8 -17.4 310.2 Wetwell 1813 -5.1 -15.5 19.1 2.7 23.5 -18.6 310.2 Bottom 1824 -4.6 -15.5 31.5 5.7 18.4 -18.0 310.25 RCCV 2606 -1.4 -15.5 71.2 54.1 -11.9 1.4 310.2 Wetwell 2613 -1.7 -15.5 60.4 49.1 -16.1 1.9 310.2 Mid-Height 2624 -1.7 -15.5 73.3 52.4 -10.2 -2.1 310.26 RCCV 3406 -0.9 -15.5 49.7 34.2 2.5 -3.2 310.2 Wetwell 3413 -1.0 -15.5 40.9 31.3 -17.9 3.4 310.2 Top 3424 -0.6 -15.5 44.9 27.5 0.2 -5.8 310.27 RCCV 3606 -0.9 -15.5 59.0 32.6 13.3 -6.5 310.2 Drywell 3613 -1.3 -15.5 52.8 30.0 -5.4 -2.7 310.2 Bottom 3624 -0.7 -15.5 55.7 25.7 8.6 -10.5 310.28 RCCV 4006 -0.3 -15.5 46.1 33.2 0.2 14.4 310.2 Drywell 4013 -1.4 -15.5 44.9 35.9 -6.8 -1.3 310.2 Mid-Height 4976 -0.2 -15.5 51.0 29.1 -1.2 -0.9 310.29 RCCV 4406 -5.1 -15.5 37.5 8.8 94.1 1.5 310.2 Drywell 4413 -5.2 -15.5 12.2 2.5 35.7 -15.3 310.2 Top 4424 -5.2 -15.5 55.4 12.3 70.2 -6.7 310.210 Basemat 80003 -0.7 -12.4 -1.7 -4.4 -1.7 -2.8 310.2 @ Center 80007 -0.7 -12.4 -1.7 -4.4 -1.7 -3.0 310.2

80012 -0.7 -12.4 -1.6 -4.5 -1.7 -3.0 310.211 Basemat 80206 -1.3 -12.4 -3.0 -4.7 1.9 0.2 310.2 Inside 80213 -1.2 -12.4 -4.4 -2.8 6.4 -1.6 310.2 RPV Pedestal 80224 -1.2 -12.4 -3.1 -5.6 -0.4 -0.6 310.212 S/P Slab 83306 -0.7 -15.5 13.9 20.8 72.8 12.1 310.2 @ RPV 83313 -0.2 -15.5 0.7 18.6 55.7 0.9 310.2

83324 -0.2 -15.5 -3.2 22.1 67.6 15.8 310.213 S/P Slab 83406 -6.0 -15.5 -7.0 81.8 13.2 60.7 310.2 @ Center 83413 -5.6 -15.5 -4.9 83.1 5.5 46.3 310.2

83424 -5.8 -15.5 -7.3 79.2 10.8 59.7 310.214 S/P Slab 83506 -3.7 -15.5 67.3 -12.6 25.7 18.0 310.2 @ RCCV 83513 -3.1 -15.5 69.8 -8.5 13.5 10.9 310.2

83524 -3.9 -15.5 66.2 -14.4 28.5 19.0 310.215 Topslab 98120 -1.3 -15.5 20.9 1.9 115.9 17.2 310.2 @ Drywell Head 98135 -1.3 -15.5 -9.5 7.2 11.1 -4.1 310.2 Opening 98104 -4.2 -15.5 30.7 -0.2 152.6 13.8 310.216 Topslab 98149 -0.8 -15.5 56.9 63.5 39.8 21.4 310.2 @ Center 98170 -1.4 -15.5 71.0 14.0 51.4 4.8 310.2

98109 -2.8 -15.5 51.4 3.1 99.0 5.9 310.217 Topslab 98174 -0.6 -15.5 42.1 47.6 70.8 0.1 310.2 @ RCCV 98197 -3.4 -15.5 13.0 113.3 11.4 35.1 310.2

98103 -2.2 -15.5 8.8 64.1 59.1 38.2 310.2

Primary Reinforcement Stress (MPa)

Location ElementID Calculated Allowable

CalculatedDirection 1* Direction 2* Allowable

Concrete Stress (Mpa)

Note: Negative value means compression. Note *: RCCV, Pedestal Direction1 : Hoop, Direction2 : Vertical, S/P Slab Direction1 : Radial, Direction2 : Circumferential, Top slab Direction1 : N-S, Direction2 : E-W, Basemat @center Direction1 : N-S, Direction2 : E-W, Basemat Inside RPV Pedestal Direction1 : Top :Radial, Bottom : N-S, Direction2 Top : Circumferential, Bottom : E-W

Page 101: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-74

Table 3G.1-29

Rebar and Concrete Stresses of RCCV: Selected Load Combination CV-7a

In/Top Out/Bottom In/Top Out/Bottom1 RPV 5006 -8.6 -28.7 -5.5 -3.8 -23.8 -51.1 367.9 Pedestal 5013 -8.5 -28.7 -8.1 -6.0 -22.0 -49.9 367.9 Bottom 5024 -7.4 -28.7 -7.6 -7.0 -17.1 -42.8 367.92 RPV 6006 -7.7 -28.7 16.7 32.4 -49.7 -35.6 367.9 Pedestal 6013 -7.4 -28.7 8.0 29.4 -46.5 -28.3 367.9 Mid-Height 6024 -4.5 -28.7 22.2 21.7 -26.9 -18.3 367.93 RPV 6606 -6.3 -28.7 -5.8 -5.3 -37.8 -28.4 367.9 Pedestal 6613 -5.7 -28.7 -9.1 -6.2 -35.7 -27.1 367.9 Top 6624 -4.2 -28.7 -7.4 -7.4 -26.1 -24.5 367.94 RCCV 1806 -10.7 -29.0 62.5 16.4 104.5 -25.1 369.7 Wetwell 1813 -11.0 -29.0 87.8 29.8 91.3 -29.7 369.7 Bottom 1824 -7.8 -29.0 144.9 65.1 82.0 -39.1 369.75 RCCV 2606 -0.9 -29.1 127.5 119.7 -28.8 40.7 370.2 Wetwell 2613 -2.4 -29.1 80.7 94.5 -18.0 8.0 370.2 Mid-Height 2624 -1.5 -29.1 122.6 106.1 -37.1 28.0 370.26 RCCV 3406 -9.9 -29.1 61.1 79.3 -42.8 70.5 370.2 Wetwell 3413 -3.0 -29.1 34.8 48.7 -39.8 28.4 370.2 Top 3424 -2.7 -29.1 171.5 128.6 -18.5 -3.4 370.27 RCCV 3606 -9.4 -28.7 97.6 122.2 71.3 52.0 367.8 Drywell 3613 -2.8 -28.7 77.5 112.1 -26.7 47.3 367.8 Bottom 3624 -2.6 -27.7 60.0 4.7 -11.1 -13.0 360.28 RCCV 4006 -0.5 -28.7 53.4 124.6 18.4 83.8 367.8 Drywell 4013 -2.0 -28.7 59.1 117.6 0.0 39.5 367.8 Mid-Height 4976 -0.5 -27.7 43.8 22.0 3.2 8.4 360.29 RCCV 4406 -4.2 -28.7 48.7 88.4 149.1 10.0 367.8 Drywell 4413 -2.7 -28.7 1.0 48.5 4.9 -13.0 367.8 Top 4424 -5.6 -27.7 20.7 6.5 80.6 -6.2 360.210 Basemat 80003 -4.8 -23.2 -1.2 -5.1 59.8 52.1 370.2 @ Center 80007 -4.7 -23.2 -0.9 -5.4 59.9 49.6 370.2

80012 -4.8 -23.2 -1.7 -6.4 56.7 45.7 370.211 Basemat 80206 -9.7 -23.2 -9.8 31.9 102.8 109.2 370.2 Inside 80213 -7.8 -23.2 3.0 14.0 123.5 76.6 370.2 RPV Pedestal 80224 -7.3 -23.2 -1.7 3.4 67.5 72.3 370.212 S/P Slab 83306 -6.4 -29.0 -26.1 65.0 119.5 54.4 369.8 @ RPV 83313 -2.2 -29.0 -64.4 133.5 134.1 60.9 369.8

83324 -1.5 -29.0 -65.5 152.8 145.2 62.2 369.813 S/P Slab 83406 -19.7 -29.0 -29.1 236.6 34.3 214.5 369.8 @ Center 83413 -19.2 -29.0 -24.8 240.0 17.5 165.9 369.8

83424 -18.2 -29.0 -21.2 250.6 16.0 164.8 369.814 S/P Slab 83506 -12.3 -29.0 179.2 -53.6 49.0 70.7 369.8 @ RCCV 83513 -0.8 -29.0 187.6 -99.1 68.7 155.5 369.8

83524 -11.2 -29.0 183.7 -43.2 10.1 44.7 369.815 Topslab 98120 -3.0 -27.9 -13.0 4.0 134.9 45.7 361.7 @ Drywell Head 98135 -2.8 -27.9 0.3 -12.8 0.1 -1.8 361.7 Opening 98104 -5.0 -27.9 20.3 2.7 192.9 11.3 361.716 Topslab 98149 -2.4 -28.0 20.9 -1.0 75.9 4.2 362.7 @ Center 98170 -4.7 -28.0 59.8 -1.1 76.3 -0.1 362.7

98109 -4.0 -28.0 76.8 5.1 143.9 13.5 362.717 Topslab 98174 -4.3 -28.0 24.8 2.7 121.6 3.3 362.7 @ RCCV 98197 -1.5 -28.0 15.2 85.9 69.8 42.7 362.7

98103 -1.6 -28.0 -2.0 9.3 62.0 25.7 362.7

Location ElementID

Concrete Stress (Mpa) Primary Reinforcement Stress (MPa)

Calculated AllowableCalculated

AllowableDirection 1* Direction 2*

Note: Negative value means compression. Note *: RCCV, Pedestal Direction1 : Hoop, Direction2 : Vertical, S/P Slab Direction1 : Radial, Direction2 : Circumferential, Top slab Direction1 : N-S, Direction2 : E-W, Basemat @center Direction1 : N-S, Direction2 : E-W, Basemat Inside RPV Pedestal Direction1 : Top :Radial, Bottom : N-S, Direction2 Top : Circumferential, Bottom : E-W

Page 102: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-75

Table 3G.1-30 Rebar and Concrete Stresses of RCCV: Selected Load Combination CV-7b

In/Top Out/Bottom In/Top Out/Bottom1 RPV 5006 -7.5 -27.9 -26.9 -20.8 -17.2 -41.5 361.6 Pedestal 5013 -7.4 -27.9 -32.6 -26.2 -18.2 -40.2 361.6 Bottom 5024 -6.3 -27.9 -33.9 -28.9 -13.1 -32.7 361.62 RPV 6006 -7.8 -27.9 61.9 72.1 -46.5 -25.5 361.6 Pedestal 6013 -8.1 -27.9 46.8 75.2 -50.2 -18.9 361.6 Mid-Height 6024 -5.4 -27.9 77.2 67.6 -28.7 -11.0 361.63 RPV 6606 -6.5 -27.9 226.8 201.0 -5.0 -34.2 361.6 Pedestal 6613 -5.9 -27.9 205.4 200.9 -20.8 -37.3 361.6 Top 6624 -3.6 -27.9 224.7 190.2 34.2 -77.6 361.64 RCCV 1806 -7.7 -28.3 61.1 21.4 78.3 -17.7 364.4 Wetwell 1813 -9.1 -28.3 27.9 21.9 69.4 -22.1 364.4 Bottom 1824 -6.8 -28.3 40.8 21.7 61.9 -19.8 364.45 RCCV 2606 -0.9 -28.2 86.4 108.3 -54.1 63.3 363.8 Wetwell 2613 -4.3 -28.2 52.8 98.0 -19.2 26.5 363.8 Mid-Height 2624 -1.7 -28.2 86.8 99.3 -64.9 50.6 363.86 RCCV 3406 -6.4 -28.2 41.6 71.0 -25.7 64.6 363.8 Wetwell 3413 -7.6 -28.2 33.4 63.6 -30.3 27.2 363.8 Top 3424 -1.3 -28.2 39.6 44.5 -31.4 21.1 363.87 RCCV 3606 -6.5 -27.7 18.6 139.3 -5.5 72.5 360.2 Drywell 3613 -4.5 -27.7 8.0 114.3 -12.6 16.9 360.2 Bottom 3624 -1.3 -26.7 58.3 27.5 35.4 -2.2 352.98 RCCV 4006 -6.1 -27.7 22.8 168.6 7.1 100.3 360.2 Drywell 4013 -3.8 -27.7 23.5 156.4 -3.6 57.8 360.2 Mid-Height 4976 -0.6 -26.7 41.8 55.0 3.1 23.2 352.99 RCCV 4406 -3.2 -27.7 26.7 167.6 132.4 28.9 360.2 Drywell 4413 -5.1 -27.7 -7.2 63.1 13.4 -13.6 360.2 Top 4424 -2.5 -26.7 67.0 1.8 29.5 11.2 352.910 Basemat 80003 -4.3 -23.2 2.9 -1.6 66.4 55.7 370.2 @ Center 80007 -4.2 -23.2 3.0 -2.0 66.1 53.1 370.2

80012 -4.3 -23.2 2.5 -2.6 63.5 49.8 370.211 Basemat 80206 -8.4 -23.2 -6.9 34.0 107.3 97.8 370.2 Inside 80213 -6.9 -23.2 5.9 15.7 117.1 74.0 370.2 RPV Pedestal 80224 -6.2 -23.2 3.4 6.1 73.5 64.6 370.212 S/P Slab 83306 -6.6 -28.3 -45.7 76.6 130.0 90.6 364.4 @ RPV 83313 -3.0 -28.3 -86.4 119.9 133.1 96.6 364.4

83324 -16.2 -28.3 -50.3 134.6 110.0 101.2 364.413 S/P Slab 83406 -18.3 -28.3 -25.6 215.2 30.2 199.4 364.4 @ Center 83413 -18.6 -28.3 -27.6 215.3 20.3 176.2 364.4

83424 -17.6 -28.3 -24.1 227.0 14.7 158.9 364.414 S/P Slab 83506 -1.0 -28.3 132.5 -80.0 28.2 123.4 364.4 @ RCCV 83513 -0.8 -28.3 147.6 -78.5 2.2 120.3 364.4

83524 -0.4 -28.3 137.6 -69.2 9.7 110.7 364.415 Topslab 98120 -7.7 -26.2 19.9 -18.0 93.3 -0.4 349.2 @ Drywell Head 98135 -6.3 -26.2 7.0 -29.3 -6.2 -5.1 349.2 Opening 98104 -9.8 -26.2 17.2 -5.7 210.5 -10.8 349.216 Topslab 98149 -8.0 -26.6 3.5 -10.4 215.8 1.0 352.0 @ Center 98170 -8.7 -26.6 113.2 -3.4 103.9 -4.1 352.0

98109 -7.7 -27.2 116.5 2.4 198.8 12.5 356.617 Topslab 98174 -6.9 -26.6 -0.7 -7.4 218.1 8.1 352.0 @ RCCV 98197 -1.8 -26.6 17.9 85.9 75.6 22.8 352.0

98103 -1.7 -27.2 0.9 1.2 92.5 9.3 356.6

Location ElementID

Concrete Stress (Mpa) Primary Reinforcement Stress (MPa)

Calculated AllowableCalculated

AllowableDirection 1* Direction 2*

Note: Negative value means compression. Note *: RCCV, Pedestal Direction1 : Hoop, Direction2 : Vertical, S/P Slab Direction1 : Radial, Direction2 : Circumferential, Top slab Direction1 : N-S, Direction2 : E-W, Basemat @center Direction1 : N-S, Direction2 : E-W, Basemat Inside RPV Pedestal Direction1 : Top :Radial, Bottom : N-S, Direction2 Top : Circumferential, Bottom : E-W

Page 103: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-76

Table 3G.1-31 Rebar and Concrete Stresses of RCCV: Selected Load Combination CV-11a

In/Top Out/Bottom In/Top Out/Bottom1 RPV 5006 -16.1 -28.7 31.9 83.0 -46.8 -87.8 367.9 Pedestal 5013 -17.3 -28.7 32.5 99.7 -46.6 112.2 367.9 Bottom 5024 -9.9 -28.7 13.5 21.5 -40.3 -57.0 367.92 RPV 6006 -9.5 -28.7 27.4 35.7 -57.3 -45.9 367.9 Pedestal 6013 -9.1 -28.7 24.9 34.2 -61.1 -44.0 367.9 Mid-Height 6024 -7.6 -28.7 111.7 81.4 54.3 55.2 367.93 RPV 6606 -11.6 -28.7 -14.0 -11.8 -61.9 -35.1 367.9 Pedestal 6613 -10.9 -28.7 -18.8 -13.4 -59.2 -35.1 367.9 Top 6624 -6.8 -28.7 -13.4 -12.0 -39.0 -32.4 367.94 RCCV 1806 -13.6 -29.0 239.2 138.3 286.4 128.3 369.7 Wetwell 1813 -12.7 -29.0 212.6 130.3 271.9 117.3 369.7 Bottom 1824 -9.5 -29.0 338.0 197.0 275.5 113.0 369.75 RCCV 2606 -7.6 -29.1 285.7 211.0 222.4 240.9 370.2 Wetwell 2613 -7.0 -29.1 213.6 168.7 173.6 216.2 370.2 Mid-Height 2624 -8.9 -29.1 303.6 209.3 200.7 232.8 370.26 RCCV 3406 -11.0 -29.1 177.5 135.4 111.5 182.6 370.2 Wetwell 3413 -10.1 -29.1 137.8 122.0 131.8 152.1 370.2 Top 3424 -7.7 -29.1 261.6 187.4 141.0 117.2 370.27 RCCV 3606 -9.8 -28.7 237.3 191.3 100.4 191.2 367.8 Drywell 3613 -8.0 -28.7 174.6 178.5 173.9 169.4 367.8 Bottom 3624 -7.5 -27.7 175.5 65.7 137.2 71.3 360.28 RCCV 4006 -8.0 -28.7 201.3 216.6 168.7 199.0 367.8 Drywell 4013 -7.3 -28.7 203.4 196.8 134.6 131.3 367.8 Mid-Height 4976 -7.5 -27.7 235.0 140.9 184.1 160.8 360.29 RCCV 4406 -7.4 -28.7 194.9 209.7 261.1 161.8 367.8 Drywell 4413 -5.8 -28.7 109.6 154.4 167.9 135.8 367.8 Top 4424 -8.3 -27.7 233.6 147.1 229.0 145.0 360.210 Basemat 80003 -9.9 -23.2 24.0 -18.8 171.8 135.6 370.2 @ Center 80007 -9.5 -23.2 24.4 -19.8 171.0 129.5 370.2

80012 -8.5 -23.2 21.8 -19.0 158.6 121.6 370.211 Basemat 80206 -17.1 -23.2 47.1 110.8 254.6 242.5 370.2 Inside 80213 -13.1 -23.2 29.8 51.2 268.5 157.5 370.2 RPV Pedestal 80224 -9.1 -23.2 35.2 -20.7 161.6 97.9 370.212 S/P Slab 83306 -14.8 -29.0 67.4 182.6 219.6 156.0 369.8 @ RPV 83313 -13.4 -29.0 75.9 180.3 229.8 140.9 369.8

83324 -11.9 -29.0 -66.2 181.3 203.3 126.7 369.813 S/P Slab 83406 -17.8 -29.0 -36.6 210.1 38.3 203.1 369.8 @ Center 83413 -17.4 -29.0 -34.0 213.4 28.5 151.7 369.8

83424 -17.0 -29.0 -29.7 231.0 25.6 145.6 369.814 S/P Slab 83506 -15.3 -29.0 246.7 -85.1 77.9 114.6 369.8 @ RCCV 83513 -14.7 -29.0 218.9 -101.5 88.8 145.1 369.8

83524 -13.4 -29.0 170.5 -46.7 -31.5 65.1 369.815 Topslab 98120 -6.1 -27.9 -73.7 85.8 197.1 133.6 361.7 @ Drywell Head 98135 -4.8 -27.9 95.4 -85.9 78.7 144.6 361.7 Opening 98104 -6.2 -27.9 46.8 53.9 209.0 121.6 361.716 Topslab 98149 -3.2 -28.0 30.0 22.7 110.4 86.0 362.7 @ Center 98170 -5.8 -28.0 104.1 19.9 141.8 80.2 362.7

98109 -4.6 -28.0 108.7 19.6 176.1 79.9 362.717 Topslab 98174 -5.3 -28.0 61.6 49.7 176.6 61.5 362.7 @ RCCV 98197 -5.1 -28.0 107.0 99.1 165.2 97.7 362.7

98103 -7.1 -28.0 121.0 59.4 131.7 60.5 362.7

Location ElementID

Concrete Stress (Mpa) Primary Reinforcement Stress (MPa)

Calculated AllowableCalculated

AllowableDirection 1* Direction 2*

Note: Negative value means compression. Note *: RCCV, Pedestal Direction1 : Hoop, Direction2 : Vertical, S/P Slab Direction1 : Radial, Direction2 : Circumferential, Top slab Direction1 : N-S, Direction2 : E-W, Basemat @center Direction1 : N-S, Direction2 : E-W, Basemat Inside RPV Pedestal Direction1 : Top :Radial, Bottom : N-S, Direction2 Top : Circumferential, Bottom : E-W

Page 104: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-77

Table 3G.1-32 Rebar and Concrete Stresses of RCCV: Selected Load Combination CV-11b

In/Top Out/Bottom In/Top Out/Bottom1 RPV 5006 -15.2 -27.9 -37.4 -32.4 -41.2 -79.2 361.6 Pedestal 5013 -16.3 -27.9 -40.9 -37.9 -44.0 114.4 361.6 Bottom 5024 -8.9 -27.9 -37.0 -33.3 -37.3 -48.3 361.62 RPV 6006 -9.8 -27.9 73.6 74.4 -53.7 -34.3 361.6 Pedestal 6013 -10.2 -27.9 72.0 77.1 -65.1 -36.0 361.6 Mid-Height 6024 -8.7 -27.9 157.7 132.5 49.8 99.8 361.63 RPV 6606 -8.6 -27.9 242.4 234.4 114.3 -107.2 361.6 Pedestal 6613 -8.7 -27.9 220.0 232.5 -77.5 -49.7 361.6 Top 6624 -7.9 -27.9 261.6 218.2 163.7 -108.6 361.64 RCCV 1806 -11.1 -28.3 232.0 150.1 260.4 166.7 364.4 Wetwell 1813 -11.3 -28.3 168.4 125.7 245.2 138.3 364.4 Bottom 1824 -8.9 -28.3 264.2 168.6 240.3 124.2 364.45 RCCV 2606 -7.6 -28.2 233.2 191.3 208.8 268.2 363.8 Wetwell 2613 -7.3 -28.2 189.6 176.0 143.6 235.1 363.8 Mid-Height 2624 -9.1 -28.2 262.2 198.2 175.1 261.5 363.86 RCCV 3406 -8.4 -28.2 160.7 129.7 113.5 173.4 363.8 Wetwell 3413 -7.3 -28.2 123.9 120.3 97.1 137.6 363.8 Top 3424 -7.5 -28.2 154.6 128.1 159.3 148.7 363.87 RCCV 3606 -7.5 -27.7 124.5 201.9 121.7 189.0 360.2 Drywell 3613 -7.9 -27.7 63.6 182.6 63.6 133.4 360.2 Bottom 3624 -7.1 -26.7 191.2 112.9 224.6 120.3 352.98 RCCV 4006 -8.1 -27.7 124.0 262.6 144.9 233.2 360.2 Drywell 4013 -7.6 -27.7 132.7 232.0 115.8 148.6 360.2 Mid-Height 4976 -7.6 -26.7 240.7 172.9 185.5 178.9 352.99 RCCV 4406 -8.6 -27.7 138.5 275.7 219.8 199.0 360.2 Drywell 4413 -7.6 -27.7 -87.9 183.9 166.2 140.2 360.2 Top 4424 -8.5 -26.7 273.1 141.3 153.6 212.9 352.910 Basemat 80003 -9.5 -23.2 29.8 16.8 184.4 146.0 370.2 @ Center 80007 -9.1 -23.2 28.7 -17.1 178.9 132.9 370.2

80012 -8.0 -23.2 25.3 -16.2 164.7 125.0 370.211 Basemat 80206 -16.6 -23.2 56.8 124.5 273.8 254.5 370.2 Inside 80213 -12.4 -23.2 71.8 59.4 281.7 192.5 370.2 RPV Pedestal 80224 -8.2 -23.2 39.8 24.4 164.4 115.1 370.212 S/P Slab 83306 -16.4 -28.3 -64.4 193.5 231.2 185.1 364.4 @ RPV 83313 -15.6 -28.3 -84.0 176.4 230.8 174.0 364.4

83324 -14.4 -28.3 -79.4 190.2 197.3 147.9 364.413 S/P Slab 83406 -17.8 -28.3 -41.1 195.5 37.8 200.4 364.4 @ Center 83413 -17.0 -28.3 -37.0 198.6 29.2 161.3 364.4

83424 -17.0 -28.3 -31.3 220.1 25.0 147.0 364.414 S/P Slab 83506 -13.0 -28.3 195.6 -65.2 64.8 130.0 364.4 @ RCCV 83513 -12.6 -28.3 182.7 -75.9 -25.8 105.0 364.4

83524 -11.3 -28.3 128.6 -61.2 -34.7 99.5 364.415 Topslab 98120 -8.0 -26.2 31.0 -22.8 144.6 51.0 349.2 @ Drywell Head 98135 -7.0 -26.2 23.2 -34.5 -14.0 85.5 349.2 Opening 98104 -10.0 -26.2 61.0 21.7 212.0 -24.9 349.216 Topslab 98149 -8.7 -26.6 -11.9 -15.3 263.0 28.9 352.0 @ Center 98170 -9.5 -26.6 131.3 -12.6 183.6 25.4 352.0

98109 -7.3 -27.2 149.1 10.2 219.9 37.8 356.617 Topslab 98174 -7.7 -26.6 39.2 -12.4 272.6 42.7 352.0 @ RCCV 98197 -3.6 -26.6 120.3 84.4 177.8 82.2 352.0

98103 -8.8 -27.2 117.2 27.6 159.0 34.3 356.6

Location ElementID

Concrete Stress (Mpa) Primary Reinforcement Stress (MPa)

Calculated AllowableCalculated

AllowableDirection 1* Direction 2*

Note: Negative value means compression. Note *: RCCV, Pedestal Direction1 : Hoop, Direction2 : Vertical, S/P Slab Direction1 : Radial, Direction2 : Circumferential, Top slab Direction1 : N-S, Direction2 : E-W, Basemat @center Direction1 : N-S, Direction2 : E-W, Basemat Inside RPV Pedestal Direction1 : Top :Radial, Bottom : N-S, Direction2 Top : Circumferential, Bottom : E-W

Page 105: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-78

Table 3G.1-33

Transverse Shear of RCCV

Element LOAD Shear Force dID ID Q (MN/m) (m) Vu Vc Vs required provided

1 RPV 5006 CV-11b 6.69 1.97 4.00 3.00 1.00 0.249 1.010 Pedestal 5013 CV-11b 7.52 1.97 4.49 3.22 1.27 0.315 1.010 Bottom 5024 CV-11b 4.89 1.97 2.92 2.50 0.42 0.105 1.0102 RPV 6006 CV-7b 2.15 1.94 1.31 2.72 0.00 0.000 0.252 Pedestal 6013 CV-7b 2.58 1.94 1.57 2.68 0.00 0.000 0.252 Mid-Height 6024 CV-7b 2.12 1.94 1.29 2.31 0.00 0.000 0.2523 RPV 6606 CV-7b 2.08 1.97 1.24 2.58 0.00 0.000 1.010 Pedestal 6613 CV-7b 2.09 1.97 1.25 2.56 0.00 0.000 1.010 Top 6624 CV-7b 1.86 1.97 1.11 2.41 0.00 0.000 1.0104 RCCV 1806 CV-11a 1.86 1.59 1.38 0.47 0.91 0.220 0.540 Wetwell 1813 CV-11a 1.94 1.59 1.44 0.29 1.15 0.279 0.540 Bottom 1824 CV-11a 1.51 1.59 1.12 0.20 0.91 0.222 0.5405 RCCV 2606 CV-11a 0.41 1.54 0.31 0.29 0.03 0.006 0.270 Wetwell 2613 CV-11a 0.33 1.54 0.26 0.24 0.02 0.005 0.270 Mid-Height 2624 CV-7a 0.31 1.54 0.24 1.19 0.00 0.000 0.2706 RCCV 3406 CV-11b 0.94 1.59 0.70 0.41 0.29 0.071 0.721 Wetwell 3413 CV-1 0.05 1.67 0.03 0.03 0.00 0.000 0.721 Top 3424 CV-7b 0.36 1.59 0.27 1.33 0.00 0.000 0.7217 RCCV 3606 CV-11b 0.65 1.66 0.46 0.25 0.21 0.052 0.721 Drywell 3613 CV-7a 0.60 1.60 0.44 0.87 0.00 0.000 0.721 Bottom 3624 CV-7b 0.02 1.67 0.02 0.02 0.00 0.000 0.7218 RCCV 4006 CV-11a 0.36 1.56 0.27 0.14 0.13 0.032 0.270 Drywell 4013 CV-7b 0.35 1.54 0.26 1.20 0.00 0.000 0.270 Mid-Height 4976 CV-7b 0.52 1.54 0.40 1.64 0.00 0.000 0.2709 RCCV 4406 CV-11a 0.77 1.68 0.54 0.43 0.11 0.027 0.540 Drywell 4413 CV-1 0.80 1.68 0.48 0.92 0.00 0.000 0.540 Top 4424 CV-11b 0.91 1.54 0.70 0.61 0.09 0.022 0.54010 Basemat 80003 CV-7a 0.67 4.59 0.17 0.90 0.00 0.000 0.179 @ Center 80007 CV-7a 0.61 4.58 0.16 0.89 0.00 0.000 0.179

80012 CV-7a 0.28 4.58 0.07 0.90 0.00 0.000 0.17911 Basemat 80206 CV-11a 5.25 4.59 1.35 0.94 0.41 0.099 1.290 Inside 80213 CV-11a 5.30 4.57 1.37 0.98 0.38 0.093 1.290 RPV Pedestal 80224 CV-7a 1.87 4.61 0.48 0.93 0.00 0.000 1.29012 S/P Slab 83306 CV-11a 5.45 1.53 4.21 1.97 2.23 0.543 1.140 @ RPV 83313 CV-11a 5.41 1.53 4.17 1.91 2.27 0.552 1.140

83324 CV-11a 5.26 1.53 4.06 1.72 2.34 0.569 1.14013 S/P Slab 83406 CV-1 0.13 1.76 0.08 0.08 0.00 0.000 0.263 @ Center 83413 CV-1 0.13 1.76 0.07 0.07 0.00 0.000 0.263

83424 CV-1 0.16 1.76 0.09 0.09 0.00 0.000 0.26314 S/P Slab 83506 CV-7a 5.15 1.53 3.98 0.90 3.07 0.748 1.010 @ RCCV 83513 CV-7a 5.20 1.53 4.01 0.80 3.21 0.781 1.010

83524 CV-7a 5.16 1.53 3.98 0.74 3.24 0.788 1.01015 Topslab 98120 CV-1 0.91 1.89 0.48 1.12 0.00 0.000 0.358 @ Drywell Head 98135 CV-1 1.21 1.94 0.63 1.17 0.00 0.000 0.358 Opening 98104 CV-7a 0.98 1.94 0.59 0.81 0.00 0.000 0.35816 Topslab 98149 CV-7a 0.34 1.97 0.20 0.20 0.00 0.000 0.179 @ Center 98170 CV-1 0.14 1.89 0.07 0.07 0.00 0.000 0.179

98109 CV-1 0.27 1.99 0.14 0.14 0.00 0.000 0.17917 Topslab 98174 CV-1 0.28 1.93 0.15 0.15 0.00 0.000 0.179 @ RCCV 98197 CV-7b 1.82 1.93 1.11 1.31 0.00 0.000 0.717

98103 CV-1 0.92 1.93 0.48 0.86 0.00 0.000 0.717

Location Shear Stress (MN/m) Shear Tie Ratio (%)

Page 106: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-7

9

Tab

le 3

G.1

-34

Tan

gent

ial S

hear

of R

CC

V

Thic

knes

sN

x/N

yN

xl/N

ylV

tR

equi

red

Prov

ided

Allo

wab

le(M

N/m

)(M

N/m

)(M

N/m

)(m

)rA

spA

s0.

4fc’-

v so

1 R

PV

5006

CV

-11a

-1.7

41-8

.017

1.52

42.

4017

2.5

431.

30.

400

0.63

4.41

0.63

13.1

7

Ped

esta

lC

V-1

1a-7

.071

-16.

450

1.63

72.

4025

4.1

543.

60.

467

0.68

4.41

0.68

13.1

2

Bot

tom

5013

CV

-11a

-2.2

55-8

.075

-0.4

862.

4015

6.7

431.

30.

363

0.20

4.41

0.20

13.6

0C

V-1

1a-7

.530

-19.

602

0.85

22.

4032

4.8

543.

60.

598

0.36

4.41

0.36

13.4

450

24C

V-1

1a-2

.105

-4.2

91-3

.354

2.40

89.7

431.

30.

208

1.40

4.41

1.40

12.4

0C

V-1

1a-7

.042

-12.

550

-1.2

852.

4014

9.7

543.

60.

275

0.54

4.41

0.54

13.2

62

RP

V60

06C

V-1

1b0.

982

-0.8

58-3

.317

2.40

118.

443

1.3

0.27

51.

384.

411.

3812

.42

P

edes

tal

CV

-11a

-6.8

20-1

2.54

92.

759

2.40

161.

954

3.6

0.29

81.

154.

411.

1512

.65

M

id-H

eigh

t60

13C

V-1

1b0.

702

-0.8

852.

606

2.40

92.8

431.

30.

215

1.09

4.41

1.09

12.7

1C

V-1

1a-6

.829

-13.

450

1.40

72.

4017

9.8

543.

60.

331

0.59

4.41

0.59

13.2

160

24C

V-1

1b1.

014

-1.3

716.

014

2.40

192.

943

1.3

0.44

72.

514.

412.

5111

.29

CV

-11a

-5.0

99-6

.068

-5.7

062.

4086

.854

3.6

0.16

02.

384.

412.

3811

.42

3 R

PV

6606

CV

-11b

0.45

70.

219

3.34

92.

4010

2.4

474.

20.

216

1.40

4.41

1.40

12.4

0

Ped

esta

lC

V-1

1a-5

.541

-9.5

053.

340

2.40

121.

854

3.6

0.22

41.

394.

411.

3912

.41

To

p 66

13C

V-1

1b0.

163

-2.3

22-0

.933

2.40

71.6

474.

20.

151

0.39

4.41

0.39

13.4

1C

V-1

1a-5

.702

-9.9

331.

112

2.40

115.

354

3.6

0.21

20.

464.

410.

4613

.34

6624

CV

-11b

0.69

2-2

.047

4.24

82.

4014

5.3

474.

20.

306

1.77

4.41

1.77

12.0

3C

V-1

1a-5

.426

-7.8

072.

314

2.40

73.0

543.

60.

134

0.96

4.41

0.96

12.8

44

RC

CV

1806

CV

-11b

0.14

70.

092

6.90

32.

0018

9.4

430.

00.

440

3.45

4.41

3.45

10.3

5

Wet

wel

lC

V-1

1b-2

.367

7.37

8-6

.353

2.00

198.

058

4.0

0.33

93.

184.

413.

1810

.62

B

otto

m18

13C

V-1

1b0.

011

1.57

65.

659

2.00

158.

143

0.0

0.36

82.

834.

412.

8310

.97

CV

-11b

-2.6

4210

.323

-2.2

292.

0021

2.7

584.

00.

364

1.11

4.41

1.11

12.6

918

24C

V-1

1b0.

369

-0.6

84-8

.391

2.00

236.

143

0.0

0.54

94.

204.

414.

209.

60C

V-1

1b-2

.690

4.98

3-8

.361

2.00

189.

258

4.0

0.32

44.

184.

414.

189.

62

Loca

tion

Elem

ent

IDLo

ad ID

Sect

ion

Forc

esR

ebar

Are

a (c

m2 /m

)rA

s/pA

sv s

o (M

Pa)

v u (M

Pa)

Cal

cula

ted

Allo

wab

leC

alcu

late

d

N

ote

: Top

and

bot

tom

line

s fo

r eac

h el

emen

t ind

icat

e ev

alua

tion

resu

lts fo

r hoo

p an

d ve

rtica

l reb

ars,

resp

ectiv

ely.

N

omen

clat

ure:

Nx,

Ny:

axi

al fo

rces

in th

e ho

op a

nd v

ertic

al d

irect

ions

due

to p

ress

ure

and

dead

load

s, re

spec

tivel

y

Nxl

, Nyl

: axi

al fo

rces

in th

e ho

op a

nd v

ertic

al d

irect

ions

due

to la

tera

l loa

ds, r

espe

ctiv

ely

V

: tan

gent

ial s

hear

due

to la

tera

l loa

ds

v

so: t

ange

ntia

l she

ar s

tress

bor

ne b

y or

thog

onal

reba

rs (R

efer

to T

able

3.8

-3.)

Page 107: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-8

0

Tab

le 3

G.1

-34

Tan

gent

ial S

hear

of R

CC

V (

Con

tinue

d)

Thic

knes

sN

x/N

yN

xl/N

ylV

tR

equi

red

Prov

ided

Allo

wab

le(M

N/m

)(M

N/m

)(M

N/m

)(m

)rA

spA

s0.

4fc’-

v so

5 R

CC

V26

06C

V-1

1b2.

307

1.18

06.

376

2.00

236.

243

0.0

0.54

93.

194.

413.

1910

.61

W

etw

ell

CV

-11b

-1.9

075.

775

-6.1

692.

0017

5.8

433.

00.

406

3.08

4.41

3.08

10.7

2

Mid

-Hei

ght

2613

CV

-11b

2.06

21.

458

5.58

82.

0021

0.5

430.

00.

490

2.79

4.41

2.79

11.0

1C

V-1

1b-2

.372

8.22

4-2

.078

2.00

164.

143

3.0

0.37

91.

044.

411.

0412

.76

2624

CV

-11b

2.30

70.

584

-7.5

632.

0026

5.8

430.

00.

618

3.78

4.41

3.78

10.0

2C

V-1

1b-2

.228

4.14

2-7

.523

2.00

170.

943

3.0

0.39

53.

764.

413.

7610

.04

6 R

CC

V34

06C

V-1

1b2.

208

0.89

95.

835

2.00

217.

960

2.0

0.36

22.

924.

412.

9210

.88

W

etw

ell

CV

-11b

-1.3

694.

150

-5.6

082.

0015

0.7

519.

00.

290

2.80

4.41

2.80

11.0

0

Top

3413

CV

-11b

1.90

90.

010

-5.2

652.

0019

2.7

602.

00.

320

2.63

4.41

2.63

11.1

7C

V-1

1b-2

.116

5.67

9-4

.758

2.00

142.

251

9.0

0.27

42.

384.

412.

3811

.42

3424

CV

-11b

1.81

60.

148

-6.6

892.

0022

8.5

602.

00.

380

3.34

4.41

3.34

10.4

6C

V-1

1b-1

.629

3.38

5-6

.649

2.00

156.

751

9.0

0.30

23.

324.

413.

3210

.48

7 R

CC

V36

06C

V-1

1b2.

153

0.75

35.

534

2.00

207.

956

0.0

0.37

12.

774.

412.

7711

.03

D

ryw

ell

CV

-11b

-0.8

463.

996

-5.2

102.

0015

3.7

519.

00.

296

2.60

4.41

2.60

11.2

0

Bot

tom

3613

CV

-11b

1.92

20.

688

5.00

32.

0018

7.3

560.

00.

334

2.50

4.41

2.50

11.3

0C

V-1

1b-1

.625

6.63

5-1

.547

2.00

139.

451

9.0

0.26

90.

774.

410.

7713

.03

3624

CV

-11b

1.82

70.

125

-6.3

562.

0021

9.9

560.

00.

393

3.18

4.41

3.18

10.6

2C

V-1

1b-1

.082

3.15

7-6

.308

2.00

160.

451

9.0

0.30

93.

154.

413.

1510

.65

8 R

CC

V40

06C

V-1

1b1.

474

1.31

9-5

.018

2.00

179.

043

0.0

0.41

62.

514.

412.

5111

.29

D

ryw

ell

CV

-11b

-0.3

583.

195

-4.9

022.

0014

7.6

433.

00.

341

2.45

4.41

2.45

11.3

5

Mid

-Hei

ght

4013

CV

-11b

1.46

00.

290

4.90

12.

0017

1.1

430.

00.

398

2.45

4.41

2.45

11.3

5C

V-1

1b-1

.669

5.13

4-4

.204

2.00

133.

443

3.0

0.30

82.

104.

412.

1011

.70

4976

CV

-11b

1.39

20.

251

-6.6

382.

0021

5.9

430.

00.

502

3.32

4.41

3.32

10.4

8C

V-1

1b-0

.618

2.66

8-6

.588

2.00

174.

343

3.0

0.40

33.

294.

413.

2910

.51

9 R

CC

V44

06C

V-1

1b0.

560

0.81

0-4

.509

2.00

138.

143

0.0

0.32

12.

254.

412.

2511

.55

D

ryw

ell

CV

-11b

-0.0

072.

356

-4.5

092.

0013

6.5

433.

00.

315

2.25

4.41

2.25

11.5

5

Top

4413

CV

-11b

0.17

5-0

.457

4.55

72.

0012

7.7

430.

00.

297

2.28

4.41

2.28

11.5

2C

V-1

1b-1

.722

5.08

1-3

.843

2.00

124.

943

3.0

0.28

81.

924.

411.

9211

.88

4424

CV

-11b

1.01

00.

274

-7.0

802.

0021

7.5

430.

00.

506

3.54

4.41

3.54

10.2

6C

V-1

1b-0

.258

2.36

3-7

.030

2.00

192.

347

6.0

0.40

43.

514.

413.

5110

.29

Loca

tion

Elem

ent

IDLo

ad ID

Sect

ion

Forc

esR

ebar

Are

a (c

m2 /m

)rA

s/pA

sv s

o (M

Pa)

v u (M

Pa)

Cal

cula

ted

Allo

wab

leC

alcu

late

d

Page 108: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-8

1

Tab

le 3

G.1

-35

Con

tain

men

t Lin

er P

late

Str

ains

(Max

)

Cal

cula

ted

Stra

in

Cat

egor

y C

ylin

der

Pede

stal

D

W B

otto

mW

W B

otto

m

Top

Slab

A

llow

able

Ten

sion

A

llow

able

Com

pres

sion

Te

st

0.00

04

-0.0

011

0.00

04

-0.0

006

0.00

00

-0.0

001

0.00

02

-0.0

002

0.00

03

0.00

01

0.00

2 -0

.002

N

orm

al O

pera

tion

0.00

05

-0.0

008

0.00

04

-0.0

010

0.00

01

-0.0

003

0.00

04

-0.0

006

0.00

02

-0.0

005

0.00

2 -0

.002

Se

vere

Env

ironm

ent

0.00

05

-0.0

008

0.00

04

-0.0

010

0.00

01

-0.0

003

0.00

04

-0.0

006

0.00

02

-0.0

005

0.00

3 -0

.005

Ex

trem

e En

viro

nmen

t 0.

0005

-0

.000

8 0.

0004

-0

.001

0 0.

0001

-0

.000

3 0.

0004

-0

.000

6 0.

0002

-0

.000

5 0.

003

-0.0

05

Abn

orm

al ;

LOC

A

0.00

05

-0.0

035

0.00

05

-0.0

028

0.00

01

-0.0

003

0.00

05

-0.0

022

0.00

03

-0.0

017

0.00

3 -0

.005

Abn

orm

al/E

xtre

me

Envi

ronm

ent

0.00

13

-0.0

044

0.00

07

-0.0

031

0.00

02

-0.0

004

0.00

10

-0.0

029

0.00

06

-0.0

018

0.00

3 -0

.005

Page 109: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-8

2

Tab

le 3

G.1

-35

C

onta

inm

ent L

iner

Pla

te S

trai

ns (M

ax)

(Con

tinue

d)

Cal

cula

ted

Stra

in

Cat

egor

y D

F Th

ick

PLat

e Pe

dest

al T

hick

Pla

te

Allo

wab

le T

ensi

on

Allo

wab

le C

ompr

essi

onTe

st

0.00

05

-0.0

002

0.00

02

-0.0

002

0.00

2 -0

.002

N

orm

al O

pera

tion

0.00

02

-0.0

005

0.00

03

-0.0

007

0.00

2 -0

.002

Se

vere

Env

ironm

ent

0.00

02

-0.0

005

0.00

03

-0.0

007

0.00

3 -0

.005

Ex

trem

e En

viro

nmen

t 0.

0002

-0

.000

5 0.

0003

-0

.000

7 0.

003

-0.0

05

Abn

orm

al ;

LOC

A

0.00

05

-0.0

017

0.00

03

-0.0

021

0.00

3 -0

.005

Abn

orm

al/E

xtre

me

Envi

ronm

ent

0.00

07

-0.0

017

0.00

04

-0.0

022

0.00

3 -0

.005

Page 110: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-8

3

Tab

le 3

G.1

-36

Dry

wel

l Hea

d E

lem

ents

Str

ess S

umm

ary

PL

PL+P

b PL

+Pb+

Q

Serv

ice

Lev

el

Cal

cula

ted

Stre

ss (M

Pa)

Allo

wab

le S

tress

(M

Pa)

Cal

cula

ted

Stre

ss

(MPa

) A

llow

able

St

ress

(MPa

) C

alcu

late

d St

ress

(M

Pa)

Allo

wab

le S

tress

(M

Pa)

Test

Con

ditio

n 77

26

2 77

26

2 -

-

Des

ign

Con

ditio

n 66

22

7 66

22

7 -

-

A, B

81

22

7 81

22

7 79

8*1

456

C

122

342

122

342

- -

D

122

430

122

430

- -

*1

Acc

epta

ble

by m

eetin

g al

l req

uire

men

ts f

or s

impl

ified

ela

stic

-pla

stic

ana

lysi

s st

ipul

ated

in N

E-32

28.3

of

ASM

E B

&PV

Cod

e,

Sec.

III.

Page 111: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-8

4

Tab

le 3

G.1

-37

Dia

phra

gm F

loor

(D/F

) Sla

b E

lem

ents

Str

ess S

umm

ary

Stru

ctur

al

Ele

men

ts

Mem

ber

Size

G

over

ning

Loa

d C

ombi

natio

n St

ress

or

Str

ess R

atio

A

llow

able

Str

ess

Acc

epta

nce

Cri

teri

a *2

Top

Plat

e*1

25m

m

Nor

mal

Nor

mal

σm

in =

-214

MPa

τmax

= 1

07M

Pa

σ =

261M

Pa

τ =

174M

Pa

1.0S

1.0S

Bot

tom

Pla

te

25m

m

Nor

mal

Abn

orm

al/E

xtre

me

σmax

= -2

02M

Pa

τmax

= 1

50M

Pa

σ =

272M

Pa

τ =

253M

Pa

1.0S

1.4S

Rad

ial W

eb

Plat

e (U

pper

Web

)

25m

m

Abn

orm

al

Abn

orm

al/E

xtre

me

σmin

= -3

09M

Pa

τmax

= 2

35M

Pa

σ =

391M

Pa

τ =

243M

Pa

1.5S

1.4S

Rad

ial W

eb

Plat

e (L

ower

Web

) *1

25m

m

Nor

mal

Abn

orm

al/E

xtre

me

σmin

= -2

29M

Pa

τmax

= 2

26M

Pa

σ =

261M

Pa

τ =

253M

Pa

1.0S

1.4S

Tang

entia

l

Web

Pla

te*1

25m

m

Seve

re

Abn

orm

al/E

xtre

me

σmin

= -8

9MPa

τmax

= 9

9MPa

σ =

261M

Pa

τ =

243M

Pa

1.0S

1.4S

Bot

tom

Fla

nge*

1 38

mm

N

orm

al

Nor

mal

σm

in =

-186

MPa

τmax

= 9

3MPa

σ =

269M

Pa

τ =

181M

Pa

1.0S

1.0S

*1

Ther

mal

stre

ss a

ssoc

iate

d w

ith e

xtre

me

and

abno

rmal

load

con

ditio

ns m

eets

def

orm

atio

n lim

its o

f AIS

C N

690

Sect

ion

Q1.

5.7.

2.

The

tota

l stre

ss e

xclu

ding

ther

mal

stre

ss sa

tisfie

s the

allo

wab

le st

ress

lim

it in

Tab

le Q

1.5.

7.1

of A

ISC

N69

0.

*2

S =

Allo

wab

le st

ress

lim

it sp

ecifi

ed in

par

t 1 o

f AIS

C N

690.

Page 112: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-8

5

Tab

le 3

G.1

-38

Dia

phra

gm F

loor

(D/F

) Sla

b A

ncho

rage

Str

uctu

ral C

apac

ity

Anc

hor

Loc

atio

ns

Gov

erni

ng L

oad

Com

bina

tion

Des

ign

Loa

d (k

N)

No.

of A

ncho

r B

ars

Prov

ided

T

otal

Cap

acity

(k

N)

Acc

epta

nce

Cri

teri

a *1

Top

Plat

e N

orm

al (S

IT)

736/

deg

1-#1

8 @

0.9

deg

78

2/de

g 0.

66Fy

Bot

tom

Pla

te

Abn

orm

al/E

xtre

me

294/

deg

1-#1

8 @

0.9

deg

10

66/d

eg

0.9F

y

Gird

er R

adia

l Web

Pl

ate

A

bnor

mal

/Ext

rem

e 37

99

5-#1

8

4804

0.

9Fy

Gird

er B

otto

m

Flan

ge

Abn

orm

al/E

xtre

me

1191

5-

#18

48

04

0.9F

y

*1

F y =

Spe

cifie

d m

inim

um y

ield

stre

ss.

Page 113: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-8

6

Tab

le 3

G.1

-39

Ven

t Wal

l Str

uctu

ral E

lem

ents

Str

ess S

umm

ary

Stru

ctur

al

Ele

men

ts

Mem

ber

Size

G

over

ning

Loa

d C

ombi

natio

n C

alcu

late

d St

ress

A

llow

able

Str

ess

Acc

epta

nce

Cri

teri

a *1

Inne

r Cyl

inde

r 25

mm

A

bnor

mal

/Ext

rem

e

Abn

orm

al/E

xtre

me

σmin

= -2

38M

Pa

τmax

= 1

46M

Pa

σ =

417M

Pa

τ =

243M

Pa

1.6S

1.4S

Out

er C

ylin

der

25m

m

Abn

orm

al

Abn

orm

al/E

xtre

me

σmin

= -2

64M

Pa

τmax

= 1

53M

Pa

σ =

408M

Pa

τ =

253M

Pa

1.5S

1.4S

Rad

ial W

eb

Plat

e

25m

m

Abn

orm

al/E

xtre

me

Abn

orm

al/E

xtre

me

σmin

= -2

97M

Pa

τmax

= 1

68M

Pa

σ =

417M

Pa

τ =

243M

Pa

1.6S

1.4S

*1

S

= A

llow

able

stre

ss li

mit

spec

ified

in p

art 1

of A

ISC

N69

0.

Tab

le 3

G.1

-40

Rea

ctor

Shi

eld

Wal

l (R

SW) S

truc

tura

l Ele

men

t Str

ess S

umm

ary

Stru

ctur

al

Ele

men

t M

embe

r Si

ze

Gov

erni

ng L

oad

Com

bina

tion

Cal

cula

ted

Stre

ss

Allo

wab

le

Acc

epta

nce

Cri

teri

a *1

RSW

Cyl

indr

ical

She

ll

210m

m

210m

m

Abn

orm

al

Abn

orm

al/E

xtre

me

σmin

= -2

63M

Pa

τmax

= 1

40M

Pa

σ =

391M

Pa

τ =

243M

Pa

1.5S

1.4S

*1

S =

Allo

wab

le st

ress

lim

it sp

ecifi

ed in

par

t 1 o

f AIS

C N

690.

Page 114: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-8

7

Tab

le 3

G.1

-41

RPV

Sup

port

Bra

cket

Str

uctu

ral E

lem

ents

Str

ess S

umm

ary

Stru

ctur

al

Ele

men

ts

Mem

ber

Size

G

over

ning

Loa

d C

ombi

natio

n St

ress

or

Stre

ss R

atio

A

llow

able

Str

ess

Acc

epta

nce

Cri

teri

a *1

*2

Hor

izon

tal P

late

15

0mm

Se

vere

Seve

re

σmax

= 7

8MPa

τmax

= 5

7MPa

σ =

141M

Pa

τ =

94M

Pa

1.0S

1.0S

Ver

tical

Pla

te

150m

m

Seve

re

Abn

orm

al/E

xtre

me

σmin

= -1

16M

Pa

τmax

= 1

04M

Pa

σ =

141M

Pa

τ =

131M

Pa

1.0S

1.4S

*1

Fu

= Sp

ecifi

ed m

inim

um te

nsile

stre

ss.

*2

S =

Allo

wab

le st

ress

lim

it sp

ecifi

ed in

Par

t 1 o

f AIS

C N

690.

Tab

le 3

G.1

-42

Ven

t Wal

l and

RPV

Sup

port

Bra

cket

Anc

hora

ge S

truc

tura

l Cap

acity

Anc

hor

Loc

atio

ns

Gov

erni

ng L

oad

Com

bina

tion

Des

ign

Loa

d (k

N)

No.

of A

ncho

r B

ars

Prov

ided

T

otal

Cap

acity

(k

N)

Acc

epta

nce

Cri

teri

a*1

Ven

t Wal

l A

bnor

mal

/Ext

rem

e16

97/d

eg

4-#1

8 @

1.8

deg

2112

/deg

0.

9Fy

RPV

Sup

port

Bra

cket

A

bnor

mal

/Ext

rem

e35

457

72-#

18

6917

80

0.9F

y

*1

Fy =

Spe

cifie

d m

inim

um y

ield

stre

ss.

Page 115: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-8

8

Tab

le 3

G.1

-43

Gra

vity

Dri

ven

Coo

ling

Syst

em (G

DC

S) P

ool S

truc

tura

l Ele

men

ts S

tres

s Sum

mar

y

Stru

ctur

al

Elem

ents

Mem

ber S

ize

Gov

erni

ng L

oad

Com

bina

tion

Stre

ss o

r

Stre

ss R

atio

Allo

wab

le S

tress

Acc

epta

nce

Crit

eria

*2

Wal

l Pla

te

16m

m

Abn

orm

al

Abn

orm

al/E

xtre

me

σmin

= -3

74M

Pa

τmax

= 2

18M

Pa

σ =

391

MPa

τ =

243

MPa

1.5S

1.4S

Ver

tical

Col

umn

550x

550x

25

Seve

re

Abn

orm

al/E

xtre

me

Rat

io =

0.74

τ =

85M

Pa

Rat

io=1

.0

τ =

243

MPa

S 1.4S

Ver

tical

Col

umn

750x

750x

65

Seve

re

Seve

re

Rat

io =

0.96

τ =

61M

Pa

Rat

io=1

.0

τ =

174

MPa

S S

Hor

izon

tal

Mem

ber *

1

450 x

450x

25

Seve

re

Seve

re

Rat

io =

0.83

τ =

48M

Pa

Rat

io=1

.0

τ =

174

MPa

S S

Bra

cing

Mem

ber

350x

350x

35

Seve

re

Abn

orm

al/E

xtre

me

Rat

io =

0.75

τ =

34M

Pa

Rat

io=1

.0

τ =

243

MPa

S 1.4S

*1

Ther

mal

stre

ss a

ssoc

iate

d w

ith e

xtre

me

and

abno

rmal

load

con

ditio

ns m

eets

def

orm

atio

n lim

its o

f AIS

C N

690

Sect

ion

Q1.

5.7.

2.

The

tota

l stre

ss e

xclu

ding

ther

mal

stre

ss sa

tisfie

s the

allo

wab

le st

ress

lim

it in

Tab

le Q

1.5.

7.1

of A

ISC

N69

0.

*2

S =

Allo

wab

le st

ress

lim

it sp

ecifi

ed in

Par

t 1 o

f AIS

C N

690.

Page 116: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-8

9

Tab

le 3

G.1

-44

Gra

vity

Dri

ven

Coo

ling

Syst

em (G

DC

S) P

ool A

ncho

rage

Str

uctu

ral C

apac

ity

Anc

hor L

ocat

ions

G

over

ning

Loa

d

Com

bina

tion

Des

ign

Load

/ Anc

hor B

ar (k

N)

Cap

acity

/ A

ncho

r

Bar

(kN

)

Acc

epta

nce

Crit

eria

*1

Bra

cing

Mem

bers

@ R

CC

V W

all

Abn

orm

al/E

xtre

me

738

960

0.9F

y

Hor

izon

tal M

embe

rs

@ R

CC

V W

all

Abn

orm

al/E

xtre

me

700

960

0.9F

y

*1 F

y = S

peci

fied

min

imum

yie

ld st

ress

.

Page 117: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-90

Table 3G.1-45

Combined Forces and Moments: RB, Selected Load Combination RB-4

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 OTHR -1.555 -7.551 -0.221 -0.202 -1.479 -0.005 0.000 -0.341 Below RCCV TEMP 1.537 -0.389 -0.755 0.122 1.228 -0.039 0.022 0.069 Bottom 13 OTHR -1.526 -5.795 -0.068 -0.547 -2.891 0.007 -0.004 -0.799

TEMP 0.573 -3.245 -0.807 0.465 2.632 -0.004 0.023 0.57224 OTHR -1.090 -6.305 -0.197 -0.613 -3.702 0.000 0.001 -1.244

TEMP 0.812 -3.383 0.147 0.479 2.672 -0.006 -0.001 0.59119 Wall 806 OTHR -1.566 -6.312 -0.138 -0.008 -0.036 -0.030 -0.017 -0.096 Below RCCV TEMP 1.335 -1.376 0.086 0.195 1.043 0.090 -0.042 0.025 Mid-Height 813 OTHR -2.076 -5.625 0.102 -0.040 0.061 -0.009 -0.004 -0.080

TEMP 0.788 -3.166 -0.642 0.108 1.002 -0.027 0.008 0.597824 OTHR -2.351 -6.242 -0.079 0.118 0.441 0.012 -0.001 0.099

TEMP 0.632 -3.503 0.110 0.130 1.022 0.018 0.011 0.54120 Wall 1606 OTHR -1.036 -5.635 0.069 0.044 0.267 0.031 0.007 -0.191 Below RCCV TEMP 9.010 -2.107 0.075 -0.519 -2.361 0.079 0.087 1.764 Top 1613 OTHR -1.230 -5.395 0.239 0.017 0.251 -0.001 -0.002 -0.189

TEMP 8.707 -3.627 -0.557 -0.634 -3.677 -0.003 -0.013 2.2101624 OTHR -0.815 -5.799 -0.021 -0.015 -0.193 0.005 -0.008 0.004

TEMP 9.370 -4.556 -0.128 -0.712 -3.635 -0.006 -0.066 2.27021 Exterior Wall 20011 OTHR -2.107 -3.832 -0.776 0.051 0.495 -0.020 0.056 0.243 @ EL-11.50 TEMP 3.346 3.376 0.619 0.260 0.956 0.073 -0.095 0.374 ~-10.50m 20023 OTHR -1.512 -1.519 -0.587 -0.013 -0.246 0.020 -0.032 -0.138

TEMP -1.202 -1.026 1.711 -4.074 -2.929 0.319 -0.451 0.88830010 OTHR -1.729 -2.531 -0.418 -0.309 -1.708 0.020 0.018 1.154

TEMP 0.012 2.369 -0.258 1.222 4.001 -0.027 0.008 -0.69930020 OTHR -1.290 -1.597 -0.210 -0.698 -0.855 0.025 -0.256 0.369

TEMP -0.152 -1.327 -0.282 0.171 1.407 0.142 -0.038 -0.35740001 OTHR -0.999 -1.835 0.308 -0.426 -1.296 -0.265 0.133 0.769

TEMP -0.207 -0.879 -0.090 0.222 1.540 -0.093 0.146 -0.39840011 OTHR -1.636 -3.390 -0.031 -0.396 -2.268 -0.004 0.007 2.057

TEMP 1.034 3.115 0.060 1.304 4.248 0.008 0.014 -0.76422 Exterior Wall 22011 OTHR -0.239 -3.267 0.764 -0.005 0.072 0.012 -0.024 0.114 @ EL-4.65 TEMP 2.502 2.926 -0.129 -0.095 -0.081 0.041 0.022 0.157 ~-6.60m 22023 OTHR -0.107 -1.769 0.030 0.006 0.018 -0.065 0.073 0.020

TEMP 1.601 -4.856 -1.657 -0.085 -0.230 -0.268 0.163 -0.01832010 OTHR -0.381 -2.070 0.002 -0.025 -0.085 0.000 0.001 -0.009

TEMP 16.036 7.703 0.010 -3.506 -3.284 -0.002 -0.003 -0.22432020 OTHR -0.049 -1.908 -0.002 -0.099 -0.076 -0.017 -0.039 0.020

TEMP 0.404 5.234 2.979 -0.744 -2.379 -0.509 0.936 0.14442001 OTHR -0.038 -1.995 -0.033 -0.085 -0.111 0.058 0.032 0.054

TEMP 2.926 3.709 3.112 -0.956 -2.147 -0.063 -0.861 -0.34942011 OTHR -0.558 -2.717 -0.050 -0.035 -0.167 0.003 0.006 0.024

TEMP 13.980 5.191 0.087 -3.634 -3.197 0.101 0.088 -0.11423 Exterior Wall 24211 OTHR -0.229 -2.022 0.124 -0.079 -0.523 0.005 -0.005 -0.044 @ EL22.50 TEMP 3.272 2.613 -0.551 -0.011 -0.312 0.059 -0.176 2.233 ~24.60m 24224 OTHR -0.025 -1.198 0.369 0.065 -0.039 -0.047 -0.089 -0.024

TEMP 0.171 4.961 -4.372 0.836 -0.314 -0.712 -0.803 -0.28534210 OTHR -0.029 -0.875 0.015 -0.003 -0.056 0.001 0.003 0.000

TEMP 17.409 5.777 -0.551 -3.634 -3.489 0.035 -0.012 -0.19934220 OTHR 0.042 -0.939 -0.187 0.044 -0.032 -0.008 0.047 0.002

TEMP 2.055 4.894 2.977 0.865 -2.104 -0.558 1.943 0.15244201 OTHR 0.038 -1.112 -0.344 0.048 -0.014 0.018 -0.042 -0.003

TEMP 1.124 5.800 -0.135 0.392 -2.344 0.549 -2.362 0.138 OOTHR: Loads other than thermal loads

TEMP: Thermal loads

Page 118: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-91

Table 3G.1-45

Combined Forces and Moments: RB, Selected Load Combination RB-4 (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

24 Basemat 90140 OTHR -4.106 -3.413 -0.094 -2.175 -1.141 2.657 -2.117 1.893 @ Wall TEMP 1.135 1.784 1.674 0.944 -0.017 -1.153 -0.683 -0.134 Below RCCV 90182 OTHR -3.767 -3.256 -0.029 0.476 -2.537 -0.110 0.012 0.535

TEMP 2.061 0.574 0.684 -0.118 -3.977 0.195 -0.178 3.07090111 OTHR -5.052 -3.293 0.001 -3.338 0.348 -0.364 0.095 0.137

TEMP 0.681 3.097 -0.017 -4.388 -0.534 0.048 3.211 0.14825 Slab 93140 OTHR -0.521 -0.089 0.152 0.055 0.084 -0.060 0.132 -0.109 EL4.65m TEMP -0.870 2.100 3.409 -0.558 -0.425 0.308 -0.153 0.126 @ RCCV 93182 OTHR -0.135 -0.248 0.040 0.007 0.000 0.002 -0.003 -0.050

TEMP 3.041 -3.500 -1.015 -0.379 -1.920 -0.084 0.078 1.41993111 OTHR -0.318 0.071 0.026 -0.068 -0.008 -0.003 0.012 -0.005

TEMP -3.107 3.899 -0.105 -1.891 -0.348 -0.047 1.246 0.00226 Slab 96144 OTHR -0.094 0.182 0.207 0.053 0.074 -0.057 0.129 -0.102 EL17.5m TEMP 0.048 3.457 3.894 -0.195 -0.168 0.133 -0.035 0.056 @ RCCV 96186 OTHR 0.286 -0.076 0.011 -0.011 -0.045 -0.004 -0.001 -0.011

TEMP 3.506 -2.460 -1.415 -0.131 -0.622 -0.043 0.023 0.50196113 OTHR -0.058 0.660 -0.014 -0.275 -0.012 -0.013 0.301 0.036

TEMP -5.648 -4.996 -0.948 -4.724 -3.463 -0.182 0.955 -0.03927 Slab 98472 OTHR 0.456 0.111 0.050 0.159 0.240 -0.199 0.229 -0.253 EL27.0m TEMP -0.625 -1.138 5.901 -0.551 -0.182 -0.203 0.424 -0.562 @ RCCV 98514 OTHR 0.049 0.181 0.075 0.024 0.057 0.025 -0.003 -0.136

TEMP -0.750 -3.185 -1.465 -0.688 -0.525 -0.028 0.049 -0.49098424 OTHR -0.120 0.442 0.018 0.688 0.172 -0.051 -0.971 -0.067

TEMP -9.575 -16.671 -1.631 -8.137 -2.103 0.061 -6.814 0.07028 Pool Girder 123054 OTHR 0.400 -2.583 -0.853 0.048 0.032 0.056 -0.011 -0.031 @ Storage Pool TEMP 0.749 -3.964 1.813 2.884 2.796 0.040 -0.399 0.708

123154 OTHR 1.274 -0.550 -0.663 0.078 0.032 0.102 0.018 0.011TEMP 1.144 0.863 -0.333 2.403 1.446 -0.432 -0.139 0.304

29 Pool Girder 123062 OTHR 0.466 0.629 0.346 -0.027 -0.178 0.030 0.001 -0.095 @ Cavity TEMP -3.706 -0.214 -0.653 0.128 0.181 0.046 -0.120 0.100

123162 OTHR -1.565 0.164 0.201 -0.079 -0.063 0.025 0.094 0.042TEMP -3.280 -0.171 -0.663 0.096 -0.258 0.073 -0.236 0.126

30 Pool Girder 123067 OTHR 0.513 -2.456 1.526 0.019 -0.049 -0.077 -0.126 -0.061 @ Fuel Pool TEMP -3.838 -6.056 -2.084 0.711 0.512 -0.098 -0.148 0.667

123167 OTHR 0.518 -0.622 1.328 0.042 0.025 0.018 -0.034 0.012TEMP -3.563 -3.017 -2.711 0.236 -0.682 -0.302 0.025 0.198

31 MS Tunnel 150122 OTHR -0.024 0.031 0.299 0.026 0.059 0.018 -0.011 -0.040 Wall and Slab TEMP 0.348 -0.699 2.373 1.402 4.094 -0.043 -0.760 0.538

96611 OTHR -0.008 0.284 -0.012 0.078 -0.048 -0.051 -0.081 0.016TEMP -0.316 3.590 -0.222 -1.462 -8.773 -0.478 0.477 0.241

98614 OTHR -0.022 -0.159 -0.020 0.020 -0.552 -0.067 -0.060 0.031TEMP -0.230 2.953 -0.178 -0.937 -13.256 0.047 0.557 0.371

Page 119: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-92

Table 3G.1-46

Combined Forces and Moments: RB, Selected Load Combination RB-8a

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 OTHR -2.826 -8.743 -0.156 0.417 2.088 -0.003 -0.006 0.846 Below RCCV TEMP 1.107 -0.568 -0.679 0.118 1.100 -0.036 0.029 0.063 Bottom 13 OTHR -2.387 -7.079 -0.027 0.030 0.433 0.009 -0.005 0.272

TEMP 0.363 -3.011 -0.654 0.407 2.278 -0.002 0.019 0.47324 OTHR -1.862 -7.266 -0.533 -0.141 -0.785 -0.006 0.011 -0.280

TEMP 0.428 -3.036 0.150 0.424 2.345 -0.005 -0.001 0.51219 Wall 806 OTHR -1.380 -7.583 0.026 0.032 0.216 0.010 -0.012 -0.025 Below RCCV TEMP 1.520 -1.444 0.161 0.260 1.324 0.084 -0.040 -0.084 Mid-Height 813 OTHR -1.733 -7.110 0.054 0.025 0.286 -0.016 0.009 0.120

TEMP 1.025 -2.960 -0.498 0.172 1.284 -0.025 0.005 0.446824 OTHR -1.971 -7.413 -0.539 0.131 0.557 -0.007 -0.002 0.181

TEMP 0.901 -3.042 0.134 0.177 1.308 0.018 0.011 0.39720 Wall 1606 OTHR 1.043 -7.100 0.002 -0.844 -4.789 0.018 0.012 1.322 Below RCCV TEMP 11.606 -2.114 0.220 -0.682 -3.317 0.083 0.083 2.345 Top 1613 OTHR 0.812 -7.136 0.122 -0.866 -4.863 -0.006 -0.012 1.410

TEMP 11.216 -3.473 -0.445 -0.783 -4.373 -0.006 -0.013 2.7071624 OTHR 0.837 -7.213 -0.435 -0.802 -4.728 0.011 -0.018 1.399

TEMP 12.199 -3.966 -0.117 -0.867 -4.482 -0.002 -0.082 2.81821 Exterior Wall 20011 OTHR -1.529 -3.048 -0.072 0.456 1.885 -0.007 0.055 0.892 @ EL-11.50 TEMP 2.783 3.204 0.556 0.250 0.892 0.077 -0.085 0.330 ~-10.50m 20023 OTHR -1.160 -2.163 -0.680 -0.127 -0.106 0.027 0.051 -0.051

TEMP -0.928 -0.756 1.256 -3.151 -2.204 0.242 -0.326 0.69930010 OTHR -0.847 -2.455 -0.801 0.047 0.136 -0.002 0.007 0.552

TEMP 0.279 2.139 -0.239 1.005 3.442 -0.023 0.006 -0.57430020 OTHR -0.958 -2.568 -0.505 -0.575 -0.878 0.027 -0.116 0.379

TEMP -0.088 -1.198 -0.236 0.082 1.103 0.123 -0.022 -0.27040001 OTHR -0.717 -2.794 0.422 -0.412 -1.231 -0.203 -0.008 0.671

TEMP -0.155 -0.832 0.018 0.125 1.237 -0.081 0.115 -0.31040011 OTHR -0.931 -3.342 -0.223 -0.104 -0.705 0.001 0.004 1.358

TEMP 0.876 2.784 0.049 1.074 3.671 0.007 0.012 -0.63622 Exterior Wall 22011 OTHR 0.583 -4.002 1.411 -0.017 0.210 0.040 -0.028 0.402 @ EL-4.65 TEMP 3.512 2.672 -0.082 -0.124 -0.157 0.051 0.033 -0.023 ~-6.60m 22023 OTHR 0.000 -2.289 0.218 0.259 0.094 -0.115 0.014 0.025

TEMP 1.402 -3.214 -1.242 0.313 -0.113 -0.213 -0.014 -0.03132010 OTHR 0.519 -2.221 -0.274 -0.049 -0.046 0.009 0.000 -0.248

TEMP 14.393 6.122 0.004 -2.798 -2.758 0.004 -0.008 0.04132020 OTHR 0.041 -2.467 0.005 0.096 -0.036 -0.065 0.084 0.021

TEMP 0.444 4.718 2.528 -0.284 -1.833 -0.377 0.922 0.16742001 OTHR 0.067 -2.543 -0.228 0.149 -0.056 0.068 -0.058 0.053

TEMP 2.452 3.605 2.538 -0.370 -1.611 -0.058 -0.794 -0.25442011 OTHR 0.030 -2.845 -0.234 -0.057 -0.073 -0.009 0.010 -0.232

TEMP 12.436 4.406 0.147 -2.976 -2.775 0.081 0.081 0.17323 Exterior Wall 24211 OTHR 0.148 -2.367 0.357 -0.039 -0.257 -0.008 0.011 -0.087 @ EL22.50 TEMP 3.817 2.954 -0.367 0.094 0.338 0.049 -0.142 1.510 ~24.60m 24224 OTHR -0.041 -2.284 0.484 0.180 0.092 -0.051 -0.097 0.070

TEMP 0.353 4.746 -3.617 0.874 -0.344 -0.444 -0.820 -0.41134210 OTHR 0.604 -0.880 -0.140 -0.010 0.044 0.012 -0.001 -0.010

TEMP 15.330 4.791 -0.312 -2.778 -2.408 0.015 -0.011 0.10434220 OTHR 0.118 -1.660 -0.105 0.092 0.008 -0.033 0.069 0.004

TEMP 1.720 4.438 2.296 0.979 -1.464 -0.240 1.609 0.01344201 OTHR 0.045 -1.785 -0.289 0.090 0.026 0.010 -0.072 -0.013

TEMP 1.001 5.210 0.298 0.667 -1.698 0.337 -1.910 0.044

Page 120: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-93

Table 3G.1-46

Combined Forces and Moments: RB, Selected Load Combination RB-8a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

24 Basemat 90140 OTHR -2.268 -2.506 0.310 -2.123 -1.241 0.963 -3.073 2.780 @ Wall TEMP 0.890 1.411 1.346 0.397 -0.251 -0.837 -0.696 -0.036 Below RCCV 90182 OTHR -1.151 -2.206 -0.353 -0.943 -0.714 0.280 0.118 1.743

TEMP 1.777 0.495 0.537 -0.265 -3.839 0.161 -0.125 2.75990111 OTHR -3.663 -1.081 -0.026 -0.945 -0.741 -0.230 1.019 0.346

TEMP 0.563 2.234 -0.012 -4.126 -0.521 0.053 2.855 0.12425 Slab 93140 OTHR -0.580 0.452 0.727 0.086 0.109 -0.127 0.115 -0.092 EL4.65m TEMP -0.598 2.335 4.275 -0.542 -0.409 0.304 -0.147 0.123 @ RCCV 93182 OTHR 0.695 -0.262 -0.047 -0.038 0.033 0.013 0.004 0.144

TEMP 4.223 -4.036 -1.099 -0.353 -1.823 -0.083 0.075 1.36693111 OTHR -0.044 0.705 -0.125 0.050 -0.036 -0.002 0.087 -0.006

TEMP -3.605 4.959 -0.256 -1.768 -0.316 -0.047 1.178 0.00026 Slab 96144 OTHR 0.081 0.632 1.083 0.037 0.063 -0.065 0.118 -0.101 EL17.5m TEMP -0.270 4.701 6.966 -0.228 -0.122 0.166 -0.072 0.023 @ RCCV 96186 OTHR 1.165 -0.425 -0.011 -0.051 -0.182 -0.008 0.009 0.111

TEMP 6.688 -4.125 -1.417 -0.090 -0.313 -0.048 0.016 0.34696113 OTHR -0.428 1.714 -0.222 -0.113 -0.032 -0.019 0.236 0.033

TEMP -8.342 2.577 -1.679 -4.480 -2.783 -0.199 1.239 -0.05927 Slab 98472 OTHR 0.684 0.648 -0.214 -0.026 -0.044 0.013 0.165 -0.157 EL27.0m TEMP -0.766 -0.797 5.408 -0.313 0.033 -0.312 0.451 -0.562 @ RCCV 98514 OTHR 0.502 0.391 0.224 -0.061 -0.429 0.000 0.004 0.063

TEMP 0.438 -2.394 -1.401 -0.532 -0.068 -0.006 0.036 -0.72798424 OTHR -0.163 1.285 -0.103 -0.396 -0.141 -0.124 -0.139 -0.033

TEMP -7.591 -10.575 -1.415 -5.823 -1.582 0.072 -5.617 0.02828 Pool Girder 123054 OTHR 0.100 0.896 1.061 0.059 0.036 -0.119 -0.065 -0.047 @ Storage Pool TEMP 1.312 -2.833 1.438 2.280 2.119 0.026 -0.231 0.481

123154 OTHR -0.038 0.009 0.931 0.064 0.025 -0.113 -0.079 0.025TEMP 1.029 0.746 -0.399 1.924 1.145 -0.340 -0.086 0.247

29 Pool Girder 123062 OTHR 0.372 -1.083 -1.391 -0.024 0.149 -0.002 0.066 0.127 @ Cavity TEMP -1.258 -0.152 -0.701 0.103 0.324 0.027 0.057 0.173

123162 OTHR 1.432 -0.368 -1.073 0.025 -0.002 -0.005 -0.016 -0.037TEMP -1.667 -0.034 -0.462 0.130 -0.117 -0.002 -0.152 0.085

30 Pool Girder 123067 OTHR 0.107 2.253 -0.774 -0.030 -0.086 0.024 -0.034 -0.038 @ Fuel Pool TEMP -2.311 -5.928 -1.779 0.647 0.431 -0.116 -0.149 0.467

123167 OTHR -0.762 0.568 -0.741 -0.015 -0.049 0.031 -0.075 -0.005TEMP -2.108 -2.650 -2.209 0.276 -0.451 -0.231 -0.013 0.179

31 MS Tunnel 150122 OTHR 0.057 -0.350 0.360 0.030 0.131 0.019 -0.008 -0.060 Wall and Slab TEMP 0.224 -0.517 1.902 1.053 3.141 -0.007 -0.584 0.363

96611 OTHR -0.039 0.642 -0.043 0.108 0.029 -0.038 -0.088 0.012TEMP -0.447 4.104 -0.332 -1.287 -7.108 -0.423 0.426 0.209

98614 OTHR -0.012 -0.210 -0.015 -0.191 -1.047 -0.140 0.007 0.055TEMP -0.188 1.992 -0.146 -0.862 -10.483 -0.011 0.470 0.303

Page 121: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-94

Table 3G.1-47

Combined Forces and Moments: RB, Selected Load Combination RB-8b

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 OTHR -2.658 -7.688 -0.243 0.389 1.934 -0.005 -0.001 0.789 Below RCCV TEMP 0.673 -1.073 -0.904 0.256 1.958 -0.049 0.048 0.311 Bottom 13 OTHR -2.253 -6.079 -0.110 0.025 0.382 0.008 -0.004 0.243

TEMP -0.119 -4.048 -0.748 0.603 3.352 -0.002 0.023 0.78224 OTHR -1.734 -6.152 -0.498 -0.129 -0.759 -0.006 0.011 -0.285

TEMP 0.118 -3.760 0.215 0.593 3.309 -0.007 -0.003 0.77619 Wall 806 OTHR -1.289 -6.476 -0.068 0.030 0.200 0.005 -0.013 -0.028 Below RCCV TEMP 1.824 -2.260 0.204 0.332 1.720 0.091 -0.055 -0.103 Mid-Height 813 OTHR -1.644 -6.079 -0.036 0.018 0.269 -0.015 0.011 0.104

TEMP 1.349 -3.956 -0.557 0.219 1.696 -0.032 0.005 0.598824 OTHR -1.882 -6.221 -0.499 0.131 0.530 -0.006 -0.002 0.176

TEMP 1.162 -3.729 0.206 0.225 1.731 0.027 0.015 0.50320 Wall 1606 OTHR 1.035 -5.919 -0.050 -0.744 -4.221 0.019 0.011 1.172 Below RCCV TEMP 15.858 -3.186 0.301 -0.853 -4.075 0.108 0.100 3.080 Top 1613 OTHR 0.770 -6.081 0.054 -0.762 -4.245 -0.006 -0.012 1.236

TEMP 15.698 -4.645 -0.441 -1.003 -5.526 -0.010 -0.016 3.6051624 OTHR 0.797 -5.957 -0.404 -0.699 -4.143 0.011 -0.017 1.231

TEMP 16.701 -4.840 -0.100 -1.115 -5.550 0.000 -0.106 3.70021 Exterior Wall 20011 OTHR -1.558 -2.985 -0.117 0.400 1.664 -0.006 0.054 0.777 @ EL-11.50 TEMP 3.065 4.610 0.680 0.386 1.389 0.095 -0.105 0.549 ~-10.50m 20023 OTHR -1.159 -2.008 -0.668 -0.114 -0.124 0.025 0.036 -0.062

TEMP -0.923 -0.709 1.214 -3.198 -2.113 0.237 -0.314 0.73530010 OTHR -0.956 -2.426 -0.736 0.021 -0.006 -0.003 0.007 0.595

TEMP 0.517 3.114 -0.366 1.209 4.571 -0.033 -0.002 -0.82730020 OTHR -0.949 -2.328 -0.452 -0.578 -0.827 0.028 -0.129 0.361

TEMP -0.057 -1.480 -0.391 0.022 1.207 0.144 -0.026 -0.28140001 OTHR -0.717 -2.541 0.407 -0.408 -1.176 -0.206 0.009 0.654

TEMP -0.091 -1.142 0.059 0.040 1.330 -0.097 0.105 -0.32240011 OTHR -1.006 -3.173 -0.228 -0.108 -0.741 0.002 0.003 1.371

TEMP 1.307 3.629 0.056 1.243 4.651 0.011 0.014 -0.84222 Exterior Wall 22011 OTHR 0.590 -3.622 1.268 -0.014 0.199 0.034 -0.029 0.351 @ EL-4.65 TEMP 5.013 4.358 -0.217 -0.171 -0.224 0.069 0.046 0.082 ~-6.60m 22023 OTHR -0.003 -2.109 0.179 0.252 0.090 -0.111 0.011 0.020

TEMP 1.628 -2.769 -1.390 0.748 -0.043 -0.218 -0.198 -0.04432010 OTHR 0.557 -2.087 -0.257 -0.043 -0.018 0.011 0.000 -0.225

TEMP 16.724 7.722 -0.080 -2.893 -3.002 -0.001 -0.014 0.02432020 OTHR 0.041 -2.261 0.073 0.089 -0.027 -0.073 0.076 0.026

TEMP 0.652 4.868 2.520 0.104 -1.860 -0.395 1.226 0.19942001 OTHR 0.059 -2.314 -0.154 0.140 -0.051 0.069 -0.053 0.054

TEMP 2.721 3.799 2.647 0.131 -1.563 -0.051 -0.998 -0.23942011 OTHR 0.071 -2.503 -0.224 -0.048 -0.057 -0.009 0.010 -0.211

TEMP 14.114 5.515 0.239 -3.165 -3.047 0.073 0.090 0.17023 Exterior Wall 24211 OTHR 0.325 -2.041 0.317 -0.009 -0.090 -0.001 0.011 -0.192 @ EL22.50 TEMP 5.670 5.757 -0.305 0.173 0.680 0.046 -0.169 1.421 ~24.60m 24224 OTHR -0.028 -2.134 0.356 0.147 0.077 -0.036 -0.078 0.050

TEMP 1.023 5.452 -3.719 1.968 0.070 -0.635 -1.559 -0.31734210 OTHR 0.746 -0.803 -0.105 -0.007 0.109 0.010 -0.001 0.019

TEMP 21.820 5.544 -0.576 -2.904 -2.819 0.035 -0.002 -0.12834220 OTHR 0.114 -1.636 -0.045 0.084 0.025 -0.025 0.061 0.001

TEMP 2.793 5.435 4.410 2.628 -1.178 -0.711 2.570 0.09444201 OTHR 0.040 -1.713 -0.169 0.089 0.036 0.006 -0.061 -0.013

TEMP 1.791 6.589 0.558 2.230 -1.491 0.539 -2.966 0.044

Page 122: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-95

Table 3G.1-47

Combined Forces and Moments: RB, Selected Load Combination RB-8b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

24 Basemat 90140 OTHR -2.547 -2.525 0.299 -1.498 -0.727 0.654 -2.741 2.422 @ Wall TEMP 0.676 1.652 1.723 -0.528 -1.081 -0.960 -1.149 0.173 Below RCCV 90182 OTHR -1.359 -2.273 -0.300 -0.761 -0.230 0.299 0.055 1.354

TEMP 2.064 0.701 0.416 -0.892 -5.505 0.237 -0.094 3.81590111 OTHR -3.713 -1.266 -0.032 -0.561 -0.597 -0.184 0.652 0.307

TEMP 0.729 2.934 -0.023 -5.319 -1.147 0.110 3.683 0.14925 Slab 93140 OTHR -0.518 0.405 0.669 0.098 0.117 -0.126 0.119 -0.097 EL4.65m TEMP -0.316 3.040 5.795 -0.766 -0.578 0.430 -0.204 0.176 @ RCCV 93182 OTHR 0.639 -0.229 -0.022 -0.028 0.053 0.012 0.002 0.105

TEMP 6.154 -5.153 -1.520 -0.480 -2.502 -0.114 0.105 1.89893111 OTHR -0.029 0.625 -0.115 0.065 -0.026 -0.002 0.059 -0.005

TEMP -4.497 6.824 -0.447 -2.369 -0.414 -0.066 1.593 0.00126 Slab 96144 OTHR 0.091 0.750 1.171 0.084 0.097 -0.088 0.128 -0.111 EL17.5m TEMP 0.733 5.828 8.140 -0.230 -0.175 0.172 -0.041 0.066 @ RCCV 96186 OTHR 1.312 -0.505 -0.062 -0.030 -0.081 -0.002 0.004 0.029

TEMP 9.998 -4.559 -2.164 -0.149 -0.672 -0.057 0.023 0.63696113 OTHR -0.555 1.864 -0.276 0.101 0.015 -0.004 0.070 0.020

TEMP -9.167 5.153 -1.808 -4.376 -2.755 -0.236 1.009 -0.10027 Slab 98472 OTHR 0.627 0.698 -0.193 -0.011 -0.027 0.025 0.177 -0.170 EL27.0m TEMP -3.634 -3.174 5.923 -1.728 -1.314 -0.297 0.535 -0.686 @ RCCV 98514 OTHR 0.471 0.432 0.187 -0.052 -0.408 -0.003 0.006 0.010

TEMP -2.861 -2.861 -1.575 -1.927 -1.717 -0.031 0.065 -0.72298424 OTHR -0.204 1.509 -0.108 -0.589 -0.154 -0.139 -0.119 -0.028

TEMP -6.661 -7.075 -2.107 -3.864 -0.717 0.116 -5.743 0.00128 Pool Girder 123054 OTHR 0.120 1.463 1.570 0.066 0.030 -0.158 -0.065 -0.062 @ Storage Pool TEMP 3.582 1.292 2.390 3.612 2.453 -0.343 0.113 0.316

123154 OTHR -0.174 0.086 1.378 0.070 0.033 -0.169 -0.094 0.029TEMP 3.638 3.573 -2.903 3.370 1.304 -0.375 -0.255 0.413

29 Pool Girder 123062 OTHR 0.347 -1.461 -1.693 -0.028 0.213 -0.004 0.083 0.164 @ Cavity TEMP 0.502 0.112 -1.366 3.839 3.894 0.009 0.033 0.189

123162 OTHR 2.262 -0.498 -1.278 0.043 0.014 -0.013 -0.034 -0.048TEMP 1.956 0.408 -1.831 3.805 2.820 0.092 -0.289 0.644

30 Pool Girder 123067 OTHR 0.093 2.528 -1.459 -0.040 -0.091 0.044 -0.018 -0.051 @ Fuel Pool TEMP -2.007 -7.205 -2.944 3.600 3.532 -0.636 0.318 0.813

123167 OTHR -0.758 0.593 -1.395 -0.013 -0.056 0.030 -0.075 0.000TEMP -0.584 -2.758 -3.092 2.757 1.832 -0.245 -0.178 0.615

31 MS Tunnel 150122 OTHR 0.063 -0.394 0.376 0.026 0.128 0.017 -0.006 -0.069 Wall and Slab TEMP 0.316 -0.714 1.798 0.940 3.102 0.011 -0.551 0.426

96611 OTHR -0.051 0.763 -0.052 0.086 -0.022 -0.045 -0.080 0.015TEMP -0.557 4.665 -0.414 -1.253 -7.115 -0.406 0.420 0.206

98614 OTHR -0.009 -0.289 -0.013 -0.235 -1.123 -0.154 0.020 0.060TEMP -0.043 0.730 -0.044 -0.852 -9.932 -0.019 0.460 0.307

Page 123: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-96

Table 3G.1-48

Combined Forces and Moments: RB, Selected Load Combination RB-9a

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 OTHR -2.466 -8.548 -0.107 0.269 1.232 -0.002 -0.008 0.557 Below RCCV TEMP 1.107 -0.568 -0.679 0.118 1.100 -0.036 0.029 0.063 Bottom EQEW 4.233 10.965 -4.292 -0.722 -3.492 -0.050 0.149 -1.466

EQNS -4.083 -2.977 -3.250 0.947 5.610 0.025 0.009 2.083EQZ -0.369 6.045 -0.433 0.327 2.162 -0.011 0.033 0.697EQT 0.678 0.159 0.632 -0.044 -0.288 -0.014 0.027 -0.154

SPKW -0.614 0.143 -0.331 -0.051 -0.209 -0.033 0.058 -0.022SPKN -0.469 0.023 -0.061 0.014 0.100 0.011 -0.018 0.074

13 OTHR -2.111 -6.872 -0.025 -0.109 -0.371 0.009 -0.004 0.012TEMP 0.363 -3.011 -0.654 0.407 2.278 -0.002 0.019 0.473EQEW 4.825 10.405 0.411 -0.322 -2.045 -0.014 0.031 -1.063EQNS 0.052 2.819 -3.746 0.608 3.221 -0.054 0.099 0.998EQZ -0.498 4.718 -0.323 0.569 3.088 -0.003 0.004 0.952EQT 0.561 0.147 0.719 -0.086 -0.389 -0.010 0.018 -0.179

SPKW 0.172 0.088 0.079 -0.046 -0.641 0.001 -0.002 -0.304SPKN -1.117 -0.011 -0.229 0.003 0.265 0.001 0.001 0.206

24 OTHR -1.568 -7.151 -0.491 -0.269 -1.541 -0.004 0.009 -0.521TEMP 0.428 -3.036 0.150 0.424 2.345 -0.005 -0.001 0.512EQEW 0.620 0.744 6.330 0.012 -0.156 0.097 -0.142 -0.100EQNS 2.853 8.172 -0.025 0.203 1.099 -0.007 0.001 0.037EQZ -0.464 5.193 0.150 0.595 3.234 -0.005 0.001 0.976EQT 0.080 0.012 0.993 0.002 -0.026 -0.005 0.008 -0.015

SPKW -1.094 0.022 0.063 0.015 0.350 0.003 -0.006 0.242SPKN 0.141 0.062 -0.055 -0.056 -0.696 -0.005 0.006 -0.333

19 Wall 806 OTHR -1.346 -7.377 0.033 0.024 0.159 0.002 -0.011 -0.043 Below RCCV TEMP 1.520 -1.444 0.161 0.260 1.324 0.084 -0.040 -0.084 Mid-Height EQEW 0.709 8.375 -5.149 -0.027 0.177 -0.138 -0.023 0.007

EQNS -2.115 -2.451 -3.494 -0.083 -0.290 -0.011 0.023 0.210EQZ -0.057 5.223 -0.089 -0.016 0.030 0.023 -0.007 0.122EQT 0.309 0.090 0.569 0.016 0.062 -0.032 -0.005 -0.003

SPKW -1.198 0.171 -0.223 -0.020 0.063 -0.026 -0.048 -0.027SPKN -0.390 0.097 0.074 -0.032 -0.026 -0.010 0.004 0.010

813 OTHR -1.729 -6.845 0.053 0.009 0.223 -0.017 0.005 0.068TEMP 1.025 -2.960 -0.498 0.172 1.284 -0.025 0.005 0.446EQEW 2.014 9.099 0.735 0.003 0.271 -0.015 -0.012 -0.119EQNS -0.323 3.125 -4.705 0.000 -0.041 -0.034 -0.003 0.282EQZ 0.110 4.678 -0.266 0.023 0.034 0.009 0.017 0.211EQT 0.211 0.052 0.829 -0.004 0.055 -0.041 0.000 -0.022

SPKW -0.822 -0.086 0.009 0.115 0.382 0.004 -0.003 -0.006SPKN -0.797 0.137 -0.119 -0.080 -0.148 -0.002 0.009 -0.006

824 OTHR -1.962 -7.268 -0.488 0.118 0.496 -0.006 -0.002 0.140TEMP 0.901 -3.042 0.134 0.177 1.308 0.018 0.011 0.397EQEW 0.182 0.748 7.529 0.025 0.045 0.096 0.050 0.019EQNS 1.110 7.464 -0.158 0.028 0.187 -0.002 0.001 0.136EQZ 0.060 5.154 0.138 0.028 -0.004 0.006 -0.001 0.220EQT 0.019 0.009 1.110 0.005 0.006 -0.016 0.007 0.002

SPKW -0.959 0.291 0.023 -0.103 -0.181 -0.002 0.000 -0.005SPKN -0.836 -0.118 -0.010 0.153 0.380 0.008 -0.001 0.012

OTHR: Loads other than thermal and seismic loads TEMP: Thermal loads EQEW: Horizontal seismic loads in the E-W direction EQNS: Horizontal seismic loads in the N-S direction EQZ: Vertical seismic loads EQT: Torsional seismic loads SPKW: Dynamic soil pressure during a horizontal earthquake in the E-W direction SPKN: Dynamic soil pressure during a horizontal earthquake in the N-S direction

Page 124: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-97

Table 3G.1-48

Combined Forces and Moments: RB, Selected Load Combination RB-9a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

20 Wall 1606 OTHR 0.617 -6.838 0.045 -0.635 -3.589 0.019 0.011 0.973 Below RCCV TEMP 11.606 -2.114 0.220 -0.682 -3.317 0.083 0.083 2.345 Top EQEW 0.575 5.838 -5.328 0.080 0.660 -0.014 -0.018 -0.147

EQNS -1.409 -1.886 -3.817 -0.276 -1.323 -0.067 0.013 0.201EQZ 0.592 4.611 -0.068 -0.168 -0.903 -0.009 0.004 0.312EQT 0.120 0.072 0.709 0.007 0.023 -0.018 -0.003 0.010

SPKW -0.597 0.089 0.460 -0.038 -0.149 0.073 0.006 0.014SPKN -0.170 0.099 -0.140 -0.043 -0.073 -0.020 0.000 -0.003

1613 OTHR 0.358 -6.790 0.137 -0.650 -3.614 -0.004 -0.012 1.023TEMP 11.216 -3.473 -0.445 -0.783 -4.373 -0.006 -0.013 2.707EQEW 0.955 7.092 0.918 0.184 1.109 -0.006 0.009 -0.240EQNS -0.183 2.987 -4.708 -0.232 -1.215 -0.026 0.007 0.350EQZ 0.717 4.487 -0.182 -0.163 -0.990 -0.005 0.000 0.358EQT 0.095 -0.044 0.873 0.017 0.107 -0.027 -0.001 -0.022

SPKW -0.049 0.067 -0.063 -0.046 -0.514 -0.001 0.002 0.255SPKN -0.538 0.033 0.121 -0.030 0.062 -0.003 -0.005 -0.096

1624 OTHR 0.324 -7.035 -0.377 -0.584 -3.473 0.010 -0.018 1.006TEMP 12.199 -3.966 -0.117 -0.867 -4.482 -0.002 -0.082 2.818EQEW 0.049 0.603 7.470 -0.009 0.017 0.051 -0.040 0.018EQNS 0.878 6.181 -0.226 -0.043 -0.345 -0.008 0.003 0.182EQZ 0.624 4.934 0.094 -0.163 -0.963 0.000 0.005 0.341EQT 0.003 0.006 1.124 -0.002 -0.001 -0.016 -0.006 0.002

SPKW -0.679 0.142 -0.046 -0.046 0.071 -0.002 0.005 -0.115SPKN -0.093 0.046 0.052 -0.021 -0.466 0.002 -0.012 0.224

Page 125: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-98

Table 3G.1-48

Combined Forces and Moments: RB, Selected Load Combination RB-9a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

21 Exterior Wall 20011 OTHR -1.579 -3.224 -0.184 0.362 1.556 -0.010 0.055 0.743 @ EL-11.50 TEMP 2.783 3.204 0.556 0.250 0.892 0.077 -0.085 0.330 ~-10.50m EQEW -0.564 -1.392 -9.721 -0.075 0.353 -0.043 0.146 0.140

EQNS -0.512 -1.066 0.964 1.452 5.558 -0.070 0.112 2.751EQZ 0.492 3.325 0.340 0.048 0.031 0.019 -0.049 -0.032EQT 0.013 0.018 0.755 0.037 0.114 -0.024 0.010 0.050

SPKW -1.266 0.131 0.140 0.007 0.067 -0.012 -0.003 0.051SPKN 0.271 0.091 -0.195 -0.071 -0.218 0.022 -0.012 -0.155

20023 OTHR -1.162 -2.012 -0.647 -0.097 -0.139 0.025 0.030 -0.071TEMP -0.928 -0.756 1.256 -3.151 -2.204 0.242 -0.326 0.699EQEW -0.001 5.315 -0.104 0.230 0.272 -0.071 -0.017 0.073EQNS 0.146 -0.892 -1.069 -0.799 1.249 0.157 1.180 0.822EQZ 0.002 1.060 0.425 -0.108 0.221 0.007 0.092 0.139EQT -0.084 -0.142 0.295 0.170 -0.079 -0.042 -0.284 -0.099

SPKW -0.815 -0.150 0.165 -0.091 -0.005 -0.001 0.031 0.028SPKN 0.132 0.179 -0.140 -0.037 0.006 0.011 0.022 -0.017

30010 OTHR -0.991 -2.448 -0.717 -0.034 -0.291 0.004 0.010 0.649TEMP 0.279 2.139 -0.239 1.005 3.442 -0.023 0.006 -0.574EQEW 3.433 4.595 1.613 -0.245 -0.714 -0.024 -0.053 0.238EQNS 1.188 1.837 -3.871 0.447 2.431 -0.047 -0.047 -0.675EQZ 0.228 1.737 0.025 0.322 1.788 -0.022 -0.014 -0.417EQT 0.625 -0.156 0.933 -0.064 -0.252 -0.016 -0.030 0.085

SPKW -0.010 -0.306 0.022 -0.054 -0.390 -0.008 -0.009 0.528SPKN -1.064 0.111 -0.090 0.019 0.147 0.007 0.009 -0.060

30020 OTHR -0.973 -2.324 -0.445 -0.553 -0.861 0.020 -0.129 0.369TEMP -0.088 -1.198 -0.236 0.082 1.103 0.123 -0.022 -0.270EQEW 0.484 3.247 1.307 -0.086 0.523 0.039 0.023 -0.160EQNS 0.106 2.162 -0.478 0.057 1.102 0.015 -0.290 -0.250EQZ 0.047 0.816 0.159 -0.174 0.513 0.054 -0.113 -0.174EQT 0.115 -0.208 0.156 -0.041 -0.029 0.007 0.133 -0.019

SPKW -0.076 -0.091 -0.129 -0.062 -0.270 0.120 -0.036 0.145SPKN -0.389 -0.054 0.137 -0.340 0.025 -0.039 -0.123 -0.057

40001 OTHR -0.732 -2.549 0.379 -0.382 -1.219 -0.200 0.007 0.665TEMP -0.155 -0.832 0.018 0.125 1.237 -0.081 0.115 -0.310EQEW -0.010 3.553 0.797 0.338 1.289 0.004 0.411 -0.235EQNS 0.368 1.941 -0.759 -0.170 0.567 -0.075 0.005 -0.162EQZ 0.049 0.841 -0.148 -0.182 0.520 -0.053 0.112 -0.169EQT -0.012 0.041 0.255 0.140 0.015 0.021 0.069 0.056

SPKW -0.373 -0.053 -0.139 -0.267 0.046 0.035 0.093 -0.047SPKN -0.109 -0.134 0.125 -0.104 -0.392 -0.158 0.028 0.185

40011 OTHR -1.003 -3.330 -0.199 -0.185 -1.119 -0.001 0.004 1.450TEMP 0.876 2.784 0.049 1.074 3.671 0.007 0.012 -0.636EQEW -0.266 -0.415 4.311 0.014 -0.081 0.083 0.119 -0.014EQNS 3.316 3.611 -0.077 0.120 1.040 0.010 0.003 -0.191EQZ 0.328 2.098 0.008 0.394 2.089 0.010 0.001 -0.500EQT -0.018 -0.017 0.904 0.007 0.004 -0.008 -0.008 -0.009

SPKW -0.734 0.200 0.003 0.017 0.241 -0.002 -0.003 -0.101SPKN -0.185 -0.364 -0.022 -0.041 -0.414 0.003 0.004 0.598

Page 126: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-99

Table 3G.1-48

Combined Forces and Moments: RB, Selected Load Combination RB-9a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

22 Exterior Wall 22011 OTHR 0.393 -3.871 1.278 -0.017 0.167 0.033 -0.026 0.327 @ EL-4.65 TEMP 3.512 2.672 -0.082 -0.124 -0.157 0.051 0.033 -0.023 ~-6.60m EQEW 0.539 3.319 -6.600 0.042 -0.014 -0.019 0.032 0.006

EQNS -0.376 -6.628 2.328 0.102 0.902 0.147 -0.031 0.818EQZ -0.178 2.690 -0.603 0.011 -0.021 0.002 0.022 -0.021EQT 0.014 -0.368 0.768 -0.006 0.001 -0.020 0.001 -0.003

SPKW -0.742 0.207 -0.152 -0.011 -0.013 0.005 -0.003 0.000SPKN 0.163 0.149 0.017 0.026 0.046 -0.011 -0.001 0.074

22023 OTHR -0.019 -2.149 0.149 0.199 0.073 -0.099 0.025 0.024TEMP 1.402 -3.214 -1.242 0.313 -0.113 -0.213 -0.014 -0.031EQEW 0.113 5.590 -3.163 0.088 -0.083 0.066 -0.177 -0.075EQNS -0.012 -4.348 -1.292 -0.263 0.155 -0.135 0.325 0.120EQZ -0.004 1.365 0.331 0.115 0.002 0.013 -0.073 -0.012EQT -0.056 0.250 0.613 0.017 -0.006 -0.006 -0.030 -0.017

SPKW -0.349 -0.139 0.634 0.025 0.008 -0.008 0.003 -0.007SPKN 0.018 0.099 0.148 0.087 0.005 -0.005 -0.035 0.003

32010 OTHR 0.299 -2.182 -0.206 -0.045 -0.067 0.007 0.000 -0.181TEMP 14.393 6.122 0.004 -2.798 -2.758 0.004 -0.008 0.041EQEW 0.672 4.353 1.027 -0.012 -0.086 -0.013 0.000 0.204EQNS -0.882 1.251 -4.092 -0.010 -0.012 -0.003 -0.001 -0.103EQZ 0.012 1.478 -0.046 -0.001 -0.033 -0.002 0.000 0.007EQT 0.239 -0.017 0.999 -0.001 0.007 -0.018 0.002 0.009

SPKW -0.030 -0.130 0.000 -0.024 -0.187 -0.002 0.000 0.012SPKN -0.351 0.033 0.056 -0.009 0.000 0.001 0.000 0.002

32020 OTHR 0.019 -2.355 -0.027 0.047 -0.044 -0.049 0.050 0.018TEMP 0.444 4.718 2.528 -0.284 -1.833 -0.377 0.922 0.167EQEW 0.056 3.984 2.778 0.123 -0.061 0.010 0.091 0.017EQNS -0.043 3.040 -1.628 0.150 0.029 0.005 0.127 -0.005EQZ 0.040 1.566 0.054 0.052 0.002 0.007 0.047 0.007EQT 0.006 -0.200 0.867 -0.003 -0.006 -0.011 -0.004 0.011

SPKW -0.008 0.003 -0.115 0.017 -0.074 -0.114 -0.072 0.022SPKN -0.208 -0.061 0.239 -0.178 -0.039 0.045 -0.042 0.004

42001 OTHR 0.037 -2.439 -0.206 0.087 -0.065 0.063 -0.034 0.050TEMP 2.452 3.605 2.538 -0.370 -1.611 -0.058 -0.794 -0.254EQEW -0.010 3.742 2.914 0.166 0.068 -0.011 -0.064 -0.030EQNS 0.119 3.229 -1.627 0.200 -0.013 -0.015 -0.074 -0.006EQZ 0.049 1.628 0.032 0.067 0.004 -0.002 -0.034 0.002EQT -0.021 -0.223 0.861 -0.003 0.014 -0.013 0.003 -0.013

SPKW -0.142 -0.019 -0.232 -0.098 -0.026 -0.045 0.006 0.003SPKN -0.038 -0.035 0.108 -0.030 -0.065 0.137 0.139 0.023

42011 OTHR -0.142 -2.843 -0.203 -0.044 -0.077 -0.006 0.010 -0.178TEMP 12.436 4.406 0.147 -2.976 -2.775 0.081 0.081 0.173EQEW 0.192 -0.627 5.808 0.041 0.003 0.018 0.036 -0.014EQNS 0.725 3.106 0.252 0.005 -0.066 0.008 0.000 0.083EQZ 0.251 1.839 0.087 0.001 -0.025 0.003 -0.002 0.004EQT 0.054 -0.059 1.202 0.006 0.001 -0.011 0.005 -0.002

SPKW -0.228 0.083 0.028 -0.016 0.002 -0.001 -0.002 -0.001SPKN -0.079 -0.176 0.022 -0.022 -0.152 0.015 0.025 0.007

Page 127: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-100

Table 3G.1-48

Combined Forces and Moments: RB, Selected Load Combination RB-9a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

23 Exterior Wall 24211 OTHR 0.005 -2.312 0.306 -0.057 -0.367 -0.006 0.006 -0.049 @ EL22.50 TEMP 3.817 2.954 -0.367 0.094 0.338 0.049 -0.142 1.510 ~24.60m EQEW 0.053 0.269 -5.636 -0.006 0.032 0.014 0.006 0.033

EQNS -0.997 -4.957 0.239 -0.188 -0.707 -0.045 0.002 0.879EQZ 0.133 1.429 -0.116 0.085 0.587 -0.013 0.004 0.143EQT -0.019 -0.086 0.927 0.000 -0.003 -0.036 -0.006 0.019

SPKW -0.050 -0.052 -0.001 0.002 0.010 -0.001 0.000 -0.002SPKN -0.021 0.077 -0.029 -0.003 -0.003 0.000 -0.001 0.010

24224 OTHR -0.042 -1.989 0.476 0.150 0.055 -0.054 -0.097 0.045TEMP 0.353 4.746 -3.617 0.874 -0.344 -0.444 -0.820 -0.411EQEW 0.330 5.457 -4.142 -0.306 -0.138 -0.007 0.293 -0.060EQNS -0.236 -6.918 0.356 0.662 0.954 -0.281 0.148 1.032EQZ 0.047 1.075 -0.329 -0.021 0.047 0.060 0.054 0.030EQT -0.037 0.369 0.852 -0.088 -0.215 0.035 -0.101 -0.272

SPKW 0.003 0.031 -0.008 0.004 -0.006 0.002 -0.011 -0.008SPKN -0.004 -0.084 0.070 0.027 0.052 -0.004 0.032 0.070

34210 OTHR 0.394 -0.887 -0.097 -0.010 -0.003 0.010 0.000 -0.017TEMP 15.330 4.791 -0.312 -2.778 -2.408 0.015 -0.011 0.104EQEW -0.158 1.713 0.814 0.068 0.380 -0.007 -0.004 0.144EQNS -1.180 0.230 -3.572 -0.029 -0.186 -0.009 0.011 -0.087EQZ 0.008 0.651 -0.050 -0.005 0.004 -0.001 -0.004 -0.013EQT 0.188 -0.023 1.059 0.003 0.019 -0.008 0.000 0.008

SPKW 0.017 -0.031 0.003 -0.002 -0.020 0.001 0.000 -0.008SPKN -0.088 -0.012 -0.004 -0.001 0.000 -0.001 0.000 0.000

34220 OTHR 0.100 -1.456 -0.140 0.082 -0.006 -0.028 0.063 0.004TEMP 1.720 4.438 2.296 0.979 -1.464 -0.240 1.609 0.013EQEW -0.136 1.761 2.503 0.147 0.144 0.006 0.041 -0.017EQNS -0.063 1.557 -1.273 -0.005 0.005 0.001 0.002 -0.008EQZ -0.039 0.802 0.142 -0.038 0.021 0.004 -0.032 0.000EQT 0.028 -0.039 0.879 0.044 0.008 -0.021 0.015 0.020

SPKW 0.002 0.022 0.009 0.003 -0.001 -0.002 0.002 0.001SPKN -0.001 0.032 -0.018 -0.001 -0.001 0.002 -0.001 -0.001

44201 OTHR 0.041 -1.606 -0.330 0.077 0.012 0.013 -0.068 -0.010TEMP 1.001 5.210 0.298 0.667 -1.698 0.337 -1.910 0.044EQEW 0.125 1.808 3.005 0.096 0.015 0.058 -0.091 0.023EQNS -0.115 1.861 -1.070 0.020 0.037 -0.013 0.025 -0.016EQZ -0.023 0.949 0.280 -0.032 0.012 -0.013 0.037 0.001EQT 0.043 -0.060 0.877 0.026 0.002 -0.004 -0.037 -0.018

SPKW 0.003 0.019 0.019 0.003 0.001 -0.001 -0.002 -0.001SPKN 0.001 0.033 -0.006 -0.001 -0.002 0.000 0.001 0.000

Page 128: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-101

Table 3G.1-48

Combined Forces and Moments: RB, Selected Load Combination RB-9a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

24 Basemat 90140 OTHR -2.435 -2.595 0.157 -2.198 -1.307 1.439 -2.857 2.619 @ Wall TEMP 0.890 1.411 1.346 0.397 -0.251 -0.837 -0.696 -0.036 Below RCCV EQEW 0.196 4.886 3.019 0.180 3.227 -2.914 3.394 -5.502

EQNS 0.225 1.227 -1.955 -7.003 -0.836 -0.227 -2.968 1.213EQZ -0.090 0.743 0.430 1.673 1.226 -2.811 1.354 -1.582EQT 0.937 -0.464 1.033 0.685 0.000 -0.235 0.304 0.110

SPKW 0.009 -1.771 0.006 -0.086 -0.025 -0.084 -0.010 -0.177SPKN -2.571 0.180 -0.096 -0.092 -0.006 0.045 -0.049 -0.015

90182 OTHR -1.635 -2.285 -0.287 -0.594 -1.178 0.187 0.100 1.510TEMP 1.777 0.495 0.537 -0.265 -3.839 0.161 -0.125 2.759EQEW 5.515 0.685 0.434 0.172 -0.757 -0.215 -0.079 -3.641EQNS 3.258 0.671 -1.457 -1.578 -0.618 1.400 -1.589 0.692EQZ 0.637 0.337 0.029 -0.857 1.734 0.351 -0.170 -0.448EQT 1.037 0.072 0.561 0.024 0.277 -0.324 0.345 -0.271

SPKW 0.044 -1.862 -0.133 -0.170 -0.632 0.000 0.024 -0.391SPKN -2.008 0.091 0.145 0.031 -0.224 0.092 -0.099 0.166

90111 OTHR -3.744 -1.430 -0.010 -1.497 -0.448 -0.298 0.851 0.315TEMP 0.563 2.234 -0.012 -4.126 -0.521 0.053 2.855 0.124EQEW -0.237 0.778 -0.620 -0.499 0.380 1.210 -0.063 -2.796EQNS 1.123 5.945 -0.260 0.284 -1.147 0.352 -1.960 -0.122EQZ 0.384 0.879 -0.046 1.649 -0.996 0.430 -0.499 -0.097EQT -0.054 0.036 -0.707 -0.081 0.081 0.402 0.011 -0.500

SPKW 0.145 -1.725 0.035 -0.232 -0.059 0.003 0.202 -0.017SPKN -1.936 -0.068 -0.034 -0.720 -0.158 0.022 -0.413 0.014

25 Slab 93140 OTHR -0.567 0.339 0.618 0.074 0.100 -0.108 0.116 -0.094 EL4.65m TEMP -0.598 2.335 4.275 -0.542 -0.409 0.304 -0.147 0.123 @ RCCV EQEW 0.740 -0.260 -0.201 0.173 0.132 -0.099 0.050 -0.041

EQNS -2.210 0.336 -0.123 -0.395 -0.241 0.172 -0.091 0.120EQZ 0.063 -0.102 -0.056 -0.091 -0.107 0.070 -0.132 0.109EQT 0.194 -0.086 0.031 0.019 0.013 -0.011 0.006 -0.006

SPKW 0.062 -0.921 0.092 -0.029 -0.029 0.019 -0.015 0.002SPKN -0.322 0.121 -0.031 -0.002 -0.004 0.002 0.000 0.003

93182 OTHR 0.514 -0.270 -0.024 -0.027 0.024 0.011 0.002 0.097TEMP 4.223 -4.036 -1.099 -0.353 -1.823 -0.083 0.075 1.366EQEW -0.084 -0.021 -0.148 0.083 0.458 0.014 -0.022 -0.413EQNS -0.562 -0.143 -0.464 -0.087 -0.334 -0.010 0.019 0.309EQZ -0.101 -0.089 -0.021 -0.034 -0.118 -0.007 0.009 0.174EQT 0.077 0.030 -0.054 0.008 0.041 0.000 -0.002 -0.037

SPKW -0.163 -0.980 -0.027 -0.030 -0.154 -0.010 0.008 0.163SPKN -0.266 -0.030 0.062 0.003 0.012 0.001 -0.001 -0.011

93111 OTHR -0.067 0.526 -0.093 0.023 -0.028 -0.003 0.065 -0.005TEMP -3.605 4.959 -0.256 -1.768 -0.316 -0.047 1.178 0.000EQEW 0.141 0.032 -0.216 0.000 -0.009 -0.025 0.011 0.004EQNS -0.075 -0.104 0.020 0.080 0.000 0.008 -0.054 0.002EQZ -0.058 -0.120 0.023 -0.136 -0.034 -0.005 0.160 0.003EQT 0.008 0.005 -0.006 -0.001 -0.002 -0.002 0.003 0.000

SPKW 0.019 -0.225 0.024 0.019 0.004 0.001 -0.014 0.000SPKN -0.936 -0.149 0.125 -0.149 -0.027 -0.007 0.131 -0.001

Page 129: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-102

Table 3G.1-48

Combined Forces and Moments: RB, Selected Load Combination RB-9a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

26 Slab 96144 OTHR 0.027 0.474 0.813 0.030 0.056 -0.057 0.116 -0.097 EL17.5m TEMP -0.270 4.701 6.966 -0.228 -0.122 0.166 -0.072 0.023 @ RCCV EQEW -0.135 -0.266 -0.205 0.151 0.125 -0.096 0.048 -0.018

EQNS -0.484 0.162 0.142 -0.313 -0.251 0.168 -0.065 0.077EQZ 0.239 -0.170 -0.124 -0.056 -0.058 0.040 -0.097 0.074EQT 0.137 -0.045 -0.003 0.013 0.011 -0.007 0.003 -0.001

SPKW 0.019 -0.035 0.001 -0.003 -0.002 0.001 -0.001 -0.001SPKN -0.059 0.032 -0.002 0.002 -0.001 -0.001 0.001 -0.001

96186 OTHR 0.883 -0.312 0.010 -0.044 -0.165 -0.007 0.007 0.095TEMP 6.688 -4.125 -1.417 -0.090 -0.313 -0.048 0.016 0.346EQEW -0.434 0.196 -0.261 0.112 0.623 0.022 -0.033 -0.498EQNS -0.592 -0.131 -0.041 -0.074 -0.340 -0.010 0.025 0.271EQZ -0.239 0.093 0.038 -0.003 -0.002 -0.005 0.006 0.052EQT 0.071 0.033 -0.070 0.005 0.027 -0.001 -0.002 -0.023

SPKW 0.042 0.013 -0.004 -0.009 -0.044 -0.002 0.002 0.035SPKN -0.073 -0.028 0.033 0.001 0.004 0.001 0.000 -0.003

96113 OTHR -0.289 1.369 -0.160 -0.210 -0.036 -0.017 0.287 0.037TEMP -8.342 2.577 -1.679 -4.480 -2.783 -0.199 1.239 -0.059EQEW 0.084 -0.188 0.581 0.078 0.029 0.003 -0.024 0.039EQNS 0.214 -1.016 -0.015 0.456 -0.039 -0.008 -0.426 -0.064EQZ 0.067 -0.427 0.079 0.132 -0.032 -0.016 -0.157 -0.020EQT 0.005 -0.010 0.225 0.009 0.009 0.009 0.004 0.012

SPKW -0.036 -0.094 -0.005 0.036 0.010 0.002 -0.023 -0.002SPKN 0.033 0.096 0.008 -0.101 -0.022 -0.003 0.072 0.006

27 Slab 98472 OTHR 0.619 0.467 -0.142 0.023 0.032 -0.047 0.175 -0.176 EL27.0m TEMP -0.766 -0.797 5.408 -0.313 0.033 -0.312 0.451 -0.562 @ RCCV EQEW 0.134 -0.988 -0.434 -0.014 -0.032 0.005 -0.041 0.047

EQNS 1.002 -0.251 -0.205 -0.189 -0.233 0.105 -0.091 0.122EQZ -0.341 0.011 -0.110 -0.186 -0.285 0.206 -0.230 0.258EQT -0.117 0.108 0.040 0.021 0.023 -0.012 0.013 -0.011

SPKW 0.034 -0.014 -0.016 -0.005 -0.006 0.003 -0.005 0.003SPKN -0.072 0.028 0.016 0.001 0.000 0.000 0.001 0.000

98514 OTHR 0.373 0.295 0.191 -0.038 -0.295 0.007 0.002 0.021TEMP 0.438 -2.394 -1.401 -0.532 -0.068 -0.006 0.036 -0.727EQEW -0.426 0.174 -0.383 0.063 0.485 -0.007 -0.011 -0.326EQNS -0.239 -0.147 -0.193 -0.069 -0.240 0.005 0.008 0.255EQZ 0.034 -0.088 -0.059 -0.037 -0.115 -0.024 0.000 0.171EQT 0.090 0.001 -0.036 0.005 0.021 -0.003 -0.002 -0.021

SPKW 0.026 -0.006 -0.006 -0.006 -0.029 -0.001 0.000 0.024SPKN -0.021 -0.005 0.023 0.001 -0.001 0.001 0.000 0.000

98424 OTHR -0.139 0.987 -0.072 -0.038 -0.047 -0.100 -0.374 -0.043TEMP -7.591 -10.575 -1.415 -5.823 -1.582 0.072 -5.617 0.028EQEW 0.236 -0.165 -5.772 0.064 0.050 -0.180 0.048 0.098EQNS 0.935 -1.153 0.103 0.127 -0.148 0.099 1.044 0.050EQZ 0.218 -0.319 -0.008 -0.719 -0.214 0.047 1.004 0.064EQT 0.030 0.005 -0.994 0.012 0.015 0.025 0.001 0.023

SPKW -0.001 0.003 -0.002 0.010 0.013 -0.003 -0.032 -0.002SPKN 0.001 0.001 0.002 -0.016 -0.020 0.003 0.049 0.002

Page 130: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-103

Table 3G.1-48

Combined Forces and Moments: RB, Selected Load Combination RB-9a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

28 Pool Girder 123054 OTHR 0.184 -0.204 0.401 0.055 0.036 -0.060 -0.050 -0.038 @ Storage Pool TEMP 1.312 -2.833 1.438 2.280 2.119 0.026 -0.231 0.481

EQEW 0.346 0.142 0.151 0.329 0.157 -0.068 0.025 0.209EQNS -0.161 1.563 -0.510 -0.070 -0.003 0.024 -0.010 0.023EQZ -0.418 2.390 0.732 -0.048 -0.028 -0.052 0.007 0.024EQT 0.059 -0.205 -0.022 0.058 0.026 -0.010 0.002 0.018

SPKW 0.007 -0.019 -0.009 0.003 0.002 -0.001 0.000 0.001SPKN -0.023 0.036 -0.006 -0.003 -0.002 0.001 -0.001 -0.001

123154 OTHR 0.383 -0.159 0.375 0.067 0.025 -0.038 -0.048 0.019TEMP 1.029 0.746 -0.399 1.924 1.145 -0.340 -0.086 0.247EQEW -0.375 0.352 0.698 0.191 -0.067 -0.089 0.037 -0.008EQNS -1.233 0.501 -0.406 -0.103 -0.035 0.015 -0.033 0.003EQZ -1.388 0.436 0.560 -0.072 -0.034 -0.096 -0.022 -0.007EQT -0.105 -0.124 0.027 0.047 0.002 -0.011 0.003 0.000

SPKW -0.008 -0.007 -0.005 0.002 0.000 -0.001 0.000 0.000SPKN -0.017 0.010 -0.008 -0.003 -0.001 0.002 0.000 0.000

29 Pool Girder 123062 OTHR 0.400 -0.522 -0.836 -0.025 0.044 0.007 0.043 0.054 @ Cavity TEMP -1.258 -0.152 -0.701 0.103 0.324 0.027 0.057 0.173

EQEW -0.434 0.924 0.205 0.076 0.040 -0.040 -0.059 0.058EQNS -0.152 -0.112 0.300 -0.072 -0.019 -0.024 0.025 0.017EQZ -0.465 -0.598 -0.336 0.024 0.163 -0.031 0.000 0.087EQT 0.081 0.002 -0.067 -0.005 -0.006 -0.004 0.004 0.001

SPKW 0.015 0.000 0.000 0.000 0.001 0.000 -0.001 0.000SPKN -0.020 0.001 0.002 0.000 0.000 0.000 0.000 -0.001

123162 OTHR 0.404 -0.195 -0.667 -0.008 -0.020 0.004 0.018 -0.011TEMP -1.667 -0.034 -0.462 0.130 -0.117 -0.002 -0.152 0.085EQEW -0.560 0.907 0.222 0.102 -0.017 0.008 -0.115 -0.018EQNS -0.923 -0.130 0.184 -0.152 -0.036 -0.019 0.056 0.002EQZ 1.265 -0.170 -0.200 0.073 0.059 -0.027 -0.090 -0.039EQT 0.120 0.003 -0.101 -0.010 -0.009 -0.007 0.010 0.003

SPKW -0.022 -0.002 0.002 0.000 0.000 0.001 0.000 0.000SPKN 0.006 0.001 -0.001 0.000 0.000 0.000 0.000 0.000

30 Pool Girder 123067 OTHR 0.215 0.860 0.013 -0.014 -0.073 -0.008 -0.059 -0.042 @ Fuel Pool TEMP -2.311 -5.928 -1.779 0.647 0.431 -0.116 -0.149 0.467

EQEW 0.073 0.122 0.288 0.162 0.144 0.059 0.023 0.256EQNS -0.644 1.895 0.900 0.094 0.043 0.024 0.036 0.041EQZ -0.503 2.667 -1.237 -0.015 0.047 0.078 0.118 0.054EQT 0.036 0.061 -0.084 -0.040 -0.046 -0.019 -0.012 -0.036

SPKW 0.005 -0.006 0.018 0.004 0.003 0.002 0.001 0.003SPKN -0.014 0.025 0.002 -0.005 -0.002 -0.002 0.000 -0.002

123167 OTHR -0.414 0.221 -0.021 0.001 -0.025 0.026 -0.059 0.000TEMP -2.108 -2.650 -2.209 0.276 -0.451 -0.231 -0.013 0.179EQEW -0.405 0.440 -0.305 0.042 -0.117 0.066 -0.051 -0.018EQNS -1.125 0.351 1.205 0.031 0.033 0.004 0.006 0.003EQZ -0.679 0.641 -1.015 -0.040 -0.022 -0.011 0.032 -0.008EQT 0.189 0.062 -0.033 -0.022 0.004 -0.010 -0.002 -0.003

SPKW -0.012 -0.001 0.015 0.001 0.000 0.001 0.000 0.000SPKN 0.009 0.007 0.001 -0.004 0.000 -0.001 0.001 0.000

Page 131: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-104

Table 3G.1-48

Combined Forces and Moments: RB, Selected Load Combination RB-9a (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

31 MS Tunnel 150122 OTHR 0.033 -0.233 0.335 0.030 0.111 0.019 -0.009 -0.052 Wall and Slab TEMP 0.224 -0.517 1.902 1.053 3.141 -0.007 -0.584 0.363

EQEW -0.002 0.117 -0.022 -0.031 -0.114 -0.044 0.008 0.254EQNS -0.011 0.177 -0.048 -0.038 -0.144 -0.009 0.008 -0.030EQZ 0.026 -0.083 -0.250 -0.017 -0.020 -0.016 0.010 0.049EQT -0.005 0.032 -0.014 -0.013 -0.015 -0.020 0.001 0.070

SPKW 0.002 -0.012 0.001 0.001 0.002 -0.001 0.000 0.001SPKN -0.001 0.005 0.000 0.000 0.002 0.001 0.000 0.001

96611 OTHR -0.027 0.508 -0.032 0.104 0.020 -0.040 -0.087 0.012TEMP -0.447 4.104 -0.332 -1.287 -7.108 -0.423 0.426 0.209EQEW 0.034 -0.078 -0.059 -0.013 -0.065 0.102 -0.004 -0.075EQNS 0.034 -0.291 0.032 -0.098 -0.390 -0.021 0.042 0.016EQZ 0.014 -0.303 0.015 -0.044 0.161 0.065 0.071 -0.022EQT 0.007 -0.018 -0.019 -0.002 -0.008 0.046 -0.002 -0.019

SPKW -0.006 0.045 -0.005 0.001 0.005 0.000 -0.001 0.000SPKN 0.008 -0.060 0.006 0.005 0.013 0.002 -0.002 -0.001

98614 OTHR -0.016 -0.174 -0.017 -0.124 -0.887 -0.115 -0.013 0.047TEMP -0.188 1.992 -0.146 -0.862 -10.483 -0.011 0.470 0.303EQEW 0.016 0.007 -0.009 0.034 0.114 0.346 -0.032 -0.021EQNS 0.043 -0.218 0.034 0.124 0.444 0.050 -0.039 -0.018EQZ 0.016 0.219 0.015 0.003 0.460 0.054 0.039 -0.029EQT 0.000 0.013 0.012 0.005 0.011 0.098 -0.006 -0.026

SPKW 0.001 -0.005 0.001 -0.007 -0.015 -0.003 0.002 0.001SPKN -0.001 0.019 -0.001 0.006 0.006 0.002 -0.002 -0.001

Page 132: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-105

Table 3G.1-49

Combined Forces and Moments: RB, Selected Load Combination RB-9b

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

18 Wall 6 OTHR -2.353 -7.845 -0.165 0.250 1.129 -0.003 -0.004 0.519 Below RCCV TEMP 0.673 -1.073 -0.904 0.256 1.958 -0.049 0.048 0.311 Bottom EQEW 4.233 10.965 -4.292 -0.722 -3.492 -0.050 0.149 -1.466

EQNS -4.083 -2.977 -3.250 0.947 5.610 0.025 0.009 2.083EQZ -0.369 6.045 -0.433 0.327 2.162 -0.011 0.033 0.697EQT 0.678 0.159 0.632 -0.044 -0.288 -0.014 0.027 -0.154

SPKW -0.614 0.143 -0.331 -0.051 -0.209 -0.033 0.058 -0.022SPKN -0.469 0.023 -0.061 0.014 0.100 0.011 -0.018 0.074

13 OTHR -2.021 -6.206 -0.081 -0.112 -0.405 0.008 -0.004 -0.007TEMP -0.119 -4.048 -0.748 0.603 3.352 -0.002 0.023 0.782EQEW 4.825 10.405 0.411 -0.322 -2.045 -0.014 0.031 -1.063EQNS 0.052 2.819 -3.746 0.608 3.221 -0.054 0.099 0.998EQZ -0.498 4.718 -0.323 0.569 3.088 -0.003 0.004 0.952EQT 0.561 0.147 0.719 -0.086 -0.389 -0.010 0.018 -0.179

SPKW 0.172 0.088 0.079 -0.046 -0.641 0.001 -0.002 -0.304SPKN -1.117 -0.011 -0.229 0.003 0.265 0.001 0.001 0.206

24 OTHR -1.482 -6.408 -0.468 -0.261 -1.523 -0.004 0.009 -0.524TEMP 0.118 -3.760 0.215 0.593 3.309 -0.007 -0.003 0.776EQEW 0.620 0.744 6.330 0.012 -0.156 0.097 -0.142 -0.100EQNS 2.853 8.172 -0.025 0.203 1.099 -0.007 0.001 0.037EQZ -0.464 5.193 0.150 0.595 3.234 -0.005 0.001 0.976EQT 0.080 0.012 0.993 0.002 -0.026 -0.005 0.008 -0.015

SPKW -1.094 0.022 0.063 0.015 0.350 0.003 -0.006 0.242SPKN 0.141 0.062 -0.055 -0.056 -0.696 -0.005 0.006 -0.333

19 Wall 806 OTHR -1.285 -6.640 -0.030 0.023 0.148 -0.001 -0.012 -0.045 Below RCCV TEMP 1.824 -2.260 0.204 0.332 1.720 0.091 -0.055 -0.103 Mid-Height EQEW 0.709 8.375 -5.149 -0.027 0.177 -0.138 -0.023 0.007

EQNS -2.115 -2.451 -3.494 -0.083 -0.290 -0.011 0.023 0.210EQZ -0.057 5.223 -0.089 -0.016 0.030 0.023 -0.007 0.122EQT 0.309 0.090 0.569 0.016 0.062 -0.032 -0.005 -0.003

SPKW -1.198 0.171 -0.223 -0.020 0.063 -0.026 -0.048 -0.027SPKN -0.390 0.097 0.074 -0.032 -0.026 -0.010 0.004 0.010

813 OTHR -1.669 -6.157 -0.007 0.005 0.212 -0.016 0.007 0.057TEMP 1.349 -3.956 -0.557 0.219 1.696 -0.032 0.005 0.598EQEW 2.014 9.099 0.735 0.003 0.271 -0.015 -0.012 -0.119EQNS -0.323 3.125 -4.705 0.000 -0.041 -0.034 -0.003 0.282EQZ 0.110 4.678 -0.266 0.023 0.034 0.009 0.017 0.211EQT 0.211 0.052 0.829 -0.004 0.055 -0.041 0.000 -0.022

SPKW -0.822 -0.086 0.009 0.115 0.382 0.004 -0.003 -0.006SPKN -0.797 0.137 -0.119 -0.080 -0.148 -0.002 0.009 -0.006

824 OTHR -1.902 -6.474 -0.461 0.118 0.478 -0.005 -0.002 0.136TEMP 1.162 -3.729 0.206 0.225 1.731 0.027 0.015 0.503EQEW 0.182 0.748 7.529 0.025 0.045 0.096 0.050 0.019EQNS 1.110 7.464 -0.158 0.028 0.187 -0.002 0.001 0.136EQZ 0.060 5.154 0.138 0.028 -0.004 0.006 -0.001 0.220EQT 0.019 0.009 1.110 0.005 0.006 -0.016 0.007 0.002

SPKW -0.959 0.291 0.023 -0.103 -0.181 -0.002 0.000 -0.005SPKN -0.836 -0.118 -0.010 0.153 0.380 0.008 -0.001 0.012

Page 133: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-106

Table 3G.1-49

Combined Forces and Moments: RB, Selected Load Combination RB-9b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

20 Wall 1606 OTHR 0.612 -6.051 0.010 -0.569 -3.211 0.020 0.010 0.873 Below RCCV TEMP 15.858 -3.186 0.301 -0.853 -4.075 0.108 0.100 3.080 Top EQEW 0.575 5.838 -5.328 0.080 0.660 -0.014 -0.018 -0.147

EQNS -1.409 -1.886 -3.817 -0.276 -1.323 -0.067 0.013 0.201EQZ 0.592 4.611 -0.068 -0.168 -0.903 -0.009 0.004 0.312EQT 0.120 0.072 0.709 0.007 0.023 -0.018 -0.003 0.010

SPKW -0.597 0.089 0.460 -0.038 -0.149 0.073 0.006 0.014SPKN -0.170 0.099 -0.140 -0.043 -0.073 -0.020 0.000 -0.003

1613 OTHR 0.330 -6.086 0.091 -0.581 -3.202 -0.004 -0.012 0.907TEMP 15.698 -4.645 -0.441 -1.003 -5.526 -0.010 -0.016 3.605EQEW 0.955 7.092 0.918 0.184 1.109 -0.006 0.009 -0.240EQNS -0.183 2.987 -4.708 -0.232 -1.215 -0.026 0.007 0.350EQZ 0.717 4.487 -0.182 -0.163 -0.990 -0.005 0.000 0.358EQT 0.095 -0.044 0.873 0.017 0.107 -0.027 -0.001 -0.022

SPKW -0.049 0.067 -0.063 -0.046 -0.514 -0.001 0.002 0.255SPKN -0.538 0.033 0.121 -0.030 0.062 -0.003 -0.005 -0.096

1624 OTHR 0.297 -6.198 -0.357 -0.516 -3.083 0.010 -0.017 0.895TEMP 16.701 -4.840 -0.100 -1.115 -5.550 0.000 -0.106 3.700EQEW 0.049 0.603 7.470 -0.009 0.017 0.051 -0.040 0.018EQNS 0.878 6.181 -0.226 -0.043 -0.345 -0.008 0.003 0.182EQZ 0.624 4.934 0.094 -0.163 -0.963 0.000 0.005 0.341EQT 0.003 0.006 1.124 -0.002 -0.001 -0.016 -0.006 0.002

SPKW -0.679 0.142 -0.046 -0.046 0.071 -0.002 0.005 -0.115SPKN -0.093 0.046 0.052 -0.021 -0.466 0.002 -0.012 0.224

Page 134: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-107

Table 3G.1-49

Combined Forces and Moments: RB, Selected Load Combination RB-9b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

21 Exterior Wall 20011 OTHR -1.598 -3.181 -0.213 0.325 1.409 -0.010 0.054 0.666 @ EL-11.50 TEMP 3.065 4.610 0.680 0.386 1.389 0.095 -0.105 0.549 ~-10.50m EQEW -0.564 -1.392 -9.721 -0.075 0.353 -0.043 0.146 0.140

EQNS -0.512 -1.066 0.964 1.452 5.558 -0.070 0.112 2.751EQZ 0.492 3.325 0.340 0.048 0.031 0.019 -0.049 -0.032EQT 0.013 0.018 0.755 0.037 0.114 -0.024 0.010 0.050

SPKW -1.266 0.131 0.140 0.007 0.067 -0.012 -0.003 0.051SPKN 0.271 0.091 -0.195 -0.071 -0.218 0.022 -0.012 -0.155

20023 OTHR -1.161 -1.909 -0.639 -0.089 -0.150 0.023 0.021 -0.078TEMP -0.923 -0.709 1.214 -3.198 -2.113 0.237 -0.314 0.735EQEW -0.001 5.315 -0.104 0.230 0.272 -0.071 -0.017 0.073EQNS 0.146 -0.892 -1.069 -0.799 1.249 0.157 1.180 0.822EQZ 0.002 1.060 0.425 -0.108 0.221 0.007 0.092 0.139EQT -0.084 -0.142 0.295 0.170 -0.079 -0.042 -0.284 -0.099

SPKW -0.815 -0.150 0.165 -0.091 -0.005 -0.001 0.031 0.028SPKN 0.132 0.179 -0.140 -0.037 0.006 0.011 0.022 -0.017

30010 OTHR -1.064 -2.429 -0.674 -0.052 -0.386 0.003 0.010 0.678TEMP 0.517 3.114 -0.366 1.209 4.571 -0.033 -0.002 -0.827EQEW 3.433 4.595 1.613 -0.245 -0.714 -0.024 -0.053 0.238EQNS 1.188 1.837 -3.871 0.447 2.431 -0.047 -0.047 -0.675EQZ 0.228 1.737 0.025 0.322 1.788 -0.022 -0.014 -0.417EQT 0.625 -0.156 0.933 -0.064 -0.252 -0.016 -0.030 0.085

SPKW -0.010 -0.306 0.022 -0.054 -0.390 -0.008 -0.009 0.528SPKN -1.064 0.111 -0.090 0.019 0.147 0.007 0.009 -0.060

30020 OTHR -0.967 -2.165 -0.410 -0.555 -0.827 0.022 -0.137 0.357TEMP -0.057 -1.480 -0.391 0.022 1.207 0.144 -0.026 -0.281EQEW 0.484 3.247 1.307 -0.086 0.523 0.039 0.023 -0.160EQNS 0.106 2.162 -0.478 0.057 1.102 0.015 -0.290 -0.250EQZ 0.047 0.816 0.159 -0.174 0.513 0.054 -0.113 -0.174EQT 0.115 -0.208 0.156 -0.041 -0.029 0.007 0.133 -0.019

SPKW -0.076 -0.091 -0.129 -0.062 -0.270 0.120 -0.036 0.145SPKN -0.389 -0.054 0.137 -0.340 0.025 -0.039 -0.123 -0.057

40001 OTHR -0.732 -2.380 0.369 -0.379 -1.183 -0.202 0.019 0.654TEMP -0.091 -1.142 0.059 0.040 1.330 -0.097 0.105 -0.322EQEW -0.010 3.553 0.797 0.338 1.289 0.004 0.411 -0.235EQNS 0.368 1.941 -0.759 -0.170 0.567 -0.075 0.005 -0.162EQZ 0.049 0.841 -0.148 -0.182 0.520 -0.053 0.112 -0.169EQT -0.012 0.041 0.255 0.140 0.015 0.021 0.069 0.056

SPKW -0.373 -0.053 -0.139 -0.267 0.046 0.035 0.093 -0.047SPKN -0.109 -0.134 0.125 -0.104 -0.392 -0.158 0.028 0.185

40011 OTHR -1.052 -3.217 -0.202 -0.187 -1.144 0.000 0.003 1.459TEMP 1.307 3.629 0.056 1.243 4.651 0.011 0.014 -0.842EQEW -0.266 -0.415 4.311 0.014 -0.081 0.083 0.119 -0.014EQNS 3.316 3.611 -0.077 0.120 1.040 0.010 0.003 -0.191EQZ 0.328 2.098 0.008 0.394 2.089 0.010 0.001 -0.500EQT -0.018 -0.017 0.904 0.007 0.004 -0.008 -0.008 -0.009

SPKW -0.734 0.200 0.003 0.017 0.241 -0.002 -0.003 -0.101SPKN -0.185 -0.364 -0.022 -0.041 -0.414 0.003 0.004 0.598

Page 135: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-108

Table 3G.1-49

Combined Forces and Moments: RB, Selected Load Combination RB-9b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

22 Exterior Wall 22011 OTHR 0.397 -3.617 1.182 -0.015 0.160 0.029 -0.026 0.293 @ EL-4.65 TEMP 5.013 4.358 -0.217 -0.171 -0.224 0.069 0.046 0.082 ~-6.60m EQEW 0.539 3.319 -6.600 0.042 -0.014 -0.019 0.032 0.006

EQNS -0.376 -6.628 2.328 0.102 0.902 0.147 -0.031 0.818EQZ -0.178 2.690 -0.603 0.011 -0.021 0.002 0.022 -0.021EQT 0.014 -0.368 0.768 -0.006 0.001 -0.020 0.001 -0.003

SPKW -0.742 0.207 -0.152 -0.011 -0.013 0.005 -0.003 0.000SPKN 0.163 0.149 0.017 0.026 0.046 -0.011 -0.001 0.074

22023 OTHR -0.021 -2.030 0.122 0.193 0.070 -0.096 0.023 0.021TEMP 1.628 -2.769 -1.390 0.748 -0.043 -0.218 -0.198 -0.044EQEW 0.113 5.590 -3.163 0.088 -0.083 0.066 -0.177 -0.075EQNS -0.012 -4.348 -1.292 -0.263 0.155 -0.135 0.325 0.120EQZ -0.004 1.365 0.331 0.115 0.002 0.013 -0.073 -0.012EQT -0.056 0.250 0.613 0.017 -0.006 -0.006 -0.030 -0.017

SPKW -0.349 -0.139 0.634 0.025 0.008 -0.008 0.003 -0.007SPKN 0.018 0.099 0.148 0.087 0.005 -0.005 -0.035 0.003

32010 OTHR 0.325 -2.092 -0.194 -0.041 -0.048 0.008 0.000 -0.165TEMP 16.724 7.722 -0.080 -2.893 -3.002 -0.001 -0.014 0.024EQEW 0.672 4.353 1.027 -0.012 -0.086 -0.013 0.000 0.204EQNS -0.882 1.251 -4.092 -0.010 -0.012 -0.003 -0.001 -0.103EQZ 0.012 1.478 -0.046 -0.001 -0.033 -0.002 0.000 0.007EQT 0.239 -0.017 0.999 -0.001 0.007 -0.018 0.002 0.009

SPKW -0.030 -0.130 0.000 -0.024 -0.187 -0.002 0.000 0.012SPKN -0.351 0.033 0.056 -0.009 0.000 0.001 0.000 0.002

32020 OTHR 0.019 -2.217 0.018 0.043 -0.038 -0.054 0.045 0.021TEMP 0.652 4.868 2.520 0.104 -1.860 -0.395 1.226 0.199EQEW 0.056 3.984 2.778 0.123 -0.061 0.010 0.091 0.017EQNS -0.043 3.040 -1.628 0.150 0.029 0.005 0.127 -0.005EQZ 0.040 1.566 0.054 0.052 0.002 0.007 0.047 0.007EQT 0.006 -0.200 0.867 -0.003 -0.006 -0.011 -0.004 0.011

SPKW -0.008 0.003 -0.115 0.017 -0.074 -0.114 -0.072 0.022SPKN -0.208 -0.061 0.239 -0.178 -0.039 0.045 -0.042 0.004

42001 OTHR 0.032 -2.286 -0.157 0.081 -0.062 0.063 -0.031 0.050TEMP 2.721 3.799 2.647 0.131 -1.563 -0.051 -0.998 -0.239EQEW -0.010 3.742 2.914 0.166 0.068 -0.011 -0.064 -0.030EQNS 0.119 3.229 -1.627 0.200 -0.013 -0.015 -0.074 -0.006EQZ 0.049 1.628 0.032 0.067 0.004 -0.002 -0.034 0.002EQT -0.021 -0.223 0.861 -0.003 0.014 -0.013 0.003 -0.013

SPKW -0.142 -0.019 -0.232 -0.098 -0.026 -0.045 0.006 0.003SPKN -0.038 -0.035 0.108 -0.030 -0.065 0.137 0.139 0.023

42011 OTHR -0.115 -2.614 -0.196 -0.039 -0.067 -0.006 0.009 -0.164TEMP 14.114 5.515 0.239 -3.165 -3.047 0.073 0.090 0.170EQEW 0.192 -0.627 5.808 0.041 0.003 0.018 0.036 -0.014EQNS 0.725 3.106 0.252 0.005 -0.066 0.008 0.000 0.083EQZ 0.251 1.839 0.087 0.001 -0.025 0.003 -0.002 0.004EQT 0.054 -0.059 1.202 0.006 0.001 -0.011 0.005 -0.002

SPKW -0.228 0.083 0.028 -0.016 0.002 -0.001 -0.002 -0.001SPKN -0.079 -0.176 0.022 -0.022 -0.152 0.015 0.025 0.007

Page 136: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-109

Table 3G.1-49

Combined Forces and Moments: RB, Selected Load Combination RB-9b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

23 Exterior Wall 24211 OTHR 0.122 -2.095 0.279 -0.037 -0.256 -0.001 0.007 -0.119 @ EL22.50 TEMP 5.670 5.757 -0.305 0.173 0.680 0.046 -0.169 1.421 ~24.60m EQEW 0.053 0.269 -5.636 -0.006 0.032 0.014 0.006 0.033

EQNS -0.997 -4.957 0.239 -0.188 -0.707 -0.045 0.002 0.879EQZ 0.133 1.429 -0.116 0.085 0.587 -0.013 0.004 0.143EQT -0.019 -0.086 0.927 0.000 -0.003 -0.036 -0.006 0.019

SPKW -0.050 -0.052 -0.001 0.002 0.010 -0.001 0.000 -0.002SPKN -0.021 0.077 -0.029 -0.003 -0.003 0.000 -0.001 0.010

24224 OTHR -0.034 -1.889 0.391 0.128 0.045 -0.043 -0.084 0.031TEMP 1.023 5.452 -3.719 1.968 0.070 -0.635 -1.559 -0.317EQEW 0.330 5.457 -4.142 -0.306 -0.138 -0.007 0.293 -0.060EQNS -0.236 -6.918 0.356 0.662 0.954 -0.281 0.148 1.032EQZ 0.047 1.075 -0.329 -0.021 0.047 0.060 0.054 0.030EQT -0.037 0.369 0.852 -0.088 -0.215 0.035 -0.101 -0.272

SPKW 0.003 0.031 -0.008 0.004 -0.006 0.002 -0.011 -0.008SPKN -0.004 -0.084 0.070 0.027 0.052 -0.004 0.032 0.070

34210 OTHR 0.489 -0.836 -0.073 -0.008 0.041 0.008 0.000 0.002TEMP 21.820 5.544 -0.576 -2.904 -2.819 0.035 -0.002 -0.128EQEW -0.158 1.713 0.814 0.068 0.380 -0.007 -0.004 0.144EQNS -1.180 0.230 -3.572 -0.029 -0.186 -0.009 0.011 -0.087EQZ 0.008 0.651 -0.050 -0.005 0.004 -0.001 -0.004 -0.013EQT 0.188 -0.023 1.059 0.003 0.019 -0.008 0.000 0.008

SPKW 0.017 -0.031 0.003 -0.002 -0.020 0.001 0.000 -0.008SPKN -0.088 -0.012 -0.004 -0.001 0.000 -0.001 0.000 0.000

34220 OTHR 0.097 -1.440 -0.100 0.077 0.005 -0.022 0.057 0.002TEMP 2.793 5.435 4.410 2.628 -1.178 -0.711 2.570 0.094EQEW -0.136 1.761 2.503 0.147 0.144 0.006 0.041 -0.017EQNS -0.063 1.557 -1.273 -0.005 0.005 0.001 0.002 -0.008EQZ -0.039 0.802 0.142 -0.038 0.021 0.004 -0.032 0.000EQT 0.028 -0.039 0.879 0.044 0.008 -0.021 0.015 0.020

SPKW 0.002 0.022 0.009 0.003 -0.001 -0.002 0.002 0.001SPKN -0.001 0.032 -0.018 -0.001 -0.001 0.002 -0.001 -0.001

44201 OTHR 0.037 -1.558 -0.250 0.076 0.019 0.009 -0.060 -0.010TEMP 1.791 6.589 0.558 2.230 -1.491 0.539 -2.966 0.044EQEW 0.125 1.808 3.005 0.096 0.015 0.058 -0.091 0.023EQNS -0.115 1.861 -1.070 0.020 0.037 -0.013 0.025 -0.016EQZ -0.023 0.949 0.280 -0.032 0.012 -0.013 0.037 0.001EQT 0.043 -0.060 0.877 0.026 0.002 -0.004 -0.037 -0.018

SPKW 0.003 0.019 0.019 0.003 0.001 -0.001 -0.002 -0.001SPKN 0.001 0.033 -0.006 -0.001 -0.002 0.000 0.001 0.000

Page 137: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-110

Table 3G.1-49

Combined Forces and Moments: RB, Selected Load Combination RB-9b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

24 Basemat 90140 OTHR -2.621 -2.608 0.150 -1.781 -0.964 1.232 -2.636 2.380 @ Wall TEMP 0.676 1.652 1.723 -0.528 -1.081 -0.960 -1.149 0.173 Below RCCV EQEW 0.196 4.886 3.019 0.180 3.227 -2.914 3.394 -5.502

EQNS 0.225 1.227 -1.955 -7.003 -0.836 -0.227 -2.968 1.213EQZ -0.090 0.743 0.430 1.673 1.226 -2.811 1.354 -1.582EQT 0.937 -0.464 1.033 0.685 0.000 -0.235 0.304 0.110

SPKW 0.009 -1.771 0.006 -0.086 -0.025 -0.084 -0.010 -0.177SPKN -2.571 0.180 -0.096 -0.092 -0.006 0.045 -0.049 -0.015

90182 OTHR -1.774 -2.330 -0.253 -0.472 -0.855 0.199 0.058 1.251TEMP 2.064 0.701 0.416 -0.892 -5.505 0.237 -0.094 3.815EQEW 5.515 0.685 0.434 0.172 -0.757 -0.215 -0.079 -3.641EQNS 3.258 0.671 -1.457 -1.578 -0.618 1.400 -1.589 0.692EQZ 0.637 0.337 0.029 -0.857 1.734 0.351 -0.170 -0.448EQT 1.037 0.072 0.561 0.024 0.277 -0.324 0.345 -0.271

SPKW 0.044 -1.862 -0.133 -0.170 -0.632 0.000 0.024 -0.391SPKN -2.008 0.091 0.145 0.031 -0.224 0.092 -0.099 0.166

90111 OTHR -3.777 -1.553 -0.014 -1.241 -0.352 -0.268 0.606 0.289TEMP 0.729 2.934 -0.023 -5.319 -1.147 0.110 3.683 0.149EQEW -0.237 0.778 -0.620 -0.499 0.380 1.210 -0.063 -2.796EQNS 1.123 5.945 -0.260 0.284 -1.147 0.352 -1.960 -0.122EQZ 0.384 0.879 -0.046 1.649 -0.996 0.430 -0.499 -0.097EQT -0.054 0.036 -0.707 -0.081 0.081 0.402 0.011 -0.500

SPKW 0.145 -1.725 0.035 -0.232 -0.059 0.003 0.202 -0.017SPKN -1.936 -0.068 -0.034 -0.720 -0.158 0.022 -0.413 0.014

25 Slab 93140 OTHR -0.526 0.308 0.580 0.082 0.104 -0.107 0.119 -0.097 EL4.65m TEMP -0.316 3.040 5.795 -0.766 -0.578 0.430 -0.204 0.176 @ RCCV EQEW 0.740 -0.260 -0.201 0.173 0.132 -0.099 0.050 -0.041

EQNS -2.210 0.336 -0.123 -0.395 -0.241 0.172 -0.091 0.120EQZ 0.063 -0.102 -0.056 -0.091 -0.107 0.070 -0.132 0.109EQT 0.194 -0.086 0.031 0.019 0.013 -0.011 0.006 -0.006

SPKW 0.062 -0.921 0.092 -0.029 -0.029 0.019 -0.015 0.002SPKN -0.322 0.121 -0.031 -0.002 -0.004 0.002 0.000 0.003

93182 OTHR 0.477 -0.249 -0.007 -0.020 0.037 0.010 0.000 0.071TEMP 6.154 -5.153 -1.520 -0.480 -2.502 -0.114 0.105 1.898EQEW -0.084 -0.021 -0.148 0.083 0.458 0.014 -0.022 -0.413EQNS -0.562 -0.143 -0.464 -0.087 -0.334 -0.010 0.019 0.309EQZ -0.101 -0.089 -0.021 -0.034 -0.118 -0.007 0.009 0.174EQT 0.077 0.030 -0.054 0.008 0.041 0.000 -0.002 -0.037

SPKW -0.163 -0.980 -0.027 -0.030 -0.154 -0.010 0.008 0.163SPKN -0.266 -0.030 0.062 0.003 0.012 0.001 -0.001 -0.011

93111 OTHR -0.056 0.473 -0.086 0.033 -0.022 -0.002 0.046 -0.005TEMP -4.497 6.824 -0.447 -2.369 -0.414 -0.066 1.593 0.001EQEW 0.141 0.032 -0.216 0.000 -0.009 -0.025 0.011 0.004EQNS -0.075 -0.104 0.020 0.080 0.000 0.008 -0.054 0.002EQZ -0.058 -0.120 0.023 -0.136 -0.034 -0.005 0.160 0.003EQT 0.008 0.005 -0.006 -0.001 -0.002 -0.002 0.003 0.000

SPKW 0.019 -0.225 0.024 0.019 0.004 0.001 -0.014 0.000SPKN -0.936 -0.149 0.125 -0.149 -0.027 -0.007 0.131 -0.001

Page 138: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-111

Table 3G.1-49

Combined Forces and Moments: RB, Selected Load Combination RB-9b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

26 Slab 96144 OTHR 0.035 0.552 0.871 0.062 0.079 -0.072 0.122 -0.103 EL17.5m TEMP 0.733 5.828 8.140 -0.230 -0.175 0.172 -0.041 0.066 @ RCCV EQEW -0.135 -0.266 -0.205 0.151 0.125 -0.096 0.048 -0.018

EQNS -0.484 0.162 0.142 -0.313 -0.251 0.168 -0.065 0.077EQZ 0.239 -0.170 -0.124 -0.056 -0.058 0.040 -0.097 0.074EQT 0.137 -0.045 -0.003 0.013 0.011 -0.007 0.003 -0.001

SPKW 0.019 -0.035 0.001 -0.003 -0.002 0.001 -0.001 -0.001SPKN -0.059 0.032 -0.002 0.002 -0.001 -0.001 0.001 -0.001

96186 OTHR 0.981 -0.365 -0.024 -0.030 -0.097 -0.003 0.004 0.039TEMP 9.998 -4.559 -2.164 -0.149 -0.672 -0.057 0.023 0.636EQEW -0.434 0.196 -0.261 0.112 0.623 0.022 -0.033 -0.498EQNS -0.592 -0.131 -0.041 -0.074 -0.340 -0.010 0.025 0.271EQZ -0.239 0.093 0.038 -0.003 -0.002 -0.005 0.006 0.052EQT 0.071 0.033 -0.070 0.005 0.027 -0.001 -0.002 -0.023

SPKW 0.042 0.013 -0.004 -0.009 -0.044 -0.002 0.002 0.035SPKN -0.073 -0.028 0.033 0.001 0.004 0.001 0.000 -0.003

96113 OTHR -0.374 1.469 -0.196 -0.067 -0.005 -0.007 0.176 0.028TEMP -9.167 5.153 -1.808 -4.376 -2.755 -0.236 1.009 -0.100EQEW 0.084 -0.188 0.581 0.078 0.029 0.003 -0.024 0.039EQNS 0.214 -1.016 -0.015 0.456 -0.039 -0.008 -0.426 -0.064EQZ 0.067 -0.427 0.079 0.132 -0.032 -0.016 -0.157 -0.020EQT 0.005 -0.010 0.225 0.009 0.009 0.009 0.004 0.012

SPKW -0.036 -0.094 -0.005 0.036 0.010 0.002 -0.023 -0.002SPKN 0.033 0.096 0.008 -0.101 -0.022 -0.003 0.072 0.006

27 Slab 98472 OTHR 0.581 0.501 -0.128 0.032 0.044 -0.039 0.183 -0.184 EL27.0m TEMP -3.634 -3.174 5.923 -1.728 -1.314 -0.297 0.535 -0.686 @ RCCV EQEW 0.134 -0.988 -0.434 -0.014 -0.032 0.005 -0.041 0.047

EQNS 1.002 -0.251 -0.205 -0.189 -0.233 0.105 -0.091 0.122EQZ -0.341 0.011 -0.110 -0.186 -0.285 0.206 -0.230 0.258EQT -0.117 0.108 0.040 0.021 0.023 -0.012 0.013 -0.011

SPKW 0.034 -0.014 -0.016 -0.005 -0.006 0.003 -0.005 0.003SPKN -0.072 0.028 0.016 0.001 0.000 0.000 0.001 0.000

98514 OTHR 0.352 0.322 0.167 -0.033 -0.281 0.005 0.003 -0.015TEMP -2.861 -2.861 -1.575 -1.927 -1.717 -0.031 0.065 -0.722EQEW -0.426 0.174 -0.383 0.063 0.485 -0.007 -0.011 -0.326EQNS -0.239 -0.147 -0.193 -0.069 -0.240 0.005 0.008 0.255EQZ 0.034 -0.088 -0.059 -0.037 -0.115 -0.024 0.000 0.171EQT 0.090 0.001 -0.036 0.005 0.021 -0.003 -0.002 -0.021

SPKW 0.026 -0.006 -0.006 -0.006 -0.029 -0.001 0.000 0.024SPKN -0.021 -0.005 0.023 0.001 -0.001 0.001 0.000 0.000

98424 OTHR -0.166 1.136 -0.076 -0.167 -0.056 -0.110 -0.361 -0.041TEMP -6.661 -7.075 -2.107 -3.864 -0.717 0.116 -5.743 0.001EQEW 0.236 -0.165 -5.772 0.064 0.050 -0.180 0.048 0.098EQNS 0.935 -1.153 0.103 0.127 -0.148 0.099 1.044 0.050EQZ 0.218 -0.319 -0.008 -0.719 -0.214 0.047 1.004 0.064EQT 0.030 0.005 -0.994 0.012 0.015 0.025 0.001 0.023

SPKW -0.001 0.003 -0.002 0.010 0.013 -0.003 -0.032 -0.002SPKN 0.001 0.001 0.002 -0.016 -0.020 0.003 0.049 0.002

Page 139: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-112

Table 3G.1-49

Combined Forces and Moments: RB, Selected Load Combination RB-9b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

28 Pool Girder 123054 OTHR 0.197 0.174 0.740 0.060 0.032 -0.086 -0.050 -0.048 @ Storage Pool TEMP 3.582 1.292 2.390 3.612 2.453 -0.343 0.113 0.316

EQEW 0.346 0.142 0.151 0.329 0.157 -0.068 0.025 0.209EQNS -0.161 1.563 -0.510 -0.070 -0.003 0.024 -0.010 0.023EQZ -0.418 2.390 0.732 -0.048 -0.028 -0.052 0.007 0.024EQT 0.059 -0.205 -0.022 0.058 0.026 -0.010 0.002 0.018

SPKW 0.007 -0.019 -0.009 0.003 0.002 -0.001 0.000 0.001SPKN -0.023 0.036 -0.006 -0.003 -0.002 0.001 -0.001 -0.001

123154 OTHR 0.293 -0.108 0.673 0.071 0.030 -0.076 -0.058 0.022TEMP 3.638 3.573 -2.903 3.370 1.304 -0.375 -0.255 0.413EQEW -0.375 0.352 0.698 0.191 -0.067 -0.089 0.037 -0.008EQNS -1.233 0.501 -0.406 -0.103 -0.035 0.015 -0.033 0.003EQZ -1.388 0.436 0.560 -0.072 -0.034 -0.096 -0.022 -0.007EQT -0.105 -0.124 0.027 0.047 0.002 -0.011 0.003 0.000

SPKW -0.008 -0.007 -0.005 0.002 0.000 -0.001 0.000 0.000SPKN -0.017 0.010 -0.008 -0.003 -0.001 0.002 0.000 0.000

29 Pool Girder 123062 OTHR 0.383 -0.774 -1.037 -0.027 0.087 0.006 0.054 0.079 @ Cavity TEMP 0.502 0.112 -1.366 3.839 3.894 0.009 0.033 0.189

EQEW -0.434 0.924 0.205 0.076 0.040 -0.040 -0.059 0.058EQNS -0.152 -0.112 0.300 -0.072 -0.019 -0.024 0.025 0.017EQZ -0.465 -0.598 -0.336 0.024 0.163 -0.031 0.000 0.087EQT 0.081 0.002 -0.067 -0.005 -0.006 -0.004 0.004 0.001

SPKW 0.015 0.000 0.000 0.000 0.001 0.000 -0.001 0.000SPKN -0.020 0.001 0.002 0.000 0.000 0.000 0.000 -0.001

123162 OTHR 0.957 -0.282 -0.804 0.004 -0.009 -0.001 0.005 -0.019TEMP 1.956 0.408 -1.831 3.805 2.820 0.092 -0.289 0.644EQEW -0.560 0.907 0.222 0.102 -0.017 0.008 -0.115 -0.018EQNS -0.923 -0.130 0.184 -0.152 -0.036 -0.019 0.056 0.002EQZ 1.265 -0.170 -0.200 0.073 0.059 -0.027 -0.090 -0.039EQT 0.120 0.003 -0.101 -0.010 -0.009 -0.007 0.010 0.003

SPKW -0.022 -0.002 0.002 0.000 0.000 0.001 0.000 0.000SPKN 0.006 0.001 -0.001 0.000 0.000 0.000 0.000 0.000

30 Pool Girder 123067 OTHR 0.206 1.044 -0.444 -0.020 -0.076 0.006 -0.049 -0.052 @ Fuel Pool TEMP -2.007 -7.205 -2.944 3.600 3.532 -0.636 0.318 0.813

EQEW 0.073 0.122 0.288 0.162 0.144 0.059 0.023 0.256EQNS -0.644 1.895 0.900 0.094 0.043 0.024 0.036 0.041EQZ -0.503 2.667 -1.237 -0.015 0.047 0.078 0.118 0.054EQT 0.036 0.061 -0.084 -0.040 -0.046 -0.019 -0.012 -0.036

SPKW 0.005 -0.006 0.018 0.004 0.003 0.002 0.001 0.003SPKN -0.014 0.025 0.002 -0.005 -0.002 -0.002 0.000 -0.002

123167 OTHR -0.411 0.238 -0.457 0.002 -0.029 0.026 -0.059 0.003TEMP -0.584 -2.758 -3.092 2.757 1.832 -0.245 -0.178 0.615EQEW -0.405 0.440 -0.305 0.042 -0.117 0.066 -0.051 -0.018EQNS -1.125 0.351 1.205 0.031 0.033 0.004 0.006 0.003EQZ -0.679 0.641 -1.015 -0.040 -0.022 -0.011 0.032 -0.008EQT 0.189 0.062 -0.033 -0.022 0.004 -0.010 -0.002 -0.003

SPKW -0.012 -0.001 0.015 0.001 0.000 0.001 0.000 0.000SPKN 0.009 0.007 0.001 -0.004 0.000 -0.001 0.001 0.000

Page 140: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-113

Table 3G.1-49

Combined Forces and Moments: RB, Selected Load Combination RB-9b (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

31 MS Tunnel 150122 OTHR 0.036 -0.262 0.346 0.027 0.109 0.018 -0.008 -0.058 Wall and Slab TEMP 0.316 -0.714 1.798 0.940 3.102 0.011 -0.551 0.426

EQEW -0.002 0.117 -0.022 -0.031 -0.114 -0.044 0.008 0.254EQNS -0.011 0.177 -0.048 -0.038 -0.144 -0.009 0.008 -0.030EQZ 0.026 -0.083 -0.250 -0.017 -0.020 -0.016 0.010 0.049EQT -0.005 0.032 -0.014 -0.013 -0.015 -0.020 0.001 0.070

SPKW 0.002 -0.012 0.001 0.001 0.002 -0.001 0.000 0.001SPKN -0.001 0.005 0.000 0.000 0.002 0.001 0.000 0.001

96611 OTHR -0.035 0.589 -0.038 0.089 -0.014 -0.044 -0.082 0.014TEMP -0.557 4.665 -0.414 -1.253 -7.115 -0.406 0.420 0.206EQEW 0.034 -0.078 -0.059 -0.013 -0.065 0.102 -0.004 -0.075EQNS 0.034 -0.291 0.032 -0.098 -0.390 -0.021 0.042 0.016EQZ 0.014 -0.303 0.015 -0.044 0.161 0.065 0.071 -0.022EQT 0.007 -0.018 -0.019 -0.002 -0.008 0.046 -0.002 -0.019

SPKW -0.006 0.045 -0.005 0.001 0.005 0.000 -0.001 0.000SPKN 0.008 -0.060 0.006 0.005 0.013 0.002 -0.002 -0.001

98614 OTHR -0.014 -0.227 -0.016 -0.153 -0.938 -0.125 -0.004 0.050TEMP -0.043 0.730 -0.044 -0.852 -9.932 -0.019 0.460 0.307EQEW 0.016 0.007 -0.009 0.034 0.114 0.346 -0.032 -0.021EQNS 0.043 -0.218 0.034 0.124 0.444 0.050 -0.039 -0.018EQZ 0.016 0.219 0.015 0.003 0.460 0.054 0.039 -0.029EQT 0.000 0.013 0.012 0.005 0.011 0.098 -0.006 -0.026

SPKW 0.001 -0.005 0.001 -0.007 -0.015 -0.003 0.002 0.001SPKN -0.001 0.019 -0.001 0.006 0.006 0.002 -0.002 -0.001

Page 141: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-114

Table 3G.1-50

Sectional Thicknesses and Rebar Ratios of RB Used in the Evaluation Primary Reinforcement

Direction 1*1 Direction2*1 Shear Tie

Location Element ID

Thickness (m) Position

Arrangement*2 Ratio (%) Arrangement*2 Ratio

(%) Arrangement Ratio (%)

18 Wall Below RCCV

Inside 2-#18@300 0.860 3-#[email protected]º 1.297

Bottom

6 13 24

2.0 Outside 3-#18@300 1.290 3-#[email protected]º

+1-#[email protected]º1.729

#[email protected]ºx300 0.721

19 Wall Below Below RCCV

Inside 2-#18@300 0.860 3-#[email protected]º 1.297

Mid-Height

806 813 824

2.0 Outside 3-#18@300 1.290 3-#[email protected]º 1.297

#[email protected]ºx600 0.270

20 Wall Below RCCV

Inside 2-#18@300 0.860 3-#[email protected]º 1.297

Top

1606 1613 1624

2.0 Outside 3-#18@300 1.290 3-#[email protected]º

+1-#[email protected]º1.513

#[email protected]ºx300 0.540

21 Exterior Wall @ EL-11.50

Inside 4-#11@200 +1-#11@400

1.132 5-#11@200 1.258

~-10.50m

20011 20023 2.0

Outside 4-#11@200 +1-#11@400

1.132 5-#11@200 1.258 #7@400x200 0.484

Inside 3-#11@200 +1-#11@400

0.881 4-#11@200 1.006

30010 30020 2.0

Outside 3-#11@200 +1-#11@400

0.881 4-#11@200 1.006 #6@400x400 0.177

Inside 3-#11@200 0.755 3-#11@200 0.755

40001 40011 2.0

Outside 3-#11@200 0.755 3-#11@200 0.755 #6@400x400 0.177

22 Exterior Wall @ EL4.65

Inside 3-#11@200 +1-#11@400

1.174 4-#11@200 (+1-#11@200)

1.677

~6.60m

22011 1.5 Outside 3-#11@200

+1-#[email protected] 4-#11@200

(+1-#11@200)1.677

#7@400x200 0.484

Inside 3-#11@200 +1-#11@400

1.174 4-#11@200 1.342

22023 1.5 Outside 3-#11@200

+1-#[email protected] 4-#11@200 1.342

#7@400x200 0.484

Inside 3-#11@200 1.006 3-#11@200 1.006

32010 1.5 Outside 3-#11@200

(+2-#11@200)1.677 3-#11@200

(+2-#11@200)1.677

#6@400x400 0.177

Inside 3-#11@200 1.006 3-#11@200 1.006

32020 1.5 Outside 3-#11@200 1.006 3-#11@200 1.006

#6@400x400 0.177

Inside 3-#11@200 1.006 3-#11@200 1.006

42001 1.5 Outside 4-#11@200 1.342 4-#11@200 1.342

#7@400x400 0.242

Note *1: Wall Below RCCV Direction1 : Hoop, Direction2 : Vertical Exterior Wall Direction1 : Horizontal, Direction2 : Vertical Slab/MS Tunnel Slab Direction1 : N-S, Direction2 : E-W Pool Girder Direction1 : Horizontal, Direction2 : Vertical MS Tunnel Wall Direction1 : Horizontal, Direction2 : Vertical Basemat Direction1 : Top; Radial; Bottom; N-S,Direction2 : Top; Circumferential; Bottom; E-W Note *2: Rebar in parentheses indicates additional bars locally required.

Page 142: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-115

Table 3G.1-50 Sectional Thicknesses and Rebar Ratios of RB Used in the Evaluation (Continued)

Primary Reinforcement Direction 1*1 Direction2*1

Shear Tie Location Element

ID Thickness

(m) Position Arrangement*2 Ratio

(%) Arrangement*2 Ratio (%) Arrangement Ratio

(%)

22 Exterior Wall @ EL4.65

Inside 3-#11@200 1.006 3-#11@200 1.006

~6.60m

42011 1.5 Outside 4-#11@200

(+1-#11@200)1.677 4-#11@200

(+1-#11@200)1.677

#7@400x400 0.242

23 Exterior Wall @ EL22.50

Inside 3-#11@200 +1-#11@400

1.174 4-#11@200 1.342

~24.60m

24211 1.5 Outside 3-#11@200

+1-#[email protected] 4-#11@200 1.342

#7@400x200 0.484

Inside 3-#11@200 +1-#11@400

1.174 4-#11@200 1.342

24224 1.5 Outside 3-#11@200

+1-#[email protected] 4-#11@200 1.342

#7@200x200 0.968

Inside 3-#11@200 1.006 3-#11@200 1.006

34210 1.5 Outside 3-#11@200

(+2-#11@200)1.677 3-#11@200

(+2-#11@200)1.677

#6@400x400 0.177

Inside 3-#11@200 1.006 3-#11@200 1.006

34220 1.5 Outside 3-#11@200 1.006 3-#11@200 1.006

#6@200x200 0.710

Inside 3-#11@200 1.006 3-#11@200 1.006

44201 1.5 Outside 4-#11@200 1.342 4-#11@200 1.342

#7@200x200 0.968

24 Basemat @ Wall

Top 4-#[email protected]° 0.321 2-#11@200 +2-#11@400

0.377

Below RCCV

90140 90182 90111

4.0 Bottom 5-#11@200 0.629 5-#11@200 0.629

#[email protected] 0.801

25 Slab EL4.65m

Top 2-#11@200 1.006 2-#11@200 1.006

@ RCCV

93140 93182 93111

1.0 Bottom PLATE t=16 - PLATE t=16 -

#5@200x200 0.500

26 Slab EL17.5m

Top 2-#11@200 1.006 2-#11@200 1.006

@ RCCV

96144 96186 1.0

Bottom PLATE t=16 - PLATE t=16 - #5@200x200 0.500

Top 2-#11@200 0.629 2-#11@200 0.629

96113 1.6 Bottom 3-#11@200 0.944 3-#11@200 0.944

#5@200x200 0.500

Note *1: Wall Below RCCV Direction1 : Hoop, Direction2 : Vertical Exterior Wall Direction1 : Horizontal, Direction2 : Vertical Slab/MS Tunnel Slab Direction1 : N-S, Direction2 : E-W Pool Girder Direction1 : Horizontal, Direction2 : Vertical MS Tunnel Wall Direction1 : Horizontal, Direction2 : Vertical Basemat Direction1 : Top; Radial; Bottom; N-S, Direction2 : Top; Circumferential; Bottom; E-W Note *2: Rebar in parentheses indicates additional bars locally required.

Page 143: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-116

Table 3G.1-50 Sectional Thicknesses and Rebar Ratios of RB Used in the Evaluation (Continued)

Primary Reinforcement Direction 1*1 Direction2*1

Shear Tie Location Element

ID Thickness

(m) Position Arrangement*2 Ratio

(%) Arrangement*2 Ratio (%) Arrangement Ratio

(%)

27 Slab EL27.0m

Top 3-#11@200 1.510 3-#11@200 1.510

@ RCCV

98472 98514 1.0

Bottom PLATE t=25 - PLATE t=25 - #5@200x200 0.500

Top 4-#11@200 0.839 4-#11@200 0.839

98424 2.4 Bottom 4-#11@200 0.839 4-#11@200 0.839

#5@200x200 0.500

28 Pool Girder @ Storage Pool

Inside 3-#11@200 0.944 3-#11@200 (+1#11@200)

1.258

12354 1.6 Outside 3-#11@200 0.944 3-#11@200 0.944

#7@200x200 0.968

Inside 3-#11@200 0.944 3-#11@200 0.944

12315 1.6 Outside 3-#11@200 0.944 3-#11@200 0.944

#7@400x200 0.484

29 Pool Girder @ Cavity

Inside 3-#11@200 0.944 2-#11@200 0.629

123062 123162 1.6

Outside 2-#11@200 0.629 2-#11@200 0.629 #7@400x400 0.242

30 Pool Girder @ Fuel Pool

Inside 3-#11@200 0.944 3-#11@200 (+1#11@200)

1.258

123067 1.6 Outside 3-#11@200 0.944 3-#11@200 0.944

#7@200x200 0.968

Inside 3-#11@200 0.944 3-#11@200 0.944

123167 1.6 Outside 3-#11@200 0.944 3-#11@200 0.944

#7@400x200 0.484

31 MS Tunnel Wall and Slab

Inside 2-#11@200 0.774 2-#11@200 0.774

150122 1.3 Outside 2-#11@200

+1-#[email protected] 2-#11@200

+1-#[email protected]

#6@400x400 0.177

Top 2-#11@200 0.629 2-#11@200 0.629

96611 1.6 Bottom 3-#11@200 0.944 3-#11@200 0.944

#5@200x200 0.500

Top 4-#11@200 0.839 4-#11@200 0.839

98614 2.4 Bottom 3-#11@200 0.629 3-#11@200 0.629

#5@200x200 0.500

Note *1: Wall Below RCCV Direction1 : Hoop, Direction2 : Vertical Exterior Wall Direction1 : Horizontal, Direction2 : Vertical Slab/MS Tunnel Slab Direction1 : N-S, Direction2 : E-W Pool Girder Direction1 : Horizontal, Direction2 : Vertical MS Tunnel Wall Direction1 : Horizontal, Direction2 : Vertical Basemat Direction1 : Top; Radial; Bottom; N-S, Direction2 : Top: Circumferential; Bottom;E-W Note *2: Rebar in parentheses indicates additional bars locally required.

Page 144: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-117

Table 3G.1-51

Rebar and Concrete Stresses of RB: Selected Load Combination RB-4

In/Top Out/Bottom In/Top Out/Bottom18 Wall 6 -3.8 -29.3 3.0 3.2 -25.2 -21.5 372.2 Below RCCV 13 -4.3 -29.3 0.9 1.1 -28.2 -24.2 372.2 Bottom 24 -5.5 -29.3 3.4 3.3 -34.4 -22.5 372.219 Wall Below 806 -4.6 -29.3 2.6 2.9 -17.9 -28.1 372.2 Below RCCV 813 -5.1 -29.3 -0.8 0.7 -20.3 -31.3 372.2 Mid-Height 824 -6.1 -29.3 -1.0 -0.9 -21.1 -35.9 372.220 Wall 1606 -5.9 -29.3 9.9 14.7 -34.2 -12.4 372.2 Below RCCV 1613 -8.2 -29.3 13.4 16.9 -45.5 -8.6 372.2 Top 1624 -9.3 -29.3 15.6 23.4 -51.4 -11.0 372.221 Exterior Wall 20011 -1.4 -29.3 1.8 0.3 4.4 -6.1 372.2 @ EL-11.50 20023 -5.3 -29.1 -17.4 18.8 -13.1 12.0 370.5 ~-10.50m 30010 -1.8 -29.3 0.2 -9.5 0.1 -3.6 372.2

30020 -2.1 -29.3 -7.5 1.4 -4.7 -12.2 372.240001 -1.8 -29.3 -4.2 -0.9 -6.4 -10.0 372.240011 -1.0 -29.3 0.1 -4.2 1.4 -4.7 372.2

22 Exterior Wall 22011 -1.2 -29.3 27.4 28.4 10.1 5.7 372.2 @ EL4.65 22023 -4.6 -29.3 9.3 7.1 -25.0 -27.4 372.2 ~6.60m 32010 -3.2 -29.3 18.1 96.1 -7.8 35.1 372.2

32020 -3.6 -29.3 5.7 46.2 -5.5 54.6 372.242001 -3.3 -29.3 7.8 32.3 -10.3 27.0 372.242011 -4.1 -29.3 27.3 89.4 -12.8 20.1 372.2

23 Exterior Wall 24211 -2.1 -29.3 6.1 15.7 -7.6 10.8 372.2 @ EL22.50 24224 -2.3 -29.3 22.2 -0.1 5.0 8.6 372.2 ~24.60m 34210 -4.7 -29.3 53.4 184.1 7.8 152.4 372.2

34220 -3.9 -29.3 25.8 4.7 -12.4 52.5 372.244201 -0.6 -29.3 53.4 34.5 6.4 72.3 372.2

24 Basemat 90140 -1.9 -23.5 1.5 -12.6 -0.2 -2.8 372.2 @ Wall 90182 -2.3 -23.5 -0.4 -13.2 7.7 -4.2 372.2 Below RCCV 90111 -3.2 -23.5 3.2 -19.4 -0.8 6.1 372.225 Slab 93140 -7.1 -29.3 42.0 37.9 73.4 46.6 372.2(223.3) EL4.65m 93182 -13.0 -29.3 16.3 23.8 -61.1 64.4 372.2(223.3) @ RCCV 93111 -12.9 -29.3 -60.0 69.0 34.1 34.8 372.2(223.3)26 Slab 96144 -4.2 -29.3 84.9 38.5 118.0 46.4 372.2(223.3) EL17.5m 96186 -5.2 -29.3 47.1 36.1 -28.6 25.1 372.2(223.3) @ RCCV 96113 -11.1 -28.8 -46.9 76.9 -30.2 57.1 368.227 Slab 98472 -10.2 -29.1 168.2 39.2 160.6 22.3 370.5(222.2) EL27.0m 98514 -5.5 -29.1 -2.7 31.4 -16.3 8.0 370.5(222.2) @ RCCV 98424 -9.2 -28.1 -37.3 26.9 -43.2 -36.5 363.028 Pool Girder 123054 -8.8 -29.0 69.2 14.1 -2.7 -43.6 369.8 @ Storage Pool 123154 -3.5 -29.0 120.9 28.7 68.4 5.2 369.829 Pool Girder 123062 -2.0 -28.4 -11.0 -13.5 18.7 47.5 365.1 @ Cavity 123162 -2.8 -28.4 -19.5 -19.5 3.6 20.5 365.130 Pool Girder 123067 -5.7 -28.4 -2.9 -13.2 -28.7 -34.6 365.1 @ Fuel Pool 123167 -4.2 -28.4 -6.9 -12.8 -18.4 -6.7 365.131 MS Tunnel 150122 -13.6 -29.3 169.6 14.0 220.7 -22.8 372.2 Wall and Slab 96611 -8.6 -29.3 1.4 5.1 -21.3 193.7 372.2

98614 -6.3 -29.3 2.8 2.6 -3.7 151.3 372.2

Primary Reinforcement Stress (MPa)

Location ElementID Calculated Allowable

CalculatedDirection 1* Direction 2* Allowable

Concrete Stress (Mpa)

Note: Negative value means compression. Note *1: Wall Below RCCV Direction1 : Hoop, Direction2 : Vertical Exterior Wall Direction1 : Horizontal, Direction2 : Vertical Slab/MS Tunnel Slab Direction1 : N-S, Direction2 : E-W Pool Girder Direction1 : Horizontal, Direction2 : Vertical MS Tunnel Wall Direction1 : Horizontal, Direction2 : Vertical Basemat Direction1 : Top; Radial, Bottom; N-S, Direction2 : Top; Circumferential, Bottom; E-W Note *2: Value in parentheses indicates the allowable stress of the steel plate.

Page 145: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-118

Table 3G.1-52

Rebar and Concrete Stresses of RB: Selected Load Combination RB-8a

In/Top Out/Bottom In/Top Out/Bottom18 Wall 6 -7.6 -29.3 -1.3 -1.3 -11.2 -41.7 372.2 Below RCCV 13 -7.3 -29.3 -1.6 -2.3 -15.9 -41.4 372.2 Bottom 24 -6.0 -29.3 0.5 -0.5 -22.7 -36.5 372.219 Wall Below 806 -5.8 -29.3 3.2 4.5 -19.1 -34.9 372.2 Below RCCV 813 -6.3 -29.3 2.0 2.7 -21.9 -37.9 372.2 Mid-Height 824 -6.9 -29.3 1.4 1.4 -21.5 -40.2 372.220 Wall 1606 -15.6 -29.3 33.3 89.9 -69.3 44.6 372.2 Below RCCV 1613 -17.4 -29.3 35.7 87.2 -78.4 46.5 372.2 Top 1624 -17.3 -29.3 35.9 87.6 -82.3 46.7 372.221 Exterior Wall 20011 -4.3 -29.3 8.2 -1.3 28.8 -14.3 372.2 @ EL-11.50 20023 -4.4 -29.1 -13.6 18.4 -14.5 6.7 370.5 ~-10.50m 30010 -5.0 -29.3 37.3 -1.1 51.0 -14.8 372.2

30020 -2.1 -29.3 -5.5 3.7 -9.6 -12.9 372.240001 -1.9 -29.3 -3.5 2.3 -11.0 -11.5 372.240011 -2.0 -29.3 1.6 -0.9 4.6 -10.9 372.2

22 Exterior Wall 22011 -2.5 -29.3 74.8 78.2 14.1 -2.3 372.2 @ EL4.65 22023 -3.3 -29.3 29.9 5.2 -21.0 -21.7 372.2 ~6.60m 32010 -8.2 -29.3 79.4 197.5 -12.3 156.3 372.2

32020 -3.0 -29.3 8.0 17.0 -9.4 29.1 372.242001 -1.3 -29.3 20.5 7.6 -5.8 2.9 372.242011 -6.1 -29.3 38.0 91.0 -18.6 21.7 372.2

23 Exterior Wall 24211 -0.1 -29.3 31.6 32.1 4.0 6.9 372.2 @ EL22.50 24224 -1.8 -29.3 32.9 -2.2 6.8 3.1 372.2 ~24.60m 34210 -0.2 -29.3 83.3 181.1 2.9 144.4 372.2

34220 -0.3 -29.3 34.8 -13.7 -29.3 30.8 372.244201 -0.1 -29.3 40.5 17.3 -16.7 48.9 372.2

24 Basemat 90140 -1.6 -23.5 -0.9 -9.9 -0.4 0.8 372.2 @ Wall 90182 -1.7 -23.5 -1.9 -7.9 6.5 5.9 372.2 Below RCCV 90111 -2.2 -23.5 0.1 -13.1 6.9 2.3 372.225 Slab 93140 -8.1 -29.3 109.9 70.3 161.2 81.0 372.2(223.3) EL4.65m 93182 -13.0 -29.3 71.4 55.8 -65.3 48.6 372.2(223.3) @ RCCV 93111 -12.1 -29.3 -59.7 53.2 79.3 60.0 372.2(223.3)26 Slab 96144 -9.8 -29.3 250.0 103.6 304.6 110.4 372.2(223.3) EL17.5m 96186 -6.5 -29.3 142.3 70.6 -33.5 -8.5 372.2(223.3) @ RCCV 96113 -13.3 -28.8 -84.4 28.8 64.1 103.1 368.227 Slab 98472 -7.9 -29.1 155.1 32.6 154.1 31.7 370.3(222.2) EL27.0m 98514 -4.2 -29.1 9.1 39.2 -10.4 16.5 370.3(222.2) @ RCCV 98424 -7.8 -28.1 -31.5 32.9 -25.7 -17.8 363.028 Pool Girder 123054 -6.8 -29.0 136.0 27.8 115.5 1.2 369.8 @ Storage Pool 123154 -2.3 -29.0 67.4 5.6 50.9 21.7 369.829 Pool Girder 123062 -2.7 -28.4 76.2 45.4 72.9 27.5 365.0 @ Cavity 123162 -2.0 -28.4 99.0 71.0 68.3 71.4 365.030 Pool Girder 123067 -3.4 -28.4 40.3 16.1 50.0 34.9 365.0 @ Fuel Pool 123167 -4.3 -28.4 21.1 12.7 16.5 35.0 365.031 MS Tunnel 150122 -11.5 -29.3 141.9 14.8 175.2 -22.0 372.2 Wall and Slab 96611 -6.0 -29.3 -2.8 -3.1 -8.4 170.5 372.2

98614 -6.3 -29.3 2.3 11.1 -5.4 137.6 372.2

Location ElementID

Concrete Stress (Mpa) Primary Reinforcement Stress (MPa)

Calculated AllowableCalculated

AllowableDirection 1* Direction 2*

Note: Negative value means compression. Note *1: Wall Below RCCV Direction1 : Hoop, Direction2 : Vertical Exterior Wall Direction1 : Horizontal, Direction2 : Vertical Slab/MS Tunnel Slab Direction1 : N-S, Direction2 : E-W Pool Girder Direction1 : Horizontal, Direction2 : Vertical MS Tunnel Wall Direction1 : Horizontal, Direction2 : Vertical Basemat Direction1 : Top; Radial, Bottom; N-S, Direction2 : Top; Circumferential, Bottom; E-W Note *2: Value in parentheses indicates the allowable stress of the steel plate.

Page 146: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-119

Table 3G.1-53

Rebar and Concrete Stresses of RB: Selected Load Combination RB-8b

In/Top Out/Bottom In/Top Out/Bottom18 Wall 6 -8.1 -29.3 -2.3 -2.4 -5.7 -42.5 372.2 Below RCCV 13 -8.6 -29.3 -2.7 -3.2 -10.4 -46.5 372.2 Bottom 24 -7.0 -29.3 -0.1 -1.4 -16.5 -40.2 372.219 Wall Below 806 -6.2 -29.3 3.4 4.7 -16.3 -35.9 372.2 Below RCCV 813 -6.8 -29.3 2.5 4.6 -19.9 -39.9 372.2 Mid-Height 824 -7.2 -29.3 1.9 2.6 -18.0 -40.8 372.220 Wall 1606 -16.0 -29.3 53.4 102.8 -70.1 49.6 372.2 Below RCCV 1613 -18.3 -29.3 45.6 98.2 -81.0 52.8 372.2 Top 1624 -17.7 -29.3 51.8 101.9 -81.8 53.0 372.221 Exterior Wall 20011 -3.9 -29.3 6.5 -1.4 35.1 -10.7 372.2 @ EL-11.50 20023 -4.3 -29.1 -13.8 19.1 -13.4 7.4 370.5 ~-10.50m 30010 -5.4 -29.3 42.5 -1.5 64.0 -13.8 372.2

30020 -2.4 -29.3 -5.9 5.3 -8.8 -13.7 372.240001 -2.1 -29.3 -3.9 3.8 -10.3 -12.5 372.240011 -2.0 -29.3 3.8 -0.6 10.9 -9.5 372.2

22 Exterior Wall 22011 -2.1 -29.3 85.9 90.6 38.3 27.2 372.2 @ EL4.65 22023 -3.2 -29.3 37.8 4.8 -16.9 -19.5 372.2 ~6.60m 32010 -0.4 -29.3 105.0 208.9 0.5 183.3 372.2

32020 -3.3 -29.3 12.6 15.8 -10.4 35.8 372.242001 -4.8 -29.3 30.2 14.3 -20.3 36.0 372.242011 -5.0 -29.3 35.6 95.9 -10.3 30.7 372.2

23 Exterior Wall 24211 0.0 -29.3 90.6 75.7 61.9 37.7 372.2 @ EL22.50 24224 -3.0 -29.3 47.1 -4.9 18.4 4.5 372.2 ~24.60m 34210 -0.2 -29.3 141.1 239.1 34.2 170.9 372.2

34220 -3.0 -29.3 73.7 -21.4 -34.7 56.7 372.244201 -1.4 -29.3 57.4 -6.5 -10.7 40.9 372.2

24 Basemat 90140 -1.5 -23.5 -1.1 -9.9 -1.1 -0.3 372.2 @ Wall 90182 -1.7 -23.5 -1.5 -8.2 7.6 3.8 372.2 Below RCCV 90111 -2.2 -23.5 0.5 -13.4 6.0 2.7 372.225 Slab 93140 -10.8 -29.3 152.7 96.2 198.0 100.0 372.2(223.3) EL4.65m 93182 -17.6 -29.3 84.2 69.1 -86.5 71.7 372.2(223.3) @ RCCV 93111 -16.1 -29.3 -77.6 75.5 90.2 71.6 372.2(223.3)26 Slab 96144 -10.1 -29.3 263.5 107.3 342.0 128.4 372.2(223.3) EL17.5m 96186 -8.5 -29.3 188.7 93.1 -37.1 8.5 372.2(223.3) @ RCCV 96113 -13.8 -28.8 -87.6 18.0 88.0 119.0 368.227 Slab 98472 -11.4 -27.6 -0.2 93.4 13.1 78.5 359.4(215.6) EL27.0m 98514 -14.1 -27.6 -17.9 75.7 -20.0 81.2 359.4(215.6) @ RCCV 98424 -6.4 -28.1 -28.2 19.3 -13.6 -8.8 363.028 Pool Girder 123054 -8.1 -29.0 188.1 24.5 189.9 39.1 369.8 @ Storage Pool 123154 -5.0 -29.0 107.4 10.6 79.2 27.7 369.829 Pool Girder 123062 -13.3 -27.4 275.1 50.3 251.4 -6.2 358.3 @ Cavity 123162 -9.2 -27.4 326.5 72.4 246.8 12.7 358.330 Pool Girder 123067 -10.3 -27.4 166.3 22.8 160.5 -1.0 358.3 @ Fuel Pool 123167 -6.7 -27.4 154.7 24.2 135.6 17.5 358.331 MS Tunnel 150122 -11.8 -29.3 133.6 16.5 166.3 -26.0 372.2 Wall and Slab 96611 -5.8 -29.3 -1.9 -2.5 -6.0 179.4 372.2

98614 -6.7 -29.3 2.4 5.7 -9.2 128.2 372.2

Location ElementID

Concrete Stress (Mpa) Primary Reinforcement Stress (MPa)

Calculated AllowableCalculated

AllowableDirection 1* Direction 2*

Note: Negative value means compression. Note *1: Wall Below RCCV Direction1 : Hoop, Direction2 : Vertical Exterior Wall Direction1 : Horizontal, Direction2 : Vertical Slab/MS Tunnel Slab Direction1 : N-S, Direction2 : E-W Pool Girder Direction1 : Horizontal, Direction2 : Vertical MS Tunnel Wall Direction1 : Horizontal, Direction2 : Vertical Basemat Direction1 : Top; Radial; Bottom; N-S, Direction2 : Top; Circumferential; Bottom;E-W Note *2: Value in parentheses indicates the allowable stress of the steel plate.

Page 147: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-120

Table 3G.1-54

Rebar and Concrete Stresses of RB: Selected Load Combination RB-9a

In/Top Out/Bottom In/Top Out/Bottom18 Wall 6 -21.4 -29.3 202.2 136.6 235.8 216.5 372.2 Below RCCV 13 -17.9 -29.3 171.3 113.3 246.1 144.0 372.2 Bottom 24 -12.2 -29.3 191.2 83.1 162.5 -47.9 372.219 Wall Below 806 -11.1 -29.3 170.5 102.8 184.3 134.6 372.2 Below RCCV 813 -11.6 -29.3 124.7 72.4 149.8 90.1 372.2 Mid-Height 824 -11.6 -29.3 182.8 93.6 154.8 75.2 372.220 Wall 1606 -21.3 -29.3 192.7 218.1 -100.2 302.1 372.2 Below RCCV 1613 -23.7 -29.3 104.4 187.7 -106.7 305.7 372.2 Top 1624 -22.8 -29.3 191.8 260.0 -103.1 319.0 372.221 Exterior Wall 20011 -18.0 -29.3 279.7 208.5 341.0 258.4 372.2 @ EL-11.50 20023 -11.1 -29.1 -66.2 98.7 69.6 123.2 370.5 ~-10.50m 30010 -12.4 -29.3 218.3 141.0 342.9 180.2 372.2

30020 -5.3 -29.3 -38.0 41.6 69.8 41.9 372.240001 -6.2 -29.3 -47.9 54.2 105.3 60.6 372.240011 -6.8 -29.3 266.4 165.8 265.4 131.5 372.2

22 Exterior Wall 22011 -14.0 -29.3 239.1 243.1 265.1 287.3 372.2 @ EL4.65 22023 -9.5 -29.3 154.5 98.2 160.9 173.1 372.2 ~6.60m 32010 -14.5 -29.3 286.5 319.5 245.1 301.3 372.2

32020 -7.2 -29.3 146.3 183.5 160.7 262.8 372.242001 -9.5 -29.3 105.2 135.9 140.5 189.7 372.242011 -12.2 -29.3 285.0 294.4 228.4 307.4 372.2

23 Exterior Wall 24211 -9.2 -29.3 252.1 249.8 247.4 207.1 372.2 @ EL22.50 24224 -9.2 -29.3 190.3 212.9 267.6 319.2 372.2 ~24.60m 34210 -11.2 -29.3 288.8 307.0 229.4 252.4 372.2

34220 -6.0 -29.3 169.8 110.5 131.9 153.7 372.244201 -7.6 -29.3 206.9 118.5 165.8 175.9 372.2

24 Basemat 90140 -10.0 -23.5 131.8 102.6 106.5 130.6 372.2 @ Wall 90182 -10.7 -23.5 164.4 -41.9 96.7 134.5 372.2 Below RCCV 90111 -5.1 -23.5 103.5 -76.7 130.8 112.8 372.225 Slab 93140 -11.8 -29.3 236.9 89.7 181.3 77.3 372.2(223.3) EL4.65m 93182 -18.7 -29.3 99.6 59.2 -88.7 94.4 372.2(223.3) @ RCCV 93111 -14.7 -29.3 -73.0 62.3 73.7 54.6 372.2(223.3)26 Slab 96144 -12.6 -29.3 286.5 107.9 329.0 125.3 372.2(223.3) EL17.5m 96186 -10.5 -29.3 182.0 90.2 -59.2 -26.6 372.2(223.3) @ RCCV 96113 -18.1 -28.8 -113.3 75.9 114.0 146.4 368.227 Slab 98472 -12.5 -29.1 210.1 48.5 233.4 41.7 370.3(222.2) EL27.0m 98514 -7.7 -29.1 44.3 47.8 32.6 28.5 370.3(222.2) @ RCCV 98424 -8.7 -28.1 39.1 157.8 60.1 136.3 363.028 Pool Girder 123054 -8.3 -29.0 161.2 29.3 189.6 -39.6 369.8 @ Storage Pool 123154 -5.2 -29.0 141.6 65.1 65.9 63.1 369.829 Pool Girder 123062 -2.9 -28.4 87.5 69.9 92.3 70.1 365.0 @ Cavity 123162 -2.1 -28.4 144.5 96.7 82.1 77.5 365.030 Pool Girder 123067 -5.8 -28.4 66.4 55.8 141.2 134.4 365.0 @ Fuel Pool 123167 -5.8 -28.4 72.7 69.0 52.1 79.4 365.031 MS Tunnel 150122 -13.1 -29.3 160.5 16.7 200.4 -26.5 372.2 Wall and Slab 96611 -8.5 -29.3 -3.3 42.7 -17.7 194.2 372.2

98614 -8.8 -29.3 4.9 57.6 -7.5 171.1 372.2

Location ElementID

Concrete Stress (Mpa) Primary Reinforcement Stress (MPa)

Calculated AllowableCalculated

AllowableDirection 1* Direction 2*

Note: Negative value means compression. Note *1: Wall Below RCCV Direction1 : Hoop, Direction2 : Vertical Exterior Wall Direction1 : Horizontal, Direction2 : Vertical Slab/MS Tunnel Slab Direction1 : N-S, Direction2 : E-W Pool Girder Direction1 : Horizontal, Direction2 : Vertical MS Tunnel Wall Direction1 : Horizontal, Direction2 : Vertical Basemat Direction1 : Top; Radial; Bottom; N-S, Direction2 : Top; Circumferential; Bottom; E-W Note *2: Value in parentheses indicates the allowable stress of the steel plate.

Page 148: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-121

Table 3G.1-55

Rebar and Concrete Stresses of RB: Selected Load Combination RB-9b

In/Top Out/Bottom In/Top Out/Bottom18 Wall 6 -22.3 -29.3 222.7 141.4 258.6 218.4 372.2 Below RCCV 13 -19.5 -29.3 182.1 105.5 267.2 128.6 372.2 Bottom 24 -11.0 -29.3 208.1 79.0 185.9 -52.5 372.219 Wall Below 806 -11.7 -29.3 194.9 103.8 191.9 140.8 372.2 Below RCCV 813 -12.2 -29.3 133.5 75.7 162.7 94.3 372.2 Mid-Height 824 -12.0 -29.3 191.5 96.1 169.2 79.7 372.220 Wall 1606 -22.5 -29.3 214.9 238.3 -100.3 315.6 372.2 Below RCCV 1613 -25.9 -29.3 114.2 213.5 -113.0 327.6 372.2 Top 1624 -24.2 -29.3 208.2 283.3 -109.6 338.6 372.221 Exterior Wall 20011 -17.9 -29.3 274.3 213.8 364.9 266.4 372.2 @ EL-11.50 20023 -11.3 -29.1 -69.3 99.6 71.7 123.7 370.5 ~-10.50m 30010 -13.0 -29.3 230.1 137.6 363.8 171.1 372.2

30020 -5.3 -29.3 -38.5 45.6 74.5 43.5 372.240001 -6.2 -29.3 -47.3 57.0 111.9 64.0 372.240011 -7.4 -29.3 280.5 165.0 300.6 129.8 372.2

22 Exterior Wall 22011 -13.7 -29.3 266.7 272.7 288.1 312.7 372.2 @ EL4.65 22023 -9.4 -29.3 162.8 95.2 161.8 170.0 372.2 ~6.60m 32010 -14.5 -29.3 319.4 354.5 272.3 323.6 372.2

32020 -7.4 -29.3 162.3 176.1 171.8 262.6 372.242001 -8.6 -29.3 134.0 117.7 150.8 186.1 372.242011 -14.0 -29.3 313.5 330.7 249.0 320.0 372.2

23 Exterior Wall 24211 -9.2 -29.3 294.3 277.5 306.1 240.0 372.2 @ EL22.50 24224 -9.2 -29.3 224.6 196.7 275.2 314.0 372.2 ~24.60m 34210 -13.4 -29.3 341.3 355.6 237.2 283.7 372.2

34220 -10.3 -29.3 206.4 104.7 121.3 195.1 372.244201 -7.4 -29.3 233.1 119.3 200.7 204.0 372.2

24 Basemat 90140 -9.7 -23.5 142.4 102.6 99.3 129.9 372.2 @ Wall 90182 -9.9 -23.5 162.9 -39.4 106.6 131.0 372.2 Below RCCV 90111 -5.5 -23.5 101.8 -77.4 129.2 113.9 372.225 Slab 93140 -14.5 -29.3 299.0 116.3 227.4 98.2 372.2(223.3) EL4.65m 93182 -23.1 -29.3 112.6 73.3 -109.4 119.5 372.2(223.3) @ RCCV 93111 -18.7 -29.3 -91.1 84.8 85.8 67.2 372.2(223.3)26 Slab 96144 -12.9 -29.3 333.6 119.8 350.8 138.4 372.2(223.3) EL17.5m 96186 -12.6 -29.3 223.1 110.4 -68.2 28.6 372.2(223.3) @ RCCV 96113 -16.1 -28.8 -107.7 61.4 133.9 157.5 368.227 Slab 98472 -14.3 -27.6 69.8 104.4 118.4 87.5 359.4(215.6) EL27.0m 98514 -17.4 -27.6 -23.8 80.6 -27.8 98.0 359.4(215.6) @ RCCV 98424 -8.2 -28.1 92.9 161.8 127.6 155.2 363.028 Pool Girder 123054 -10.1 -29.0 202.7 36.4 214.4 87.9 369.8 @ Storage Pool 123154 -9.6 -29.0 167.2 61.7 101.6 82.3 369.829 Pool Girder 123062 -13.9 -27.4 293.8 55.1 284.8 -19.2 358.3 @ Cavity 123162 -11.2 -27.4 351.0 82.2 260.9 23.6 358.330 Pool Girder 123067 -12.8 -27.4 194.4 32.8 255.1 -58.2 358.3 @ Fuel Pool 123167 -7.2 -27.4 211.5 62.7 167.5 40.5 358.331 MS Tunnel 150122 -13.2 -29.3 152.3 18.3 191.2 -30.4 372.2 Wall and Slab 96611 -8.2 -29.3 -4.4 37.7 -16.6 200.8 372.2

98614 -8.3 -29.3 5.1 59.5 -11.2 159.2 372.2

Location ElementID

Concrete Stress (Mpa) Primary Reinforcement Stress (MPa)

Calculated AllowableCalculated

AllowableDirection 1* Direction 2*

Note: Negative value means compression. Note *1: Wall Below RCCV Direction1 : Hoop, Direction2 : Vertical Exterior Wall Direction1 : Horizontal, Direction2 : Vertical Slab/MS Tunnel Slab Direction1 : N-S, Direction2 : E-W Pool Girder Direction1 : Horizontal, Direction2 : Vertical MS Tunnel Wall Direction1 : Horizontal, Direction2 : Vertical Basemat Direction1 : Top; Radial; Bottom; N-S, Direction2 : Top; Circumferential; Bottom; E-W

Note *2: Value in parentheses indicates the allowable stress of the steel plate.

Page 149: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-122

Table 3G.1-56

Transverse Shear of RB Element Load d pv

ID ID (m) (%) Vu Vc Vs φVn18 Wall 6 RB-9a 1.59 0.721 1.57 0.03 4.74 4.05 0.388 Below RCCV 13 RB-9a 1.59 0.721 1.31 0.76 4.73 4.67 0.281 Bottom 24 RB-4 1.59 0.721 0.65 4.20 4.73 7.59 0.08619 Wall Below 806 RB-8b 1.57 0.270 0.14 3.88 1.75 4.79 0.029 Below RCCV 813 RB-8b 1.57 0.270 0.70 4.20 1.75 5.06 0.139 Mid-Height 824 RB-8b 1.57 0.270 0.68 4.19 1.75 5.05 0.13420 Wall 1606 RB-9b 1.57 0.540 4.25 2.70 3.50 5.27 0.808 Below RCCV 1613 RB-9b 1.57 0.540 5.18 2.72 3.50 5.29 0.979 Top 1624 RB-9b 1.57 0.540 4.83 2.83 3.50 5.37 0.89821 Exterior Wall 20011 RB-9b 1.59 0.484 3.52 1.54 3.18 4.02 0.877 @ EL-11.50 20023 RB-4 1.62 0.484 0.40 2.79 3.24 5.12 0.079 ~-10.50m 30010 RB-9a 1.65 0.177 1.65 1.35 1.21 2.18 0.757

30020 RB-4 1.72 0.177 0.29 3.22 1.26 3.80 0.07640001 RB-4 1.73 0.177 0.46 3.35 1.27 3.92 0.11840011 RB-9b 1.72 0.177 1.64 1.37 1.26 2.23 0.734

22 Exterior Wall 22011 RB-9a 1.19 0.484 0.44 0.00 2.38 2.02 0.219 @ EL4.65 22023 RB-9b 1.22 0.484 0.68 0.76 2.43 2.71 0.250 ~6.60m 32010 RB-9b 1.24 0.177 0.31 0.29 0.91 1.02 0.307

32020 RB-9b 1.26 0.177 1.32 1.17 0.92 1.78 0.74242001 RB-9b 1.26 0.242 0.96 0.61 1.26 1.59 0.60442011 RB-4 1.22 0.242 0.03 0.04 1.22 1.07 0.031

23 Exterior Wall 24211 RB-9b 1.15 0.484 1.34 0.89 2.31 2.72 0.492 @ EL22.50 24224 RB-9b 1.19 0.968 2.29 0.47 4.66 4.36 0.526 ~24.60m 34210 RB-9a 1.24 0.177 0.26 0.00 0.91 0.77 0.336

34220 RB-9b 1.26 0.710 2.38 0.58 3.69 3.62 0.65644201 RB-9b 1.26 0.968 3.02 0.79 4.89 4.83 0.626

24 Basemat 90140 RB-9a 3.49 0.801 12.67 5.12 11.56 14.18 0.894 @ Wall 90182 RB-9b 3.47 0.801 8.50 5.94 11.50 14.83 0.573 Below RCCV 90111 RB-9b 3.48 0.801 3.69 2.86 11.54 12.23 0.30225 Slab 93140 RB-4 1.00 0.500 0.11 0.13 2.07 1.87 0.059 EL4.65m 93182 RB-9b 1.00 0.500 2.67 1.70 2.07 3.20 0.834 @ RCCV 93111 RB-9b 1.00 0.500 1.87 1.64 2.07 3.15 0.59226 Slab 96144 RB-4 1.00 0.500 0.16 2.07 2.07 3.51 0.047 EL17.5m 96186 RB-8b 1.00 0.500 0.66 2.69 2.07 4.04 0.164 @ RCCV 96113 RB-4 1.34 0.500 0.82 1.53 2.76 3.64 0.22627 Slab 98472 RB-9a 0.62 0.500 1.40 1.50 1.27 2.36 0.595 EL27.0m 98514 RB-9a 0.62 0.500 1.20 1.30 1.27 2.18 0.549 @ RCCV 98424 RB-9b 2.07 0.500 7.54 4.78 4.28 7.70 0.97928 Pool Girder 123054 RB-8b 1.23 0.484 0.08 0.10 2.47 2.18 0.037 @ Storage Pool 123154 RB-4 1.25 0.484 0.16 0.19 2.50 2.29 0.07029 Pool Girder 123062 RB-8b 1.32 0.242 0.18 1.41 1.32 2.32 0.079 @ Cavity 123162 RB-8a 1.30 0.242 0.09 0.11 1.30 1.19 0.07530 Pool Girder 123067 RB-8a 1.23 0.484 0.28 0.95 2.47 2.90 0.095 @ Fuel Pool 123167 RB-8a 1.24 0.484 0.18 0.21 2.48 2.29 0.07831 MS Tunnel 150122 RB-4 1.04 0.177 0.50 1.06 0.76 1.55 0.322 Wall and Slab 96611 RB-4 1.34 0.500 0.41 2.33 2.76 4.33 0.094

98614 RB-8a 2.14 0.500 0.50 2.63 4.42 5.99 0.083

Shear Force (MN/m) Vu/φVnLocation

Page 150: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-123

Table 3G.1-57

Factors of Safety for Foundation Stability

Overturning Sliding Floatation Load Combination Required Actual Required Actual Required Actual

D + H + E’ 1.1 111.1 1.1 1.17 -- --

D + F’ -- -- -- -- 1.1 3.48

Where, D = Dead Load H = Lateral soil pressure E’ = Safe Shutdown Earthquake F’ = Buoyant forces of design basis flood

Table 3G.1-58

Maximum Soil Bearing Stress Involving SSE

Site Condition*

Soft Medium Hard

Bearing Stress (MPa) 2.7 7.3 5.4

* See Table 3A.3-1 for site properties.

Page 151: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-124

Table 3G.1-59

Stress Calculation Results for Basemat Uplift Analysis

Seismic Concrete Stress (MPa) Primary Reinforcement Stress (MPa)Force Element ID Load Radial Circumferential

Direction Top Bottom Top BottomS to N Soft 80275 SSE+LOCA 6min -7.8 -23.5 -45.2 8.6 -7.2 17.2 372.2

SSE+LOCA 72h -8.8 -23.5 -49.8 15.4 -8.2 28.1 372.290402 SSE+LOCA 6min -5.0 -23.5 -27.0 17.7 54.5 42.9 372.2

SSE+LOCA 72h -4.0 -23.5 -18.9 10.1 58.3 40.2 372.290408 SSE+LOCA 6min -3.0 -23.5 19.0 -10.3 51.6 -3.2 372.2

SSE+LOCA 72h -3.0 -23.5 17.5 -10.5 51.7 -3.0 372.2

Seismic Concrete Stress (MPa) Primary Reinforcement Stress (MPa)Force Element ID Load Radial Circumferential

Direction Top Bottom Top BottomW to E Soft 80262 SSE+LOCA 6min -17.9 -23.5 -58.7 175.6 -20.4 191.1 372.2

SSE+LOCA 72h -18.4 -23.5 -60.8 183.5 -20.2 193.4 372.280462 SSE+LOCA 6min -12.0 -23.5 227.7 -9.8 11.5 -48.2 372.2

SSE+LOCA 72h -11.5 -23.5 225.6 -8.4 -11.5 -47.2 372.2E to W Soft 80287 SSE+LOCA 6min -14.6 -23.5 -49.1 140.8 -14.6 149.7 372.2

SSE+LOCA 72h -15.3 -23.5 -52.1 147.2 -15.4 150.4 372.280462 SSE+LOCA 6min -8.5 -23.5 -43.9 166.6 71.4 113.5 372.2

SSE+LOCA 72h -9.0 -23.5 -43.9 175.4 64.9 123.6 372.2

SoilCondition Calculated Allowable Allowable

SoilCondition Calculated Allowable Allowable

Note: Because the seismic force in N to S direction does not cause the basemat uplift, its calculation result is not

included in this table. Refer to Figure 3G.1-60.

Page 152: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-125

Figu

re 3

G.1

-1.

RB

and

FB

Con

cret

e O

utlin

e Pl

an a

t EL

-115

00

Page 153: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-126

Figu

re 3

G.1

-2.

RB

and

FB

Con

cret

e O

utlin

e Pl

an a

t EL

465

0

Page 154: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-127

Figu

re 3

G.1

-3.

RB

and

FB

Con

cret

e O

utlin

e Pl

an a

t EL

175

00

Page 155: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-128

Figu

re 3

G.1

-4.

RB

and

FB

Con

cret

e O

utlin

e Pl

an a

t EL

270

00

Page 156: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-129

Figu

re 3

G.1

-5.

RB

Con

cret

e O

utlin

e Pl

an a

t EL

340

00

Page 157: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-130

Figu

re 3

G.1

-6.

RB

and

FB

Con

cret

e O

utlin

e N

-S S

ectio

n

Page 158: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-131

Figu

re 3

G.1

-7.

RB

and

FB

Con

cret

e O

utlin

e E

-W S

ectio

n

Page 159: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

32

PNXY

Z

PN

XY

Z

Who

le V

iew

C

ut V

iew

Figu

re 3

G.1

-8.

FE M

odel

of R

B/F

B (I

som

etri

c V

iew

) XY

Z

XYZ

PNPN

Page 160: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

33

X

Y

RA

R1

FFFA FB FC FD FE

F3F2

R6

R5

R7 F1

R4

R3

R2

RGRF

RE

RD

RCRB

PN

ELEM

-ID

8000

180

002

8000

380

004

8000

580

006

8000

780

008

8000

980

010

8001

180

012

8001

380

014

8001

580

016

8001

780

018

8001

980

020

8002

180

022

8002

380

024

8005

1

8005

2

8005

3

8005

480

055

8005

680

057

8005

880

059

8006

0

8006

1

8006

2

8006

3

8006

4

8006

5 8006

6 8006

7 8006

8800

6980

07080

07180

072

8007

3

8007

4

8010

1

8010

2

8010

3

8010

4

8010

580

106

8010

780

108

8010

9

8011

0

8011

1

8011

2

8011

3

8011

4 8011

5 8011

6

8011

780

118

8011

980

120

8012

18012

28012

3

8012

48015

1

8015

280

153

8015

480

155

8015

680

157

8015

880

159

8016

080

161

8016

280

163

8016

480

165

8016

680

167

8016

880

169

8017

080

171

8017

280

173

8017

480

175

8017

680

177

8017

880

179 80

180

8018

1 8018

2 8018

3 8018

4 8018

580

18680

18780

18880

18980

1908019

18019

280

19380

194

8019

5

8019

680

197

8019

8

8020

1

8020

2

8020

3

8020

4

8020

5

8020

6

8020

7

8020

880

209

8021

080

211

8021

280

213

8021

480

215

8021

680

217

8021

8

8021

9

8022

0

8022

1

8022

2

8022

3

8022

4

8022

5

8022

6

8022

7

8022

8

8022

9 8023

0 8023

1 8023

2 8023

3 8023

4 8023

5 8023

680

23780

23880

23980

24080

24180

24280

24380

244

8024

5

8024

6

8024

7

8024

8

8025

1

8025

2

8025

3

8025

4

8025

5

8025

6

8025

7

8025

880

259

8026

080

261

8026

280

263

8026

480

265

8026

680

267

8026

8

8026

9

8027

0

8027

1

8027

2

8027

3

8027

4

8027

5

8027

6

8027

7

8027

8 8027

9 8028

0 8028

1 8028

2

8028

380

284

8028

580

286

8028

780

288

8028

980

290

8029

18029

28029

38029

48029

5

8029

6

8029

7

8029

8

8030

1

8030

2

8030

3

8030

4

8030

5

8030

6

8030

7

8030

8

8030

980

310

8031

180

312

8031

380

314

8031

580

316

8031

7

8031

8

8031

9

8032

0

8032

1

8032

2

8032

3

8032

4

8032

5

8032

6

8032

7 8032

8 8032

9 8033

0

8033

1

8033

2

8033

380

334

8033

580

336

8033

780

338

8033

980

340

8034

1

8034

2

8034

38034

48034

58034

6

8034

7

8034

8

8035

1

8035

2

8035

3

8035

4

8035

5

8035

6

8035

7

8035

8

8035

9

8036

080

361

8036

280

363

8036

480

365

8036

6

8036

7

8036

8

8036

9

8037

0

8037

1

8037

2

8037

3

8037

4

8037

5

8037

6

8037

7 8037

8 8037

9

8038

0

8038

1

8038

2

8038

3

8038

480

385

8038

680

387

8038

880

389

8039

0

8039

1

8039

2

8039

3

8039

48039

58039

6

8039

7

8039

8

8040

1

8040

2

8040

3

8040

4

8040

5

8040

6

8040

7

8040

8

8040

9

8041

080

411

8041

280

413

8041

480

415

8041

6

8041

7

8041

8

8041

9

8042

0

8042

1

8042

2

8042

3

8042

4

8042

5

8042

6 8042

7 8042

8

8042

9

8043

0

8043

1

8043

2

8043

3

8043

480

435

8043

680

437

8043

880

439

8044

0

8044

1

8044

2

8044

3

8044

4

8044

58044

68044

7

8044

8

8045

1

8045

2

8045

3

8045

4

8045

5

8045

6

8045

7

8045

8

8045

9

8046

0

8046

180

462

8046

380

464

8046

5

8046

6

8046

7

8046

8

8046

9

8047

0

8047

1

8047

2

8047

3

8047

4

8047

5

8047

6 8047

7 8047

8

8047

9

8048

0

8048

1

8048

2

8048

3

8048

4

8048

580

486

8048

780

488

8048

9

8049

0

8049

1

8049

2

8049

3

8049

4

8049

58049

68049

7

8049

8

8050

1

8050

2

8050

3

8050

4

8050

5

8050

6

8050

7

8050

8

8050

9

8051

0

8051

180

512

8051

380

514

8051

5

8051

6

8051

7

8051

8

8051

9

8052

0

8052

1

8052

2

8052

3

8052

4

8052

5

8052

6 8052

7

8052

8

8052

9

8053

0

8053

1

8053

2

8053

3

8053

4

8053

580

536

8053

780

538

8053

9

8054

0

8054

1

8054

2

8054

3

8054

4

8054

5

8054

68054

7

8054

8

8055

1

8055

2

8055

3

8055

4

8055

5

8055

6

8055

7

8055

8

8055

9

8056

0

8056

180

562

8056

380

564

8056

5

8056

6

8056

7

8056

8

8056

9

8057

0

8057

1

8057

2

8057

3

8057

4

8057

5

8057

6 8057

7

8057

8

8057

9

8058

0

8058

1

8058

2

8058

3

8058

4

8058

580

586

8058

780

588

8058

9

8059

0

8059

1

8059

2

8059

3

8059

4

8059

5

8059

68059

7

8059

8

9000

190

002

9000

390

004

9000

590

006

9000

790

008

9000

990

010

9001

190

012

9001

390

014

9030

190

302

9030

390

304

9030

590

306

9030

790

308

9030

990

310

9001

590

016

9001

790

018

9001

990

020

9002

190

022

9002

390

024

9002

590

026

9002

790

028

9002

990

030

9003

190

032

9003

390

034

9003

590

036

9031

190

312

9031

390

314

9031

590

316

9031

790

318

9031

990

320

9003

790

038

9003

990

040

9004

190

042

9004

390

044

9004

590

046

9004

790

048

9004

990

050

9005

190

052

9005

390

054

9032

190

322

9032

390

324

9032

590

326

9032

790

328

9032

990

330

9005

590

056

9005

790

058

9005

990

060

9033

190

332

9033

390

334

9033

590

336

9033

790

338

9033

990

340

9006

190

062

9006

390

064

9006

590

066

9006

790

068

9006

990

070

9007

190

072

9007

390

074

9007

590

076

9034

190

342

9034

390

344

9034

590

346

9034

790

348

9034

990

350

9007

790

078

9007

990

080

9008

190

082

9008

390

084

9008

590

086

9035

190

352

9035

390

354

9035

590

356

9035

790

358

9035

990

360

9008

790

088

9008

990

090

9036

190

362

9036

390

364

9036

590

366

9036

790

368

9036

990

370

9009

190

092

9009

390

094

9037

190

372

9037

390

374

9037

590

376

9037

790

378

9037

990

380

9009

590

096

9009

790

098

9009

990

100

9038

190

382

9038

390

384

9038

590

386

9038

790

388

9038

990

390

9010

190

102

9010

390

104

9039

190

392

9039

390

394

9039

590

396

9039

790

398

9039

990

400

9010

5

9010

690

107

9010

890

109

9040

190

402

9040

390

404

9040

590

406

9040

790

408

9040

990

410

9041

190

412

9041

390

414

9041

590

416

9041

790

418

9041

990

420

9011

090

111

9011

290

113

9042

190

422

9042

390

424

9042

590

426

9042

790

428

9042

990

430

9011

4

9043

190

432

9043

390

434

9043

590

436

9043

790

438

9043

990

440

9011

590

116

9011

790

118

9044

190

442

9044

390

444

9044

590

446

9044

790

448

9044

990

450

9011

990

120

9012

1

9012

290

123

9012

490

451

9045

290

453

9045

490

455

9045

690

457

9045

890

459

9046

090

125

9012

690

127

9012

890

129

9013

090

131

9046

190

462

9046

390

464

9046

590

466

9046

790

468

9046

990

470

9013

290

133

9013

490

135

9013

690

137

9047

190

472

9047

390

474

9047

590

476

9047

790

478

9047

990

480

9013

890

139

9014

090

141

9014

290

143

9014

490

145

9014

690

147

9048

190

482

9048

390

484

9048

590

486

9048

790

488

9048

990

490

9014

890

149

9015

090

151

9015

290

153

9015

490

155

9015

690

157

9015

890

159

9049

190

492

9049

390

494

9049

590

496

9049

790

498

9049

990

500

9016

090

161

9016

290

163

9016

490

165

9016

690

167

9016

890

169

9017

090

171

9017

290

173

9050

190

502

9050

390

504

9050

590

506

9050

790

508

9050

990

510

9017

490

175

9017

690

177

9017

890

179

9018

090

181

9018

290

183

9018

490

185

9018

690

187

9018

890

189

9019

090

191

9019

290

193

9019

490

195

9051

190

512

9051

390

514

9051

590

516

9051

790

518

9051

990

520

9019

690

197

9019

890

199

9020

090

201

9020

290

203

9020

490

205

9020

690

207

9020

890

209

9021

090

211

9021

290

213

9021

490

215

9021

690

217

9021

890

219

9052

190

522

9052

390

524

9052

590

526

9052

790

528

9052

990

530

GR

ID-I

D

8000

180

051

8005

280

053

8005

480

055

8005

680

057

8005

880

059

8006

080

061

8006

280

063

8006

480

065

8006

680

067 8006

8 8006

98007

08007

180

072

8007

380

074

8010

1

8010

2

8010

3

8010

4

8010

580

106

8010

780

108

8010

9

8011

0

8011

1

8011

2

8011

3

8011

4

8011

5 8011

6 8011

780

118

8011

980

120

8012

18012

28012

3

8012

4

8015

1

8015

2

8015

3

8015

4

8015

5

8015

6

8015

7

8015

880

159

8016

080

161

8016

280

163

8016

480

165

8016

680

167

8016

8

8016

9

8017

0

8017

1

8017

2

8017

3

8017

4

8017

5

8017

6

8017

7

8017

8

8017

9

8018

0 8018

1 8018

2 8018

3 8018

4 8018

5 8018

6 801

8780

18880

18980

19080

19180

19280

19380

1948019

5

8019

6

8019

7

8019

8

8020

1

8020

2

8020

3

8020

4

8020

5

8020

6

8020

7

8020

8

8020

980

210

8021

180

212

8021

380

214

8021

580

216

8021

7

8021

8

8021

9

8022

0

8022

1

8022

2

8022

3

8022

4

8022

5

8022

6

8022

7

8022

8

8022

9 8023

0 8023

1 8023

2 8023

3 8023

480

235

8023

680

237

8023

880

239

8024

08024

18024

28024

38024

48024

58024

6

8024

7

8024

8

8025

1

8025

2

8025

3

8025

4

8025

5

8025

6

8025

7

8025

8

8025

980

260

8026

180

262

8026

380

264

8026

580

266

8026

7

8026

8

8026

9

8027

0

8027

1

8027

2

8027

3

8027

4

8027

5

8027

6

8027

7

8027

8 8027

9 8028

0 8028

1 8028

2

8028

380

284

8028

580

286

8028

780

288

8028

980

290

8029

1

8029

28029

38029

48029

58029

6

8029

7

8029

8

8030

1

8030

2

8030

3

8030

4

8030

5

8030

6

8030

7

8030

8

8030

9

8031

080

311

8031

280

313

8031

480

315

8031

6

8031

7

8031

8

8031

9

8032

0

8032

1

8032

2

8032

3

8032

4

8032

5

8032

6

8032

7

8032

8 8032

9 8033

0

8033

1

8033

2

8033

3

8033

480

335

8033

680

337

8033

880

339

8034

0

8034

1

8034

2

8034

3

8034

48034

58034

68034

7

8034

8

8035

1

8035

2

8035

3

8035

4

8035

5

8035

6

8035

7

8035

8

8035

9

8036

0

8036

180

362

8036

380

364

8036

5

8036

6

8036

7

8036

8

8036

9

8037

0

8037

1

8037

2

8037

3

8037

4

8037

5

8037

6

8037

7 8037

8 8037

9

8038

0

8038

1

8038

2

8038

3

8038

4

8038

580

386

8038

780

388

8038

9

8039

0

8039

1

8039

2

8039

3

8039

4

8039

58039

68039

7

8039

8

8040

1

8040

2

8040

3

8040

4

8040

5

8040

6

8040

7

8040

8

8040

9

8041

0

8041

180

412

8041

380

414

8041

5

8041

6

8041

7

8041

8

8041

9

8042

0

8042

1

8042

2

8042

3

8042

4

8042

5

8042

6

8042

7 8042

8

8042

9

8043

0

8043

1

8043

2

8043

3

8043

4

8043

580

436

8043

780

438

8043

9

8044

0

8044

1

8044

2

8044

3

8044

4

8044

58044

68044

7

8044

8

8045

1

8045

2

8045

3

8045

4

8045

5

8045

6

8045

7

8045

8

8045

9

8046

0

8046

180

462

8046

380

464

8046

5

8046

6

8046

7

8046

8

8046

9

8047

0

8047

1

8047

2

8047

3

8047

4

8047

5

8047

6

8047

7 8047

8

8047

9

8048

0

8048

1

8048

2

8048

3

8048

4

8048

580

486

8048

780

488

8048

9

8049

0

8049

1

8049

2

8049

3

8049

4

8049

5

8049

68049

78049

8

8050

1

8050

2

8050

3

8050

4

8050

5

8050

6

8050

7

8050

8

8050

9

8051

0

8051

180

512

8051

380

514

8051

5

8051

6

8051

7

8051

8

8051

9

8052

0

8052

1

8052

2

8052

3

8052

4

8052

5

8052

6 8052

7 8052

8

8052

9

8053

0

8053

1

8053

2

8053

3

8053

4

8053

580

536

8053

780

538

8053

9

8054

0

8054

1

8054

2

8054

3

8054

4

8054

5

8054

68054

78054

8

8055

1

8055

2

8055

3

8055

4

8055

5

8055

6

8055

7

8055

8

8055

9

8056

0

8056

1

8056

280

563

8056

4

8056

5

8056

6

8056

7

8056

8

8056

9

8057

0

8057

1

8057

2

8057

3

8057

4

8057

5

8057

6 8057

7 8057

8

8057

9

8058

0

8058

1

8058

2

8058

3

8058

4

8058

580

586

8058

780

588

8058

9

8059

0

8059

1

8059

2

8059

3

8059

4

8059

5

8059

6

8059

78059

8

9000

190

002

9000

390

004

9000

590

006

9000

790

008

9000

990

010

9001

190

012

9001

390

014

9001

590

016

9001

790

018

9001

990

020

9002

190

022

9002

390

024

9002

590

026

9002

790

028

9002

990

030

9003

1

9003

290

033

9003

490

035

9003

690

037

9003

890

039

9004

090

041

9004

290

043

9004

490

045

9004

690

047

9004

890

049

9005

090

051

9005

290

053

9005

490

055

9005

690

057

9005

890

059

9006

0

9006

190

062

9006

390

064

9006

590

066

9006

790

068

9006

990

070

9007

190

073

9007

490

075

9007

690

077

9007

890

079

9008

090

081

9008

290

083

9008

490

085

9008

690

087

9008

890

089

9009

690

097

9009

890

099

9010

090

101

9010

290

103

9010

490

105

9010

690

107

9010

890

109

9011

090

111

9011

290

113

9011

490

115

9011

690

117

9012

090

121

9012

290

123

9012

490

125

9012

690

127

9012

890

129

9013

090

133

9013

490

135

9013

690

137

9013

890

139

9014

090

141

9014

490

145

9014

690

147

9014

890

149

9015

090

151

9015

290

153

9015

490

155

9015

690

157

9015

890

159

9016

090

161

9016

490

165

9016

690

167

9016

890

169

9017

090

171

9017

290

173

9017

490

175

9017

690

177

9017

890

179

9018

290

183

9018

490

185

9018

690

187

9018

890

189

9019

090

191

9019

290

193

9019

490

195

9019

690

197

9020

090

201

9020

290

203

9020

490

205

9020

690

207

9020

890

209

9021

0

9021

190

212

9021

3

9021

690

217

9021

890

219

9022

090

221

9022

290

223

9022

490

225

9022

6

9022

790

228

9022

9

9023

290

233

9023

490

235

9023

690

237

9023

890

239

9024

090

241

9024

2

9024

390

244

9024

790

248

9024

990

250

9025

190

252

9025

390

254

9025

590

256

9025

790

258

9025

990

260

9026

190

262

9026

390

264

9026

590

266

9026

790

268

9026

9

9027

290

273

9027

490

275

9027

690

277

9027

890

279

9028

090

281

9028

290

283

9028

490

285

9028

690

287

9028

890

289

9029

090

291

9029

290

293

9029

490

295

9029

6

9029

990

300

9030

1

9030

290

303

9030

490

305

9030

690

307

9030

890

309

9031

090

311

9031

2

9031

590

316

9031

790

318

9031

990

320

9032

190

322

9032

390

324

9032

590

326

9032

790

328

9032

990

330

9033

390

334

9033

590

336

9033

790

338

9033

990

340

9034

190

342

9034

390

344

9034

590

346

9034

790

348

9035

190

352

9035

390

354

9035

590

356

9035

790

358

9035

990

360

9036

190

362

9036

390

364

9036

590

366

9036

790

368

9037

190

372

9037

390

374

9037

590

376

9037

790

378

9037

990

380

9038

190

382

9038

390

384

9038

590

386

9038

790

388

9038

990

390

9039

590

396

9039

790

398

9039

990

400

9040

190

402

9040

390

404

9040

590

406

9040

790

408

9040

990

410

9041

190

412

9041

390

414

9041

590

416

9042

390

424

9042

590

426

9042

790

428

9042

990

431

9043

290

433

9043

490

435

9043

690

437

9043

890

439

9044

090

441

9044

290

443

9044

490

445

9044

690

447

9044

890

449

9045

090

451

9045

290

453

9045

490

455

9045

690

457

9045

890

459

9046

090

461

9046

290

463

9046

490

465

9046

690

467

9046

890

469

9047

090

471

9047

290

473

9047

490

475

9047

690

477

9047

890

479

9048

0

9048

190

482

9048

390

484

9048

590

486

9048

790

488

9048

990

490

9049

190

492

9049

390

494

9049

590

496

9049

790

498

9049

990

500

9050

190

502

9050

390

504

9050

590

506

9050

790

508

9050

990

510

9051

1

Fi

gure

3G

.1-9

. FE

Mod

el o

f RB

/FB

(Fou

ndat

ion

Mat

)

Page 161: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

34

EL

-11.

5

EL

-6.9

EL

-1.5

EL

3.65

EL

8.56

EL

13.0

7

EL

17.2

EL

25.8

|18

0°| 0°

|18

0°| 90°

|27

ELEM

-ID

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2801

2802

2803

2804

2805

2806

2807

2808

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

3001

3002

3003

3004

3005

3006

3007

3008

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3201

3202

3203

3204

3205

3206

3207

3208

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3819

3820

3829

3830

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4019

4020

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

4431

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

4442

4443

4444

4445

4446

4447

4448

GR

ID-I

D

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

3001

3002

3003

3004

3005

3006

3007

3008

3009

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3201

3202

3203

3204

3205

3206

3207

3208

3209

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4019

4020

4021

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

4431

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

4442

4443

4444

4445

4446

4447

4448

4601

4602

4603

4604

4605

4606

4607

4608

4609

4610

4611

4612

4613

4614

4615

4616

4617

4618

4619

4620

4621

4622

4623

4624

4625

4626

4627

4628

4629

4630

4631

4632

4633

4634

4635

4636

4637

4638

4639

4640

4641

4642

4643

4644

4645

4646

4647

4648

1201

401

601

801

1001

1201

1601

1801

2001

2201

2401

2601

2801

3001

3201

3401

3601

3801

4001

4201

4401

4601

Fi

gure

3G

.1-1

0. F

E M

odel

of R

B/F

B (R

CC

V W

all)

Page 162: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

35

EL

-11.

5

EL

-6.9

EL

-1.5

EL

3.65

|18

0°| 0°

|18

0°| 90°

|27

ELEM

-ID

5001

5002

5003

5004

5005

5006

5007

5008

5009

5010

5011

5012

5013

5014

5015

5016

5017

5018

5019

5020

5021

5022

5023

5024

5025

5026

5027

5028

5029

5030

5031

5032

5033

5034

5035

5036

5037

5038

5039

5040

5041

5042

5043

5044

5045

5046

5047

5048

5201

5202

5203

5204

5205

5206

5207

5208

5209

5210

5211

5212

5213

5214

5215

5216

5217

5218

5219

5220

5221

5222

5223

5224

5225

5226

5227

5228

5229

5230

5231

5232

5233

5234

5235

5236

5237

5238

5239

5240

5241

5242

5243

5244

5245

5246

5247

5248

5404

5405

5406

5407

5408

5409

5410

5411

5412

5413

5414

5415

5416

5417

5418

5419

5420

5421

5428

5429

5430

5431

5432

5433

5434

5435

5436

5437

5438

5439

5440

5441

5442

5443

5444

5445

5604

5605

5606

5607

5608

5609

5610

5611

5612

5613

5614

5615

5616

5617

5618

5619

5620

5621

5628

5629

5630

5631

5632

5633

5634

5635

5636

5637

5638

5639

5640

5641

5642

5643

5644

5645

5804

5805

5806

5807

5808

5809

5810

5811

5812

5813

5814

5815

5816

5817

5818

5819

5820

5821

5828

5829

5830

5831

5832

5833

5834

5835

5836

5837

5838

5839

5840

5841

5842

5843

5844

5845

6001

6002

6003

6004

6005

6006

6007

6008

6009

6010

6011

6012

6013

6014

6015

6016

6017

6018

6019

6020

6021

6022

6023

6024

6025

6026

6027

6028

6029

6030

6031

6032

6033

6034

6035

6036

6037

6038

6039

6040

6041

6042

6043

6044

6045

6046

6047

6048

6201

6202

6203

6204

6205

6206

6207

6208

6209

6210

6211

6212

6213

6214

6215

6216

6217

6218

6219

6220

6221

6222

6223

6224

6225

6226

6227

6228

6229

6230

6231

6232

6233

6234

6235

6236

6237

6238

6239

6240

6241

6242

6243

6244

6245

6246

6247

6248

6401

6402

6403

6404

6405

6406

6407

6408

6409

6410

6411

6412

6413

6414

6415

6416

6417

6418

6419

6420

6421

6422

6423

6424

6425

6426

6427

6428

6429

6430

6431

6432

6433

6434

6435

6436

6437

6438

6439

6440

6441

6442

6443

6444

6445

6446

6447

6448

6601

6602

6603

6604

6605

6606

6607

6608

6609

6610

6611

6612

6613

6614

6615

6616

6617

6618

6619

6620

6621

6622

6623

6624

6625

6626

6627

6628

6629

6630

6631

6632

6633

6634

6635

6636

6637

6638

6639

6640

6641

6642

6643

6644

6645

6646

6647

6648

GR

ID-I

D

5001

5002

5003

5004

5005

5006

5007

5008

5009

5010

5011

5012

5013

5014

5015

5016

5017

5018

5019

5020

5021

5022

5023

5024

5025

5026

5027

5028

5029

5030

5031

5032

5033

5034

5035

5036

5037

5038

5039

5040

5041

5042

5043

5044

5045

5046

5047

5048

5201

5202

5203

5204

5205

5206

5207

5208

5209

5210

5211

5212

5213

5214

5215

5216

5217

5218

5219

5220

5221

5222

5223

5224

5225

5226

5227

5228

5229

5230

5231

5232

5233

5234

5235

5236

5237

5238

5239

5240

5241

5242

5243

5244

5245

5246

5247

5248

5401

5402

5403

5404

5405

5406

5407

5408

5409

5410

5411

5412

5413

5414

5415

5416

5417

5418

5419

5420

5421

5422

5423

5424

5425

5426

5427

5428

5429

5430

5431

5432

5433

5434

5435

5436

5437

5438

5439

5440

5441

5442

5443

5444

5445

5446

5447

5448

5604

5605

5606

5607

5608

5609

5610

5611

5612

5613

5614

5615

5616

5617

5618

5619

5620

5621

5622

5628

5629

5630

5631

5632

5633

5634

5635

5636

5637

5638

5639

5640

5641

5642

5643

5644

5645

5646

5804

5805

5806

5807

5808

5809

5810

5811

5812

5813

5814

5815

5816

5817

5818

5819

5820

5821

5822

5828

5829

5830

5831

5832

5833

5834

5835

5836

5837

5838

5839

5840

5841

5842

5843

5844

5845

5846

6001

6002

6003

6004

6005

6006

6007

6008

6009

6010

6011

6012

6013

6014

6015

6016

6017

6018

6019

6020

6021

6022

6023

6024

6025

6026

6027

6028

6029

6030

6031

6032

6033

6034

6035

6036

6037

6038

6039

6040

6041

6042

6043

6044

6045

6046

6047

6048

6201

6202

6203

6204

6205

6206

6207

6208

6209

6210

6211

6212

6213

6214

6215

6216

6217

6218

6219

6220

6221

6222

6223

6224

6225

6226

6227

6228

6229

6230

6231

6232

6233

6234

6235

6236

6237

6238

6239

6240

6241

6242

6243

6244

6245

6246

6247

6248

6401

6402

6403

6404

6405

6406

6407

6408

6409

6410

6411

6412

6413

6414

6415

6416

6417

6418

6419

6420

6421

6422

6423

6424

6425

6426

6427

6428

6429

6430

6431

6432

6433

6434

6435

6436

6437

6438

6439

6440

6441

6442

6443

6444

6445

6446

6447

6448

6601

6602

6603

6604

6605

6606

6607

6608

6609

6610

6611

6612

6613

6614

6615

6616

6617

6618

6619

6620

6621

6622

6623

6624

6625

6626

6627

6628

6629

6630

6631

6632

6633

6634

6635

6636

6637

6638

6639

6640

6641

6642

6643

6644

6645

6646

6647

6648

6801

6802

6803

6804

6805

6806

6807

6808

6809

6810

6811

6812

6813

6814

6815

6816

6817

6818

6819

6820

6821

6822

6823

6824

6825

6826

6827

6828

6829

6830

6831

6832

6833

6834

6835

6836

6837

6838

6839

6840

6841

6842

6843

6844

6845

6846

6847

6848

5001

5201

5401

6001

6201

6401

6601

6801

Fi

gure

3G

.1-1

1. F

E M

odel

of R

B/F

B (R

PV P

edes

tal)

Page 163: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

36

X

Y

PN

R6

R5

R4

R3

R2

270°

90°

RF

RE

RD

RCRB

180°

ELEM

-ID

9800

198

002

9800

398

004

9800

598

006

9800

798

008

9800

998

010

9801

198

012

9801

398

014

9801

598

016

9801

798

018

9801

998

020

9802

198

022

9802

398

024

9802

598

026

9802

798

028

9802

998

030

9803

198

032

9803

398

034

9803

598

036

9803

798

038

9803

998

040

9804

198

042

9804

398

044

9804

598

046

9804

798

048

9804

998

050

9805

198

052

9805

398

054

9805

598

056

9805

798

058

9805

998

060

9806

198

062

9806

398

064

9806

598

066

9806

798

068

9806

998

070

9807

198

072

9807

398

074

9807

598

076

9807

798

078

9807

998

080

9808

198

082

9808

398

084

9808

598

086

9808

798

088

9808

998

090

9809

198

092

9809

398

094

9809

598

096

9809

798

098

9809

998

100

9810

198

102

9810

398

104

9810

598

106

9810

798

108

9810

998

110

9811

198

112

9811

398

114

9811

598

116

9811

798

118

9811

998

120

9812

198

122

9812

398

124

9812

598

126

9812

798

128

9812

998

130

9813

198

132

9813

398

134

9813

598

136

9813

798

138

9813

998

140

9814

198

142

9814

398

144

9814

598

146

9814

798

148

9814

998

150

9815

198

152

9815

398

154

9815

598

156

9815

798

158

9815

998

160

9816

198

162

9816

398

164

9816

598

166

9816

798

168

9816

998

170

9817

198

172

9817

398

174

9817

598

176

9817

798

178

9817

998

180

9818

198

182

9818

398

184

9818

598

186

9818

798

188

9818

998

190

9819

198

192

9819

398

194

9819

598

196

9819

798

198

9820

198

202

9820

398

204

9820

598

206

9820

798

208

9820

998

210

9821

198

212

9821

398

214

9821

5

9821

6

9821

798

218

9821

998

22098

221

9822

2

9822

398

224

9822

598

226

9822

798

228

9822

998

230

9823

198

232

9823

398

234

9823

598

236

9823

798

238

9823

998

240

9824

198

242

9824

398

244

9824

598

246

9824

798

248

6500

01

GR

ID-I

D

4601

4602

4603

4604

4605

4606

4607

4608

4609

4610

4611

4612

4613

4614

4615

4616

4617

4618

4619

4620

4621

4622

4623

4624

4625 46

26

4627

4628

4629

4630

4631

4632

4633

4634

4635

4636

4637

4638

4639

4640

4641

4642

4643

4644

4645

4646

4647

4648

9806

898

069

9807

0

9807

398

074

9808

198

082

9808

398

090

9809

1

9809

498

095

9810

398

104

9810

598

106

9810

798

108

9810

9

9811

598

116

9812

29812

398

124

9812

598

126

9812

798

128

9812

998

130

9813

19813

2

9814

398

144

9814

598

146

9814

798

148

9814

998

150

9815

198

155

9815

6

9816

298

163

9816

498

165

9816

698

167

9816

898

169

9817

098

171

9817

298

173

9817

4

9818

298

183

9818

498

185

9818

698

187

9818

898

189

9819

098

191

9819

298

193

9819

4

9819

998

200

9820

1

9821

098

211

9821

298

213

9821

498

215

9821

698

217

9821

898

219

9822

098

221

9822

298

223

9822

498

225

9822

698

227

9823

498

235

9823

698

237

9823

898

239

9824

0

9824

498

245

9824

698

247

9824

898

249

9825

098

251

9825

2

9825

698

257

9825

898

259

9826

0

9826

198

262

9826

998

270

9827

198

272

9827

398

274

9827

598

276

9827

798

278

9827

998

280

9828

198

282

9828

398

284

9828

598

286

9829

5

9829

698

297

9830

298

303

9830

498

305

9830

698

307

9830

898

309

9831

098

311

9831

298

313

9831

4

9832

398

324

9832

598

326

9832

798

328

9832

998

330

9833

198

332

9833

398

334

9833

5

9834

098

341

9834

598

346

9834

798

348

9834

998

350

9835

198

352

9835

3

9836

49836

598

366

9836

798

368

9836

998

370

9837

198

372

9837

39837

4

9838

098

381

9838

798

388

9838

998

390

9839

198

392

9839

3

9840

198

402

9840

598

406

9841

398

414

9841

5

9842

298

423

9842

698

427

9842

8

Fi

gure

3G

.1-1

2. F

E M

odel

of R

B/F

B (T

op S

lab)

Page 164: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

37

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825 18

26

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

6801

6802

6803

6804

6805

6806

6807

6808

6809

6810

6811

6812

6813

6814

6815

6816

6817

6818

6819

6820

6821

6822

6823

6824

6825

6826 68

27 6828

6829

6830

6831

6832

6833

6834

6835

6836

6837

6838

6839

6840

6841

6842

6843

6844

684568

46684768

48

8325

1

8325

2

8325

3

8325

4

8325

5

8325

6

8325

7

8325

8

8325

9

8326

083

261

8326

283

263

8326

483

265

8326

6

8326

7

8326

8

8326

9

8327

0

8327

1

8327

2

8327

3

8327

4

8327

5

8327

6

8327

7 8327

8 8327

9 8328

0

8328

1

8328

2

8328

3

8328

483

285

8328

683

287

8328

883

289

8329

0

8329

1

8329

2

8329

3

8329

48329

58329

6

8329

7

8329

8

8330

1

8330

2

8330

3

8330

4

8330

5

8330

6

8330

7

8330

8

8330

9

8331

0

8331

183

312

8331

383

314

8331

5

8331

6

8331

7

8331

8

8331

9

8332

0

8332

1

8332

2

8332

3

8332

4

8332

5

8332

6

8332

7 8332

8 8332

9

8333

0

8333

1

8333

2

8333

3

8333

4

8333

583

336

8333

783

338

8333

9

8334

0

8334

1

8334

2

8334

3

8334

4

8334

58334

68334

7

8334

8

8335

1

8335

2

8335

3

8335

4

8335

5

8335

6

8335

7

8335

8

8335

9

8336

0

8336

183

362

8336

383

364

8336

5

8336

6

8336

7

8336

8

8336

9

8337

0

8337

1

8337

2

8337

3

8337

4

8337

5

8337

6

8337

7 8337

8

8337

9

8338

0

8338

1

8338

2

8338

3

8338

4

8338

583

386

8338

783

388

8338

9

8339

0

8339

1

8339

2

8339

3

8339

4

8339

5

8339

68339

7

8339

8

8340

1

8340

2

8340

3

8340

4

8340

5

8340

6

8340

7

8340

8

8340

9

8341

0

8341

183

412

8341

383

414

8341

5

8341

6

8341

7

8341

8

8341

9

8342

0

8342

1

8342

2

8342

3

8342

4

8342

5

8342

6 8342

7 8342

8

8342

9

8343

0

8343

1

8343

2

8343

3

8343

4

8343

583

436

8343

783

438

8343

9

8344

0

8344

1

8344

2

8344

3

8344

4

8344

5

8344

68344

78344

8

8345

1

8345

2

8345

3

8345

4

8345

5

8345

6

8345

7

8345

8

8345

9

8346

0

8346

1

8346

283

463

8346

4

8346

5

8346

6

8346

7

8346

8

8346

9

8347

0

8347

1

8347

2

8347

3

8347

4

8347

5

8347

6 8347

7

8347

8

8347

9

8348

0

8348

1

8348

2

8348

3

8348

4

8348

583

486

8348

783

488

8348

9

8349

0

8349

1

8349

2

8349

3

8349

4

8349

5

8349

6

8349

78349

8

5018

01

5018

02

5018

03

5018

04

5018

05

5018

06

5018

07

5018

08

5018

09

5018

10

5018

11

5018

1250

1813

5018

14

5018

15

5018

16

5018

17

5018

18

5018

19

5018

20

5018

21

5018

22

5018

23

5018

24

5018

25

5018

26 5018

27

5018

28

5018

29

5018

30

5018

31

5018

32

5018

33

5018

34

5018

35

5018

3650

1837

5018

38

5018

39

5018

40

5018

41

5018

42

5018

43

5018

44

5018

45

5018

46

5018

475018

48

8325

1

8325

2

8325

3

8325

4

8325

5

8325

6

8325

7

8325

8

8325

983

260

8326

183

262

8326

383

264

8326

583

266

8326

7

8326

8

8326

9

8327

0

8327

1

8327

2

8327

3

8327

4

8327

5

8327

6

8327

7 8327

8 8327

9 8328

0

8328

1

8328

2

8328

383

284

8328

583

286

8328

783

288

8328

983

290

8329

1

8329

2

8329

38329

48329

58329

6

8329

7

8329

8

8330

1

8330

2

8330

3

8330

4

8330

5

8330

6

8330

7

8330

8

8330

9

8331

083

311

8331

283

313

8331

483

315

8331

6

8331

7

8331

8

8331

9

8332

0

8332

1

8332

2

8332

3

8332

4

8332

5

8332

6

8332

7 8332

8 8332

9

8333

0

8333

1

8333

2

8333

3

8333

483

335

8333

683

337

8333

883

339

8334

0

8334

1

8334

2

8334

3

8334

48334

58334

6

8334

7

8334

8

8335

1

8335

2

8335

3

8335

4

8335

5

8335

6

8335

7

8335

8

8335

9

8336

083

361

8336

283

363

8336

483

365

8336

6

8336

7

8336

8

8336

9

8337

0

8337

1

8337

2

8337

3

8337

4

8337

5

8337

6 8337

7 8337

8

8337

9

8338

0

8338

1

8338

2

8338

3

8338

483

385

8338

683

387

8338

883

389

8339

0

8339

1

8339

2

8339

3

8339

4

8339

58339

68339

7

8339

8

8340

1

8340

2

8340

3

8340

4

8340

5

8340

6

8340

7

8340

8

8340

9

8341

0

8341

183

412

8341

383

414

8341

5

8341

6

8341

7

8341

8

8341

9

8342

0

8342

1

8342

2

8342

3

8342

4

8342

5

8342

6 8342

7

8342

8

8342

9

8343

0

8343

1

8343

2

8343

3

8343

4

8343

583

436

8343

783

438

8343

9

8344

0

8344

1

8344

2

8344

3

8344

4

8344

5

8344

68344

7

8344

8

8345

1

8345

2

8345

3

8345

4

8345

5

8345

6

8345

7

8345

8

8345

9

8346

0

8346

183

462

8346

383

464

8346

5

8346

6

8346

7

8346

8

8346

9

8347

0

8347

1

8347

2

8347

3

8347

4

8347

5

8347

6 8347

7

8347

8

8347

9

8348

0

8348

1

8348

2

8348

3

8348

4

8348

583

486

8348

783

488

8348

9

8349

0

8349

1

8349

2

8349

3

8349

4

8349

5

8349

68349

7

8349

8

8350

1

8350

2

8350

3

8350

4

8350

5

8350

6

8350

7

8350

8

8350

9

8351

0

8351

183

512

8351

383

514

8351

5

8351

6

8351

7

8351

8

8351

9

8352

0

8352

1

8352

2

8352

3

8352

4

8352

5

8352

6 8352

7

8352

8

8352

9

8353

0

8353

1

8353

2

8353

3

8353

4

8353

583

536

8353

783

538

8353

9

8354

0

8354

1

8354

2

8354

3

8354

4

8354

5

8354

68354

7

8354

8

8355

1

8355

2

8355

3

8355

4

8355

5

8355

6

8355

7

8355

8

8355

9

8356

0

8356

183

562

8356

383

564

8356

5

8356

6

8356

7

8356

8

8356

9

8357

0

8357

1

8357

2

8357

3

8357

4

8357

5

8357

6 8357

7

8357

8

8357

9

8358

0

8358

1

8358

2

8358

3

8358

4

8358

583

586

8358

783

588

8358

9

8359

0

8359

1

8359

2

8359

3

8359

4

8359

5

8359

68359

7

8359

8

X

Y

PN

R6

R5

R4

R3

R2

RF

RE

RD

RC

RB

180°

270°

90°

Fi

gure

3G

.1-1

3. F

E M

odel

of R

B/F

B (S

uppr

essi

on P

ool S

lab)

Page 165: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

38

EL -1

1.5

EL -6

.9

EL -1

.5

EL 3

.65

EL 8

.56

EL 1

3.07

EL 1

7.2

EL 2

2.5

EL 2

5.8

EL 3

4.0

EL 5

2.05 R

GR

FR

ER

DR

CR

BR

A

Y

Z

ELEM

-ID

4000

140

002

4000

340

004

4000

540

006

4000

740

008

4000

940

010

4001

140

012

4001

340

014

4001

540

016

4001

740

018

4001

940

020

4020

140

202

4020

340

204

4020

540

206

4020

740

208

4020

940

210

4021

140

212

4021

340

214

4021

540

216

4021

740

218

4021

940

220

4040

140

402

4040

340

404

4040

540

406

4040

740

408

4040

940

410

4041

140

412

4041

340

414

4041

540

416

4041

740

418

4041

940

420

4060

140

602

4060

340

604

4060

540

606

4060

740

608

4060

940

610

4061

140

612

4061

340

614

4061

540

616

4061

740

618

4061

940

620

4080

140

802

4080

340

804

4080

540

806

4080

740

808

4080

940

810

4081

140

812

4081

340

814

4081

540

816

4081

740

818

4081

940

820

4100

141

002

4100

341

004

4100

541

006

4100

741

008

4100

941

010

4101

141

012

4101

341

014

4101

541

016

4101

741

018

4101

941

020

4120

141

202

4120

341

204

4120

541

206

4120

741

208

4120

941

210

4121

141

212

4121

341

214

4121

541

216

4121

741

218

4121

941

220

4140

141

402

4140

341

404

4140

541

406

4140

741

408

4140

941

410

4141

141

412

4141

341

414

4141

541

416

4141

741

418

4141

941

420

4160

141

602

4160

341

604

4160

541

606

4160

741

608

4160

941

610

4161

141

612

4161

341

614

4161

541

616

4161

741

618

4161

941

620

4180

141

802

4180

341

804

4180

541

806

4180

741

809

4181

041

811

4181

241

814

4181

541

816

4181

741

818

4181

941

820

4200

142

002

4200

342

004

4200

542

006

4200

742

009

4201

042

011

4201

242

014

4201

542

016

4201

742

018

4201

942

020

4220

142

202

4220

342

204

4220

542

206

4220

742

208

4220

942

210

4221

142

212

4221

342

214

4221

542

216

4221

742

218

4221

942

220

4240

142

402

4240

342

404

4240

542

406

4240

742

408

4240

942

410

4241

142

412

4241

342

414

4241

542

416

4241

742

418

4241

942

420

4260

142

602

4260

342

604

4260

542

606

4260

742

608

4260

942

610

4261

142

612

4261

342

614

4261

542

616

4261

742

618

4261

942

620

4280

142

802

4280

342

804

4280

542

806

4280

742

808

4280

942

810

4281

142

812

4281

342

814

4281

542

816

4281

742

818

4281

942

820

4300

143

002

4300

343

004

4300

543

006

4300

743

008

4300

943

010

4301

143

012

4301

343

014

4301

543

016

4301

743

018

4301

943

020

4320

143

202

4320

343

204

4320

543

206

4320

743

208

4320

943

210

4321

143

212

4321

343

214

4321

543

216

4321

743

218

4321

943

220

4340

143

402

4340

343

404

4340

543

406

4340

743

408

4340

943

410

4341

143

412

4341

343

414

4341

543

416

4341

743

418

4341

943

420

4360

143

602

4360

343

604

4360

543

606

4360

743

614

4361

543

616

4361

743

618

4361

943

620

4380

143

802

4380

343

804

4380

543

806

4380

743

814

4381

543

816

4381

743

818

4381

943

820

4400

144

002

4400

344

004

4400

544

006

4400

744

014

4401

544

016

4401

744

018

4401

944

020

4420

144

202

4420

344

204

4420

544

206

4420

744

218

4421

944

220

4422

144

222

4422

344

224

4440

144

402

4440

344

404

4440

544

406

4440

744

416

4441

744

418

4441

944

420

4442

144

422

4460

144

602

4460

344

604

4460

544

606

4460

744

608

4460

944

610

4461

144

612

4461

344

614

4461

544

616

4461

744

618

4461

944

620

4462

144

622

4480

144

802

4480

344

804

4480

544

806

4480

744

808

4480

944

810

4481

144

812

4481

344

814

4481

544

816

4481

744

818

4481

944

820

4482

144

822

4500

145

002

4500

345

004

4500

545

006

4500

745

008

4500

945

010

4501

145

012

4501

345

014

4501

545

016

4501

745

018

4501

945

020

4502

145

022

4520

145

202

4520

345

204

4520

545

206

4520

745

208

4520

945

210

4521

145

212

4521

345

214

4521

545

216

4521

745

218

4521

945

220

4522

145

222

4540

145

402

4540

345

404

4540

545

406

4540

745

408

4540

945

410

4541

145

412

4541

345

414

4541

545

416

4541

745

418

4541

945

420

4542

145

422

4560

345

604

4560

545

606

4560

745

608

4560

945

610

4561

145

612

4561

345

614

4561

545

616

4561

745

618

4561

945

620

4580

345

804

4580

545

806

4580

745

808

4580

945

810

4581

145

812

4581

345

814

4581

545

816

4581

745

818

4581

945

820

4600

346

004

4600

546

006

4600

746

008

4600

946

010

4601

146

012

4601

346

014

4601

546

016

4601

746

018

4601

946

020

4620

346

204

4620

546

206

4620

746

208

4620

946

210

4621

146

212

4621

346

214

4621

546

216

4621

746

218

4621

946

220

4640

346

404

4640

546

406

4640

746

408

4640

946

410

4641

146

412

4641

346

414

4641

546

416

4641

746

418

4641

946

420

4660

346

604

4660

546

606

4660

746

608

4660

946

610

4661

146

612

4661

346

614

4661

546

616

4661

746

618

4661

946

620

4680

346

804

4680

546

806

4680

746

808

4680

946

810

4681

146

812

4681

346

814

4681

546

816

4681

746

818

4681

946

820

4700

347

004

4700

547

006

4700

747

008

4700

947

010

4701

147

012

4701

347

014

4701

547

016

4701

747

018

4701

947

020

4720

347

204

4720

547

206

4720

747

208

4720

947

210

4721

147

212

4721

347

214

4721

547

216

4721

747

218

4721

947

220

4740

347

404

4740

547

406

4740

747

408

4740

947

410

4741

147

412

4741

347

414

4741

547

416

4741

747

418

4741

947

420

4760

347

604

4760

547

606

4760

747

608

4760

947

610

4761

147

612

4761

347

614

4761

547

616

4761

747

618

4761

947

620

4780

347

804

4780

547

806

4780

747

808

4780

947

810

4781

147

812

4781

347

814

4781

547

816

4781

747

818

4781

947

820

GR

ID-I

D

1000

110

064

1006

510

066

1006

710

068

1006

910

070

1007

110

072

1007

410

075

1007

610

078

1007

910

080

1008

110

082

1008

310

084

1008

5

1020

110

264

1026

510

266

1026

710

268

1026

910

270

1027

110

272

1027

410

275

1027

610

278

1027

910

280

1028

110

282

1028

310

284

1028

5

1040

110

464

1046

510

466

1046

710

468

1046

910

470

1047

110

472

1047

410

475

1047

610

478

1047

910

480

1048

110

482

1048

310

484

1048

5

1060

110

664

1066

510

666

1066

710

668

1066

910

670

1067

110

672

1067

410

675

1067

610

678

1067

910

680

1068

110

682

1068

310

684

1068

5

1080

110

864

1086

510

866

1086

710

868

1086

910

870

1087

110

872

1087

410

875

1087

610

878

1087

910

880

1088

110

882

1088

310

884

1088

5

1100

111

064

1106

511

066

1106

711

068

1106

911

070

1107

111

072

1107

411

075

1107

611

078

1107

911

080

1108

111

082

1108

311

084

1108

5

1120

111

264

1126

511

266

1126

711

268

1126

911

270

1127

111

272

1127

411

275

1127

611

278

1127

911

280

1128

111

282

1128

311

284

1128

5

1140

111

464

1146

511

466

1146

711

468

1146

911

470

1147

111

472

1147

411

475

1147

611

478

1147

911

480

1148

111

482

1148

311

484

1148

5

1160

111

664

1166

511

666

1166

711

668

1166

911

670

1167

111

672

1167

411

675

1167

611

678

1167

911

680

1168

111

682

1168

311

684

1168

5

1180

111

864

1186

511

866

1186

711

868

1186

911

870

1187

111

872

1187

411

875

1187

611

878

1187

911

880

1188

111

882

1188

311

884

1188

5

1200

112

064

1206

512

066

1206

712

068

1206

912

070

1207

112

072

1207

412

075

1207

612

078

1207

912

080

1208

112

082

1208

312

084

1208

5

1220

112

264

1226

512

266

1226

712

268

1226

912

270

1227

112

272

1227

412

275

1227

612

278

1227

912

280

1228

112

282

1228

312

284

1228

5

1240

112

464

1246

512

466

1246

712

468

1246

912

470

1247

112

472

1247

412

475

1247

612

478

1247

912

480

1248

112

482

1248

312

484

1248

5

1260

112

664

1266

512

666

1266

712

668

1266

912

670

1267

112

672

1267

412

675

1267

612

678

1267

912

680

1268

112

682

1268

312

684

1268

5

1280

112

864

1286

512

866

1286

712

868

1286

912

870

1287

112

872

1287

412

875

1287

612

878

1287

912

880

1288

112

882

1288

312

884

1288

5

1300

113

064

1306

513

066

1306

713

068

1306

913

070

1307

113

072

1307

413

075

1307

613

078

1307

913

080

1308

113

082

1308

313

084

1308

5

1320

113

264

1326

513

266

1326

713

268

1326

913

270

1327

113

272

1327

413

275

1327

613

278

1327

913

280

1328

113

282

1328

313

284

1328

5

1340

113

464

1346

513

466

1346

713

468

1346

913

470

1347

113

472

1347

413

475

1347

613

478

1347

913

480

1348

113

482

1348

313

484

1348

5

1360

113

664

1366

513

666

1366

713

668

1366

913

670

1367

113

672

1367

413

675

1367

613

678

1367

913

680

1368

113

682

1368

313

684

1368

5

1380

113

864

1386

513

866

1386

713

868

1386

913

870

1387

113

879

1388

013

881

1388

213

883

1388

413

885

1400

114

064

1406

514

066

1406

714

068

1406

914

070

1407

114

079

1408

014

081

1408

214

083

1408

414

085

1420

114

264

1426

514

266

1426

714

268

1426

914

270

1427

114

279

1428

014

281

1428

214

283

1428

414

285

1440

114

464

1446

514

466

1446

714

468

1446

914

470

1447

114

479

1448

014

481

1448

214

483

1448

414

485

1460

114

664

1466

514

666

1466

714

668

1466

914

670

1467

114

672

1467

314

674

1467

514

676

1467

714

678

1467

914

680

1468

114

682

1468

314

684

1468

5

1480

114

864

1486

514

866

1486

714

868

1486

914

870

1487

114

872

1487

314

874

1487

514

876

1487

714

878

1487

914

880

1488

114

882

1488

314

884

1488

5

1500

115

064

1506

515

066

1506

715

068

1506

915

070

1507

115

072

1507

315

074

1507

515

076

1507

715

078

1507

915

080

1508

115

082

1508

315

084

1508

5

1520

115

264

1526

515

266

1526

715

268

1526

915

270

1527

115

272

1527

315

274

1527

515

276

1527

715

278

1527

915

280

1528

115

282

1528

315

284

1528

5

1540

115

464

1546

515

466

1546

715

468

1546

915

470

1547

115

472

1547

315

474

1547

515

476

1547

715

478

1547

915

480

1548

115

482

1548

315

484

1548

5

1560

115

664

1566

515

666

1566

715

668

1566

915

670

1567

115

672

1567

315

674

1567

515

676

1567

715

678

1567

915

680

1568

115

682

1568

315

684

1568

5

1586

615

867

1586

815

869

1587

015

871

1587

215

873

1587

415

875

1587

615

877

1587

815

879

1588

015

881

1588

215

883

1588

4

1606

616

067

1606

816

069

1607

016

071

1607

216

073

1607

416

075

1607

616

077

1607

816

079

1608

016

081

1608

216

083

1608

4

1626

616

267

1626

816

269

1627

016

271

1627

216

273

1627

416

275

1627

616

277

1627

816

279

1628

016

281

1628

216

283

1628

4

1646

616

467

1646

816

469

1647

016

471

1647

216

473

1647

416

475

1647

616

477

1647

816

479

1648

016

481

1648

216

483

1648

4

1666

616

667

1666

816

669

1667

016

671

1667

216

673

1667

416

675

1667

616

677

1667

816

679

1668

016

681

1668

216

683

1668

4

1686

616

867

1686

816

869

1687

016

871

1687

216

873

1687

416

875

1687

616

877

1687

816

879

1688

016

881

1688

216

883

1688

4

1706

617

067

1706

817

069

1707

017

071

1707

217

073

1707

417

075

1707

617

077

1707

817

079

1708

017

081

1708

217

083

1708

4

1726

617

267

1726

817

269

1727

017

271

1727

217

273

1727

417

275

1727

617

277

1727

817

279

1728

017

281

1728

217

283

1728

4

1746

617

467

1746

817

469

1747

017

471

1747

217

473

1747

417

475

1747

617

477

1747

817

479

1748

017

481

1748

217

483

1748

4

1766

617

667

1766

817

669

1767

017

671

1767

217

673

1767

417

675

1767

617

677

1767

817

679

1768

017

681

1768

217

683

1768

4

1786

617

867

1786

817

869

1787

017

871

1787

217

873

1787

417

875

1787

617

877

1787

817

879

1788

017

881

1788

217

883

1788

4

1806

618

067

1806

818

069

1807

018

071

1807

218

073

1807

418

075

1807

618

077

1807

818

079

1808

018

081

1808

218

083

1808

4

Fi

gure

3G

.1-1

4. F

E M

odel

of R

B/F

B (E

xter

nal W

all:

Nor

th S

ide)

Page 166: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

39

X

ZR

1F3

F2R

6R

5R

7 F1

R4

R3

R2

EL

-11.

5

EL

-6.9

EL

-1.5

EL

3.65

EL

8.56

EL

13.0

7

EL

17.2

EL

22.5

EL

25.8

EL

34.0

ELEM

-ID

3000

130

002

3000

330

004

3000

530

006

3000

730

008

3000

930

010

3001

130

012

3001

330

014

3001

530

016

3001

730

018

3001

930

020

7000

170

002

7000

370

004

7000

570

006

7000

770

008

7000

970

010

3020

130

202

3020

330

204

3020

530

206

3020

730

208

3020

930

210

3021

130

212

3021

330

214

3021

530

216

3021

730

218

3021

930

220

7020

170

202

7020

370

204

7020

570

206

7020

770

208

7020

970

210

3040

130

402

3040

330

404

3040

530

406

3040

730

408

3040

930

410

3041

130

412

3041

330

414

3041

530

416

3041

730

418

3041

930

420

7040

170

402

7040

370

404

7040

570

406

7040

770

408

7040

970

410

3060

130

602

3060

330

604

3060

530

606

3060

730

608

3060

930

610

3061

130

612

3061

330

614

3061

530

616

3061

730

618

3061

930

620

7060

170

602

7060

370

604

7060

570

606

7060

770

608

7060

970

610

3080

130

802

3080

330

804

3080

530

806

3080

730

808

3080

930

810

3081

130

812

3081

330

814

3081

530

816

3081

730

818

3081

930

820

7080

170

802

7080

370

804

7080

570

806

7080

770

808

7080

970

810

3100

131

002

3100

331

004

3100

531

006

3100

731

008

3100

931

010

3101

131

012

3101

331

014

3101

531

016

3101

731

018

3101

931

020

7100

171

002

7100

371

004

7100

571

006

7100

771

008

7100

971

010

3120

131

202

3120

331

204

3120

531

206

3120

731

208

3120

931

210

3121

131

212

3121

331

214

3121

531

216

3121

731

218

3121

931

220

7120

171

202

7120

371

204

7120

571

206

7120

771

208

7120

971

210

3140

131

402

3140

331

404

3140

531

406

3140

731

408

3140

931

410

3141

131

412

3141

331

414

3141

531

416

3141

731

418

3141

931

420

7140

171

402

7140

371

404

7140

571

406

7140

771

408

7140

971

410

3160

131

602

3160

331

604

3160

531

606

3160

731

608

3160

931

610

3161

131

612

3161

331

614

3161

531

616

3161

731

618

3161

931

620

7160

171

602

7160

371

604

7160

571

606

7160

771

608

7160

971

610

3180

131

802

3180

331

804

3180

531

806

3180

731

808

3180

931

810

3181

131

812

3181

331

814

3181

531

816

3181

731

818

3181

931

820

7180

171

802

7180

371

804

7180

571

806

7180

771

808

7180

971

810

3200

132

002

3200

332

004

3200

532

006

3200

732

008

3200

932

010

3201

132

012

3201

332

014

3201

532

016

3201

732

018

3201

932

020

7200

172

002

7200

372

004

7200

572

006

7200

772

008

7200

972

010

3220

132

202

3220

332

204

3220

532

206

3220

732

208

3220

932

210

3221

132

212

3221

332

214

3221

532

216

3221

732

218

3221

932

220

7220

172

202

7220

372

204

7220

572

206

7220

772

208

7220

972

210

3240

132

402

3240

332

404

3240

532

406

3240

732

408

3240

932

410

3241

132

412

3241

332

414

3241

532

416

3241

732

418

3241

932

420

7240

172

402

7240

372

404

7240

572

406

7240

772

408

7240

972

410

3260

132

602

3260

332

604

3260

532

606

3260

732

608

3260

932

610

3261

132

612

3261

332

614

3261

532

616

3261

732

618

3261

932

620

7260

172

602

7260

372

604

7260

572

606

7260

772

608

7260

972

610

3280

132

802

3280

332

804

3280

532

806

3280

732

808

3280

932

810

3281

132

812

3281

332

814

3281

532

816

3281

732

818

3281

932

820

7280

172

802

7280

372

804

7280

572

806

7280

772

808

7280

972

810

3300

133

002

3300

333

004

3300

533

006

3300

733

008

3300

933

010

3301

133

012

3301

333

014

3301

533

016

3301

733

018

3301

933

020

7300

173

002

7300

373

004

7300

573

006

7300

773

008

7300

973

010

3320

133

202

3320

333

204

3320

533

206

3320

733

208

3320

933

210

3321

133

212

3321

333

214

3321

533

216

3321

733

218

3321

933

220

7320

173

202

7320

373

204

7320

573

206

7320

773

208

7320

973

210

3340

133

402

3340

333

404

3340

533

406

3340

733

408

3340

933

410

3341

133

412

3341

333

414

3341

533

416

3341

733

418

3341

933

420

7340

173

402

7340

373

404

7340

573

406

7340

773

408

7340

973

410

3360

133

602

3360

333

604

3360

533

606

3360

733

608

3360

933

610

3361

133

612

3361

333

614

3361

533

616

3361

733

618

3361

933

620

7360

173

602

7360

373

604

7360

573

606

7360

773

608

7360

973

610

3380

133

802

3380

333

804

3380

533

806

3380

733

808

3380

933

810

3381

133

812

3381

333

814

3381

533

816

3381

733

818

3381

933

820

7380

173

802

7380

373

804

7380

573

806

7380

773

808

7380

973

810

3400

134

002

3400

334

004

3400

534

006

3400

734

008

3400

934

010

3401

134

012

3401

334

014

3401

534

016

3401

734

018

3401

934

020

7400

174

002

7400

374

004

7400

574

006

7400

774

008

7400

974

010

3420

134

202

3420

334

204

3420

534

206

3420

734

208

3420

934

210

3421

134

212

3421

334

214

3421

534

216

3421

734

218

3421

934

220

3440

134

402

3440

334

404

3440

534

406

3440

734

408

3440

934

410

3441

134

412

3441

334

414

3441

534

416

3441

734

418

3441

934

420

3460

134

602

3460

334

604

3460

534

606

3460

734

608

3460

934

610

3461

134

612

3461

334

614

3461

534

616

3461

734

618

3461

934

620

3480

134

802

3480

334

804

3480

534

806

3480

734

808

3480

934

810

3481

134

812

3481

334

814

3481

534

816

3481

734

818

3481

934

820

3500

135

002

3500

335

004

3500

535

006

3500

735

008

3500

935

010

3501

135

012

3501

335

014

3501

535

016

3501

735

018

3501

935

020

3520

135

202

3520

335

204

3520

535

206

3520

735

208

3520

935

210

3521

135

212

3521

335

214

3521

535

216

3521

735

218

3521

935

220

3540

135

402

3540

335

404

3540

535

406

3540

735

408

3540

935

410

3541

135

412

3541

335

414

3541

535

416

3541

735

418

3541

935

420

6115

01

6115

02

6115

03

6115

04

6115

05

6115

06

6115

07

6115

08

6115

09

6115

10

6115

11

6115

12

6125

01

6125

02

6125

03

6125

04

6125

05

6125

06

6125

07

6125

08

6125

09

6125

10

6125

11

6125

12

GR

ID-I

D

1004

410

045

1004

610

047

1004

810

049

1005

010

051

1005

210

053

1005

410

055

1005

610

057

1005

810

059

1006

010

061

1006

210

063

1006

410

133

1013

410

135

1013

610

137

1013

810

139

1014

010

141

1014

2

1024

410

245

1024

610

247

1024

810

249

1025

010

251

1025

210

253

1025

410

255

1025

610

257

1025

810

259

1026

010

261

1026

210

263

1026

410

333

1033

410

335

1033

610

337

1033

810

339

1034

010

341

1034

2

1044

410

445

1044

610

447

1044

810

449

1045

010

451

1045

210

453

1045

410

455

1045

610

457

1045

810

459

1046

010

461

1046

210

463

1046

410

533

1053

410

535

1053

610

537

1053

810

539

1054

010

541

1054

2

1064

410

645

1064

610

647

1064

810

649

1065

010

651

1065

210

653

1065

410

655

1065

610

657

1065

810

659

1066

010

661

1066

210

663

1066

410

733

1073

410

735

1073

610

737

1073

810

739

1074

010

741

1074

2

1084

410

845

1084

610

847

1084

810

849

1085

010

851

1085

210

853

1085

410

855

1085

610

857

1085

810

859

1086

010

861

1086

210

863

1086

410

933

1093

410

935

1093

610

937

1093

810

939

1094

010

941

1094

2

1104

411

045

1104

611

047

1104

811

049

1105

011

051

1105

211

053

1105

411

055

1105

611

057

1105

811

059

1106

011

061

1106

211

063

1106

411

133

1113

411

135

1113

611

137

1113

811

139

1114

011

141

1114

2

1124

411

245

1124

611

247

1124

811

249

1125

011

251

1125

211

253

1125

411

255

1125

611

257

1125

811

259

1126

011

261

1126

211

263

1126

411

333

1133

411

335

1133

611

337

1133

811

339

1134

011

341

1134

2

1144

411

445

1144

611

447

1144

811

449

1145

011

451

1145

211

453

1145

411

455

1145

611

457

1145

811

459

1146

011

461

1146

211

463

1146

411

533

1153

411

535

1153

611

537

1153

811

539

1154

011

541

1154

2

1164

411

645

1164

611

647

1164

811

649

1165

011

651

1165

211

653

1165

411

655

1165

611

657

1165

811

659

1166

011

661

1166

211

663

1166

411

733

1173

411

735

1173

611

737

1173

811

739

1174

011

741

1174

2

1184

411

845

1184

611

847

1184

811

849

1185

011

851

1185

211

853

1185

411

855

1185

611

857

1185

811

859

1186

011

861

1186

211

863

1186

411

933

1193

411

935

1193

611

937

1193

811

939

1194

011

941

1194

2

1204

412

045

1204

612

047

1204

812

049

1205

012

051

1205

212

053

1205

412

055

1205

612

057

1205

812

059

1206

012

061

1206

212

063

1206

412

133

1213

412

135

1213

612

137

1213

812

139

1214

012

141

1214

2

1224

412

245

1224

612

247

1224

812

249

1225

012

251

1225

212

253

1225

412

255

1225

612

257

1225

812

259

1226

012

261

1226

212

263

1226

412

333

1233

412

335

1233

612

337

1233

812

339

1234

012

341

1234

2

1244

412

445

1244

612

447

1244

812

449

1245

012

451

1245

212

453

1245

412

455

1245

612

457

1245

812

459

1246

012

461

1246

212

463

1246

412

533

1253

412

535

1253

612

537

1253

812

539

1254

012

541

1254

2

1264

412

645

1264

612

647

1264

812

649

1265

012

651

1265

212

653

1265

412

655

1265

612

657

1265

812

659

1266

012

661

1266

212

663

1266

412

733

1273

412

735

1273

612

737

1273

812

739

1274

012

741

1274

2

1284

412

845

1284

612

847

1284

812

849

1285

012

851

1285

212

853

1285

412

855

1285

612

857

1285

812

859

1286

012

861

1286

212

863

1286

412

933

1293

412

935

1293

612

937

1293

812

939

1294

012

941

1294

2

1304

413

045

1304

613

047

1304

813

049

1305

013

051

1305

213

053

1305

413

055

1305

613

057

1305

813

059

1306

013

061

1306

213

063

1306

413

133

1313

413

135

1313

613

137

1313

813

139

1314

013

141

1314

2

1324

413

245

1324

613

247

1324

813

249

1325

013

251

1325

213

253

1325

413

255

1325

613

257

1325

813

259

1326

013

261

1326

213

263

1326

413

333

1333

413

335

1333

613

337

1333

813

339

1334

013

341

1334

2

1344

413

445

1344

613

447

1344

813

449

1345

013

451

1345

213

453

1345

413

455

1345

613

457

1345

813

459

1346

013

461

1346

213

463

1346

413

533

1353

413

535

1353

613

537

1353

813

539

1354

013

541

1354

2

1364

413

645

1364

613

647

1364

813

649

1365

013

651

1365

213

653

1365

413

655

1365

613

657

1365

813

659

1366

013

661

1366

213

663

1366

413

733

1373

413

735

1373

613

737

1373

813

739

1374

013

741

1374

2

1384

413

845

1384

613

847

1384

813

849

1385

013

851

1385

213

853

1385

413

855

1385

613

857

1385

813

859

1386

013

861

1386

213

863

1386

413

933

1393

413

935

1393

613

937

1393

813

939

1394

013

941

1394

2

1404

414

045

1404

614

047

1404

814

049

1405

014

051

1405

214

053

1405

414

055

1405

614

057

1405

814

059

1406

014

061

1406

214

063

1406

414

133

1413

414

135

1413

614

137

1413

814

139

1414

014

141

1414

2

1424

414

245

1424

614

247

1424

814

249

1425

014

251

1425

214

253

1425

414

255

1425

614

257

1425

814

259

1426

014

261

1426

214

263

1426

414

333

1433

414

335

1433

614

337

1433

814

339

1434

014

341

1434

2

1444

414

445

1444

614

447

1444

814

449

1445

014

451

1445

214

453

1445

414

455

1445

614

457

1445

814

459

1446

014

461

1446

214

463

1446

4

1464

414

645

1464

614

647

1464

814

649

1465

014

651

1465

214

653

1465

414

655

1465

614

657

1465

814

659

1466

014

661

1466

214

663

1466

4

1484

414

845

1484

614

847

1484

814

849

1485

014

851

1485

214

853

1485

414

855

1485

614

857

1485

814

859

1486

014

861

1486

214

863

1486

4

1504

415

045

1504

615

047

1504

815

049

1505

015

051

1505

215

053

1505

415

055

1505

615

057

1505

815

059

1506

015

061

1506

215

063

1506

4

1524

415

245

1524

615

247

1524

815

249

1525

015

251

1525

215

253

1525

415

255

1525

615

257

1525

815

259

1526

015

261

1526

215

263

1526

4

1544

415

445

1544

615

447

1544

815

449

1545

015

451

1545

215

453

1545

415

455

1545

615

457

1545

815

459

1546

015

461

1546

215

463

1546

4

1564

415

645

1564

615

647

1564

815

649

1565

015

651

1565

215

653

1565

415

655

1565

615

657

1565

815

659

1566

015

661

1566

215

663

1566

4

Fi

gure

3G

.1-1

5. F

E M

odel

of R

B/F

B (E

xter

nal W

all:

Eas

t Sid

e)

Page 167: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G

-140

EL

-11.

5

EL

-6.9

EL

-1.5

EL

3.65

EL

8.56

EL

13.0

7

EL

17.2

EL

22.5

EL

25.8

EL

34.0

EL

52.0

5 RG

RF

RE

RD

RC

RB

RA

Y

Z

ELEM

-ID

2000

120

002

2000

320

004

2000

520

006

2000

720

008

2000

920

010

2001

120

012

2001

320

014

2001

520

016

2001

720

018

2001

920

020

2002

120

022

2002

3

2020

120

202

2020

320

204

2020

520

206

2020

720

208

2020

920

210

2021

120

212

2021

320

214

2021

520

216

2021

720

218

2021

920

220

2022

120

222

2022

3

2040

120

402

2040

320

404

2040

520

406

2040

720

408

2040

920

410

2041

120

412

2041

320

414

2041

520

416

2041

720

418

2041

920

420

2042

120

422

2042

3

2060

120

602

2060

320

604

2060

520

606

2060

720

608

2060

920

610

2061

120

612

2061

320

614

2061

520

616

2061

720

618

2061

920

620

2062

120

622

2062

3

2080

120

802

2080

320

804

2080

520

806

2080

720

808

2080

920

810

2081

120

812

2081

320

814

2081

520

816

2081

720

818

2081

920

820

2082

120

822

2082

3

2100

121

002

2100

321

004

2100

521

006

2100

721

008

2100

921

010

2101

121

012

2101

321

014

2101

521

016

2101

721

018

2101

921

020

2102

121

022

2102

3

2120

121

202

2120

321

204

2120

521

206

2120

721

208

2121

121

212

2121

321

214

2121

521

216

2121

721

218

2121

921

220

2122

121

222

2122

3

2140

121

402

2140

321

404

2140

521

406

2140

721

408

2141

121

412

2141

321

414

2141

521

416

2141

721

418

2141

921

420

2142

121

422

2142

3

2160

121

602

2160

321

604

2160

521

606

2160

721

608

2160

921

610

2161

121

612

2161

321

614

2161

521

616

2161

721

618

2161

921

620

2162

121

622

2162

3

2180

121

802

2180

321

804

2180

521

806

2180

721

808

2180

921

810

2181

121

812

2181

321

814

2181

521

816

2181

721

818

2181

921

820

2182

121

822

2182

3

2200

122

002

2200

322

004

2200

522

006

2200

722

008

2200

922

010

2201

122

012

2201

322

014

2201

522

016

2201

722

018

2201

922

020

2202

122

022

2202

3

2220

122

202

2220

322

204

2220

522

206

2220

722

208

2220

922

210

2221

122

212

2221

322

214

2221

522

216

2221

722

218

2221

922

220

2222

122

222

2222

3

2240

122

402

2240

322

404

2240

522

406

2240

722

408

2240

922

410

2241

122

412

2241

322

414

2241

522

416

2241

722

418

2241

922

420

2242

122

422

2242

3

2260

122

602

2260

322

604

2260

522

606

2260

722

608

2260

922

610

2261

122

612

2261

322

614

2261

522

616

2261

722

618

2261

922

620

2262

122

622

2262

3

2280

122

802

2280

322

804

2280

522

806

2280

722

808

2280

922

810

2281

122

812

2281

322

814

2281

522

816

2281

722

818

2281

922

820

2282

122

822

2282

3

2300

123

002

2300

323

004

2300

523

006

2300

723

008

2300

923

010

2301

123

012

2301

323

014

2301

523

016

2301

723

018

2301

923

020

2302

123

022

2302

3

2320

123

202

2320

323

204

2320

523

206

2320

723

208

2320

923

210

2321

123

212

2321

323

214

2321

523

216

2321

723

218

2321

923

220

2322

123

222

2322

3

2340

123

402

2340

323

404

2340

523

406

2340

723

408

2340

923

410

2341

123

412

2341

323

414

2341

523

416

2341

723

418

2341

923

420

2342

123

422

2342

3

2360

123

602

2360

323

604

2360

523

606

2360

723

608

2360

923

610

2361

123

612

2361

323

614

2361

523

616

2361

723

618

2361

923

620

2362

123

622

2362

3

2380

123

802

2380

323

804

2380

523

806

2380

723

808

2380

923

810

2381

123

812

2381

323

814

2381

523

816

2381

723

818

2381

923

820

2382

123

822

2382

3

2400

124

002

2400

324

004

2400

524

006

2400

724

008

2400

924

010

2401

124

012

2401

324

014

2401

524

016

2401

724

018

2401

924

020

2402

124

022

2402

3

2420

124

202

2420

324

204

2420

524

206

2420

724

208

2420

924

210

2421

124

21224

213

2421

424

215

2421

624

217

2421

824

219

2422

024

221

2422

224

223

2422

4

2440

124

402

2440

324

404

2440

524

406

2440

724

408

2440

924

410

2441

124

412

2441

324

414

2441

524

416

2441

724

418

2441

924

420

2442

124

422

2460

124

602

2460

324

604

2460

524

606

2460

724

608

2460

924

610

2461

124

612

2461

324

614

2461

524

616

2461

724

618

2461

924

620

2462

124

622

2480

124

802

2480

324

804

2480

524

806

2480

724

808

2480

924

810

2481

124

812

2481

324

814

2481

524

816

2481

724

818

2481

924

820

2482

124

822

2500

125

002

2500

325

004

2500

525

006

2500

725

008

2500

925

010

2501

125

012

2501

325

014

2501

525

016

2501

725

018

2501

925

020

2502

125

022

2520

125

202

2520

325

204

2520

525

206

2520

725

208

2520

925

210

2521

125

212

2521

325

214

2521

525

216

2521

725

218

2521

925

220

2522

125

222

2540

125

402

2540

325

404

2540

525

406

2540

725

408

2540

925

410

2541

125

412

2541

325

414

2541

525

416

2541

725

418

2541

925

420

2542

125

422

2560

325

604

2560

525

606

2560

725

608

2560

925

610

2561

125

612

2561

325

614

2561

525

616

2561

725

618

2561

925

620

2580

325

804

2580

525

806

2580

725

808

2580

925

810

2581

125

812

2581

325

814

2581

525

816

2581

725

818

2581

925

820

2600

326

004

2600

526

006

2600

726

008

2600

926

010

2601

126

012

2601

326

014

2601

526

016

2601

726

018

2601

926

020

2620

326

204

2620

526

206

2620

726

208

2620

926

210

2621

126

212

2621

326

214

2621

526

216

2621

726

218

2621

926

220

2640

326

404

2640

526

406

2640

726

408

2640

926

410

2641

126

412

2641

326

414

2641

526

416

2641

726

418

2641

926

420

2660

326

604

2660

526

606

2660

726

608

2660

926

610

2661

126

612

2661

326

614

2661

526

616

2661

726

618

2661

926

620

2680

326

804

2680

526

806

2680

726

808

2680

926

810

2681

126

812

2681

326

814

2681

526

816

2681

726

818

2681

926

820

2700

327

004

2700

527

006

2700

727

008

2700

927

010

2701

127

012

2701

327

014

2701

527

016

2701

727

018

2701

927

020

2720

327

204

2720

527

206

2720

727

208

2720

927

210

2721

127

212

2721

327

214

2721

527

216

2721

727

218

2721

927

220

2740

327

404

2740

527

406

2740

727

408

2740

927

410

2741

127

412

2741

327

414

2741

527

416

2741

727

418

2741

927

420

2760

327

604

2760

527

606

2760

727

608

2760

927

610

2761

127

612

2761

327

614

2761

527

616

2761

727

618

2761

927

620

2780

327

804

2780

527

806

2780

727

808

2780

927

810

2781

127

812

2781

327

814

2781

527

816

2781

727

818

2781

927

820

6110

01

6110

02

6110

03

6110

04

6110

05

6110

06

6110

07

6110

08

6110

09

6110

10

6110

11

6110

12

6111

01

6111

02

6111

03

6111

04

6111

05

6111

06

6111

07

6111

08

6111

09

6111

10

6111

11

6111

12

6112

01

6112

02

6112

03

6112

04

6112

05

6112

06

6112

07

6112

08

6112

09

6112

10

6112

11

6112

12

6113

01

6113

02

6113

03

6113

04

6113

05

6113

06

6113

07

6113

08

6113

09

6113

10

6113

11

6113

12

6114

01

6114

02

6114

03

6114

04

6114

05

6114

06

6114

07

6114

08

6114

09

6114

10

6114

11

6114

12

6115

01

6115

02

6115

03

6115

04

6115

05

6115

06

6115

07

6115

08

6115

09

6115

10

6115

11

6115

12

GR

ID-I

D

1002

110

022

1002

310

024

1002

510

026

1002

710

028

1002

910

030

1003

110

032

1003

310

034

1003

510

036

1003

710

038

1003

910

040

1004

110

042

1004

310

044

1022

110

222

1022

310

224

1022

510

226

1022

710

228

1022

910

230

1023

110

232

1023

310

234

1023

510

236

1023

710

238

1023

910

240

1024

110

242

1024

310

244

1042

110

422

1042

310

424

1042

510

426

1042

710

428

1042

910

430

1043

110

432

1043

310

434

1043

510

436

1043

710

438

1043

910

440

1044

110

442

1044

310

444

1062

110

622

1062

310

624

1062

510

626

1062

710

628

1062

910

630

1063

110

632

1063

310

634

1063

510

636

1063

710

638

1063

910

640

1064

110

642

1064

310

644

1082

110

822

1082

310

824

1082

510

826

1082

710

828

1082

910

830

1083

110

832

1083

310

834

1083

510

836

1083

710

838

1083

910

840

1084

110

842

1084

310

844

1102

111

022

1102

311

024

1102

511

026

1102

711

028

1102

911

030

1103

111

032

1103

311

034

1103

511

036

1103

711

038

1103

911

040

1104

111

042

1104

311

044

1122

111

222

1122

311

224

1122

511

226

1122

711

228

1122

911

230

1123

111

232

1123

311

234

1123

511

236

1123

711

238

1123

911

240

1124

111

242

1124

311

244

1142

111

422

1142

311

424

1142

511

426

1142

711

428

1142

911

431

1143

211

433

1143

411

435

1143

611

437

1143

811

439

1144

011

441

1144

211

443

1144

4

1162

111

622

1162

311

624

1162

511

626

1162

711

628

1162

911

630

1163

111

632

1163

311

634

1163

511

636

1163

711

638

1163

911

640

1164

111

642

1164

311

644

1182

111

822

1182

311

824

1182

511

826

1182

711

828

1182

911

830

1183

111

832

1183

311

834

1183

511

836

1183

711

838

1183

911

840

1184

111

842

1184

311

844

1202

112

022

1202

312

024

1202

512

026

1202

712

028

1202

912

030

1203

112

032

1203

312

034

1203

512

036

1203

712

038

1203

912

040

1204

112

042

1204

312

044

1222

112

222

1222

312

224

1222

512

226

1222

712

228

1222

912

230

1223

112

232

1223

312

234

1223

512

236

1223

712

238

1223

912

240

1224

112

242

1224

312

244

1242

112

422

1242

312

424

1242

512

426

1242

712

428

1242

912

430

1243

112

432

1243

312

434

1243

512

436

1243

712

438

1243

912

440

1244

112

442

1244

312

444

1262

112

622

1262

312

624

1262

512

626

1262

712

628

1262

912

630

1263

112

632

1263

312

634

1263

512

636

1263

712

638

1263

912

640

1264

112

642

1264

312

644

1282

112

822

1282

312

824

1282

512

826

1282

712

828

1282

912

830

1283

112

832

1283

312

834

1283

512

836

1283

712

838

1283

912

840

1284

112

842

1284

312

844

1302

113

022

1302

313

024

1302

513

026

1302

713

028

1302

913

030

1303

113

032

1303

313

034

1303

513

036

1303

713

038

1303

913

040

1304

113

042

1304

313

044

1322

113

222

1322

313

224

1322

513

226

1322

713

228

1322

913

230

1323

113

232

1323

313

234

1323

513

236

1323

713

238

1323

913

240

1324

113

242

1324

313

244

1342

113

422

1342

313

424

1342

513

426

1342

713

428

1342

913

430

1343

113

432

1343

313

434

1343

513

436

1343

713

438

1343

913

440

1344

113

442

1344

313

444

1362

113

622

1362

313

624

1362

513

626

1362

713

628

1362

913

630

1363

113

632

1363

313

634

1363

513

636

1363

713

638

1363

913

640

1364

113

642

1364

313

644

1382

113

822

1382

313

824

1382

513

826

1382

713

828

1382

913

830

1383

113

832

1383

313

834

1383

513

836

1383

713

838

1383

913

840

1384

113

842

1384

313

844

1402

114

022

1402

314

024

1402

514

026

1402

714

028

1402

914

030

1403

114

032

1403

314

034

1403

514

036

1403

714

038

1403

914

040

1404

114

042

1404

314

044

1422

114

222

1422

314

224

1422

514

226

1422

714

228

1422

914

230

1423

114

232

1423

314

234

1423

514

236

1423

714

238

1423

914

240

1424

114

242

1424

314

244

1442

114

422

1442

314

424

1442

514

426

1442

714

428

1442

914

430

1443

114

432

1443

414

435

1443

614

437

1443

814

439

1444

014

441

1444

214

443

1444

4

1462

114

622

1462

314

624

1462

514

626

1462

714

628

1462

914

630

1463

114

632

1463

414

635

1463

614

637

1463

814

639

1464

014

641

1464

214

643

1464

4

1482

114

822

1482

314

824

1482

514

826

1482

714

828

1482

914

830

1483

114

832

1483

414

835

1483

614

837

1483

814

839

1484

014

841

1484

214

843

1484

4

1502

115

022

1502

315

024

1502

515

026

1502

715

028

1502

915

030

1503

115

032

1503

415

035

1503

615

037

1503

815

039

1504

015

041

1504

215

043

1504

4

1522

115

222

1522

315

224

1522

515

226

1522

715

228

1522

915

230

1523

115

232

1523

415

235

1523

615

237

1523

815

239

1524

015

241

1524

215

243

1524

4

1542

115

422

1542

315

424

1542

515

426

1542

715

428

1542

915

430

1543

115

432

1543

415

435

1543

615

437

1543

815

439

1544

015

441

1544

215

443

1544

4

1562

115

622

1562

315

624

1562

515

626

1562

715

628

1562

915

630

1563

115

632

1563

415

635

1563

615

637

1563

815

639

1564

015

641

1564

215

643

1564

4

1582

315

824

1582

515

826

1582

715

828

1582

915

830

1583

115

832

1583

415

835

1583

615

837

1583

815

839

1584

015

841

1584

2

1602

316

024

1602

516

026

1602

716

028

1602

916

030

1603

116

032

1603

416

035

1603

616

037

1603

816

039

1604

016

041

1604

2

1622

316

224

1622

516

226

1622

716

228

1622

916

230

1623

116

232

1623

416

235

1623

616

237

1623

816

239

1624

016

241

1624

2

1642

316

424

1642

516

426

1642

716

428

1642

916

430

1643

116

432

1643

416

435

1643

616

437

1643

816

439

1644

016

441

1644

2

1662

316

624

1662

516

626

1662

716

628

1662

916

630

1663

116

632

1663

416

635

1663

616

637

1663

816

639

1664

016

641

1664

2

1682

316

824

1682

516

826

1682

716

828

1682

916

830

1683

116

832

1683

416

835

1683

616

837

1683

816

839

1684

016

841

1684

2

1702

317

024

1702

517

026

1702

717

028

1702

917

030

1703

117

032

1703

417

035

1703

617

037

1703

817

039

1704

017

041

1704

2

1722

317

224

1722

517

226

1722

717

228

1722

917

230

1723

117

232

1723

417

235

1723

617

237

1723

817

239

1724

017

241

1724

2

1742

317

424

1742

517

426

1742

717

428

1742

917

430

1743

117

432

1743

417

435

1743

617

437

1743

817

439

1744

017

441

1744

2

1762

317

624

1762

517

626

1762

717

628

1762

917

630

1763

117

632

1763

417

635

1763

617

637

1763

817

639

1764

017

641

1764

2

1782

317

824

1782

517

826

1782

717

828

1782

917

830

1783

117

832

1783

417

835

1783

617

837

1783

817

839

1784

017

841

1784

2

1802

318

024

1802

518

026

1802

718

028

1802

918

030

1803

118

032

1803

418

035

1803

618

037

1803

818

039

1804

018

041

1804

2

Fi

gure

3G

.1-1

6. F

E M

odel

of R

B/F

B (I

nter

nal W

all o

n R

7/F1

Col

umn

Lin

e)

Page 168: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-141

XY

Z

Whole View

XY

Z

Cut View

Figure 3G.1-17. FE Model of RB/FB (RCCV Internals)

XY

Z

XY

Z

Page 169: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-142

XY

Z

Whole View

XY

Z

Cut View

Figure 3G.1-18. FE Model of RB/FB (RCCV Liner)

XY

Z

XY

Z

Page 170: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-143

-20

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4 0.5

EL

(m)

Max. 0.011 MPa

-20

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4 0.5

EL

(m)

Max. 0.192 MPa

-20

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4 0.5

EL

(m)

Max. 0.223 MPa

-20

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4 0.5

EL

(m)

Max. 0.432 MPa

Surcharge + Soil Pressure + Hydrostatic = Total (MPa) (MPa) (MPa) (MPa)

Figure 3G.1-19. Soil Pressure at Rest

Page 171: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-144

EL -6400

EL -3250

EL -1000

GRADE

EL 9060

EL 13570

EL 17500

EL 27000

EL 34000

EL 52400

EL -11500

EL -15500

EL 4650

PCCSPool

Drywell

WetwellAir Space

ExpansionPool

SuppressionPool

RG RF RE RD RC RB RA

M1 M2

C7

C1

C2

C4

C5 C6

P1 P2

W2

W3

W4

W1

S1

S2

C3

Figure 3G.1-20. Sections Where Temperature Loads Are Defined

Page 172: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-145

1.0 1.0

1.0

5.5m

Ventwall

RCCVwall

3.5m

CO Peak Positive Pressure = 186 kPag

CO Peak Negative Pressure = -186 kPag Dynamic Load Factor (DLF) = 2.0

Figure 3G.1-21. Condensation Oscillation (CO) Pressure Loads

Page 173: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-146

2.1 1.0

1.0

5.5m

Ventwall

RCCVwall

3.5m

CHUG Peak Positive Pressure = 91 kPag

CHUG Peak Negative Pressure = -66 kPag Dynamic Load Factor (DLF) = 2.0

Figure 3G.1-22. Chugging (CHUG) Pressure Loads

Page 174: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-147

1.0 1.0

1.0

h= 5.5m

Ventwall

RCCVwall

h/4=1.38m

SRV Peak Positive Pressure = 152 kPag SRV Peak Negative Pressure = -63 kPag

Dynamic Load Factor (DLF) = 2.0

Figure 3G.1-23. Safety Relief Valve (SRV) Pressure Loads

Page 175: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

48

050

010

0015

0020

00-2

0

-100102030405060

NS

-dire

ctio

nE

W-d

irect

ion

She

ar (M

N)

EL (m)

020

000

4000

060

000

-20

-100102030405060

NS

-dire

ctio

nE

W-d

irect

ion

Mom

ent (

MN

-m)

EL (m)

050

0010

000

1500

0-2

0

-100102030405060

Tors

ion

(MN

-m)

EL (m)

Fi

gure

3G

.1-2

4. D

esig

n Se

ism

ic S

hear

s and

Mom

ents

for

RB

and

FB

Wal

ls

Page 176: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

49

010

020

030

040

050

0-2

0

-10010203040

NS

-dire

ctio

nE

W-d

irect

ion

She

ar (M

N)

EL (m)

050

001x

104

1.5x

104

-20

-10010203040

NS

-dire

ctio

nE

W-d

irect

ion

Mom

ent (

MN

-m)

EL (m)

010

0020

0030

0040

00-2

0

-10010203040

Tors

ion

(MN

-m)

EL (m)

Fi

gure

3G

.1-2

5. D

esig

n Se

ism

ic S

hear

s and

Mom

ents

for

RC

CV

Page 177: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

50

050

100

150

-15

-10-505101520

NS

-dire

ctio

nE

W-d

irect

ion

She

ar (M

N)

EL (m)

050

010

0015

0020

00-1

5

-10-505101520

NS

-dire

ctio

nE

W-d

irect

ion

Mom

ent (

MN

-m)

EL (m)

050

100

150

200

-15

-10-505101520

Tors

ion

(MN

-m)

EL (m)

Fi

gure

3G

.1-2

6. D

esig

n Se

ism

ic S

hear

s and

Mom

ents

for

RPV

Ped

esta

l and

Ven

t Wal

l

Page 178: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-151

-20

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4

Pressure (MPa)

EL (m

)

-20

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4

Pressure (MPa)

EL (m

)

R1 Wall and F3 Wall RA Wall and RG Wall

Figure 3G.1-27. Seismic Lateral Soil Pressure

Page 179: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-152

1124 10

21

22

23

28 29 30

25

26

27

31

141312

171615

1

2

3

18

19

20

4

5

6

7

9

8

Figure 3G.1-28. Section Considered for Analysis

Page 180: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-153

z

x

y

z

x

y

Definition of Element Coordinate System

z

outwardRCCV WallRPV PedestalExternal Wall

x

horizontal

y

vertical

toward West

Wall in E-W Direction

Wall in N-S Direction

toward South

horizontal vertical

horizontal vertical

Foundation MatFloor SlabTop Slab

downwardradial circumferentialSuppression Pool Slab

downwardtoward Westtoward South

Structure

Nx

Nxy

Qx

Nx

Nxy

Qx

Ny

Nxy

Qy

Ny

Nxy

Qy

Membrane and Shear Forces

MxyMxy

Mxy

My

Mxy

My

Moments

Mx

Mx

Figure 3G.1-29. Force and Moment in Shell Element

Page 181: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

54

DE

F. S

CA

LE0.

03.

0E2

(mm

)

MO

D. S

CA

LE0.

05.

00 (m

)X

ZD

EF.

SC

ALE

0.0

3.0E

2 (m

m)

MO

D. S

CAL

E0.

05.

00 (m

)Y

Z

Fi

gure

3G

.1-3

0. S

ectio

n D

efor

mat

ion

for

Dea

d L

oad

Page 182: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

55

DEF

. SC

ALE

0.0

3.0E

1 (m

m)

MO

D. S

CAL

E0.

05.

00 (m

)X

ZD

EF.

SC

ALE

0.0

3.0E

1 (m

m)

MO

D. S

CA

LE0.

05.

00 (m

)Y

Z

Fi

gure

3G

.1-3

1. S

ectio

n D

efor

mat

ion

for

Dry

wel

l Uni

t Pre

ssur

e (1

MPa

)

Page 183: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

56

DEF

. SC

ALE

0.0

3.0E

1 (m

m)

MO

D. S

CAL

E0.

05.

00 (m

)X

ZD

EF. S

CAL

E0.

03.

0E1

(mm

)

MO

D. S

CAL

E0.

05.

00 (m

)Y

Z

Fi

gure

3G

.1-3

2. S

ectio

n D

efor

mat

ion

for

Wet

wel

l Uni

t Pre

ssur

e (1

MPa

)

Page 184: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

57

DE

F. S

CA

LE0.

05.

0E1

(mm

)

MO

D. S

CA

LE0.

05.

00 (m

)X

ZD

EF. S

CAL

E0.

05.

0E1

(mm

)

MO

D. S

CAL

E0.

05.

00 (m

)Y

Z

Fi

gure

3G

.1-3

3. S

ectio

n D

efor

mat

ion

for

Tem

pera

ture

Loa

d (N

orm

al O

pera

tion:

Win

ter)

Page 185: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

58

DE

F. S

CA

LE0.

05.

0E1

(mm

)

MO

D. S

CA

LE0.

05.

00 (m

)X

ZD

EF. S

CAL

E0.

05.

0E1

(mm

)

MO

D. S

CAL

E0.

05.

00 (m

)Y

Z

Fi

gure

3G

.1-3

4. S

ectio

n D

efor

mat

ion

for

Tem

pera

ture

Loa

d (L

OC

A A

fter

6 m

in.:

Win

ter)

Page 186: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

59

DE

F. S

CA

LE0.

05.

0E1

(mm

)

MO

D. S

CA

LE0.

05.

00 (m

)X

ZD

EF. S

CAL

E0.

05.

0E1

(mm

)

MO

D. S

CAL

E0.

05.

00 (m

)Y

Z

Fi

gure

3G

.1-3

5. S

ectio

n D

efor

mat

ion

for

Tem

pera

ture

Loa

d (L

OC

A A

fter

72

hr.:

Win

ter)

Page 187: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

60

DEF

. SC

ALE

0.0

5.0E

2 (m

m)

MO

D. S

CAL

E0.

05.

00 (m

)X

ZD

EF. S

CAL

E0.

05.

0E2

(mm

)

MO

D. S

CAL

E0.

05.

00 (m

)Y

Z

Fi

gure

3G

.1-3

6. S

ectio

n D

efor

mat

ion

for

Seis

mic

Loa

d (H

oriz

onta

l: N

orth

to S

outh

)

Page 188: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

61

DEF

. SC

ALE

0.0

5.0E

2 (m

m)

MO

D. S

CAL

E0.

05.

00 (m

)X

ZD

EF.

SC

ALE

0.0

5.0E

2 (m

m)

MO

D. S

CA

LE0.

05.

00 (m

)Y

Z

Fi

gure

3G

.1-3

7. S

ectio

n D

efor

mat

ion

for

Seis

mic

Loa

d (H

oriz

onta

l: E

ast t

o W

est)

Page 189: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

62

DEF

. SC

ALE

0.0

3.0E

2 (m

m)

MO

D. S

CAL

E0.

05.

00 (m

)X

ZD

EF. S

CAL

E0.

03.

0E2

(mm

)

MO

D. S

CAL

E0.

05.

00 (m

)Y

Z

Fi

gure

3G

.1-3

8. S

ectio

n D

efor

mat

ion

for

Seis

mic

Loa

d (V

ertic

al: U

pwar

d)

Page 190: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-163

Figure 3G.1-39. Flow Chart for Structural Analysis and Design

Linear Stress Analyses

Combination of Section Forces

Section Design Calculations for Design Load Combinations

Confirmation to Satisfy Code Requirements

End

Structural Configuration Material

RB/FB Global FE Analysis Model Design Loads

Section Forces for Other Loads

Section Forces for Thermal Loads

Reduction due to Concrete Cracking*

*: Thermal section forces are reduced using the section design calculation program, SSDP-2D, with thermal cracking option selected. However, for the LOCA thermal loads, “thermal ratios” obtained by 3D nonlinear analyses are multiplied to the section forces obtained by linear stress analyses. The section forces from the non-linear analyses can also be used directly. Thermal cracking option of SSDP-2D is not used together with 3D non-linear analyses. (Refer to Subsections 3.8.1.4.1.2 and 3.8.1.4.1.3.)

Page 191: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

64

Fi

gure

3G

.1-4

0. R

einf

orci

ng S

teel

of F

ound

atio

n M

at: P

lan

Page 192: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

65

Fi

gure

3G

.1-4

1. R

einf

orci

ng S

teel

of F

ound

atio

n M

at: S

ectio

n A

-A

Page 193: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

66

Fi

gure

3G

.1-4

2. R

einf

orci

ng S

teel

of R

CC

V W

all

Page 194: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

67

Fi

gure

3G

.1-4

3. R

einf

orci

ng S

teel

of S

uppr

essi

on P

ool S

lab

Page 195: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

68

Fi

gure

3G

.1-4

4. R

einf

orci

ng S

teel

of T

op S

lab

Page 196: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

69

Figu

re 3

G.1

-45.

Rei

nfor

cing

Ste

el o

f RPV

Ped

esta

l

Page 197: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

70

Fi

gure

3G

.1-4

6. R

einf

orci

ng S

teel

of I

C/P

CC

S Po

ol G

irde

r

Page 198: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

71

Fi

gure

3G

.1-4

7. L

ist o

f RB

Wal

l and

Sla

b R

einf

orce

men

t

Page 199: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

72

Fi

gure

3G

.1-4

8. L

iner

Anc

hor

Page 200: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

73

Fi

gure

3G

.1-4

9. L

iner

Pla

te P

lans

Page 201: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

74

Fi

gure

3G

.1-5

0. L

iner

Pla

te D

evel

opm

ent E

leva

tion

Page 202: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

75

Fi

gure

3G

.1-5

1. D

ryw

ell H

ead

Page 203: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-176

Fi

gure

3G

.1-5

2. E

quip

men

t Hat

ch

Page 204: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-177

Fi

gure

3G

.1-5

3. W

etw

ell H

atch

Page 205: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-178

Fi

gure

3G

.1-5

4. P

erso

nnel

Air

lock

Page 206: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

79

Fi

gure

3G

.1-5

5. D

iaph

ragm

Flo

or

Page 207: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

80

2.F

ull

 p

en

et

ra

tio

n i

s 

ap

pl

ie

d 

to

 c

onn

ec

ti

on

 o

  T

op 

Pl

at

e,

 B

ott

om 

Pl

at

e,

Su

pp

or

t 

Bea

m,

Sp

li

ce

 wi

th 

  t

hic

ke

ne

d 

RC

CV 

Lin

er

 P

la

te

1.P

osi

ti

on

s 

of

 an

cho

rs

 m

ay

 b

e 

ad

ju

ste

d 

lo

ca

ll

  a

s n

ec

es

sa

ry

 to

 av

oi

d 

in

te

rf

er

en

ce 

wi

th

 r

eb

ars

No

te

s:

Fi

gure

3G

.1-5

6. D

iaph

ragm

Flo

or S

lab

Anc

hor

Page 208: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

81

as nece

ssary t

o avoid

 interfere

nce wit

h rebars.

Positio

ns of a

nchors 

may be adj

usted l

ocally

Note;

Figu

re 3

G.1

-57.

RPV

Sup

port

Bra

cket

& V

ent W

all

Page 209: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

82

Fi

gure

3G

.1-5

8. R

eact

or S

hiel

d W

all

Page 210: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-1

83

  

Su

pp

or

t 

Be

am

,S

pl

ic

e 

wi

th

 t

hi

ck

en

ed

 R

CC

V 

Li

ne

r 

Pl

at

e.

2.

Fu

ll

 p

en

et

ra

ti

on

 i

s 

ap

pl

ie

d 

to

 b

e 

co

nn

ec

ti

on

 o

f 

  

as

 n

ec

es

sa

ry

 t

o 

av

oi

d 

in

te

rf

er

en

ce

 w

it

h 

re

ba

rs

No

te

s;

1.

Po

si

ti

on

s 

of

 a

nc

ho

rs

 m

ay

 b

e 

ad

ju

st

ed

 l

oc

al

ly

Fi

gure

3G

.1-5

9. G

DC

S Po

ol

Page 211: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-184

RA

R1

FF

FA

FB

FC

FD

FE

F3F2R6R5 R7

F1

R4R3R2

RG

RF

RE

RD

RC

RB

X

Y

PN

Deformation of DCD

DEF. SCALEDEF. SCALE

0.0 30.0 (mm)

MOD. SCALE

0.0 5.00 (m)

X

Z

Deformation of Uplift

DEF. SCALEDEF. SCALE

0.0 30.0 (mm)

MOD. SCALE

0.0 5.00 (m)

X

Z

Original Portion

a) North to South

Deformation of DCD

DEF. SCALEDEF. SCALE

0.0 30.0 (mm)

MOD. SCALE

0.0 5.00 (m)

X

ZDEF. SCALEDEF. SCALE

0.0 30.0 (mm)

MOD. SCALE

0.0 5.00 (m)

X

Z

Deformation of Uplift

Original Portion

b) South to North

Figure 3G.1-60. Comparison of Basemat Deformation without Tension Springs (NS Direction SSE)

Deformation of DCD

Deformation of Uplift

Original PortionDeformation of linear analysis

Deformation of uplift analysis

Deformation of DCD

Deformation of Uplift

Original PortionDeformation of linear analysis

Deformation of uplift analysis

Page 212: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-185

X

Y

RA

R1

FF

FA

FB

FC

FD

FE

F3F2R6R5 R7

F1

R4R3R2

RG

RF

RE

RD

RC

RB

PN

Basemat

DEF. SCALEDEF. SCALE

0.0 30.0 (mm)

MOD. SCALE

0.0 5.00 (m)

Y

ZDEF. SCALEDEF. SCALE

0.0 30.0 (mm)

MOD. SCALE

0.0 5.00 (m)

Y

Z

Deformation of DCD

Deformation of Uplift

Original Portion

a) West to East

DEF. SCALEDEF. SCALE

0.0 30.0 (mm)

MOD. SCALE

0.0 5.00 (m)

Y

ZDEF. SCALEDEF. SCALE

0.0 30.0 (mm)

MOD. SCALE

0.0 5.00 (m)

Y

Z

Deformation of DCD

Deformation of Uplift

Original Portion

b) East to West

Figure 3G.1-61. Comparison of Basemat Deformation without Tension Springs (EW

Direction SSE)

Deformation of DCD

Deformation of Uplift

Original Portion

Deformation of linear analysis

Deformation of uplift analysis

Deformation of DCD

Deformation of Uplift

Original Portion

Deformation of linear analysis

Deformation of uplift analysis

Page 213: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-186

RA

R1

FF

FA

FB

FC

FD

FE

F3F2R6R5 R7

F1

R4R3R2

RG

RF

RE

RD

RC

RB

X

Y

PN

A A

B

B StoN RBFB NS Section

-2.0E+1

-1.0E+1

0.0E+0

1.0E+1

2.0E+1

3.0E+1

4.0E+1

-30 -20 -10 0 10 20 30 40 50

Coordinate (X; m)

Mom

ent (

MN

m)

DCD MxUp-Lift Mx

9040280275

90408

a) Mx in A-A Section

StoN RB EW Section

-1.5E+1

-1.0E+1

-5.0E+0

0.0E+0

5.0E+0

1.0E+1

1.5E+1

2.0E+1

2.5E+1

-30 -20 -10 0 10 20 30

Coordinate (Y; m)

Mom

ent (

MN

m)

DCD MyUp-Lift My

b) My in B-B Section

Figure 3G.1-62. Comparison of Basemat Sectional Moments (S to N SSE)

Linear Uplift

Linear Uplift

Linear Uplift

Page 214: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-187

RA

R1

FF

FA

FB

FC

FD

FE

F3F2R6R5 R7

F1

R4R3R2

RG

RF

RE

RD

RC

RB

X

Y

PN

A A

B

B WtoE RBFB NS Section

-2.5E+1

-2.0E+1

-1.5E+1

-1.0E+1

-5.0E+0

0.0E+0

5.0E+0

1.0E+1

1.5E+1

2.0E+1

2.5E+1

-30 -20 -10 0 10 20 30 40 50

Coordinate (X; m)

Mom

ent (

MN

m)

DCD MxUp-Lift Mx

a) Mx in A-A Section

WtoE RB EW Section

-2.5E+1

-2.0E+1

-1.5E+1

-1.0E+1

-5.0E+0

0.0E+0

5.0E+0

1.0E+1

1.5E+1

2.0E+1

2.5E+1

-30 -20 -10 0 10 20 30

Coordinate (Y; m)

Mom

ent (

MN

m)

DCD MyUp-Lift My

80287

80262

80462

b) My in B-B Section

Figure 3G.1-63. Comparison of Basemat Sectional Moments (W to E SSE)

Linear Uplift

Linear Uplift

Page 215: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-188

RA

R1

FF

FA

FB

FC

FD

FE

F3F2R6R5 R7

F1

R4R3R2

RG

RF

RE

RD

RC

RB

X

Y

PN

A A

B

B EtoW RBFB NS Section

-2.5E+1

-2.0E+1

-1.5E+1

-1.0E+1

-5.0E+0

0.0E+0

5.0E+0

1.0E+1

1.5E+1

2.0E+1

2.5E+1

-30 -20 -10 0 10 20 30 40 50

Coordinate (X; m)

Mom

ent (

MN

m)

DCD MxUp-Lift Mx

a) Mx in A-A Section

EtoW RB EW Section

-2.5E+1

-2.0E+1

-1.5E+1

-1.0E+1

-5.0E+0

0.0E+0

5.0E+0

1.0E+1

1.5E+1

2.0E+1

2.5E+1

-30 -20 -10 0 10 20 30

Coordinate (Y; m)

Mom

ent (

MN

m)

DCD MyUp-Lift My

80287

80262

80462

b) My in B-B Section

Figure 3G.1-64. Comparison of Basemat Sectional Moments (E to W SSE)

Linear Uplift

Linear Uplift

Page 216: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-189

Note: Backfill method for gap and excavation method (e.g., vertical cut, open cut) will be

determined considering actual site conditions

Figure 3G.1-65. Concrete Backfill in Sliding Evaluation

Page 217: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-190

3G.2 CONTROL BUILDING

3G.2.1 Objective and Scope

The objective of this subsection is to document the structural design details, inputs and analytical results from the analysis of the Control Building (CB) of the standard ESBWR plant. The scope includes the design and analysis of the structure for normal, severe environmental, extreme environmental, and construction loads.

3G.2.2 Conclusions

The following are the major summary conclusions on the design and analysis of the CB.

• Based on the results of finite element analyses performed in accordance with the design conditions identified in Subsection 3G.2.3, stresses in concrete and reinforcement are less than the allowable stresses per the applicable regulations, codes or standards listed in Section 3.8.

• The factors of safety against floatation, sliding, and overturning of the structure under various loading combinations are higher than the required minimum.

• The thickness of the roof slabs and exterior walls are more than the minimum required to preclude penetration, perforation or spalling resulting from impact of design basis tornado missiles.

3G.2.3 Structural Description

The CB houses the safety-related electrical, control and instrumentation equipment, the control room for the Reactor and Turbine Buildings, and the CB HVAC equipment. The CB is a Seismic Category I structure that houses control equipment and operation personnel.

The CB is a reinforced concrete box type shear wall structure consisting of walls and slabs and is supported by a foundation mat. Steel framing is composite with concrete slab and used to support the slabs for vertical loads. The CB is a shear wall structure designed to accommodate all seismic loads with its walls and the connected floors. Therefore, frame members such as beams or columns are designed to accommodate deformations of the walls in case of earthquake conditions. The CB is adjacent to but structurally independent of the Reactor Building (see Figures 1.2-2 through 1.2-5 and Figure 1.2-11).

The key dimensions of the CB are summarized in Table 3.8-8. Figures 3G.2-1 through 3G.2-3 show the outline drawings of the CB.

3G.2.4 Analytical Models

3G.2.4.1 Structural Model

The CB is analyzed utilizing the finite element computer program NASTRAN. The finite element model consists of quadrilateral, triangular and beam elements. The quadrilateral and triangular elements are used to represent the slabs and walls. Beam elements are used to represent columns and beams. The model is shown in Figures 3G.2-4 to 3G.2-9. The model

Page 218: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-191

includes the whole (360°) portion of the CB taking the application of nonaxisymmetrical loads into consideration.

The nodal points are defined by a right hand Cartesian coordinate system X, Y, Z. This system, called the global coordinate system, has its origin located at the north-west corner of the CB at EL 0 mm. The positive X axis is in the south direction; the Y axis is in the east direction; the Z axis is vertical upward. This coordinate system is shown in Figure 3G.2-4.

3G.2.4.2 Foundation Models

The foundation soil is represented by soil springs. The spring constants for rocking and translations are determined based on the following soil parameters which correspond to the Soft Site conditions described in Appendix 3A:

• Shear wave velocity: 300 m/s

• Unit weight: 0.0196 MN/m3 (2.00 t/m3)

• Shear modulus: 180 MN/m2 (1.835 x 104 t/m2)

• Poisson’s Ratio: 0.478

Soil springs are attached to the bottom of the foundation mat, and the constraints by side soil are not included in the model. The values of the soil springs used in the analysis are shown in Table 3G.2-1. The springs have perfectly elastic stiffness.

These spring values are multiplied by the foundation mat nodal point tributary areas to compute the spring constants assigned to the base slab nodal points.

3G.2.5 Structural Analysis and Design

3G.2.5.1 Site Design Parameters

The key site design parameters are described in Subsection 3G.1.5.1.

3G.2.5.2 Design Loads, Load Combinations, and Material Properties

3G.2.5.2.1 Design Loads

3G.2.5.2.1.1 Dead Load (D) and Live Load (L and Lo)

The weights of structures are evaluated using the following unit weights.

• reinforced concrete: 23.5 kN/m3

• steel: 77.0 kN/m3

Weights of major equipment, miscellaneous structures, piping, and commodities are summarized in Tables 3G.2-2 and 3G.2-3.

Live loads on the CB floor slabs are described in Subsection 3.8.4.3.2.

Page 219: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-192

3G.2.5.2.1.2 Snow and Rain Load

The snow and rain load is applied to the roof slab and is taken as shown in Table 3G.1-2. One hundred percent of the snow load is applied when combined with seismic loads.

3G.2.5.2.1.3 Lateral Soil Pressure at Rest

The lateral soil pressure at rest is applied to the external walls below grade and is based on soil properties given in Table 3G.1-2. Pressures to be applied to the walls are provided in Figure 3G.2-10.

3G.2.5.2.1.4 Wind Load (W)

Wind load is applied to the roof slab and external walls above grade and is based on basic wind speed given in Table 3G.1-2.

3G.2.5.2.1.5 Tornado Load (Wt)

The tornado load is applied to the roof slab and external walls above grade and its characteristics are given in Table 3G.1-2. The tornado load, Wt, is further defined by the combinations described in Subsection 3G.1.5.2.1.5.

3G.2.5.2.1.6 Thermal Load (To and Ta)

Thermal loads for the CB are evaluated for the normal operating conditions and abnormal (LOCA in combination with a loss of external AC power) conditions. Figure 3G.2-11 shows the section location for temperature distributions for various structural elements of the CB, and Table 3G.2-4 shows the magnitude of equivalent linear temperature distribution.

Stress-free temperature is 15.5°C.

3G.2.5.2.1.7 Design Seismic Loads

The design seismic loads are obtained by soil – structure interaction analyses, which are described in Appendix 3A. The seismic loads used for design are as follows:

• Figure 3G.2-12: design seismic shears and moments

• Table 3G.2-5: maximum vertical acceleration

The seismic loads are composed of two perpendicular horizontal and one vertical components. The effects of the three components are combined based on the 100/40/40 method as described in Subsection 3.8.1.3.6.

Seismic lateral soil pressure for wall design is provided in Figure 3G.2-13 using the enveloped pressure of the elastic procedure described in ASCE 4-98 Section 3.5.3.2 and SASSI results as described in Subsection 3A.8.8.

3G.2.5.2.2 Load Combinations and Acceptance Criteria

Table 3.8-15 gives load combinations for the safety-related reinforced concrete structure. Based on previous experience, critical load combinations are selected for the CB design. They are mainly combinations including LOCA loads and seismic loads as shown in Table 3G.2-6. The acceptance criteria for the selected combinations are also included in Table 3G.2-6.

Page 220: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-193

3G.2.5.2.3 Material Properties

Properties of the materials used for the CB design analyses are the same as those for the RB, and they are described in Subsection 3G.1.5.2.3.

3G.2.5.3 Stability Requirements

The stability requirements for the CB foundation are same as those for the RB, and they are described in Subsection 3G.1.5.3.

3G.2.5.4 Structural Design Evaluation

The evaluation of the Seismic Category I structures in the CB is performed using the same procedure as the RB, which is described in Subsection 3G.1.5.4.

The locations of the sections that are selected for evaluation are indicated in Figures 3G.2-5 through 9. They are selected, in principle, from the center and both ends of wall and slab, where it is reasonably expected that the critical stresses appear based on engineering experience and judgment. Tables 3G.2-7 through 3G.2-11 show the forces and moments at the selected sections from NASTRAN analysis. Element forces and moments listed in the tables are defined with relation to the element coordinate system shown in Figure 3G.2-14. Tables 3G.2-12 through 3G.2-15 show the combined forces and moments in accordance with the selected load combinations listed in Table 3G.2-6.

Table 3G.2-16 lists the sectional thicknesses and rebar ratios used in the evaluation. The values are retrieved from the outline drawings shown in Figures 3G.2-1 through 3G.2-3.

Tables 3G.2-17 through 3G.2-24 show the rebar and concrete stresses at these sections for the representative elements. Table 3G.2-25 summarizes evaluation results for transverse shear in accordance with ACI 349, Chapter 11.

3G.2.5.4.1 Shear Walls

The maximum rebar stress of 328.9 MPa is found in the vertical rebar in the wall at EL -7400 due to the load combination CB-9 as shown in Table 3G.2-24. The maximum horizontal rebar stress is found to be 279.2 MPa also in B2F wall due to the load combination CB-9. The maximum transverse shear force is found to be 1.242 MN/m against the shear strength of 1.910 MN/m in the wall at EL -7400.

3G.2.5.4.2 Floor Slabs

The maximum rebar stress of 86.8 MPa is found in the slab at EL -2000 due to the load combination CB-3 as shown in Table 3G.2-17. The maximum transverse shear force is found to be 0.130 MN/m against the shear strength of 0.528 MN/m.

3G.2.5.4.3 Foundation Mat

The maximum rebar stress is found to be 325.5 MPa due to the load combination CB-9 as shown in Table 3G.2-23. The maximum transverse shear force is found to be 2.147 MN/m against the shear strength of 4.282 MN/m.

Page 221: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-194

3G.2.5.5 Foundation Stability

The stabilities of the CB foundation against overturning, sliding and floatation are evaluated. The energy approach is used in calculating the factor of safety against overturning.

The factors of safety against overturning, sliding and floatation are given in Table 3G.2-26. All of these meet the acceptance criteria given in Table 3.8-14. In the sliding evaluation the gap between the building and excavated soil is backfilled with concrete up to the top level of the basemat as shown in Figure 3G.2-15.

Maximum soil bearing stress is found to be 256 kPa due to dead plus live loads. Maximum bearing stresses for load combinations involving SSE are shown in Table 3G.2-27 for various site conditions.

3G.2.5.5.1 Foundation Settlement

The basemat design is checked against the normal and differential settlement of the CB. It is found that the basemat can resist the maximum settlement at mat foundation corner of 18 mm (0.7 in.) and the settlement averaged at four corners of 11 mm (0.4 in.). The allowable differential settlement specified in Section 2.0 is 13 mm (0.5 in.) across the basemat under linearly varying stiffness of soil condition (gradient condition). The estimated differential settlement between buildings (RB/FB and CB) is 85 mm (3.3 in.).

3G.2.5.6 Tornado Missile Evaluation

The CB is shown in Figure 3G.2-3. The minimum thickness required to prevent penetration and concrete spalling is evaluated. The methods and procedures are shown in Section 3.5.3.1.1.

Page 222: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-195

Table 3G.2-1

Soil Spring Constants for the CB Analysis Model

Direction of Spring Loads Stiffness

(MN/m/m2)

Horizontal X-direction All 19.650

Y-direction All 20.378

Vertical Horizontal Seismic Loads 79.174

Other Loads 29.177

Table 3G.2-2

Equipment Load of CB

Description Weight Remarks

Division DCIS Room 216 kN per one room

MCR Display Consoles 230 kN

Non 1E DCIS Room 490 kN per one room

HVAC Units 1079 kN total

Table 3G.2-3

Miscellaneous Structures, Piping, and Commodity Load of CB

Elevation (mm) Area Load

13,500 2.4 kN/m2 (50psf)

9,060 2.4 kN/m2 (50psf)

4,650 2.4 kN/m2 (50psf)

-2,000 2.4 kN/m2 (50psf)

-7,400 2.4 kN/m2 (50psf)

Page 223: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-196

Table 3G.2-4

Equivalent Liner Temperature Distributions at Various Sections

Equivalent Linear Temperature*3 (°C) Side*2

Normal Operation DBA Section*

1 1 2 Td Tg Td Tg

W1 MCR GR 17.7 4.4 21.3 11.5

W2 DCIS GR 17.7 4.4 29.2 27.4

M1 DCIS GR 18.1 5.1 31.5 32.0

S1 DCIS MCR 21.0 0.0 40.0 12.0

S2 MCR DCIS 21.0 0.0 40.0 -10.3 Note *1: See Figure 3G.2-11 for the location of sections. Note *2: MCR: Main Control Room, DCIS: Distributed Control and Information System, GR: Ground Note *3: Td: Average Temperature,

Tg: Surface Temperature Difference (positive when temperature at Side 1 is higher)

Table 3G.2-5

Maximum Vertical Acceleration

Walls Slabs

Elev. (m)

Node No.

Max. Vertical Acceleration (g)

Elev. (m)

Node No.

Max. Vertical Acceleration (g)

13.50 6 1.11 9.06 9101 0.99

9.06 5 1.11 9102 1.51

4.65 4 0.96 9103 2.88

-2.00 3 0.63 9104 4.55

-7.40 2 0.52 9105 3.81

-10.40 1 0.46 9106 2.52 See Figure 3A.7-5 for the node numbers.

Page 224: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-197

Table 3G.2-6

Selected Load Combinations for the CB

Load Combination Category

No. *2 D L To Ta E’ W Wt

Acceptance Criteria*1

Severe CB-3 1.4 1.7 1.7 U Environmental CB-4 1.05 1.3 1.3 1.3 U Tornado CB-7 1.0 1.0 1.0 1.0 U LOCA + SSE CB-9 1.0 1.0 1.0 1.0 U *1: U = Required section strength based on the strength design method per ACI 349 *2: Based on Table 3.8-15.

Page 225: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-198

Table 3G.2-7

Results of NASTRAN Analysis: Dead Load

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

67 0.025 -0.804 0.029 -0.816 -1.169 0.066 0.255 -0.23372 -0.066 0.142 -0.006 -0.408 -0.253 0.023 -0.684 -0.026

115 -0.776 -0.279 0.303 -0.244 -0.156 -0.347 -0.075 -0.631

120 -0.059 -0.022 -0.156 -0.078 -0.125 0.683 0.001 0.029567 -0.016 0.789 -0.053 0.000 0.016 0.000 0.000 0.026572 0.094 0.118 -0.016 0.000 0.021 0.000 0.000 0.034615 0.173 0.144 -0.260 0.000 0.018 0.000 0.000 0.030620 0.039 0.039 0.046 0.000 0.023 0.000 0.000 0.0371067 0.065 0.055 0.003 0.000 0.022 0.000 0.000 0.0461072 0.006 0.013 0.007 0.000 0.019 0.000 0.000 0.0391115 0.241 0.009 0.060 0.000 0.013 0.000 0.000 0.0271120 0.024 0.011 0.079 0.000 0.015 0.000 0.000 0.0326007 -0.253 -0.684 -0.257 -0.011 0.100 -0.004 -0.057 0.0744006 0.073 -0.854 -0.058 -0.045 -0.224 -0.001 0.001 -0.0654010 0.064 -0.140 -0.108 0.015 -0.075 -0.006 -0.032 -0.0446043 0.187 -1.192 -0.323 0.043 0.028 0.006 0.043 -0.0104036 0.063 -0.513 -0.059 0.021 0.109 0.001 -0.001 0.0344040 -0.014 -0.289 0.032 -0.002 0.024 0.011 0.015 0.018

BasematEL-7.4

Slab B1FEL-2.0

Slab 1FEL4.65

WallEL-7.4m~EL-2.0m

WallEL-2.0m~EL4.65m

Table 3G.2-8

Results of NASTRAN Analysis: Temperature Load (LOCA: Winter)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

67 -0.472 -1.115 0.147 6.196 7.095 -0.108 0.098 -0.01672 -0.130 0.344 0.076 1.913 6.297 -0.099 0.477 0.114115 -0.544 -0.009 -0.016 6.453 2.287 -0.058 0.573 1.117120 -1.079 -0.866 -0.306 3.318 3.294 1.645 1.103 1.340567 -0.667 0.045 0.073 -0.104 -0.093 0.006 -0.015 0.008572 0.290 -0.818 -0.048 -0.054 -0.064 0.000 -0.006 -0.002615 -0.827 0.604 -0.604 -0.079 -0.043 0.006 -0.027 -0.065620 -0.965 -0.967 -1.378 -0.064 -0.070 0.007 0.001 0.0091067 -1.784 -0.414 -0.026 0.138 0.114 0.006 0.002 0.0031072 -0.543 -2.703 -0.145 0.304 0.174 -0.010 -0.065 -0.0021115 -0.467 0.250 0.233 0.119 0.134 0.010 -0.009 0.0161120 -2.351 -2.394 -3.004 0.264 0.252 -0.012 -0.054 -0.0276007 0.535 1.604 -0.004 0.644 0.851 0.004 -0.007 0.1234006 0.799 0.110 0.113 -0.675 -1.015 -0.001 -0.001 -0.1644010 1.087 1.095 -0.140 -0.542 -0.884 -0.039 -0.161 -0.3356043 2.909 -0.408 -0.581 0.364 0.473 -0.025 0.115 0.0844036 2.309 -0.300 -0.004 -0.287 -0.309 0.000 0.031 0.0554040 1.383 1.082 -0.365 -0.091 -0.299 -0.033 -0.210 -0.184

BasematEL-7.4

Slab B1FEL-2.0

Wall EL-7.4m ~EL-2.0m

Wall EL-2.0m~EL4.65m

Slab 1FEL4.65

Page 226: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-199

Table 3G.2-9

Results of NASTRAN Analysis: Seismic Load (Horizontal: North to South Direction)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

67 -0.157 -0.138 0.238 -0.411 -0.305 -0.240 0.739 -0.02672 -0.096 -3.841 0.023 -1.874 -1.498 0.038 -1.334 -0.017115 -0.134 -0.070 2.430 0.129 0.018 -2.431 1.300 -0.155120 0.150 -0.874 0.295 -0.798 -0.320 0.320 0.222 -0.957567 0.020 -0.019 0.034 0.066 0.001 -0.012 0.019 -0.014572 0.278 0.209 -0.050 -0.020 -0.009 -0.001 0.004 0.002615 -0.037 0.001 -0.320 0.041 0.000 0.010 0.038 0.009620 0.233 0.077 -0.229 -0.017 0.018 0.001 0.020 -0.0231067 0.051 -0.026 0.082 -0.008 -0.010 -0.001 0.014 -0.0011072 0.332 0.626 -0.050 -0.013 -0.017 -0.003 -0.001 0.0001115 0.330 0.049 -0.457 -0.020 -0.001 -0.006 0.010 0.0041120 0.173 0.115 -0.039 -0.024 0.024 0.002 0.029 -0.0316007 0.124 -0.207 2.658 -0.070 0.037 -0.014 -0.085 0.0354006 -0.946 -1.989 -0.060 0.030 0.141 -0.002 0.005 0.0784010 -0.204 -0.696 -0.854 0.043 0.066 -0.024 0.026 0.0286043 0.011 0.002 1.780 -0.002 -0.014 0.011 0.006 -0.0044036 0.224 -1.265 -0.130 -0.029 -0.118 -0.001 -0.006 -0.0354040 0.058 -0.422 -1.178 0.002 -0.042 -0.016 -0.037 -0.040

BasematEL-7.4

Slab B1FEL-2.0

Slab 1FEL4.65

Wall EL-7.4m ~EL-2.0m

Wall EL-2.0m~EL4.65m

Table 3G.2-10

Results of NASTRAN Analysis: Seismic Load (Horizontal: East to West Direction)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

67 -0.150 0.304 -0.570 -0.604 -1.980 -0.061 -0.714 2.60272 -0.021 0.042 2.014 -0.064 -0.183 -2.171 -0.139 0.903115 -3.077 -0.306 -0.187 -0.218 -0.790 -0.056 0.455 -0.591120 -0.787 0.218 0.203 -0.291 -0.714 0.108 -1.041 0.106567 -0.009 -0.019 0.512 -0.025 -0.076 -0.015 -0.017 0.139572 0.011 0.009 0.237 0.002 0.000 -0.001 -0.002 -0.002615 -0.199 0.296 0.451 -0.007 -0.029 -0.001 0.005 0.021620 0.078 0.178 0.211 0.015 -0.019 -0.001 -0.022 0.0211067 0.009 0.036 -0.039 -0.006 -0.005 -0.005 -0.001 0.0021072 0.002 0.004 -0.380 0.004 0.000 -0.007 -0.002 -0.0051115 0.856 0.204 0.064 -0.038 -0.102 -0.003 -0.008 0.0291120 0.102 0.131 -0.134 0.022 -0.043 0.000 -0.041 0.0396007 -1.140 -1.126 0.092 -0.023 -0.030 -0.006 0.004 0.0114006 0.067 -0.159 2.057 -0.008 -0.026 0.017 0.008 -0.0104010 0.196 -0.941 0.818 -0.042 -0.120 0.008 -0.045 -0.0526043 -0.428 -0.721 -0.007 -0.076 -0.142 0.012 -0.051 -0.0684036 0.020 -0.085 1.732 0.000 0.002 -0.005 -0.008 0.0004040 0.021 -0.821 1.197 -0.006 0.011 0.022 0.017 0.014

BasematEL-7.4

Wall EL-7.4m ~EL-2.0m

Wall EL-2.0m~EL4.65m

Slab B1FEL-2.0

Slab 1FEL4.65

Page 227: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-200

Table 3G.2-11

Results of NASTRAN Analysis: Seismic Load (Vertical: Downward Direction)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

67 -0.021 0.742 -0.026 0.855 1.122 -0.065 -0.201 0.19472 0.069 -0.040 0.004 0.358 0.252 -0.016 0.604 0.001115 0.705 0.269 -0.296 0.248 0.151 0.328 0.080 0.615120 0.039 0.037 0.146 0.071 0.118 -0.623 -0.011 0.002567 0.012 -0.756 0.049 0.000 -0.011 0.000 0.000 -0.018572 -0.088 -0.113 0.014 0.000 -0.014 0.000 0.000 -0.023615 -0.172 -0.148 0.246 0.000 -0.012 0.000 0.000 -0.020620 -0.041 -0.039 -0.048 0.000 -0.015 0.000 0.000 -0.0241067 -0.082 -0.058 -0.001 0.000 -0.045 0.000 0.000 -0.0931072 -0.024 -0.045 -0.006 0.000 -0.039 0.000 0.000 -0.0811115 -0.251 -0.011 -0.062 0.000 -0.027 0.000 0.000 -0.0561120 -0.030 -0.020 -0.083 0.000 -0.032 0.000 0.000 -0.0666007 0.227 0.672 0.244 0.010 -0.095 0.003 0.054 -0.0724006 -0.044 0.808 0.031 0.039 0.199 0.000 0.000 0.0614010 -0.053 0.146 0.125 -0.014 0.068 0.005 0.029 0.0416043 -0.172 1.219 0.306 -0.041 -0.027 -0.005 -0.040 0.0164036 -0.058 0.552 0.042 -0.018 -0.090 -0.001 0.001 -0.0314040 0.015 0.327 0.005 0.001 -0.020 -0.007 -0.012 -0.016

BasematEL-7.4

Slab B1FEL-2.0

Slab 1FEL4.65

Wall EL-7.4m ~EL-2.0m

Wall EL-2.0m~EL4.65m

Page 228: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-201

Table 3G.2-12

Combined Forces and Moments: Selected Load Combination CB-3

Location ElementID Nx

(MN/m)Ny

(MN/m)Nxy

(MN/m)Mx

(MNm/m)My

(MNm/m)Mxy

(MNm/m)Qx

(MN/m)Qy

(MN/m)67 OTHR -3.089 -3.438 -0.056 -0.918 -0.693 0.130 0.093 -0.318 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

72 OTHR -4.035 -0.984 -0.081 3.336 0.979 0.021 -0.895 -0.115 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

115 OTHR -3.915 -2.283 -0.907 -0.260 0.516 0.854 -0.686 -0.853 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

120 OTHR -3.041 -1.672 -0.173 1.474 0.684 0.013 -0.487 0.034 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

567 OTHR -1.689 -0.189 -0.010 -0.030 0.028 0.007 -0.009 0.050 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

572 OTHR -2.524 -1.012 0.171 0.022 0.042 0.000 -0.006 0.057 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

615 OTHR -0.840 -0.739 0.077 -0.013 0.031 -0.009 -0.011 0.050 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

620 OTHR -1.205 -0.606 1.546 0.008 0.023 -0.002 -0.012 0.076 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1067 OTHR -0.624 -0.126 -0.030 0.006 0.082 -0.001 -0.009 0.072 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1072 OTHR -1.154 -0.622 0.104 -0.335 -0.011 -0.007 0.154 0.057 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1115 OTHR -0.363 -0.306 0.378 -0.017 -0.093 0.009 0.005 0.085 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1120 OTHR -0.428 -0.121 0.518 -0.083 0.014 0.048 0.052 0.029 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6007 OTHR -1.345 -0.941 -1.465 0.096 0.143 0.052 0.103 0.330 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4006 OTHR -0.566 -0.802 -0.148 -0.121 -0.676 0.000 -0.003 -1.244 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4010 OTHR -0.509 -0.591 -0.049 -0.111 -0.246 0.135 0.138 -0.510 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6043 OTHR -0.911 -1.400 -0.842 0.068 0.061 -0.023 0.066 0.344 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4036 OTHR -1.158 -0.308 -0.013 0.044 0.116 -0.004 0.039 -0.949 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4040 OTHR -0.672 -1.277 0.607 -0.170 -0.009 0.151 0.347 -0.289 TEMP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

OTHR L d th th th l l d

on WallEL-7.4m~EL-2.0m

on WallEL-2.0m~EL4.65m

on Basemat EL-7.4

on Slab B1FEL-2.0

on Slab 1FEL4.65

OTHR: Loads other than thermal loads TEMP: Thermal loads

Page 229: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-202

Table 3G.2-13

Combined Forces and Moments: Selected Load Combination CB-4

Location ElementID Nx

(MN/m)Ny

(MN/m)Nxy

(MN/m)Mx

(MNm/m)My

(MNm/m)Mxy

(MNm/m)Qx

(MN/m)Qy

(MN/m)67 OTHR -2.363 -2.612 -0.043 -0.685 -0.506 0.098 0.066 -0.239 TEMP 0.177 0.241 0.007 1.112 1.929 0.014 -0.160 0.082

72 OTHR -3.084 -0.755 -0.062 2.560 0.754 0.015 -0.670 -0.088 TEMP 0.105 0.779 0.077 0.293 1.725 -0.104 0.240 0.084

115 OTHR -2.978 -1.740 -0.700 -0.194 0.398 0.661 -0.523 -0.640 TEMP 0.705 0.109 -0.032 1.576 0.431 0.074 0.284 0.311

120 OTHR -2.324 -1.278 -0.129 1.129 0.526 -0.004 -0.372 0.026 TEMP -0.284 -0.185 0.322 0.669 0.651 -0.138 0.287 0.392

567 OTHR -1.291 -0.161 -0.006 -0.023 0.021 0.005 -0.007 0.037 TEMP -0.173 -0.264 0.025 -0.028 -0.006 0.003 -0.013 0.004

572 OTHR -1.932 -0.776 0.131 0.017 0.032 0.000 -0.004 0.043 TEMP 0.067 -0.309 -0.020 -0.034 0.000 -0.002 0.019 -0.001

615 OTHR -0.646 -0.568 0.065 -0.010 0.024 -0.007 -0.008 0.038 TEMP -0.381 0.063 -0.015 -0.002 -0.007 0.001 -0.003 -0.003

620 OTHR -0.922 -0.464 1.182 0.006 0.017 -0.001 -0.009 0.057 TEMP -0.337 -0.334 -0.476 -0.008 -0.011 0.004 0.001 0.005

1067 OTHR -0.479 -0.097 -0.023 0.004 0.062 -0.001 -0.007 0.054 TEMP -1.501 -0.410 -0.018 0.007 0.019 0.004 0.001 0.005

1072 OTHR -0.883 -0.476 0.080 -0.257 -0.009 -0.005 0.118 0.043 TEMP -0.375 -2.360 -0.102 0.141 0.029 -0.008 -0.045 -0.002

1115 OTHR -0.282 -0.234 0.288 -0.013 -0.071 0.007 0.004 0.064 TEMP -0.218 0.287 0.181 -0.037 -0.046 0.010 -0.016 0.036

1120 OTHR -0.328 -0.093 0.395 -0.064 0.010 0.037 0.040 0.021 TEMP -1.985 -2.000 -2.607 0.181 0.168 -0.014 -0.077 -0.051

6007 OTHR -1.023 -0.705 -1.115 0.073 0.107 0.040 0.080 0.251 TEMP 0.356 0.282 0.154 0.141 0.149 0.001 0.013 0.014

4006 OTHR -0.435 -0.596 -0.112 -0.092 -0.512 0.000 -0.002 -0.950 TEMP 0.390 -0.080 0.122 -0.127 -0.110 0.000 -0.001 -0.004

4010 OTHR -0.391 -0.449 -0.035 -0.086 -0.187 0.103 0.106 -0.389 TEMP 0.210 0.532 0.308 -0.123 -0.137 -0.008 -0.011 -0.034

6043 OTHR -0.700 -1.046 -0.638 0.051 0.046 -0.017 0.050 0.263 TEMP 0.112 -0.188 -0.103 0.122 0.130 -0.006 -0.003 -0.048

4036 OTHR -0.887 -0.225 -0.009 0.033 0.086 -0.003 0.030 -0.726 TEMP -0.038 -0.728 0.044 -0.137 -0.141 -0.001 0.001 0.104

4040 OTHR -0.513 -0.971 0.463 -0.130 -0.007 0.115 0.265 -0.222 TEMP 0.337 1.829 0.348 -0.056 -0.156 -0.031 -0.089 -0.033

on WallEL-2.0m~EL4.65m

on Basemat EL-7.4

on Slab B1FEL-2.0

on Slab 1FEL4.65

on WallEL-7.4m~EL-2.0m

Page 230: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-203

Table 3G.2-14

Combined Forces and Moments: Selected Load Combination CB-7

Location ElementID Nx

(MN/m)Ny

(MN/m)Nxy

(MN/m)Mx

(MNm/m)My

(MNm/m)Mxy

(MNm/m)Qx

(MN/m)Qy

(MN/m)67 OTHR -1.816 -2.138 -0.026 -0.652 -0.574 0.081 0.108 -0.224 TEMP 0.136 0.185 0.005 0.855 1.484 0.011 -0.123 0.063

72 OTHR -2.386 -0.605 -0.050 1.878 0.518 0.018 -0.648 -0.074 TEMP 0.081 0.599 0.059 0.226 1.327 -0.080 0.185 0.064

115 OTHR -2.417 -1.382 -0.460 -0.184 0.283 0.419 -0.396 -0.590 TEMP 0.543 0.084 -0.025 1.213 0.332 0.057 0.218 0.239

120 OTHR -1.797 -0.996 -0.123 0.846 0.381 0.114 -0.285 0.015 TEMP -0.218 -0.142 0.248 0.515 0.501 -0.106 0.221 0.302

567 OTHR -0.994 -0.001 -0.013 -0.015 0.020 0.004 -0.004 0.034 TEMP -0.133 -0.203 0.020 -0.021 -0.004 0.002 -0.010 0.003

572 OTHR -1.471 -0.577 0.099 0.013 0.028 0.000 -0.003 0.040 TEMP 0.052 -0.238 -0.016 -0.026 0.000 -0.002 0.014 -0.001

615 OTHR -0.471 -0.414 0.011 -0.007 0.021 -0.006 -0.005 0.036 TEMP -0.293 0.048 -0.011 -0.002 -0.005 0.001 -0.002 -0.003

620 OTHR -0.703 -0.350 0.917 0.004 0.018 -0.001 -0.007 0.051 TEMP -0.259 -0.257 -0.366 -0.006 -0.008 0.003 0.001 0.004

1067 OTHR -0.365 -0.061 -0.016 0.003 0.050 -0.001 -0.005 0.050 TEMP -1.155 -0.315 -0.014 0.005 0.015 0.003 0.001 0.004

1072 OTHR -0.676 -0.352 0.061 -0.196 -0.003 -0.003 0.090 0.041 TEMP -0.289 -1.816 -0.078 0.108 0.022 -0.006 -0.034 -0.002

1115 OTHR -0.179 -0.173 0.220 -0.010 -0.052 0.005 0.005 0.054 TEMP -0.168 0.221 0.139 -0.028 -0.035 0.008 -0.013 0.028

1120 OTHR -0.246 -0.065 0.309 -0.049 0.011 0.029 0.031 0.022 TEMP -1.527 -1.538 -2.005 0.139 0.129 -0.011 -0.059 -0.039

6007 OTHR -0.826 -0.649 -0.861 0.054 0.099 0.030 0.052 0.205 TEMP 0.274 0.217 0.118 0.108 0.115 0.000 0.010 0.011

4006 OTHR -0.334 -0.623 -0.099 -0.078 -0.430 0.000 -0.001 -0.741 TEMP 0.300 -0.062 0.094 -0.097 -0.085 0.000 -0.001 -0.003

4010 OTHR -0.293 -0.377 -0.054 -0.063 -0.155 0.078 0.076 -0.306 TEMP 0.162 0.409 0.237 -0.095 -0.105 -0.006 -0.009 -0.026

6043 OTHR -0.510 -0.978 -0.502 0.046 0.038 -0.012 0.045 0.200 TEMP 0.086 -0.144 -0.079 0.094 0.100 -0.004 -0.002 -0.037

4036 OTHR -0.669 -0.264 -0.019 0.029 0.085 -0.002 0.023 -0.553 TEMP -0.029 -0.560 0.033 -0.105 -0.108 0.000 0.001 0.080

4040 OTHR -0.397 -0.800 0.349 -0.100 -0.001 0.091 0.206 -0.167 TEMP 0.259 1.407 0.268 -0.043 -0.120 -0.024 -0.069 -0.026

on Basemat EL-7.4

on Slab B1FEL-2.0

on Slab 1FEL4.65

on WallEL-7.4m~EL-2.0m

on WallEL-2.0m~EL4.65m

Page 231: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-204

Table 3G.2-15

Combined Forces and Moments: Selected Load Combination CB-9

Location ElementID Nx

(MN/m)Ny

(MN/m)Nxy

(MN/m)Mx

(MNm/m)My

(MNm/m)Mxy

(MNm/m)Qx

(MN/m)Qy

(MN/m)67 OTHR -1.811 -2.176 -0.029 -0.698 -0.632 0.092 0.095 -0.231 TEMP -0.472 -1.115 0.147 6.196 7.095 -0.108 0.098 -0.016 EQEW 0.150 -0.304 0.570 0.604 1.980 0.061 0.714 -2.602 EQNS -0.157 -0.138 0.238 -0.411 -0.305 -0.240 0.739 -0.026 EQZ -0.021 0.742 -0.026 0.855 1.122 -0.065 -0.201 0.194 EQT 0.001 0.001 0.099 0.000 0.000 0.003 -0.001 -0.001 SPKW 0.087 -1.415 0.050 0.439 0.675 -0.066 0.157 -0.080 SPKN -1.085 0.157 -0.018 -0.136 -0.086 0.011 -0.063 0.038

72 OTHR -2.385 -0.527 -0.049 1.897 0.538 0.016 -0.645 -0.072 TEMP -0.130 0.344 0.076 1.913 6.297 -0.099 0.477 0.114 EQEW 0.021 -0.042 -2.014 0.064 0.183 2.171 0.139 -0.903 EQNS -0.096 -3.841 0.023 -1.874 -1.498 0.038 -1.334 -0.017 EQZ 0.069 -0.040 0.004 0.358 0.252 -0.016 0.604 0.001 EQT 0.000 -0.014 -0.178 -0.002 0.001 0.110 0.001 -0.121 SPKW 0.030 -0.826 -0.003 -0.066 0.077 -0.005 0.069 -0.016 SPKN -1.086 -0.181 -0.018 0.923 0.205 0.005 -0.120 -0.014

115 OTHR -2.450 -1.397 -0.490 -0.202 0.273 0.454 -0.427 -0.624 TEMP -0.544 -0.009 -0.016 6.453 2.287 -0.058 0.573 1.117 EQEW 3.077 0.306 0.187 0.218 0.790 0.056 -0.455 0.591 EQNS -0.134 -0.070 2.430 0.129 0.018 -2.431 1.300 -0.155 EQZ 0.705 0.269 -0.296 0.248 0.151 0.328 0.080 0.615 EQT 0.023 0.000 0.184 0.019 0.009 -0.080 0.123 0.001 SPKW -0.125 -0.810 -0.068 0.125 0.417 0.080 -0.031 0.016 SPKN -0.971 0.001 -0.032 0.007 -0.015 0.045 0.003 0.006

120 OTHR -1.800 -0.983 -0.133 0.857 0.380 0.134 -0.287 0.031 TEMP -1.079 -0.866 -0.306 3.318 3.294 1.645 1.103 1.340 EQEW 0.787 -0.218 -0.203 0.291 0.714 -0.108 1.041 -0.106 EQNS 0.150 -0.874 0.295 -0.798 -0.320 0.320 0.222 -0.957 EQZ 0.039 0.037 0.146 0.071 0.118 -0.623 -0.011 0.002 EQT 0.062 -0.047 -0.011 -0.017 0.026 0.013 0.100 -0.098 SPKW -0.043 -0.737 0.045 0.017 0.353 -0.195 -0.057 -0.058 SPKN -0.756 -0.042 0.019 0.376 0.032 -0.113 -0.046 -0.030

OTHR: Loads other than thermal loadsTEMP: Thermal loadsEQEW: Horizontal seismic loads in the E-W directionEQNS: Horizontal seismic loads in the N-S directionEQZ: Vertical seismic loadsEQT: Torsional seismic loadsSPKW: Dynamic soil pressure during a horizontal earthquake in the E-W directionSPKN: Dynamic soil pressure during a horizontal earthquake in the N-S direction

on Basemat EL-7.4

Page 232: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-205

Table 3G.2-15

Combined Forces and Moments: Selected Load Combination CB-9 (Continued)

Location ElementID Nx

(MN/m)Ny

(MN/m)Nxy

(MN/m)Mx

(MNm/m)My

(MNm/m)Mxy

(MNm/m)Qx

(MN/m)Qy

(MN/m)567 OTHR -0.997 0.042 -0.016 -0.018 0.019 0.004 -0.005 0.034

TEMP -0.667 0.045 0.073 -0.104 -0.093 0.006 -0.015 0.008 EQEW 0.009 0.019 -0.512 0.025 0.076 0.015 0.017 -0.139 EQNS 0.020 -0.019 0.034 0.066 0.001 -0.012 0.019 -0.014 EQZ 0.012 -0.756 0.049 0.000 -0.011 0.000 0.000 -0.018 EQT 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 SPKW 0.117 -1.160 0.045 0.003 -0.001 0.001 0.000 -0.005 SPKN -0.945 0.115 -0.005 0.001 0.000 0.000 0.001 0.001

572 OTHR -1.467 -0.573 0.097 0.013 0.028 0.000 -0.003 0.039 TEMP 0.290 -0.818 -0.048 -0.054 -0.064 0.000 -0.006 -0.002 EQEW -0.011 -0.009 -0.237 -0.002 0.000 0.001 0.002 0.002 EQNS 0.278 0.209 -0.050 -0.020 -0.009 -0.001 0.004 0.002 EQZ -0.088 -0.113 0.014 0.000 -0.014 0.000 0.000 -0.023 EQT -0.001 0.002 -0.006 0.000 0.000 0.000 0.000 0.000 SPKW 0.005 -0.472 0.004 -0.007 -0.002 0.000 0.003 0.000 SPKN -1.106 -0.201 0.043 0.031 0.005 0.000 -0.013 0.000

615 OTHR -0.461 -0.407 -0.005 -0.008 0.022 -0.006 -0.007 0.034 TEMP -0.827 0.604 -0.604 -0.079 -0.043 0.006 -0.027 -0.065 EQEW 0.199 -0.296 -0.451 0.007 0.029 0.001 -0.005 -0.021 EQNS -0.037 0.001 -0.320 0.041 0.000 0.010 0.038 0.009 EQZ -0.172 -0.148 0.246 0.000 -0.012 0.000 0.000 -0.020 EQT 0.001 0.000 0.002 0.002 0.000 0.000 0.002 0.000 SPKW -0.148 -0.906 -0.260 0.002 0.034 0.002 -0.008 -0.037 SPKN -0.463 -0.019 0.118 0.001 -0.002 0.000 0.002 0.004

620 OTHR -0.701 -0.349 0.918 0.005 0.017 -0.001 -0.007 0.051 TEMP -0.965 -0.967 -1.378 -0.064 -0.070 0.007 0.001 0.009 EQEW -0.078 -0.178 -0.211 -0.015 0.019 0.001 0.022 -0.021 EQNS 0.233 0.077 -0.229 -0.017 0.018 0.001 0.020 -0.023 EQZ -0.041 -0.039 -0.048 0.000 -0.015 0.000 0.000 -0.024 EQT 0.003 -0.003 -0.001 -0.002 0.002 0.000 0.002 -0.002 SPKW -0.014 -0.503 0.287 -0.004 0.007 -0.004 0.005 -0.007 SPKN -0.498 -0.015 0.358 0.007 -0.003 -0.004 -0.007 0.005

on Slab B1FEL-2.0

Page 233: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-206

Table 3G.2-15

Combined Forces and Moments: Selected Load Combination CB-9 (Continued)

Location ElementID Nx

(MN/m)Ny

(MN/m)Nxy

(MN/m)Mx

(MNm/m)My

(MNm/m)Mxy

(MNm/m)Qx

(MN/m)Qy

(MN/m)1067 OTHR -0.352 -0.066 -0.018 0.004 0.053 -0.001 -0.006 0.051

TEMP -1.784 -0.414 -0.026 0.138 0.114 0.006 0.002 0.003 EQEW -0.009 -0.036 0.039 0.006 0.005 0.005 0.001 -0.002 EQNS 0.051 -0.026 0.082 -0.008 -0.010 -0.001 0.014 -0.001 EQZ -0.082 -0.058 -0.001 0.000 -0.045 0.000 0.000 -0.093 EQT -0.001 0.002 -0.006 0.000 0.000 0.000 0.000 0.000 SPKW 0.088 -0.624 0.036 -0.016 0.042 0.000 -0.004 0.005 SPKN -0.623 0.070 -0.007 0.009 0.006 -0.001 -0.001 -0.001

1072 OTHR -0.680 -0.370 0.063 -0.198 -0.003 -0.004 0.091 0.040 TEMP -0.543 -2.703 -0.145 0.304 0.174 -0.010 -0.065 -0.002 EQEW -0.002 -0.004 0.380 -0.004 0.000 0.007 0.002 0.005 EQNS 0.332 0.626 -0.050 -0.013 -0.017 -0.003 -0.001 0.000 EQZ -0.024 -0.045 -0.006 0.000 -0.039 0.000 0.000 -0.081 EQT 0.001 0.001 -0.009 0.000 0.000 0.000 0.000 0.000 SPKW 0.028 -0.385 -0.014 0.002 0.007 -0.002 0.006 -0.002 SPKN -0.690 -0.105 0.027 -0.164 -0.025 -0.003 0.069 -0.003

1115 OTHR -0.168 -0.181 0.239 -0.010 -0.052 0.005 0.003 0.055 TEMP -0.467 0.250 0.233 0.119 0.134 0.010 -0.009 0.016 EQEW -0.856 -0.204 -0.064 0.038 0.102 0.003 0.008 -0.029 EQNS 0.330 0.049 -0.457 -0.020 -0.001 -0.006 0.010 0.004 EQZ -0.251 -0.011 -0.062 0.000 -0.027 0.000 0.000 -0.056 EQT 0.023 0.004 -0.022 -0.001 0.000 0.001 0.001 0.000 SPKW -0.097 -0.637 -0.048 -0.032 -0.158 0.006 0.001 0.048 SPKN -0.468 -0.002 0.008 0.004 -0.001 0.000 0.002 0.002

1120 OTHR -0.249 -0.072 0.323 -0.049 0.011 0.028 0.030 0.023 TEMP -2.351 -2.394 -3.004 0.264 0.252 -0.012 -0.054 -0.027 EQEW -0.102 -0.131 0.134 -0.022 0.043 0.000 0.041 -0.039 EQNS 0.173 0.115 -0.039 -0.024 0.024 0.002 0.029 -0.031 EQZ -0.030 -0.020 -0.083 0.000 -0.032 0.000 0.000 -0.066 EQT 0.006 -0.005 -0.002 -0.003 0.002 0.000 0.003 -0.003 SPKW 0.004 -0.302 0.127 0.014 -0.047 0.020 -0.026 0.038 SPKN -0.299 0.004 0.139 -0.049 0.013 0.021 0.039 -0.027

on Slab 1FEL4.65

Page 234: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-207

Table 3G.2-15

Combined Forces and Moments: Selected Load Combination CB-9 (Continued)

Location ElementID Nx

(MN/m)Ny

(MN/m)Nxy

(MN/m)Mx

(MNm/m)My

(MNm/m)Mxy

(MNm/m)Qx

(MN/m)Qy

(MN/m)6007 OTHR -0.840 -0.685 -0.930 0.055 0.103 0.030 0.050 0.208

TEMP 0.535 1.604 -0.004 0.644 0.851 0.004 -0.007 0.123 EQEW 1.140 1.126 -0.092 0.023 0.030 0.006 -0.004 -0.011 EQNS 0.124 -0.207 2.658 -0.070 0.037 -0.014 -0.085 0.035 EQZ 0.227 0.672 0.244 0.010 -0.095 0.003 0.054 -0.072 EQT 0.011 0.003 0.187 -0.003 0.002 0.002 -0.005 0.002 SPKW -0.035 0.060 -0.018 0.036 0.030 0.022 0.056 0.109 SPKN -0.390 0.007 0.004 -0.002 -0.016 -0.001 0.002 -0.006

4006 OTHR -0.313 -0.621 -0.096 -0.080 -0.440 0.000 -0.001 -0.744 TEMP 0.799 0.110 0.113 -0.675 -1.015 -0.001 -0.001 -0.164 EQEW -0.067 0.159 -2.057 0.008 0.026 -0.017 -0.008 0.010 EQNS -0.946 -1.989 -0.060 0.030 0.141 -0.002 0.005 0.078 EQZ -0.044 0.808 0.031 0.039 0.199 0.000 0.000 0.061 EQT -0.006 -0.001 -0.199 0.000 0.002 0.001 -0.002 0.001 SPKW -0.357 0.115 -0.009 0.013 0.073 -0.001 0.001 0.032 SPKN -0.102 -0.074 -0.019 -0.020 -0.126 0.000 -0.001 -0.299

4010 OTHR -0.286 -0.370 -0.044 -0.063 -0.159 0.078 0.075 -0.308 TEMP 1.087 1.095 -0.140 -0.542 -0.884 -0.039 -0.161 -0.335 EQEW -0.196 0.941 -0.818 0.042 0.120 -0.008 0.045 0.052 EQNS -0.204 -0.696 -0.854 0.043 0.066 -0.024 0.026 0.028 EQZ -0.053 0.146 0.125 -0.014 0.068 0.005 0.029 0.041 EQT -0.020 0.010 -0.139 0.005 0.009 0.000 0.003 0.005 SPKW -0.231 -0.027 0.049 -0.039 0.015 -0.014 0.033 0.021 SPKN -0.048 -0.097 -0.074 -0.008 -0.043 0.045 0.033 -0.127

on WallEL-7.4m~EL-2.0m

Page 235: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-208

Table 3G.2-15

Combined Forces and Moments: Selected Load Combination CB-9 (Continued)

Location ElementID Nx

(MN/m)Ny

(MN/m)Nxy

(MN/m)Mx

(MNm/m)My

(MNm/m)Mxy

(MNm/m)Qx

(MN/m)Qy

(MN/m)6043 OTHR -0.499 -1.060 -0.577 0.049 0.042 -0.012 0.047 0.201

TEMP 2.909 -0.408 -0.581 0.364 0.473 -0.025 0.115 0.084 EQEW 0.428 0.721 0.007 0.076 0.142 -0.012 0.051 0.068 EQNS 0.011 0.002 1.780 -0.002 -0.014 0.011 0.006 -0.004 EQZ -0.172 1.219 0.306 -0.041 -0.027 -0.005 -0.040 0.016 EQT 0.001 0.012 0.131 0.000 -0.001 0.002 0.000 0.000 SPKW -0.013 -0.093 -0.069 0.027 0.024 -0.018 0.050 0.534 SPKN -0.598 0.181 0.066 -0.005 0.012 0.003 -0.012 -0.001

4036 OTHR -0.671 -0.274 -0.017 0.030 0.088 -0.002 0.023 -0.552 TEMP 2.309 -0.300 -0.004 -0.287 -0.309 0.000 0.031 0.055 EQEW -0.020 0.085 -1.732 0.000 -0.002 0.005 0.008 0.000 EQNS 0.224 -1.265 -0.130 -0.029 -0.118 -0.001 -0.006 -0.035 EQZ -0.058 0.552 0.042 -0.018 -0.090 -0.001 0.001 -0.031 EQT 0.003 -0.001 -0.116 0.000 -0.001 0.002 0.001 0.000 SPKW -0.528 0.159 0.007 -0.008 -0.037 -0.001 -0.003 -0.009 SPKN -0.172 -0.023 0.000 0.007 0.010 -0.002 0.017 -0.499

4040 OTHR -0.398 -0.803 0.370 -0.100 -0.001 0.091 0.207 -0.167 TEMP 1.383 1.082 -0.365 -0.091 -0.299 -0.033 -0.210 -0.184 EQEW -0.021 0.821 -1.197 0.006 -0.011 -0.022 -0.017 -0.014 EQNS 0.058 -0.422 -1.178 0.002 -0.042 -0.016 -0.037 -0.040 EQZ 0.015 0.327 0.005 0.001 -0.020 -0.007 -0.012 -0.016 EQT -0.015 -0.014 -0.111 0.000 -0.002 0.000 0.000 -0.002 SPKW -0.362 -0.139 0.039 -0.108 -0.022 -0.019 0.047 0.024 SPKN -0.112 -0.235 0.013 -0.032 -0.005 0.091 0.134 -0.159

on WallEL-2.0m~EL4.65m

Page 236: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-2

09

Tab

le 3

G.2

-16

Sect

iona

l Thi

ckne

sses

and

Reb

ar R

atio

s Use

d in

the

Eva

luat

ion

Elem

ent

Thic

knes

sID

(m)

Rat

ioR

atio

Rat

ioR

atio

Rat

io(%

)(%

)(%

)(%

)(%

)Ba

sem

atEL

-7.4

671-

#11@

200

+ 1-

#11@

400

0.25

2

722-

#11@

200

0.33

511

51-

#11@

200

#7@

400x

400

0.24

212

0+

1-#1

1@40

0-

Slab

B1F

567

EL-2

.057

261

562

0Sl

ab 1

F10

67EL

4.65

1072

1115

1120

Wal

l60

07#6

@40

0x20

00.

355

EL-7

.4m

4006

~EL-

2.0m

4010

Wal

l60

43#6

@40

0x20

00.

355

EL-2

.0m

4036

~EL4

.65m

4040

1-#1

1@20

01.

006

1-#1

1@20

01.

006

1.11

82-

#11@

200

1.11

8

1.11

8

N-S

Bar

s (S

lab)

E-W

Bar

s (S

lab)

Hor

izon

tal B

ars

(Wal

l)Ve

rtica

l Bar

s (W

all)

Arra

ngem

ent

Arra

ngem

ent

3.0

2-#1

1@20

01.

118

--Shea

r Tie

N-S

Bar

s (S

lab)

Hor

izon

tal B

ars

(Wal

l)E-

W B

ars

(Sla

b)V

ertic

al B

ars

(Wal

l)

Top

Botto

m

Arra

ngem

ent

1-#1

1@20

0

0.25

2

#6@

200x

200

0.71

0

1.00

6

#6@

200x

200

0.71

0

-

0.71

9

2-#1

1@20

0

0.9

2-#1

1@20

0

0.7

1-#1

1@20

00.

719

1-#1

1@20

01-

#11@

200

0.71

9

0.9

1.11

82-

#11@

200

1.11

8

1.11

8

0.5

1-#1

1@20

01-

#11@

200

2-#1

1@20

0

0.71

9

1.00

6

2-#1

1@20

01.

118

2-#1

1@20

0

Loca

tion

Arra

ngem

ent

Arra

ngem

ent

1-#1

1@20

0+

1-#1

1@40

00.

252

1-#1

1@20

0+

1-#1

1@40

0

Prim

ary

Rei

nfor

cem

ent

0.25

21-

#11@

200

+ 1-

#11@

400

0.25

2

Page 237: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-210

Table 3G.2-17

Rebar and Concrete Stresses (Basemat and Slabs):

Selected Load Combination CB-3

Top Bottom Top Bottom67 -1.6 -20.7 -3.0 -9.8 -5.1 -9.8 372.2

72 -3.6 -25.0 6.9 -3.6 3.6

115 -2.0 -7.6 -10.5 -6.7 -1.9

120 -1.9 -13.0 -1.6 -5.0 -1.1 567 -3.6 -25.9 -18.4 -23.1 -2.4 4.3

572 -5.0 -30.8 -28.6 -11.6 -4.4

615 -2.1 -7.9 -10.4 -10.8 -4.5

620 -6.3 49.5 60.7 61.0 86.8 1067 -1.6 -5.4 -5.6 -5.9 18.1

1072 -6.8 31.3 -27.7 -4.6 -2.0

1115 -2.2 13.3 1.0 30.7 -7.6

1120 -2.8 23.5 16.1 13.6 46.7 Note: Negative value means compression.

on BasematEL-7.4

on Slab B1FEL-2.0

on Slab 1FEL4.65

Concrete Stress (MPa)

Location ElementID Calculated Allowable

Calculated

X-direction Y-direction

Primary Reinforcement Stress (MPa)

Allowable

Table 3G.2-18

Rebar and Concrete Stresses (Walls): Selected Load Combination CB-3

Inside Outside Inside Outside6007 -4.0 -25.9 4.0 23.3 0.2 37.7 372.24006 -9.0 -2.9 2.6 -15.8 74.1 4010 -5.2 -3.7 18.7 -6.9 28.7 6043 -2.4 -6.4 1.6 -9.6 -3.3 4036 -1.5 -6.8 -8.3 5.4 -3.6 4040 -3.4 -7.6 1.5 -6.2 -8.9

Note: Negative value means compression.

Location ElementID

Concrete Stress (MPa) Primary Reinforcement Stress (MPa)

Calculated Allowable

Calculated

AllowableHorizontal direction Vertical direction

on WallEL-7.4m~EL-2.0m

on WallEL-2.0m~EL4.65m

Page 238: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-211

Table 3G.2-19

Rebar and Concrete Stresses (Basemat and Slabs):

Selected Load Combination CB-4

Top Bottom Top Bottom

67 -1.6 -23.5 -5.5 -3.8 -10.8 0.2 372.2

72 -3.0 -19.6 6.6 -7.6 28.9

115 -2.0 -9.5 -1.1 -6.1 -0.4

120 -1.9 -12.7 0.6 -6.0 0.9 567 -3.7 -29.3 -13.9 -21.2 -4.8 -0.4

572 -3.7 -19.8 -22.8 -13.4 -6.9

615 -2.1 -10.9 -13.0 -6.2 -2.6

620 -3.4 -14.1 -14.5 -8.3 -7.0 1067 -2.7 -17.7 -17.8 -6.0 3.4

1072 -3.9 -2.0 -13.2 -26.7 -22.4

1115 -2.1 17.8 -1.0 43.3 -3.0

1120 -6.8 -16.5 -21.1 -22.8 -3.8 Note: Negative value means compression.

on BasematEL-7.4

on Slab B1FEL-2.0

on Slab 1FEL4.65

Location ElementID

Concrete Stress (MPa) Primary Reinforcement Stress (MPa)

Calculated Allowable

Calculated

AllowableX-direction Y-direction

Table 3G.2-20

Rebar and Concrete Stresses (Walls): Selected Load Combination CB-4

Inside Outside Inside Outside6007 -3.5 -29.3 0.8 38.5 3.7 47.1 372.24006 -7.4 10.9 -1.3 59.5 -12.9 4010 -4.8 16.3 -4.0 34.5 -2.6 6043 -2.9 -4.0 13.8 -9.0 8.7 4036 -1.6 -2.8 -7.8 -4.7 -6.6 4040 -2.9 17.0 5.8 3.6 17.6

Note: Negative value means compression.

on WallEL-7.4m~EL-2.0m

on WallEL-2.0m~EL4.65m

Location ElementID

Concrete Stress (MPa) Primary Reinforcement Stress (MPa)

Calculated Allowable

Calculated

AllowableHorizontal direction Vertical direction

Page 239: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-212

Table 3G.2-21

Rebar and Concrete Stresses (Basemat and Slabs):

Selected Load Combination CB-7

Top Bottom Top Bottom

67 -1.2 -23.5 -3.8 -3.3 -8.2 -0.7 372.2

72 -2.2 -14.5 3.8 -5.5 19.0

115 -1.5 -7.8 -1.0 -4.6 -0.6

120 -1.5 -9.7 0.2 -4.8 0.7 567 -2.8 -29.3 -11.0 -16.4 -2.4 1.5

572 -2.8 -15.1 -17.4 -10.4 -4.7

615 -1.6 -8.1 -9.7 -4.8 -1.5

620 -2.6 -10.7 -11.1 -6.7 -4.9 1067 -2.1 -13.6 -13.7 -4.5 3.8

1072 -3.0 -1.6 -10.1 -20.6 -16.9

1115 -1.6 15.6 0.1 34.2 -1.8

1120 -5.2 -12.4 -16.3 -17.8 -2.1 Note: Negative value means compression.

Location ElementID

Concrete Stress (MPa) Primary Reinforcement Stress (MPa)

Calculated AllowableCalculated

AllowableX-direction Y-direction

on BasematEL-7.4

on Slab B1FEL-2.0

on Slab 1FEL4.65

Table 3G.2-22

Rebar and Concrete Stresses (Walls): Selected Load Combination CB-7

Inside Outside Inside Outside6007 -2.9 -29.3 -0.1 26.8 0.5 33.8 372.24006 -6.1 -0.7 9.7 -12.5 43.9 4010 -3.8 -3.0 14.6 -2.2 28.3 6043 -2.3 -3.0 10.3 -8.5 3.9 4036 -1.2 -5.8 -2.0 -5.2 -4.7 4040 -2.2 3.3 12.1 13.2 -0.9

Note: Negative value means compression.

Location ElementID

Concrete Stress (MPa) Primary Reinforcement Stress (MPa)

Calculated Allowable

Calculated

AllowableHorizontal direction Vertical direction

on WallEL-7.4m~EL-2.0m

on WallEL-2.0m~EL4.65m

Page 240: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-213

Table 3G.2-23

Rebar and Concrete Stresses (Basemat and Slabs):

Selected Load Combination CB-9

Top Bottom Top Bottom

67 -7.1 -23.5 -20.4 49.5 -41.3 67.9 372.2

72 -8.2 -43.4 91.6 -26.6 325.5

115 -8.2 155.8 150.5 176.9 40.7

120 -5.6 -28.9 60.1 -22.8 88.8 567 -9.0 -29.3 -28.9 -45.8 61.0 59.4

572 -4.9 -29.4 -28.1 -19.8 -25.8

615 -6.3 24.9 -33.0 -26.0 46.1

620 -5.5 -26.0 -29.8 -21.1 -24.8 1067 -5.5 -31.8 -19.0 -17.3 33.1

1072 -7.1 -12.1 -18.4 -43.9 -25.0

1115 -5.6 79.5 55.7 73.3 29.5

1120 -9.3 -27.6 -25.9 -34.9 -20.2 Note: Negative value means compression.

Location ElementID

Concrete Stress (MPa) Primary Reinforcement Stress (MPa)

Calculated AllowableCalculated

AllowableX-direction Y-direction

on BasematEL-7.4

on Slab B1FEL-2.0

on Slab 1FEL4.65

Table 3G.2-24

Rebar and Concrete Stresses (Walls): Selected Load Combination CB-9

Inside Outside Inside Outside6007 -10.2 -29.3 85.3 279.2 136.5 297.3 372.24006 -19.4 41.3 223.8 44.0 328.9 4010 -11.8 27.8 150.9 40.0 192.4 6043 -9.1 53.4 188.1 35.7 189.3 4036 -5.1 62.1 110.7 100.1 129.4 4040 -6.8 88.0 126.0 121.6 128.5

Note: Negative value means compression.

Concrete Stress (MPa) Primary Reinforcement Stress (MPa)

Calculated Allowable

Calculated

AllowableHorizontal direction Vertical direction

on WallEL-7.4m~EL-2.0m

on WallEL-2.0m~EL4.65m

Location ElementID

Page 241: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-214

Table 3G.2-25

Calculation Results for Transverse Shear

Element Load d ρw ρvID ID (m) (%) (%) Vu Vc Vs φVn Vu/φVn67 CB-7 2.770 0.273 0.000 0.393 4.695 0.000 3.991 0.09972 CB-3 2.740 0.277 0.000 0.901 4.927 0.000 4.188 0.215115 CB-9 2.821 0.268 0.242 2.147 2.212 2.826 4.282 0.501120 CB-3 2.740 0.276 0.000 0.510 4.754 0.000 4.041 0.126567 CB-7 0.410 1.232 0.000 0.037 0.393 0.000 0.334 0.112572 CB-3 0.410 1.233 0.000 0.057 0.889 0.000 0.756 0.075615 CB-3 0.408 1.238 0.000 0.052 0.838 0.000 0.713 0.073620 CB-3 0.409 1.236 0.000 0.078 0.895 0.000 0.761 0.1021067 CB-3 0.609 0.826 0.000 0.072 0.646 0.000 0.549 0.1321072 CB-4 0.566 0.890 0.000 0.130 0.621 0.000 0.528 0.2451115 CB-3 0.610 0.825 0.000 0.085 0.775 0.000 0.658 0.1301120 CB-4 0.574 0.876 0.000 0.064 0.448 0.000 0.381 0.1676007 CB-9 0.675 1.493 0.355 0.355 0.335 0.992 1.128 0.3154006 CB-9 0.672 1.500 0.710 1.242 0.271 1.975 1.910 0.6504010 CB-9 0.672 1.500 0.710 0.841 0.515 1.975 2.117 0.3976043 CB-9 0.675 1.494 0.355 0.890 0.641 0.992 1.388 0.6424036 CB-9 0.673 1.497 0.710 1.109 0.263 1.978 1.905 0.5824040 CB-9 0.680 1.483 0.710 0.511 0.507 1.999 2.130 0.240

Shear Forces (MN/m)

on WallEL-2.0m~EL4.65m

on BasematEL-7.4

on SlabB1FEL-2.0

on Slab 1FEL4.65

on WallEL-7.4m~EL-2.0m

Location

Page 242: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-215

Table 3G.2-26

Factors of Safety for Foundation Stability

Overturning Sliding Floatation Load Combination Required Actual Required Actual Required Actual

D + H + E’ 1.1 86.1 1.1 1.13 -- --

D + F’ -- -- -- -- 1.1 1.66

Where, D = Dead Load H = Lateral soil pressure E’ = Safe Shutdown Earthquake F’ = Buoyant forces of design basis flood

Table 3G.2-27

Maximum Soil Bearing Stress Involving SSE

Site Condition*

Soft Medium Hard

Bearing Stress (MPa)

2.2 2.2 2.7

* See Table 3A.3-1 for site properties.

Page 243: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-216

Figu

re 3

G.2

-1.

CB

Con

cret

e O

utlin

e Pl

an a

t EL

-740

0 an

d Fo

unda

tion

Rei

nfor

cem

ent

Page 244: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-217

Figu

re 3

G.2

-2.

CB

Con

cret

e O

utlin

e Pl

an a

t EL

–20

00/4

850

and

Sect

ion

Det

ails

Page 245: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-218

Figu

re 3

G.2

-3.

CB

Con

cret

e O

utlin

e Pl

an a

t EL

906

0, S

ectio

n an

d Se

ctio

n D

etai

l

Page 246: ESBWR Design Control Document - NRC: Home Page

26A6642-AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-219

Whole View

Cut View

Figure 3G.2-4. FE Model of CB (Isometric View)

PN X

Y

Z

X

Y

Z

PN

Page 247: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-2

20

C1

C2

C3

C4

C5

CA

CB

CC

CD

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

1615

14

1314

1516

2120

1918

17

1718

1920

2423

22

2122

2324

2827

2526

2728

3332

3130

29

2930

3132

3635

34

3334

3536

40

3938

37

3738

3940

4544

4342

41

4142

4344

4847

46

4546

4748

7675

7473

7374

7576

8180

79

7877

7778

7980

8483

82

8182

8384

8887

8685

8586

8788

9392

9190

89

8990

9192

9695

94

9394

9596

100

9998

97

9798

9910

0

105

104

103

102

101

101

102

103

104

108

107

106

105

106

107

108

112

111

110

109

109

110

111

112

117

116

115

114

113

113

114

115

116

120

119

118

117

118

119

120

4950

49

5152

5051

5253

5453

5455

5657

5556

5859

5758

5960

60

61

6162

6463

62

6364

6665

65

6668

6768

6769

7170

6970

7172

72

132625

121

122

123

125

124

126

127

128

129

130

132

131

133

134

135

136

138

137

139

140

141

142

143

Ele

men

t sel

ecte

d fo

r eva

luat

ion

Fi

gure

3G

.2-5

. FE

Mod

el o

f CB

(Fou

ndat

ion

Mat

)

Page 248: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-2

21

CD

CC

CB

CA

EL

9060

EL

4650

EL

-200

0

EL

-740

057

8

1078

1578

2078

2578

3078

3578

4078

4578

5078

4001

4011

513

1013

526

1026 40

02

4012

4021

4031

2013

1513

2513

2026

152640

22

2526 40

32

539

552

4003

103940

13

1052

565

1065

4004

4014

4005

4015

2039

2052

153940

23

1552

4033

2539

2552

2065

1565

4024

4025

2565

4034

4035

4041

4051

4061

3013

3513

3026 40

42

3526 40

52

4062

4071

4081

4013

4513

5013

4026

4526 40

72

5026 40

82

4043

3039

3052

4053

353940

6335

52

3065

4044

4045

3565

4054

4064

4055

4065

4073

4039

4539

4052

4552

5039 40

83

5052

4065

4565

4074

4075

5065

4084

4085

591

1091

4006

4016

4007

4017

604

617

4008

110440

18

1117

2091

1591

4026

4027

2591

4036

4037

2104

2117

160440

28

1617

4038

2604

2617

630

1130

4009

4019

4010

4020

643

1143

2130

1630

4029

4030

4039

4040

2630

2143

1643

2643

3091

4046

4047

3591

4056

4066

4057

4067

4048

3104

3117

4058

360440

6836

17

4091

4591

4076

4077

5091

4086

4087

4078

4104

4604

4117

4617

5104 40

88

5117 40

4940

50

3130

4059

4069

4060

4070

3630

3143

3643

4079

4080

4130

4630

4089

5130 40

90

4143

4643

5143

Ele

men

t sel

ecte

d fo

r eva

luat

ion

Fi

gure

3G

.2-6

. FE

Mod

el o

f CB

(Ext

erna

l Wal

l: So

uth

Side

)

Page 249: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-2

22

637

1137

1637

2137

2637

3137

3637

4637

5137

6001

6013

6025

6037

631

1131

2131

1631

2631

1134

1634

2134

2634

632

1132 60

02

6014

633

634

6003

6015

1133

2132

163260

26

2632 60

38

2133 60

27

163360

39

2633

635

6004

6016

6005

6017

1135

63660

06

6018

1136

2135

6028

163560

29

6040

6041

2635

2136 60

30

163660

42

2636

6049

6061

6073

6085

6097

3131

3631

4131

4631

5131

3134

3634

4134

4634

5134

3132 60

50

3632 60

62

6074

6051

313360

63

6075

3633

4132

4632 60

86

5132 60

98

6087

4133

463360

99

5133

6052

6053

3135

6064

6076

6065

6077

3635

6054

313660

66

3636

6088

6089

4135

4635

6100

5135 61

01

4136

463661

02

5136

6008

6020

638

6007

6019

1138

639

1139 60

09

6021

6032

6044

2138

6031

1638

6043

2638

2139

163960

33

2639 60

45

6011

6023

640

641

6010

114060

22

1141

642

1142 60

12

6024

6035

6047

2140

2141

164060

34

1641

6046

2640

2641

2142

164260

36

2642 60

48

643

1143

1643

2643

6056

6068

6080

6055

3138

6067

3638

3139 60

57

3639 60

69

6081

6092

6104

4138

4638

6103

5138

4139

4639 60

93

5139 61

05

6059

6071

6083

6058

3140

3141

6070

364060

8236

41

3142 60

60

3642 60

72

6084

6095

6107

6094

4140

4640

4141

4641

5140 61

06

5141

4142

4642 60

96

5142 61

08

3143

3643

4143

4643

5143

C1

C2

C3

EL -7

400

C4

EL 4

650

EL -2

000

EL 1

3500

EL 9

060

C5 21

43

5154

5165

5654

5633

5634

5635

5637

5636

5638

5639

5640

5641

5665

6154

6133

6134

6135

6137

6136

6138

6139

6140

6141

6165

6654

6633

6634

6635

6637

6636

6638

6639

6640

6641

6665

6116

6113

6114

6115

6117

6118

6119

6121

6120

6122

6126

6123

6124

6125

6127

6128

6129

6131

6130

6132

6136

6133

6134

6135

6137

6138

6139

6141

6140

6142

6112

6111

6109

6110

Ele

men

t sel

ecte

d fo

r eva

luat

ion

Fi

gure

3G

.2-7

. FE

Mod

el o

f CB

(Ext

erna

l Wal

l: E

ast S

ide)

Page 250: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-2

23

2004

2003

2002

200150

1

2014

2015 50

250

350

4

2016

2017

2009

2008

2007

2006

200550

550

6

2018

2019

507

508

2021

2020

2022

2013

2012

2011

201051

050

951

1

2023

2024

512

2025

2026

CD

528

527

526

525

513

2027

2028

515

514

516

2029

2030

2041

204053

7

2043

204253

953

854

0

564

563

562

561

549

2053

2054

2066

2067

552

551

550

2055

2056

2068

2069

2079

2080

573

2081

2082

575

574

576

532

531

530

529

2031

2032

2034

2033

2035

2044

2045

541

542

2048

2046

2047

543

544

536

535

534

533

522

521

523

2036

2037

524

2038

2039

2050

204954

654

554

7

2052

205154

8

568

567

566

565

554

553

2057

2058

2070

2071

556

555

2060

2059

2061

2073

2072

2074

2083

2084

577

578

2086

2085

2087

579

580

572

571

570

569

559

558

557

2062

2063

2075

2076

560

2064

2065

2077

2078

2088

2089

582

581

583

2090

2091

584

612

611

610

609

2106

585

2092

2093

2105

588

587

586

2094

2095

2107

2108

2119

597

2118

599

598

600

2120

2121

2132

2131

2134

2133

C1

C2

620

619

618

617

616

615

614

613

605

590

589

2096

2097

2109

2110

592

591

2099

2098

2100

2112

2111

2113

601

602

2122

2123

603

604

2125

2124

2126

595

594

593

2101

2102

2114

2115

596

2103

2104

2116

2117

606

607

2127

2128

608

2129

2130

2136

2135

2139

2138

2137

C3

2141

2140

2143

2142

C4

C5

CC

CB

CA

Ele

men

t sel

ecte

d fo

r eva

luat

ion

Fi

gure

3G

.2-8

. FE

Mod

el o

f CB

(Flo

or S

lab:

EL

-200

0)

Page 251: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-2

24

C1

C2

CD

CC

CB

C5

C3

C4

CA

3633

3620

3607

3594

3581

3568

3555

3542

3529

3516

3503

1098

1097

1001

1013

3501

3514

1002

350210

14

3515

1025

1037

3527

3540

1026

352810

38

354110

7410

73

1061

1049

3566

3553

3579

3567 10

5035

541062

3580

1085

3592

3605

1086

3593

3606

1109

3618

3631

1110

3619

3632

1108

1106

1107

1105

1103

1104

1102

1101

1100

1099

1042

1030

1006

3504

1003

1004

3517

1015

1016

350510

05

3506

3518

3519

3530

1027

1028

3543

1039

1040

353110

29

3532

354410

41

3545

3521

3508

1007

3507

3520

3509

1008

1009

352210

21

3547

3534

1031

353310

43

3546

3535

1032

1033

3548

1044

1045

1090

1078

1066

1054

1077

1076

1075

3569

3556

1051

1052

3582

1063

1064

3571

3570 10

5335

5735

58

3583 10

65

3584

1088

1087

3595

3608

1089

3596

3597

3609

3610

1081

1079

1080

3586

3573

3560

3572 10

5535

591067

3585

3574

3561

1056

1057

3587

1068

1069

3612

3599

1091

3598

3611

1093

1092

3600

3613

3552

3539

3526

3513

1023

1011

351010

10

3511

352310

22

3524

1012

351210

24

3525

1047

1035

353610

34

3537

354910

46

3550

1036

353810

48

3551

3617

3604

3591

3578

3565

1084

1082

1083

1071

1059

3576

3575 10

5835

6235

63

3588 10

70

3589

3577 10

6035

641072

3590

1095

1094

3601

3602

3614

3615

1096

3603

3616

1114

1112

1111

3621

3634

1113

3622

3623

3635

3636

3638

3625

1115

3624

3637

1117

1116

3626

3639

3643

3630

1119

1118

3627

3628

3640

3641

1120

3629

3642

Ele

men

t sel

ecte

d fo

r eva

luat

ion

Fi

gure

3G

.2-9

. FE

Mod

el o

f CB

(Flo

or S

lab:

EL

465

0)

Page 252: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-225

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4 0.5

Max. 0.011 Mpa

EL (m

)

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4 0.5

Max. 0.172 MpaEL

(m)

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4 0.5

Max. 0.325 Mpa

EL (m

)

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4 0.5

Max. 0.142 Mpa

EL (m

)

Surcharge + Soil Pressure + Hydrostatic = Total (MPa) (MPa) (MPa) (MPa)

Pressure on Walls CA, CD & C1

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4 0.5

Max. 0.175 Mpa

EL (m

)

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4 0.5

Max. 0.172 Mpa

EL (m

)

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4 0.5

Max. 0.489 Mpa

EL (m

)

-15

-10

-5

0

5

0.0 0.1 0.2 0.3 0.4 0.5

Max. 0.142 Mpa

EL (m

)

Surcharge + Soil Pressure + Hydrostatic = Total (MPa) (MPa) (MPa) (MPa)

Pressure on Wall C5

Figure 3G.2-10. Soil Pressure at Rest

Page 253: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-226

EL -10400

EL -7400

CD CC CB CA

EL -2000

EL 4650

EL 9060

GRADE

EL 13500

M1

W1

S2

S1

SeismicCategory II

SeismicCategory I

W2

Figure 3G.2-11. Sections Where Temperature Loads Are Defined

Page 254: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

3G-2

27

-10-5051015

030

6090

120

150

Shea

r (M

N)

EL (m)

NS-

dir

EW-

dir-10-5051015

030

060

090

012

0015

00

Mom

ent (

MN-

m)

EL (m)

NS-

dir

EW-

dir-10-5051015

060

120

180

240

300

Tors

ion

(MN-

m)

EL (m)

Fi

gure

3G

.2-1

2. D

esig

n Se

ism

ic S

hear

s and

Mom

ents

for

CB

Page 255: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-228

-15.00

-13.00

-11.00

-9.00

-7.00

-5.00

-3.00

-1.00

1.00

3.00

5.00

0.0 0.1 0.2 0.3

Pressure (MPa)

EL (m

)

-15.00

-13.00

-11.00

-9.00

-7.00

-5.00

-3.00

-1.00

1.00

3.00

5.00

0.0 0.1 0.2 0.3

Pressure (MPa)

EL (m

)

C1 Wall and C5 Wall CA Wall and CD Wall

Figure 3G.2-13. Seismic Lateral Soil Pressure

Page 256: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-229

z

x

y

z

x

y

Definition of Element Coordinate System

zx y

toward West

Wall in E-W Direction

Wall in N-S Direction

toward South

horizontal vertical

horizontal vertical

Foundation MatFloor Slab upwardtoward Easttoward South

Structure

Nx

Nxy

Qx

Nx

Nxy

Qx

Ny

Nxy

Qy

Ny

Nxy

Qy

Membrane and Shear Forces

MxyMxy

Mxy

My

Mxy

My

Moments

Mx

Mx

Figure 3G.2-14. Force and Moment in Shell Element

Page 257: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-230

Note: Backfill method for gap and excavation method (e.g., vertical cut, open cut) will be

determined considering actual site conditions.

Figure 3G.2-15. Concrete Backfill in Sliding Evaluation

Page 258: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-231

3G.3 FUEL BUILDING

3G.3.1 Objective and Scope

The objective of this subsection is to document the structural design details, inputs and analytical results from the analysis the Fuel Building (FB) of the standard ESBWR plant. The scope includes the design and analysis of the structure for normal, severe environmental, extreme environmental, and construction loads.

3G.3.2 Conclusions

The following are the major summary conclusions on the design and analysis of the FB.

• Based on the results of finite element analyses performed in accordance with the design conditions identified in Subsection 3G.3.5, stresses in concrete and reinforcement are less than the allowable stresses per the applicable regulations, codes or standards listed in Section 3.8.

• The factors of safety against floatation, sliding, and overturning of the structure under various loading combinations are higher than the required minimum.

• The thickness of the roof slabs and exterior walls are more than the minimum required to preclude penetration, perforation or spalling resulting from impact of design basis tornado missiles.

3G.3.3 Structural Description

The FB is integrated with the RB, sharing a common wall between the RB and the FB and a large common foundation mat (see Section 3.8.4.1.3). The FB houses the spent fuel pool facilities and their supporting system, and HVAC equipment. The FB is a Seismic Category I structure except for the penthouse that covers HVAC equipment. The penthouse is a Seismic Category II structure.

The FB is a reinforced concrete box type shear wall structure consisting of walls and slabs and is supported by a foundation mat. Concrete framing (steel beams can be used partially) is composite with concrete slab and used to support the slabs for vertical loads. The FB is a shear wall structure designed to accommodate all seismic loads with its walls and the connected floors. Therefore, frame members such as beams or columns are designed to accommodate deformations of the walls in case of earthquake conditions.

The key dimensions of the FB are summarized in Table 3.8-8. Figures 3G.1-1 through 3G.1-4 and Figure 3G.1-6 show the outline plans of the FB.

3G.3.4 Analytical Models

Because the FB is integrated with the RB, the finite element model which integrates the RB and FB is used for the stress analysis of the FB. The analysis model is described in Subsection 3G.1.4.1.

Page 259: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-232

3G.3.5 Structural Analysis and Design

3G.3.5.1 Site Design Parameters

The key site design parameters are described in Subsection 3G.1.5.1.

3G.3.5.2 Design Loads, Load Combinations, and Material Properties

3G.3.5.2.1 Design Loads

This section presents only the loads which are applied to the FB directly. Other loads which are applied to the RCCV only but have effects on FB structures because of common foundation mat, like Pa and Ta, are also considered in the FB design.

3G.3.5.2.1.1 Dead Load (D) and Live Load (L and Lo)

The weights of structures are evaluated using the following unit weights.

• reinforced concrete: 23.5 kN/m3

• steel: 77.0 kN/m3

Weights of major equipment, miscellaneous structures, piping, and commodities are summarized in Tables 3G.3-1 and 3G.3-2.

Live loads on the FB floor slabs are described in Subsection 3.8.4.3.3.

3G.3.5.2.1.2 Snow and Rain Load

The snow and rain load is applied to the roof slab and is taken as shown in Table 3G.1-2. One hundred percent of the snow load is applied when combined with seismic loads.

3G.3.5.2.1.3 Lateral Soil Pressure at Rest

The lateral soil pressure at rest is applied to the walls below grade and is based on soil properties given in Table 3G.1-2. Pressures to be applied to the walls are provided in Figure 3G.1-19.

3G.3.5.2.1.4 Wind Load (W)

The wind load is applied to the roof slab and external walls above grade and is based on basic wind speed given in Table 3G.1-2.

3G.3.5.2.1.5 Tornado Load (Wt)

The tornado load is applied to roof slab and external walls above grade and its characteristics are given in Table 3G.1-2. The tornado load, Wt is further defined by the combinations described in Subsection 3G.1.5.2.1.5.

3G.3.5.2.1.6 Thermal Load (To)

Thermal loads for the FB are evaluated for the normal operating conditions. Figure 3G.3-1 shows the section location for temperature distributions for various structural elements of the FB, and Table 3G.3-3 shows the magnitude of equivalent linear temperature distribution.

Stress-free temperature is 15.5°C.

Page 260: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-233

3G.3.5.2.1.7 Design Seismic Loads

The design seismic loads applied to the FB are provided in Subsection 3G.1.5.2.1.13.

Seismic lateral soil pressure for the FB is provided in Subsection 3G.1.5.2.1.13.

3G.3.5.2.2 Load Combinations and Acceptance Criteria

Table 3.8-15 gives load combinations for the safety-related reinforced concrete structure. Based on previous experience, critical load combinations are selected for the FB design. They are mainly combinations including LOCA loads and seismic loads as shown in Table 3G.3-4. The acceptance criteria for the selected combinations are also included in Table 3G.3-4.

3G.3.5.2.3 Material Properties

Properties of the materials used for the FB design analyses are the same as those for the RB, and they are described in Subsection 3G.1.5.2.3.

3G.3.5.3 Stability Requirements

The stability requirements for the FB foundation are same as those for the RB, and they are described in Subsection 3G.1.5.3.

3G.3.5.4 Structural Design Evaluation

The evaluation of the seismic category I structures in the FB is performed with the same procedure as the RB, which is described in Subsection 3G.1.5.4.

Figure 3G.3-2 shows the location of the sections that are selected for evaluation. They are selected, in principle, from the center and both ends of wall and slab, where it is reasonably expected that the critical stresses appear based on engineering experience and judgment. Tables 3G.3-5 through 3G.3-9 show the forces and moments at the selected sections from NASTRAN analysis. Element forces and moments listed in the tables are defined with relation to the element coordinate system shown in Figure 3G.3-3. Tables 3G.3-10 through 3G.3-12 show the combined forces and moments in accordance with the selected load combinations listed in Table 3G.3-4.

Figures 3G.3-4 and 3G.3-5 present the design drawings used for the evaluation of the FB structural design. Table 3G.3-13 lists the sectional thicknesses and rebar ratios used in the evaluation.

Tables 3G.3-14 through 3G.3-16 show the rebar and concrete stresses at these sections for the representative elements. Table 3G.3-17 summarizes evaluation results for transverse shear in accordance with ACI 349, Chapter 11.

3G.3.5.4.1 Shear Walls and Spent Fuel Pool Walls

The maximum rebar stress of 351.5 MPa is found in the horizontal rebar at Section 3 due to the load combination FB-9 as shown in Table 3G.3-16. The maximum vertical rebar stress is found to be 330.5 MPa at Section 3 for the combination FB-9. The maximum transverse shear force is found to be 3.85 MN/m against the shear strength of 5.88 MN/m at Section 4, Spent Fuel Pool wall.

Page 261: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-234

3G.3.5.4.2 Floor Slabs

The maximum rebar stress of 249.0 MPa is found due to the load combination FB-9 as shown in Table 3G.3-16. The maximum transverse shear force is found to be 0.48 MN/m against the shear strength of 4.36 MN/m.

3G.3.5.4.3 Foundation Mat

The maximum rebar stress is found to be 275.7 MPa due to the load combination FB-9 as shown in Table 3G.3-16. The maximum transverse shear force is found to be 12.71 MN/m against the shear strength of 18.93 MN/m.

3G.3.5.5 Foundation Stability

The FB shares the foundation mat with the RB. Evaluation results of the foundation stability are described in Subsection 3G.1.5.5.

3G.3.5.6 Tornado Missile Evaluation

The minimum thickness required to prevent penetration and concrete spalling are evaluated. The methods and procedures are shown in Section 3.5.3.1.1. The minimum thickness required is less than the minimum 1000 and 700 mm thickness provided for the FB external walls and slab at EL 22500, respectively.

Page 262: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-235

Table 3G.3-1

Miscellaneous Structures and Commodity in Spent Fuel Pool

Description Weight

Fuel Pool

a. Spent Fuel Storage Racks 102 kN/m2

b. Floor Liner 1.6 kN/m2

c. Wall Liner 1.0 kN/m2

d. Water (14.35 m) 141 kN/m2

Pool Gate

a. Spent Fuel Pool Gate 70 kN

b. Cask Pit Gate 70 kN

Spent Fuel Cask Pool

a. Spent Fuel Cask 120 kN/m2

b. Floor Liner 1.6 kN/m2

c. Wall Liner 1.0 kN/m2

d. Water (14.35 m) 141 kN/m2

e. Cask Lid 100 kN

f. Cask bearing Plate 20 kN

Fuel Transfer Tube Pool

a. Floor Liner 1.6 kN/m2

b. Wall Liner 1.0 kN/m2

c. Water (14.35 m) 141 kN/m2

d. Transfer Tube Equipment 160 kN

Page 263: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-236

Table 3G.3-2

Miscellaneous Structures, Piping, and Commodity Load on FB Floor

Elevation (mm) Area Load

22,500 2.4 kN/m2 (50psf)

4,650 2.4 kN/m2 (50psf)

-1,000 2.4 kN/m2 (50psf)

-6,400 2.4 kN/m2 (50psf)

-11,500 2.4 kN/m2 (50psf)

Table 3G.3-3

Equivalent Liner Temperature Distributions at Various Sections

Equivalent Linear Temperature*3 (°C) Side*2

Normal Operation (Winter) Section*1

1 2 Td Tg

W1 FP RM 27.0 26.0

W2 FP RM 26.6 26.7

W3 FP GR 27.8 24.5

W4 FP GR 27.8 24.5

*1: See Figure 3G.3-1 for the location of sections.

*2: FP: Spent Fuel Pool, RM: FB Room, GR: Ground

*3: Td: Average Temperature, Tg: Surface Temperature Difference (positive when temperature at Side 1 is higher)

Page 264: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-237

Table 3G.3-4

Selected Load Combinations for the FB

Load Combination Category

No. *2 D L Pa*3 To Ta

*3 E’ W

Acceptance Criteria*1

Severe Environmental

FB-4 1.05 1.3 1.3 1.3 U

LOCA (1.5Pa) 72 hours

FB-8 1.0 1.0 1.5 1.0 U

LOCA + SSE 72 hours

FB-9 1.0 1.0 1.0 1.0 1.0 U

*1: U = Required section strength based on the strength design method per ACI 349

*2: Based on Table 3.8-15.

*3: Pa and Ta are accident pressure load within the containment and thermal load generated by LOCA, respectively.

Pa and Ta are indirect loads, but their effects are considered in the FB design.

Page 265: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-238

Table 3G.3-5

Results of NASTRAN Analysis: Dead Load

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 Exterior Wall 60011 -0.477 -1.784 -0.520 -0.157 -1.133 -0.033 -0.092 -0.356 and Pool Wall 60219 0.302 -1.601 -0.289 -0.610 -0.689 -0.135 0.061 0.336 @ EL-11.50 70201 0.298 -0.171 0.000 0.498 -0.014 0.116 -0.273 0.072 ~-10.50m 70204 0.347 -0.849 0.059 -0.064 0.067 0.155 0.005 -0.277

110718 0.325 -1.355 -0.068 -0.049 0.085 0.007 0.036 0.1912 Exterior Wall 62011 0.093 -1.042 0.068 0.043 0.146 0.010 0.010 0.056 @ EL-4.65 62019 0.126 -0.628 -0.196 -0.032 0.048 -0.031 -0.001 0.021 ~-6.60m 72001 0.110 -0.170 0.104 0.106 0.020 -0.006 -0.015 -0.005

72004 0.146 -0.450 0.196 -0.038 0.004 0.001 -0.016 0.0143 Exterior Wall 64011 0.097 -0.344 -0.097 -0.104 -0.454 -0.007 -0.006 0.069 @ EL22.50 64019 -0.104 -0.369 -0.066 -0.061 -0.371 0.053 0.063 0.063 ~24.60m 74001 -0.016 -0.050 0.091 0.049 -0.045 -0.046 -0.020 -0.030

74004 -0.053 -0.212 0.087 -0.078 -0.336 -0.061 0.019 -0.0694 Spent Fuel 60819 0.598 -1.251 -0.498 -1.102 -0.817 -0.249 -0.005 -0.070 Pool Wall 70801 0.676 -0.153 0.008 1.074 0.073 -0.015 -0.548 0.031 @ EL-5.10 70804 0.581 -0.748 0.129 -0.561 -0.466 0.064 -0.097 0.045 ~-3.30m 110748 0.226 -1.010 -0.443 -0.184 -0.081 -0.008 0.073 -0.0255 Basemat 90306 -1.073 -0.427 0.522 0.941 -0.113 0.179 -0.536 1.181

90310 -0.132 -0.121 -0.043 -0.151 -0.150 -0.698 0.167 -0.06790410 -0.443 -0.909 0.528 -0.673 0.169 1.498 1.392 -0.061

5 Basemat 90486 0.292 0.028 0.090 3.615 2.361 0.284 -0.180 0.122 @ Spent 90490 0.429 0.183 0.281 1.433 1.257 0.507 1.196 0.263 Fuel Pool 90526 0.407 0.365 0.097 1.714 1.727 0.502 -0.256 -0.7086 Slab EL4.65m 93306 0.188 0.018 0.021 0.047 -0.005 0.005 0.031 -0.098

93310 0.039 0.055 0.231 0.033 0.007 0.034 -0.024 0.00793410 0.313 0.325 -0.454 0.011 0.013 -0.068 0.002 -0.010

Page 266: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-239

Table 3G.3-6

Results of NASTRAN Analysis: Temperature Load (Winter)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 Exterior Wall 60011 -0.636 -0.044 -0.353 0.917 0.745 0.073 -0.230 -0.155 and Pool Wall 60219 1.843 -2.269 0.746 -9.870 -14.164 -0.448 0.101 -1.690 @ EL-11.50 70201 1.488 2.380 -0.481 -3.056 -3.412 0.239 -0.144 0.462 ~-10.50m 70204 1.206 1.126 -0.389 -3.033 -3.631 0.239 0.141 0.118

110718 -1.525 -2.389 -1.020 -1.514 -1.719 0.009 0.147 -0.1722 Exterior Wall 62011 5.921 1.792 0.413 -1.104 -1.231 -0.001 -0.026 -0.065 @ EL-4.65 62019 7.027 0.254 -1.903 -1.171 -1.410 -0.040 0.027 -0.090 ~-6.60m 72001 3.762 -1.877 2.412 -0.511 -0.885 0.036 -0.597 0.202

72004 6.440 0.553 2.563 -1.239 -1.456 0.072 -0.043 0.1273 Exterior Wall 64011 4.838 0.478 0.309 -0.978 -0.479 -0.011 0.002 -0.071 @ EL22.50 64019 5.521 1.413 1.620 -1.022 -0.454 0.019 -0.012 -0.050 ~24.60m 74001 2.905 -0.801 -3.455 -0.749 -0.461 0.131 -0.303 0.096

74004 4.049 0.185 -3.577 -0.934 -0.309 -0.014 0.017 0.0864 Spent Fuel 60819 -1.918 -3.130 -0.361 -7.763 -7.728 -1.038 -0.047 -0.852 Pool Wall 70801 0.306 2.834 -0.059 -2.812 -3.053 0.011 -0.043 -0.032 @ EL-5.10 70804 -0.615 0.255 0.452 -2.929 -3.146 0.265 -0.046 0.092 ~-3.30m 110748 -0.298 -2.140 -0.802 -1.042 -1.404 -0.075 0.291 -0.1215 Basemat 90306 -0.837 -0.083 0.229 1.845 0.796 0.000 0.027 0.256

90310 0.116 0.299 0.318 1.213 1.344 0.600 0.178 -0.10090410 -0.186 0.128 0.318 0.430 1.623 0.155 0.083 -0.262

5 Basemat 90486 -2.450 -1.493 0.651 -13.369 -14.435 1.996 0.086 0.302 @ Spent 90490 -1.907 2.615 0.387 -17.342 -17.022 0.768 1.711 1.416 Fuel Pool 90526 1.469 0.086 0.117 -14.549 -5.470 1.213 -1.044 1.2846 Slab EL4.65m 93306 -0.770 -0.028 -1.664 -0.053 0.031 -0.014 0.081 -0.028

93310 -2.222 -2.171 -3.239 -0.755 -0.782 -0.243 0.270 0.28693410 -0.729 -2.313 0.047 -0.069 -0.010 0.019 -0.093 -0.027

Page 267: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-240

Table 3G.3-7

Results of NASTRAN Analysis: Seismic Load (Horizontal: North to South Direction)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 Exterior Wall 60011 -4.983 -4.120 -0.820 -0.146 -0.960 -0.078 0.053 -0.322 and Pool Wall 60219 -4.854 -5.968 -1.445 0.812 0.590 0.207 -0.146 0.245 @ EL-11.50 70201 0.093 -1.654 -2.670 -0.117 -0.591 -0.047 -0.258 0.100 ~-10.50m 70204 1.085 -4.394 -4.210 -0.538 -1.108 -0.060 -0.076 0.246

110718 1.881 -2.395 1.195 -0.010 0.053 -0.022 0.025 -0.0752 Exterior Wall 62011 0.823 -1.305 -0.352 0.055 0.165 0.005 -0.017 0.036 @ EL-4.65 62019 0.766 -1.212 -2.136 0.016 0.104 -0.012 0.006 0.016 ~-6.60m 72001 -0.117 -1.350 -3.531 -0.076 -0.060 0.010 -0.005 0.051

72004 -0.288 -1.706 -4.140 -0.026 -0.033 -0.002 0.017 0.0073 Exterior Wall 64011 3.349 -0.210 -0.228 -0.048 -0.151 0.010 0.002 0.028 @ EL22.50 64019 2.649 0.005 -0.657 -0.056 -0.128 -0.040 -0.025 0.022 ~24.60m 74001 0.142 -0.105 -1.087 0.033 0.046 -0.044 0.037 -0.013

74004 -1.332 -0.219 -1.585 0.035 0.026 -0.032 0.015 0.0094 Spent Fuel 60819 -0.910 -4.128 -2.618 0.316 0.135 0.200 0.109 0.068 Pool Wall 70801 -0.007 -1.700 -4.178 -0.219 -0.129 -0.133 -0.092 -0.050 @ EL-5.10 70804 0.627 -3.010 -4.995 -0.419 -0.177 -0.202 0.031 0.098 ~-3.30m 110748 0.631 -0.360 1.149 0.040 0.092 -0.130 -0.020 0.0335 Basemat 90306 -1.298 -1.336 5.050 2.391 -0.452 4.930 -4.168 3.137

90310 0.234 -1.751 0.207 0.851 -0.438 -1.023 -0.690 2.16690410 -0.830 -9.222 -0.149 1.442 1.190 2.201 3.051 -0.495

5 Basemat 90486 -1.349 -2.865 -2.048 15.386 8.964 -2.127 -2.177 -0.077 @ Spent 90490 -0.485 -8.802 0.828 5.797 7.104 0.716 4.705 -0.487 Fuel Pool 90526 0.828 -0.765 -4.641 7.256 1.643 -4.294 -2.213 -3.6156 Slab EL4.65m 93306 2.016 0.406 -0.846 0.334 -0.448 -0.006 -0.048 0.040

93310 0.669 0.284 0.937 0.426 -0.367 0.015 -0.413 0.41793410 0.215 1.007 0.802 0.176 0.077 0.049 -0.050 0.006

Page 268: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-241

Table 3G.3-8

Results of NASTRAN Analysis: Seismic Load (Horizontal: East to West Direction)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 Exterior Wall 60011 -0.076 -0.171 -6.114 -0.044 -0.676 -0.125 0.087 -0.125 and Pool Wall 60219 0.906 7.209 -4.288 1.422 4.526 -0.253 0.003 0.685 @ EL-11.50 70201 -0.016 2.512 -0.893 -0.105 0.279 -0.138 0.050 -0.154 ~-10.50m 70204 0.850 6.342 0.195 0.052 0.306 -0.144 -0.036 0.075

110718 -0.394 3.741 0.198 0.336 0.757 0.048 0.044 0.4492 Exterior Wall 62011 0.198 0.092 -3.939 0.030 0.059 -0.004 -0.028 0.015 @ EL-4.65 62019 -0.298 1.564 -2.104 0.018 0.025 0.003 0.000 0.006 ~-6.60m 72001 -0.053 1.984 -0.528 -0.048 -0.038 0.001 -0.009 0.019

72004 -0.163 2.436 0.329 0.007 -0.054 -0.016 0.002 -0.0043 Exterior Wall 64011 -0.134 -0.010 -2.157 0.001 -0.009 0.008 0.000 0.003 @ EL22.50 64019 -0.603 0.128 -1.312 -0.005 0.000 -0.014 -0.002 0.001 ~24.60m 74001 -0.170 0.249 0.184 -0.053 -0.003 -0.002 0.032 0.026

74004 -1.057 0.192 0.793 0.002 0.039 0.000 0.004 0.0084 Spent Fuel 60819 -0.683 4.640 -3.575 1.094 1.123 -0.068 -0.065 0.334 Pool Wall 70801 -0.419 2.734 -0.987 -0.552 -0.042 -0.049 0.320 -0.083 @ EL-5.10 70804 -0.390 4.944 0.402 0.318 0.251 -0.082 0.032 -0.044 ~-3.30m 110748 -0.575 1.994 0.275 -0.061 -0.144 -0.058 0.107 0.0585 Basemat 90306 -7.400 -1.893 2.312 4.508 1.334 1.356 -2.149 4.901

90310 -1.110 -0.660 0.436 -0.184 0.640 -1.501 1.889 0.09690410 0.078 0.355 4.879 -0.414 -1.781 7.917 -0.043 -3.734

5 Basemat 90486 1.943 1.502 0.920 -15.692 -16.470 -0.634 0.585 -1.855 @ Spent 90490 0.979 3.656 4.024 0.462 -7.932 4.394 -6.400 -1.816 Fuel Pool 90526 4.646 0.751 1.467 -9.758 -5.415 -0.036 0.796 4.9596 Slab EL4.65m 93306 1.756 0.201 -0.645 0.337 -0.163 -0.030 0.106 0.079

93310 0.341 0.480 0.389 -0.139 0.085 -0.013 0.129 -0.06893410 -0.266 0.729 0.403 0.097 -0.067 0.121 -0.219 -0.007

Page 269: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-242

Table 3G.3-9

Results of NASTRAN Analysis: Seismic Load (Vertical: Upward Direction)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 Exterior Wall 60011 0.343 1.446 0.286 0.150 0.918 0.029 0.061 0.277 and Pool Wall 60219 0.057 1.559 0.153 0.450 0.641 0.085 -0.039 -0.185 @ EL-11.50 70201 -0.036 0.251 -0.079 -0.320 0.047 -0.078 0.190 -0.076 ~-10.50m 70204 -0.042 0.879 -0.095 0.045 -0.001 -0.109 -0.011 0.173

110718 -0.174 1.168 0.285 0.063 -0.016 -0.035 -0.020 -0.0932 Exterior Wall 62011 -0.056 0.995 -0.110 -0.057 -0.254 -0.012 -0.009 -0.085 @ EL-4.65 62019 -0.054 0.678 0.051 0.017 -0.116 0.045 -0.002 -0.038 ~-6.60m 72001 -0.056 0.232 -0.061 -0.083 -0.016 0.003 0.005 0.002

72004 -0.057 0.480 -0.094 0.021 -0.027 -0.011 0.010 -0.0043 Exterior Wall 64011 0.043 0.479 0.029 0.173 0.765 0.009 0.007 -0.112 @ EL22.50 64019 0.148 0.523 0.058 0.106 0.631 -0.084 -0.102 -0.100 ~24.60m 74001 0.013 0.028 -0.111 -0.083 0.074 0.075 0.037 0.049

74004 0.076 0.313 -0.070 0.132 0.561 0.097 -0.029 0.1144 Spent Fuel 60819 -0.126 1.233 0.310 0.807 0.421 0.189 -0.011 0.076 Pool Wall 70801 -0.114 0.353 -0.032 -0.737 -0.067 0.018 0.367 -0.018 @ EL-5.10 70804 -0.140 0.741 -0.088 0.356 0.296 -0.048 0.066 -0.040 ~-3.30m 110748 -0.119 0.789 0.348 0.105 0.033 0.013 -0.047 0.0335 Basemat 90306 0.821 0.337 -0.379 -0.719 0.079 -0.130 0.415 -0.934

90310 0.112 0.080 0.038 0.111 0.107 0.557 -0.158 0.05790410 0.345 0.657 -0.328 0.526 -0.134 -1.081 -1.130 -0.056

5 Basemat 90486 0.225 0.452 0.036 -3.151 -2.167 -0.336 0.173 -0.140 @ Spent 90490 0.290 0.324 -0.116 -0.406 -1.036 -0.310 -1.234 -0.237 Fuel Pool 90526 0.216 0.250 0.021 -1.391 -0.833 -0.375 0.204 0.7786 Slab EL4.65m 93306 -0.122 0.014 -0.050 -0.040 -0.063 -0.010 -0.027 0.132

93310 -0.021 -0.041 -0.208 -0.042 -0.028 -0.042 0.019 0.00293410 -0.284 -0.295 0.277 -0.087 -0.020 0.074 0.046 0.017

Page 270: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-243

Table 3G.3-10

Combined Forces and Moments: Selected Load Combination FB-4

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 Exterior Wall 60011 OTHR -2.782 -2.145 -0.858 -0.164 -1.184 0.023 -0.072 -0.943 and Pool Wall TEMP -1.017 0.051 -0.243 1.227 1.116 0.072 -0.262 -0.131 @ EL-11.50 60219 OTHR -2.608 -2.019 -0.547 0.000 -1.238 0.114 -0.002 -1.016 ~-10.50m TEMP 2.220 -2.753 1.202 -12.741 -18.247 -0.446 0.060 -2.161

70201 OTHR -0.927 -0.381 0.018 -1.346 -0.893 -0.609 0.588 -0.045TEMP 1.923 3.171 -0.800 -4.076 -4.418 0.309 -0.147 0.564

70204 OTHR -1.190 -1.489 -0.114 -0.037 -2.340 -0.604 -0.186 1.687TEMP 1.559 1.589 -0.839 -3.961 -4.669 0.279 0.179 0.119

110718 OTHR -0.743 -1.072 -0.845 -0.078 0.019 0.046 0.072 0.104TEMP -2.039 -3.114 -1.323 -1.981 -2.276 0.015 0.187 -0.244

2 Exterior Wall 62011 OTHR -0.208 -1.136 -0.114 0.033 0.190 0.008 0.000 0.075 @ EL-4.65 TEMP 7.482 2.237 0.531 -1.420 -1.568 0.005 -0.024 -0.078 ~-6.60m 62019 OTHR -0.339 -0.712 -0.080 0.018 0.120 -0.030 0.012 0.059

TEMP 9.119 0.451 -2.468 -1.523 -1.835 -0.050 0.038 -0.11672001 OTHR -0.073 -0.262 -0.059 -0.268 -0.039 0.054 0.145 0.026

TEMP 4.868 -1.896 3.166 -0.691 -1.158 0.045 -0.779 0.26472004 OTHR -0.278 -0.665 -0.073 0.390 0.266 0.053 0.061 -0.165

TEMP 8.179 0.908 3.351 -1.621 -1.894 0.096 -0.050 0.1623 Exterior Wall 64011 OTHR 0.224 -0.374 -0.074 -0.119 -0.512 0.001 -0.005 0.063 @ EL22.50 TEMP 5.821 0.590 0.306 -1.279 -0.651 -0.018 0.002 -0.085 ~24.60m 64019 OTHR 0.008 -0.413 -0.084 -0.069 -0.408 0.056 0.067 0.054

TEMP 6.660 1.810 1.875 -1.321 -0.597 0.022 -0.013 -0.06674001 OTHR -0.023 -0.057 0.118 0.057 -0.051 -0.043 -0.031 -0.029

TEMP 3.770 -0.963 -4.187 -1.002 -0.608 0.170 -0.382 0.13474004 OTHR -0.026 -0.227 0.084 -0.084 -0.383 -0.062 0.018 -0.061

TEMP 5.278 0.280 -4.016 -1.228 -0.409 -0.021 0.023 0.1144 Spent Fuel 60819 OTHR -2.103 -1.488 -0.685 0.639 1.077 0.112 0.184 -0.012 Pool Wall TEMP -2.590 -3.880 -0.298 -10.036 -10.048 -1.119 -0.047 -1.088 @ EL-5.10 70801 OTHR -1.409 -0.700 -0.090 -3.529 -0.259 -0.425 2.180 -0.352 ~-3.30m TEMP 0.304 4.034 -0.223 -3.871 -4.021 0.019 -0.018 -0.047

70804 OTHR -1.218 -1.094 -0.094 2.789 1.829 -0.342 0.325 0.256TEMP -1.009 0.515 0.316 -3.843 -4.097 0.295 -0.035 0.114

110748 OTHR -0.545 -0.665 -0.427 -0.053 -0.043 -0.069 0.101 -0.059TEMP -0.397 -2.798 -1.041 -1.348 -1.820 -0.082 0.375 -0.162

5 Basemat 90306 OTHR -4.286 -3.077 0.795 0.955 -0.809 0.433 -0.610 1.574TEMP -0.545 -0.068 0.515 2.178 1.098 0.240 -0.226 0.261

90310 OTHR -2.501 -2.559 0.248 -0.648 -0.535 -0.052 0.390 0.197TEMP 0.216 0.350 0.514 1.681 1.783 0.945 0.088 -0.115

90410 OTHR -3.289 -5.501 0.728 -2.068 -0.019 1.718 1.702 -0.364TEMP -0.166 -0.115 0.222 0.797 2.150 -0.001 0.026 -0.184

5 Basemat 90486 OTHR -3.438 -5.737 -0.330 3.062 1.530 -0.130 -0.140 -0.221 @ Spent TEMP -3.104 -1.999 0.510 -18.174 -19.158 2.267 -0.021 0.426 Fuel Pool 90490 OTHR -3.541 -4.706 0.206 -1.331 0.797 0.357 1.532 -0.332

TEMP -2.445 3.161 0.259 -22.444 -22.186 0.616 2.056 1.79590526 OTHR -3.900 -6.111 -0.434 0.639 -4.278 -0.393 -0.119 -1.552

TEMP 2.067 0.112 -0.215 -19.234 -7.143 1.074 -1.444 1.7606 Slab EL4.65m 93306 OTHR 0.044 -0.229 -0.087 0.100 0.165 0.016 0.034 -0.158

TEMP -1.209 -0.072 -1.164 -0.072 0.024 -0.024 0.087 -0.03693310 OTHR -0.037 -0.036 0.137 0.093 0.042 0.011 -0.050 0.004

TEMP -2.822 -2.800 -3.598 -1.001 -1.004 -0.291 0.366 0.36293410 OTHR -0.050 -0.177 0.010 0.222 0.059 -0.047 -0.099 -0.017

TEMP -0.773 -3.228 0.017 -0.189 -0.029 -0.001 -0.071 -0.032 OTHR: Loads other than thermal loads TEMP: Thermal loads

Page 271: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-244

Table 3G.3-11

Combined Forces and Moments: Selected Load Combination FB-8

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 Exterior Wall 60011 OTHR -2.518 -2.288 -0.689 -0.183 -1.264 0.016 -0.086 -0.856 and Pool Wall TEMP -0.636 -0.044 -0.353 0.917 0.745 0.073 -0.230 -0.155 @ EL-11.50 60219 OTHR -2.302 -2.567 -0.481 -0.121 -1.310 0.059 0.012 -0.753 ~-10.50m TEMP 1.843 -2.269 0.746 -9.870 -14.164 -0.448 0.101 -1.690

70201 OTHR -0.645 -0.509 -0.141 -0.928 -0.753 -0.445 0.371 -0.001TEMP 1.488 2.380 -0.481 -3.056 -3.412 0.239 -0.144 0.462

70204 OTHR -0.783 -1.889 -0.353 -0.081 -1.908 -0.429 -0.147 1.273TEMP 1.206 1.126 -0.389 -3.033 -3.631 0.239 0.141 0.118

110718 OTHR -0.342 -1.419 -0.629 -0.080 0.017 0.035 0.066 0.100TEMP -1.525 -2.389 -1.020 -1.514 -1.719 0.009 0.147 -0.172

2 Exterior Wall 62011 OTHR -0.082 -1.207 0.019 0.028 0.153 0.007 0.000 0.056 @ EL-4.65 TEMP 5.921 1.792 0.413 -1.104 -1.231 -0.001 -0.026 -0.065 ~-6.60m 62019 OTHR -0.194 -0.835 -0.168 0.010 0.095 -0.028 0.009 0.041

TEMP 7.027 0.254 -1.903 -1.171 -1.410 -0.040 0.027 -0.09072001 OTHR -0.064 -0.409 -0.279 -0.201 -0.031 0.035 0.118 0.021

TEMP 3.762 -1.877 2.412 -0.511 -0.885 0.036 -0.597 0.20272004 OTHR -0.249 -0.808 -0.363 0.303 0.203 0.037 0.045 -0.113

TEMP 6.440 0.553 2.563 -1.239 -1.456 0.072 -0.043 0.1273 Exterior Wall 64011 OTHR 0.295 -0.396 0.029 -0.119 -0.523 0.001 -0.005 0.078 @ EL22.50 TEMP 4.838 0.478 0.309 -0.978 -0.479 -0.011 0.002 -0.071 ~24.60m 64019 OTHR 0.120 -0.417 -0.083 -0.072 -0.430 0.051 0.066 0.069

TEMP 5.521 1.413 1.620 -1.022 -0.454 0.019 -0.012 -0.05074001 OTHR -0.039 -0.062 0.051 0.055 -0.051 -0.040 -0.029 -0.031

TEMP 2.905 -0.801 -3.455 -0.749 -0.461 0.131 -0.303 0.09674004 OTHR -0.142 -0.250 -0.027 -0.081 -0.400 -0.059 0.016 -0.080

TEMP 4.049 0.185 -3.577 -0.934 -0.309 -0.014 0.017 0.0864 Spent Fuel 60819 OTHR -1.537 -1.871 -0.717 0.297 0.617 0.011 0.148 -0.037 Pool Wall TEMP -1.918 -3.130 -0.361 -7.763 -7.728 -1.038 -0.047 -0.852 @ EL-5.10 70801 OTHR -0.933 -0.790 -0.336 -2.490 -0.193 -0.342 1.554 -0.270 ~-3.30m TEMP 0.306 2.834 -0.059 -2.812 -3.053 0.011 -0.043 -0.032

70804 OTHR -0.756 -1.434 -0.433 2.016 1.286 -0.259 0.230 0.217TEMP -0.615 0.255 0.452 -2.929 -3.146 0.265 -0.046 0.092

110748 OTHR -0.306 -0.818 -0.377 -0.066 -0.038 -0.068 0.089 -0.053TEMP -0.298 -2.140 -0.802 -1.042 -1.404 -0.075 0.291 -0.121

5 Basemat 90306 OTHR -3.468 -2.504 0.961 0.993 -0.772 0.583 -0.740 1.552TEMP -0.837 -0.083 0.229 1.845 0.796 0.000 0.027 0.256

90310 OTHR -1.903 -2.078 0.175 -0.526 -0.523 -0.219 0.212 0.240TEMP 0.116 0.299 0.318 1.213 1.344 0.600 0.178 -0.100

90410 OTHR -2.715 -4.961 0.568 -1.781 0.118 1.617 1.819 -0.233TEMP -0.186 0.128 0.318 0.430 1.623 0.155 0.083 -0.262

5 Basemat 90486 OTHR -2.657 -4.595 -0.260 5.139 3.090 -0.146 -0.233 -0.088 @ Spent TEMP -2.450 -1.493 0.651 -13.369 -14.435 1.996 0.086 0.302 Fuel Pool 90490 OTHR -2.707 -4.325 0.197 -0.463 1.680 0.359 2.025 -0.157

TEMP -1.907 2.615 0.387 -17.342 -17.022 0.768 1.711 1.41690526 OTHR -2.940 -4.712 -0.643 1.781 -2.624 -0.407 -0.323 -1.834

TEMP 1.469 0.086 0.117 -14.549 -5.470 1.213 -1.044 1.2846 Slab EL4.65m 93306 OTHR 0.131 -0.157 -0.288 0.105 0.091 0.015 0.032 -0.137

TEMP -0.770 -0.028 -1.664 -0.053 0.031 -0.014 0.081 -0.02893310 OTHR -0.016 -0.025 0.093 0.114 0.003 0.011 -0.083 0.033

TEMP -2.222 -2.171 -3.239 -0.755 -0.782 -0.243 0.270 0.28693410 OTHR -0.019 -0.029 0.035 0.184 0.054 -0.044 -0.076 -0.014

TEMP -0.729 -2.313 0.047 -0.069 -0.010 0.019 -0.093 -0.027

Page 272: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-245

Table 3G.3-12

Combined Forces and Moments: Selected Load Combination FB-9

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

1 Exterior Wall 60011 OTHR -2.461 -2.231 -0.705 -0.178 -1.234 0.015 -0.082 -0.841 and Pool Wall TEMP -0.636 -0.044 -0.353 0.917 0.745 0.073 -0.230 -0.155 @ EL-11.50 EQEW -0.076 -0.171 -6.114 -0.044 -0.676 -0.125 0.087 -0.125 ~-10.50m EQNS -4.983 -4.120 -0.820 -0.146 -0.960 -0.078 0.053 -0.322

EQZ 0.343 1.446 0.286 0.150 0.918 0.029 0.061 0.277EQT -0.043 -0.064 0.832 -0.001 0.032 -0.007 0.018 0.005

SPKW -1.049 -0.017 0.020 0.012 0.019 0.008 -0.008 -0.025SPKN -0.240 0.063 0.240 -0.071 -0.098 0.026 0.046 -0.281

60219 OTHR -2.237 -2.442 -0.478 -0.119 -1.272 0.059 0.012 -0.746TEMP 1.843 -2.269 0.746 -9.870 -14.164 -0.448 0.101 -1.690EQEW 0.906 7.209 -4.288 1.422 4.526 -0.253 0.003 0.685EQNS -4.854 -5.968 -1.445 0.812 0.590 0.207 -0.146 0.245EQZ 0.057 1.559 0.153 0.450 0.641 0.085 -0.039 -0.185EQT 0.407 -0.116 0.892 -0.283 -0.340 -0.097 0.089 -0.058

SPKW -0.924 0.237 -0.067 -0.318 0.720 0.086 0.053 0.304SPKN -0.709 -0.585 -0.043 1.103 -2.790 0.212 -0.193 -1.820

70201 OTHR -0.647 -0.476 -0.113 -0.930 -0.742 -0.445 0.376 -0.004TEMP 1.488 2.380 -0.481 -3.056 -3.412 0.239 -0.144 0.462EQEW -0.016 2.512 -0.893 -0.105 0.279 -0.138 0.050 -0.154EQNS 0.093 -1.654 -2.670 -0.117 -0.591 -0.047 -0.258 0.100EQZ -0.036 0.251 -0.079 -0.320 0.047 -0.078 0.190 -0.076EQT -0.070 0.066 0.517 0.021 0.009 0.014 0.054 0.018

SPKW -0.332 -0.092 0.237 -0.752 -0.613 -0.515 0.232 -0.138SPKN -0.285 -0.028 -0.232 -0.596 0.043 0.157 0.214 -0.041

70204 OTHR -0.797 -1.786 -0.304 -0.073 -1.886 -0.430 -0.146 1.267TEMP 1.206 1.126 -0.389 -3.033 -3.631 0.239 0.141 0.118EQEW 0.850 6.342 0.195 0.052 0.306 -0.144 -0.036 0.075EQNS 1.085 -4.394 -4.210 -0.538 -1.108 -0.060 -0.076 0.246EQZ -0.042 0.879 -0.095 0.045 -0.001 -0.109 -0.011 0.173EQT -0.357 0.128 0.723 0.115 0.093 0.005 0.009 -0.034

SPKW -0.373 -0.381 0.262 0.049 -1.755 -0.480 -0.163 1.041SPKN -0.568 0.198 -0.277 -0.148 0.309 -0.010 0.065 -0.196

110718 OTHR -0.370 -1.359 -0.632 -0.078 0.019 0.035 0.065 0.103TEMP -1.525 -2.389 -1.020 -1.514 -1.719 0.009 0.147 -0.172EQEW -0.394 3.741 0.198 0.336 0.757 0.048 0.044 0.449EQNS 1.881 -2.395 1.195 -0.010 0.053 -0.022 0.025 -0.075EQZ -0.174 1.168 0.285 0.063 -0.016 -0.035 -0.020 -0.093EQT 0.066 -0.159 0.034 -0.058 -0.070 -0.005 0.004 -0.048

SPKW 0.162 0.032 0.296 -0.038 -0.072 0.042 -0.006 -0.062SPKN -1.370 0.224 -1.607 0.033 0.018 -0.026 0.045 -0.001

OTHR: Loads other than thermal and seismic loads TEMP: Thermal loads EQEW: Horizontal seismic loads in the E-W direction EQNS: Horizontal seismic loads in the N-S direction EQZ: Vertical seismic loads EQT: Torsional seismic loads SPKW: Dynamic soil pressure during a horizontal earthquake in the E-W direction SPKN: Dynamic soil pressure during a horizontal earthquake in the N-S direction

Page 273: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-246

Table 3G.3-12

Combined Forces and Moments: Selected Load Combination FB-9 (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

2 Exterior Wall 62011 OTHR -0.092 -1.184 0.001 0.029 0.156 0.008 0.001 0.057 @ EL-4.65 TEMP 5.921 1.792 0.413 -1.104 -1.231 -0.001 -0.026 -0.065 ~-6.60m EQEW 0.198 0.092 -3.939 0.030 0.059 -0.004 -0.028 0.015

EQNS 0.823 -1.305 -0.352 0.055 0.165 0.005 -0.017 0.036EQZ -0.056 0.995 -0.110 -0.057 -0.254 -0.012 -0.009 -0.085EQT -0.090 0.002 0.449 -0.005 -0.009 -0.004 0.003 -0.002

SPKW -0.499 0.108 -0.117 0.010 0.003 0.005 -0.001 0.001SPKN 0.267 -0.066 -0.054 -0.052 -0.009 -0.021 -0.010 -0.011

62019 OTHR -0.204 -0.807 -0.153 0.010 0.096 -0.028 0.009 0.041TEMP 7.027 0.254 -1.903 -1.171 -1.410 -0.040 0.027 -0.090EQEW -0.298 1.564 -2.104 0.018 0.025 0.003 0.000 0.006EQNS 0.766 -1.212 -2.136 0.016 0.104 -0.012 0.006 0.016EQZ -0.054 0.678 0.051 0.017 -0.116 0.045 -0.002 -0.038EQT -0.077 -0.044 0.459 -0.004 -0.009 -0.004 -0.001 -0.002

SPKW -0.487 0.108 0.281 -0.040 -0.044 0.005 0.012 -0.002SPKN -0.012 -0.139 -0.237 0.199 0.228 0.017 -0.012 0.056

72001 OTHR -0.060 -0.382 -0.225 -0.200 -0.031 0.035 0.118 0.020TEMP 3.762 -1.877 2.412 -0.511 -0.885 0.036 -0.597 0.202EQEW -0.053 1.984 -0.528 -0.048 -0.038 0.001 -0.009 0.019EQNS -0.117 -1.350 -3.531 -0.076 -0.060 0.010 -0.005 0.051EQZ -0.056 0.232 -0.061 -0.083 -0.016 0.003 0.005 0.002EQT 0.049 -0.054 0.550 0.019 0.010 -0.003 0.002 -0.008

SPKW 0.021 -0.147 0.193 -0.271 -0.012 0.044 0.196 0.000SPKN -0.618 -0.104 -0.682 -0.231 -0.068 -0.009 0.014 0.019

72004 OTHR -0.239 -0.770 -0.290 0.303 0.202 0.037 0.045 -0.113TEMP 6.440 0.553 2.563 -1.239 -1.456 0.072 -0.043 0.127EQEW -0.163 2.436 0.329 0.007 -0.054 -0.016 0.002 -0.004EQNS -0.288 -1.706 -4.140 -0.026 -0.033 -0.002 0.017 0.007EQZ -0.057 0.480 -0.094 0.021 -0.027 -0.011 0.010 -0.004EQT 0.126 0.043 0.567 0.009 0.010 0.000 -0.002 -0.002

SPKW -0.041 -0.163 0.067 0.456 0.326 0.025 0.058 -0.167SPKN -0.724 0.119 -0.502 -0.081 -0.062 0.005 0.024 0.009

Page 274: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-247

Table 3G.3-12

Combined Forces and Moments: Selected Load Combination FB-9 (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

3 Exterior Wall 64011 OTHR 0.286 -0.394 0.009 -0.120 -0.525 0.001 -0.005 0.078 @ EL22.50 TEMP 4.838 0.478 0.309 -0.978 -0.479 -0.011 0.002 -0.071 ~24.60m EQEW -0.134 -0.010 -2.157 0.001 -0.009 0.008 0.000 0.003

EQNS 3.349 -0.210 -0.228 -0.048 -0.151 0.010 0.002 0.028EQZ 0.043 0.479 0.029 0.173 0.765 0.009 0.007 -0.112EQT 0.026 0.000 0.181 -0.001 0.000 -0.003 -0.001 -0.001

SPKW -0.132 0.004 -0.011 0.003 0.003 -0.005 -0.001 0.000SPKN 0.236 -0.007 -0.023 -0.009 -0.016 0.025 0.006 0.003

64019 OTHR 0.099 -0.418 -0.075 -0.072 -0.431 0.051 0.066 0.070TEMP 5.521 1.413 1.620 -1.022 -0.454 0.019 -0.012 -0.050EQEW -0.603 0.128 -1.312 -0.005 0.000 -0.014 -0.002 0.001EQNS 2.649 0.005 -0.657 -0.056 -0.128 -0.040 -0.025 0.022EQZ 0.148 0.523 0.058 0.106 0.631 -0.084 -0.102 -0.100EQT -0.106 -0.014 0.098 0.007 0.007 0.005 0.003 -0.001

SPKW -0.077 0.000 0.053 0.000 0.019 0.001 -0.001 -0.008SPKN 0.227 0.004 -0.132 0.001 -0.046 -0.026 -0.011 0.012

74001 OTHR -0.034 -0.062 0.059 0.054 -0.052 -0.040 -0.030 -0.031TEMP 2.905 -0.801 -3.455 -0.749 -0.461 0.131 -0.303 0.096EQEW -0.170 0.249 0.184 -0.053 -0.003 -0.002 0.032 0.026EQNS 0.142 -0.105 -1.087 0.033 0.046 -0.044 0.037 -0.013EQZ 0.013 0.028 -0.111 -0.083 0.074 0.075 0.037 0.049EQT 0.060 -0.023 -0.168 0.010 0.000 0.008 -0.013 -0.001

SPKW -0.004 -0.010 0.031 -0.003 -0.011 0.030 -0.020 0.003SPKN -0.006 0.020 -0.041 -0.009 0.011 -0.023 0.020 0.004

74004 OTHR -0.113 -0.249 -0.013 -0.082 -0.401 -0.059 0.016 -0.080TEMP 4.049 0.185 -3.577 -0.934 -0.309 -0.014 0.017 0.086EQEW -1.057 0.192 0.793 0.002 0.039 0.000 0.004 0.008EQNS -1.332 -0.219 -1.585 0.035 0.026 -0.032 0.015 0.009EQZ 0.076 0.313 -0.070 0.132 0.561 0.097 -0.029 0.114EQT 0.370 0.000 -0.211 -0.001 -0.004 -0.001 0.001 -0.001

SPKW 0.084 -0.011 0.016 0.004 -0.040 0.016 -0.009 -0.009SPKN -0.153 0.003 -0.043 0.001 0.024 0.000 0.000 0.011

Page 275: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-248

Table 3G.3-12

Combined Forces and Moments: Selected Load Combination FB-9 (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

4 Spent Fuel 60819 OTHR -1.530 -1.786 -0.698 0.296 0.621 0.014 0.147 -0.034 Pool Wall TEMP -1.918 -3.130 -0.361 -7.763 -7.728 -1.038 -0.047 -0.852 @ EL-5.10 EQEW -0.683 4.640 -3.575 1.094 1.123 -0.068 -0.065 0.334 ~-3.30m EQNS -0.910 -4.128 -2.618 0.316 0.135 0.200 0.109 0.068

EQZ -0.126 1.233 0.310 0.807 0.421 0.189 -0.011 0.076EQT 0.011 -0.047 0.806 -0.224 -0.079 -0.174 0.004 -0.031

SPKW -1.661 0.263 -0.033 -0.970 -0.137 0.145 0.198 0.151SPKN -0.348 -0.443 -0.111 4.172 1.900 0.312 -0.125 -0.575

70801 OTHR -0.937 -0.748 -0.284 -2.493 -0.192 -0.340 1.557 -0.269TEMP 0.306 2.834 -0.059 -2.812 -3.053 0.011 -0.043 -0.032EQEW -0.419 2.734 -0.987 -0.552 -0.042 -0.049 0.320 -0.083EQNS -0.007 -1.700 -4.178 -0.219 -0.129 -0.133 -0.092 -0.050EQZ -0.114 0.353 -0.032 -0.737 -0.067 0.018 0.367 -0.018EQT 0.054 -0.011 0.767 0.083 0.015 0.007 0.004 0.007

SPKW -0.443 -0.320 0.224 -2.598 -0.199 -0.543 1.686 -0.412SPKN -1.669 -0.187 -0.188 -1.221 -0.250 0.215 0.175 0.093

70804 OTHR -0.775 -1.352 -0.361 2.021 1.288 -0.258 0.230 0.215TEMP -0.615 0.255 0.452 -2.929 -3.146 0.265 -0.046 0.092EQEW -0.390 4.944 0.402 0.318 0.251 -0.082 0.032 -0.044EQNS 0.627 -3.010 -4.995 -0.419 -0.177 -0.202 0.031 0.098EQZ -0.140 0.741 -0.088 0.356 0.296 -0.048 0.066 -0.040EQT 0.039 0.007 0.786 0.089 0.007 0.018 -0.007 -0.008

SPKW -0.325 -0.282 0.158 2.499 1.272 -0.344 0.242 0.374SPKN -1.539 0.261 -0.114 -0.324 -0.110 -0.071 0.105 -0.067

110748 OTHR -0.318 -0.797 -0.381 -0.067 -0.040 -0.066 0.090 -0.053TEMP -0.298 -2.140 -0.802 -1.042 -1.404 -0.075 0.291 -0.121EQEW -0.575 1.994 0.275 -0.061 -0.144 -0.058 0.107 0.058EQNS 0.631 -0.360 1.149 0.040 0.092 -0.130 -0.020 0.033EQZ -0.119 0.789 0.348 0.105 0.033 0.013 -0.047 0.033EQT 0.018 -0.074 0.025 0.006 0.016 0.004 -0.003 -0.014

SPKW 0.067 0.151 0.307 0.032 0.019 0.011 0.009 -0.009SPKN -1.108 0.068 -0.963 0.130 0.009 -0.075 0.015 -0.041

5 Basemat 90306 OTHR -3.479 -2.494 0.916 0.982 -0.745 0.542 -0.709 1.534TEMP -0.837 -0.083 0.229 1.845 0.796 0.000 0.027 0.256EQEW -7.400 -1.893 2.312 4.508 1.334 1.356 -2.149 4.901EQNS -1.298 -1.336 5.050 2.391 -0.452 4.930 -4.168 3.137EQZ 0.821 0.337 -0.379 -0.719 0.079 -0.130 0.415 -0.934EQT 0.788 0.047 0.988 -0.285 -0.250 0.878 -0.834 0.051

SPKW -0.235 -1.422 -0.113 -0.185 -0.598 0.000 0.113 0.122SPKN -1.078 0.016 0.031 -0.175 0.032 -0.010 0.060 -0.043

90310 OTHR -1.912 -2.060 0.177 -0.527 -0.507 -0.210 0.235 0.216TEMP 0.116 0.299 0.318 1.213 1.344 0.600 0.178 -0.100EQEW -1.110 -0.660 0.436 -0.184 0.640 -1.501 1.889 0.096EQNS 0.234 -1.751 0.207 0.851 -0.438 -1.023 -0.690 2.166EQZ 0.112 0.080 0.038 0.111 0.107 0.557 -0.158 0.057EQT 0.267 -0.235 -0.105 0.123 -0.096 -0.107 -0.564 0.669

SPKW -0.061 -1.170 0.041 -0.003 -0.269 0.168 0.105 0.023SPKN -1.183 -0.157 -0.023 -0.408 -0.064 0.098 -0.026 0.249

90410 OTHR -2.692 -4.850 0.585 -1.758 0.099 1.620 1.772 -0.247TEMP -0.186 0.128 0.318 0.430 1.623 0.155 0.083 -0.262EQEW 0.078 0.355 4.879 -0.414 -1.781 7.917 -0.043 -3.734EQNS -0.830 -9.222 -0.149 1.442 1.190 2.201 3.051 -0.495EQZ 0.345 0.657 -0.328 0.526 -0.134 -1.081 -1.130 -0.056EQT -0.020 0.004 -1.094 0.067 0.125 -1.202 0.074 1.012

SPKW -0.047 -1.757 -0.015 -0.031 0.017 -0.092 0.048 -0.027SPKN -1.525 -0.619 -0.247 -1.036 -0.261 -0.203 -0.058 0.261

Page 276: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-249

Table 3G.3-12

Combined Forces and Moments: Selected Load Combination FB-9 (Continued)

Location ElementID

Nx(MN/m)

Ny(MN/m)

Nxy(MN/m)

Mx(MNm/m)

My(MNm/m)

Mxy(MNm/m)

Qx(MN/m)

Qy(MN/m)

5 Basemat 90486 OTHR -2.639 -4.562 -0.257 4.765 2.833 -0.126 -0.221 -0.096 @ Spent TEMP -2.450 -1.493 0.651 -13.369 -14.435 1.996 0.086 0.302 Fuel Pool EQEW 1.943 1.502 0.920 -15.692 -16.470 -0.634 0.585 -1.855

EQNS -1.349 -2.865 -2.048 15.386 8.964 -2.127 -2.177 -0.077EQZ 0.225 0.452 0.036 -3.151 -2.167 -0.336 0.173 -0.140EQT 0.212 -0.112 0.608 0.078 0.155 0.009 0.139 0.173

SPKW 0.445 -2.544 0.088 0.016 -0.837 -0.046 -0.056 -0.195SPKN -3.188 0.146 -0.595 -2.285 -0.305 -0.447 0.295 0.135

90490 OTHR -2.695 -4.191 0.198 -0.514 1.534 0.360 1.916 -0.164TEMP -1.907 2.615 0.387 -17.342 -17.022 0.768 1.711 1.416EQEW 0.979 3.656 4.024 0.462 -7.932 4.394 -6.400 -1.816EQNS -0.485 -8.802 0.828 5.797 7.104 0.716 4.705 -0.487EQZ 0.290 0.324 -0.116 -0.406 -1.036 -0.310 -1.234 -0.237EQT -0.014 0.725 -1.138 -0.434 -0.245 -0.944 0.164 0.784

SPKW 0.399 -1.100 -0.117 1.320 -0.291 -0.032 -0.262 -0.118SPKN -3.486 -1.253 -0.008 -6.513 -0.973 -0.434 0.647 -0.412

90526 OTHR -2.938 -4.697 -0.587 1.608 -2.680 -0.371 -0.294 -1.746TEMP 1.469 0.086 0.117 -14.549 -5.470 1.213 -1.044 1.284EQEW 4.646 0.751 1.467 -9.758 -5.415 -0.036 0.796 4.959EQNS 0.828 -0.765 -4.641 7.256 1.643 -4.294 -2.213 -3.615EQZ 0.216 0.250 0.021 -1.391 -0.833 -0.375 0.204 0.778EQT -0.961 -0.025 1.002 0.143 0.246 0.781 0.653 0.170

SPKW -0.770 -2.694 0.215 -0.448 -3.914 -0.019 0.136 -0.503SPKN -1.317 0.198 -0.519 -1.273 0.466 -0.669 0.204 0.260

6 Slab EL4.65m 93306 OTHR 0.117 -0.163 -0.242 0.100 0.096 0.015 0.032 -0.138TEMP -0.770 -0.028 -1.664 -0.053 0.031 -0.014 0.081 -0.028EQEW 1.756 0.201 -0.645 0.337 -0.163 -0.030 0.106 0.079EQNS 2.016 0.406 -0.846 0.334 -0.448 -0.006 -0.048 0.040EQZ -0.122 0.014 -0.050 -0.040 -0.063 -0.010 -0.027 0.132EQT 0.047 0.018 0.065 0.021 -0.027 -0.004 -0.020 -0.010

SPKW -0.168 -0.839 -0.188 0.054 0.261 -0.003 0.002 -0.056SPKN -0.325 -0.004 0.110 0.011 -0.012 0.011 -0.009 -0.003

93310 OTHR -0.018 -0.024 0.106 0.106 0.009 0.012 -0.074 0.027TEMP -2.222 -2.171 -3.239 -0.755 -0.782 -0.243 0.270 0.286EQEW 0.341 0.480 0.389 -0.139 0.085 -0.013 0.129 -0.068EQNS 0.669 0.284 0.937 0.426 -0.367 0.015 -0.413 0.417EQZ -0.021 -0.041 -0.208 -0.042 -0.028 -0.042 0.019 0.002EQT 0.055 -0.002 0.155 0.070 -0.048 0.006 -0.066 0.057

SPKW -0.003 -0.327 0.105 -0.025 0.095 -0.021 0.047 -0.058SPKN -0.284 -0.008 0.082 0.119 -0.028 -0.022 -0.073 0.053

93410 OTHR -0.015 -0.038 0.012 0.180 0.052 -0.045 -0.075 -0.014TEMP -0.729 -2.313 0.047 -0.069 -0.010 0.019 -0.093 -0.027EQEW -0.266 0.729 0.403 0.097 -0.067 0.121 -0.219 -0.007EQNS 0.215 1.007 0.802 0.176 0.077 0.049 -0.050 0.006EQZ -0.284 -0.295 0.277 -0.087 -0.020 0.074 0.046 0.017EQT 0.014 -0.196 0.077 -0.009 0.007 -0.001 0.016 0.005

SPKW 0.017 -0.657 0.246 -0.009 0.004 -0.006 0.001 0.000SPKN -1.013 0.070 0.284 0.260 0.044 0.069 -0.113 0.003

Page 277: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-250

Table 3G.3-13

Sectional Thicknesses and Rebar Ratios Used in the Evaluation Primary Reinforcement

Direction 1*1 Direction2*1 Shear Tie

Location Element ID

Thickness (m) Position

Arrangement Ratio (%) Arrangement Ratio

(%) Arrangement Ratio (%)

1 Exterior Wall and Pool Wall

Inside 3-#11@200 0.755 3-#11@200 0.755

@ EL-11.50 ~-10.50m

60011 2.0 Outside 3-#11@200 0.755 3-#11@200 0.755

#6@400x400 0.177

Inside 3-#11@200 0.419 3-#11@200

(+2-#11@200) 0.699

60219 3.6

Outside 3-#11@200 0.419 3-#11@200 (+2-#11@200)

0.699

#6@400x400 0.177

Inside 4-#11@200 1.006 4-#11@200 1.006

70201 2.0 Outside 4-#11@200 1.006 4-#11@200 1.006

#6@400x400 0.177

Inside 4-#11@200 1.006 4-#11@200 1.006

70204 2.0 Outside 4-#11@200 1.006 4-#11@200

(+2-#11@200)1.510

#6@200x200 0.710

Inside 2-#11@200 0.671 3-#11@200 (+1-#11@200)

1.342

110718 1.5 Outside 2-#11@200 0.671 3-#11@200 1.006

#6@400x200 0.355

2 Exterior Wall @ EL4.65

Inside 2-#11@200 1.006 2-#11@200 1.006

~6.60m

62011 62019 72001 72004

1.0 Outside 3-#11@200 1.510 3-#11@200 1.510

#5@400x400 0.125

3 Exterior Wall @ EL22.50

Inside 2-#11@200 1.006 2-#11@200 1.006

~24.60m

64011 64019 1.0

Outside 2-#11@200 1.006 2-#11@200 1.006 #5@400x400 0.125

Inside 2-#11@200 1.006 2-#11@200 1.006

74001 74004 1.0

Outside 3-#11@200 1.510 3-#11@200 1.510 #5@400x400 0.125

Note *1: Exterior Wall, Pool Wall Direction1 : Horizontal, Direction2 : Vertical Basemat, Slab Direction1 : N-S, Direction2 : E-W Note *2: Rebar in parentheses indicates additional bars locally required.

Page 278: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-251

Table 3G.3-13

Sectional Thicknesses and Rebar Ratios Used in the Evaluation (Continued) Primary Reinforcement

Direction 1*1 Direction2*1 Shear Tie

Location Element ID

Thickness (m) Position

Arrangement Ratio (%) Arrangement Ratio

(%) Arrangement Ratio (%)

4 Spent Fuel Pool Wall

Inside 3-#11@200 0.419 3-#11@200 0.419

@ EL-5.10 ~-3.30m

60819 3.6 Outside 3-#11@200 0.419 3-#11@200 0.419

#6@400x400 0.177

Inside 4-#11@200 1.006 4-#11@200 1.006

70801 2.0 Outside 4-#11@200 1.006 4-#11@200 1.006

#6@200x200 0.710

Inside 4-#11@200 1.006 4-#11@200 1.006

70804 2.0 Outside 4-#11@200 1.006 4-#11@200 1.006

#6@400x400 0.177

Inside 2-#11@200 0.671 3-#11@200 1.006

110748 1.5 Outside 2-#11@200 0.671 3-#11@200 1.006

#6@400x400 0.177

5 Basemat

Top 3-#11@200+1-#11@400 0.440 3-#11@200

+1-#11@400 0.440

90306 90310 90410

4.0 Bottom 5-#11@200 0.629 5-#11@200 0.629

#11@400x400 0.629

5 Basemat @ Spent

Top 3-#11@200+1-#11@400 0.320 3-#11@200

+1-#11@400 0.320

Fuel Pool

90486 5.5 Bottom 5-#11@200 0.457 5-#11@200 0.457

#11@600x400 0.419

Top 3-#11@200+1-#11@400 0.320 3-#11@200

+1-#11@400 0.320

90490 90526 5.5

Bottom 5-#11@200 0.457 5-#11@200 0.457 #11@400x400 0.629

6 Slab EL4.65m

Top 2-#11@200 0.774 2-#11@200 0.774

93306 93310 93410

1.3 Bottom 2-#11@200 0.774 2-#11@200 0.774

#5@200x200 0.500

Note *1: Exterior Wall, Pool Wall Direction1 : Horizontal, Direction2 : Vertical Basemat, Slab Direction1 : N-S, Direction2 : E-W Note *2: Rebar in parentheses indicates additional bars locally required.

Page 279: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-252

Table 3G.3-14

Rebar and Concrete Stresses: Selected Load Combination FB-4

In/Top Out/Bottom In/Top Out/Bottom1 Exterior Wall 60011 -3.3 -29.3 -3.9 -18.6 -6.4 -3.4 372.2 and Pool Wall 60219 -5.7 -29.0 -6.6 13.2 -29.8 53.8 370.1 @ EL-11.50 70201 -9.3 -29.0 -5.9 102.8 2.7 105.4 370.1 ~-10.50m 70204 -9.9 -29.0 -1.9 20.3 -23.6 82.4 370.1

110718 -9.0 -29.1 -11.7 70.8 -19.5 48.0 370.32 Exterior Wall 62011 -3.0 -29.3 46.6 84.1 -14.1 27.4 372.2 @ EL4.65 62019 -9.6 -29.3 46.1 109.7 -23.1 76.7 372.2 ~6.60m 72001 -9.5 -29.3 17.1 107.4 -21.9 73.0 372.2

72004 -5.5 -29.3 60.2 35.5 3.7 18.0 372.23 Exterior Wall 64011 -7.7 -29.3 29.2 116.2 -15.7 73.9 372.2 @ EL22.50 64019 -6.9 -29.3 38.3 138.5 -4.3 106.7 372.2 ~24.60m 74001 -4.6 -29.3 22.9 92.7 3.0 79.3 372.2

74004 -7.7 -29.3 12.6 106.8 1.5 117.4 372.24 Spent Fuel 60819 -4.1 -29.0 -16.6 9.4 -18.1 8.6 370.1 Pool Wall 70801 -11.5 -29.0 -26.6 123.7 8.3 44.7 370.1 @ EL-5.10 70804 -2.2 -29.0 -11.2 -0.9 -2.8 1.4 370.1 ~-3.30m 110748 -7.0 -29.1 0.0 44.0 -25.4 26.6 370.35 Basemat 90306 -2.1 -23.5 -4.8 -2.0 -4.0 -13.9 372.2

90310 -0.8 -23.5 -2.0 -2.6 -4.8 -4.6 372.290410 -2.1 -23.5 -4.8 -8.0 -13.6 -1.6 372.2

5 Basemat 90486 -3.5 -23.2 -12.7 -9.4 4.4 4.3 370.1 @ Spent 90490 -3.5 -23.2 -3.5 -9.1 5.7 15.1 370.1 Fuel Pool 90526 -2.7 -23.2 -11.0 -3.1 1.9 8.0 370.16 Slab EL4.65m 93306 -1.8 -29.3 18.8 4.7 42.3 5.5 372.2

93310 -7.5 -29.3 -12.3 54.1 -13.9 57.3 372.293410 -2.5 -29.3 -1.1 -1.9 -15.9 -16.7 372.2

Primary Reinforcement Stress (MPa)

Location ElementID Calculated Allowable

CalculatedDirection 1* Direction 2* Allowable

Concrete Stress (Mpa)

Note: Negative value means compression. Note *: Exterior Wall, Pool Wall Direction1 : Horizontal, Direction2 : Vertical Basemat, Slab Direction1 : N-S, Direction2 : E-W

Page 280: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-253

Table 3G.3-15

Rebar and Concrete Stresses: Selected Load Combination FB-8

In/Top Out/Bottom In/Top Out/Bottom1 Exterior Wall 60011 -2.6 -29.3 -3.5 -14.6 -10.1 -1.8 372.2 and Pool Wall 60219 -5.0 -29.0 -5.6 10.8 -27.2 34.3 370.1 @ EL-11.50 70201 -6.7 -29.0 -4.0 72.8 -1.3 75.5 370.1 ~-10.50m 70204 -7.3 -29.0 -0.8 19.5 -22.4 54.7 370.1

110718 -7.1 -29.1 -5.8 58.5 -19.5 28.5 370.32 Exterior Wall 62011 -1.9 -29.3 15.1 51.9 -8.4 1.6 372.2 @ EL4.65 62019 -8.9 -29.3 30.2 93.4 -20.8 72.1 372.2 ~6.60m 72001 -7.3 -29.3 15.9 66.9 -26.1 29.2 372.2

72004 -2.0 -29.3 62.6 34.8 -55.6 35.6 372.23 Exterior Wall 64011 -7.5 -29.3 23.4 100.2 -15.1 73.6 372.2 @ EL22.50 64019 -6.6 -29.3 38.4 116.0 -5.4 89.1 372.2 ~24.60m 74001 -4.0 -29.3 27.5 74.3 8.5 65.0 372.2

74004 -6.5 -29.3 10.1 95.0 2.5 102.4 372.24 Spent Fuel 60819 -3.6 -29.0 -11.4 7.6 -17.7 5.8 370.1 Pool Wall 70801 -8.0 -29.0 -17.2 88.7 3.3 28.5 370.1 @ EL-5.10 70804 -1.5 -29.0 -6.2 -0.6 -6.4 0.8 370.1 ~-3.30m 110748 -5.5 -29.1 0.9 36.9 -21.1 16.9 370.35 Basemat 90306 -1.9 -23.5 -4.4 -1.7 -2.7 -12.6 372.2

90310 -0.7 -23.5 -1.5 -1.8 -4.0 -3.8 372.290410 -1.8 -23.5 -4.3 -7.2 -11.6 -0.8 372.2

5 Basemat 90486 -2.6 -23.2 -10.0 -7.5 1.7 0.8 370.1 @ Spent 90490 -2.7 -23.2 -3.8 -7.1 2.9 10.6 370.1 Fuel Pool 90526 -2.0 -23.2 -8.3 -2.4 0.9 3.6 370.16 Slab EL4.65m 93306 -2.2 -29.3 54.1 38.2 65.7 45.7 372.2

93310 -5.9 -29.3 -1.0 51.4 -9.6 60.3 372.293410 -1.8 -29.3 -0.3 -3.6 -10.6 -11.5 372.2

Location ElementID

Concrete Stress (Mpa) Primary Reinforcement Stress (MPa)

Calculated AllowableCalculated

AllowableDirection 1* Direction 2*

Note: Negative value means compression. Note *: Exterior Wall, Pool Wall Direction1 : Horizontal, Direction2 : Vertical Basemat, Slab Direction1 : N-S, Direction2 : E-W

Page 281: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-254

Table 3G.3-16

Rebar and Concrete Stresses: Selected Load Combination FB-9

In/Top Out/Bottom In/Top Out/Bottom1 Exterior Wall 60011 -9.6 -29.3 216.9 187.0 247.6 257.8 372.2 and Pool Wall 60219 -13.2 -29.0 68.1 299.2 191.1 292.8 370.1 @ EL-11.50 70201 -14.1 -29.0 84.3 218.2 50.8 205.0 370.1 ~-10.50m 70204 -15.0 -29.0 66.8 191.3 131.4 265.6 370.1

110718 -12.2 -29.1 -22.4 131.0 130.5 185.4 370.32 Exterior Wall 62011 -10.1 -29.3 190.0 315.0 146.3 304.7 372.2 @ EL4.65 62019 -14.2 -29.3 144.6 231.9 83.4 225.0 372.2 ~6.60m 72001 -11.9 -29.3 49.8 282.9 74.4 222.0 372.2

72004 -13.2 -29.3 182.5 227.6 185.8 270.2 372.23 Exterior Wall 64011 -23.4 -29.3 198.9 351.5 -96.6 330.5 372.2 @ EL22.50 64019 -18.5 -29.3 184.3 295.4 -90.1 219.9 372.2 ~24.60m 74001 -7.5 -29.3 119.1 125.3 80.0 103.4 372.2

74004 -13.5 -29.3 90.4 177.5 65.2 198.9 372.24 Spent Fuel 60819 -6.3 -29.0 70.3 128.3 240.0 217.0 370.1 Pool Wall 70801 -22.4 -29.0 -41.0 305.9 65.6 224.5 370.1 @ EL-5.10 70804 -10.8 -29.0 175.7 71.0 238.9 166.7 370.1 ~-3.30m 110748 -7.3 -29.1 13.4 112.9 -32.6 136.1 370.35 Basemat 90306 -10.1 -23.5 240.5 218.5 51.6 175.5 372.2

90310 -2.5 -23.5 -7.9 -10.0 11.5 10.8 372.290410 -12.3 -23.5 238.4 223.3 116.1 59.3 372.2

5 Basemat 90486 -15.1 -23.2 79.4 231.9 134.3 189.5 370.1 @ Spent 90490 -7.1 -23.2 72.7 89.1 214.4 98.1 370.1 Fuel Pool 90526 -9.8 -23.2 172.5 275.7 74.0 165.7 370.16 Slab EL4.65m 93306 -4.3 -29.3 249.0 123.6 131.4 175.3 372.2

93310 -8.2 -29.3 93.7 86.5 52.2 116.6 372.293410 -5.2 -29.3 82.5 -20.1 114.5 51.8 372.2

Location ElementID

Concrete Stress (Mpa) Primary Reinforcement Stress (MPa)

Calculated AllowableCalculated

AllowableDirection 1* Direction 2*

Note: Negative value means compression. Note *: Exterior Wall, Pool Wall Direction1 : Horizontal, Direction2 : Vertical Basemat, Slab Direction1 : N-S, Direction2 : E-W

Page 282: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-255

Table 3G.3-17

Transverse Shear of FB

Element Load d pvID ID (m) (%) Vu Vc Vs φVn

1 Exterior Wall 60011 FB-4 1.72 0.177 1.12 3.49 1.26 4.04 0.279 and Pool Wall 60219 FB-9 3.34 0.177 3.11 1.77 2.45 3.58 0.869 @ EL-11.50 70201 FB-4 1.69 0.177 0.54 1.62 1.23 2.42 0.224 ~-10.50m 70204 FB-9 1.69 0.710 2.39 0.02 4.97 4.25 0.562

110718 FB-4 1.21 0.355 0.27 1.23 1.77 2.55 0.1042 Exterior Wall 62011 FB-4 0.72 0.125 0.04 0.71 0.37 0.92 0.047 @ EL4.65 62019 FB-4 0.72 0.125 0.06 0.74 0.37 0.95 0.067 ~6.60m 72001 FB-9 0.74 0.125 0.28 0.00 0.38 0.33 0.872

72004 FB-4 0.72 0.125 0.17 0.89 0.37 1.08 0.1613 Exterior Wall 64011 FB-8 0.78 0.125 0.08 0.78 0.40 1.00 0.077 @ EL22.50 64019 FB-4 0.81 0.125 0.07 0.08 0.42 0.43 0.167 ~24.60m 74001 FB-4 0.72 0.125 0.11 0.13 0.37 0.43 0.257

74004 FB-4 0.72 0.125 0.06 0.07 0.37 0.38 0.1684 Spent Fuel 60819 FB-4 3.32 0.177 0.80 6.45 2.43 7.54 0.105 Pool Wall 70801 FB-9 1.69 0.710 3.85 1.95 4.97 5.88 0.654 @ EL-5.10 70804 FB-9 1.59 0.177 0.67 0.58 1.17 1.49 0.448 ~-3.30m 110748 FB-4 1.21 0.177 0.52 1.39 0.89 1.94 0.2705 Basemat 90306 FB-9 3.51 0.629 6.71 1.96 9.14 9.44 0.711

90310 FB-4 3.50 0.629 0.47 5.72 9.11 12.61 0.03790410 FB-9 3.53 0.629 3.38 2.21 9.18 9.68 0.350

5 Basemat 90486 FB-8 4.99 0.419 0.24 8.64 8.64 14.69 0.016 @ Spent 90490 FB-9 5.01 0.629 12.71 9.24 13.03 18.93 0.671 Fuel Pool 90526 FB-9 4.98 0.629 6.37 5.80 12.95 15.94 0.4006 Slab EL4.65m 93306 FB-9 1.10 0.500 0.29 0.33 2.27 2.21 0.129

93310 FB-4 1.10 0.500 0.48 2.86 2.27 4.36 0.11193410 FB-4 1.10 0.500 0.18 2.07 2.27 3.69 0.048

Location Shear Force (MN/m) Vu/φVn

Page 283: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

{{{Security-Related Information - Withheld Under 10 CFR 2.390}}} 3G-256

Figure 3G.3-1. Sections Where Temperature Loads Are Defined

Page 284: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-257

5

1

2

3

4

6

Figure 3G.3-2. Section Considered for Analysis

Page 285: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3G-258

z

x

y

z

x

y

Definition of Element Coordinate System

z

outwardExternal Wall

x

horizontal

y

vertical

toward West

Wall in E-W Direction

Wall in N-S Direction

toward South

horizontal vertical

horizontal vertical

Foundation MatFloor Slab downwardtoward Westtoward South

Structure

Nx

Nxy

Qx

Nx

Nxy

Qx

Ny

Nxy

Qy

Ny

Nxy

Qy

Membrane and Shear Forces

MxyMxy

Mxy

My

Mxy

My

Moments

Mx

Mx

Figure 3G.3-3. Force and Moment in Shell Element

Page 286: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-259

Figu

re 3

G.3

-4.

Rei

nfor

cing

Ste

el o

f Spe

nt F

uel P

ool W

alls

Page 287: ESBWR Design Control Document - NRC: Home Page

26A

6642

AN

Rev

. 03

ESB

WR

Des

ign

Con

trol

Doc

umen

t/Tie

r 2

{{{S

ecur

ity-R

elat

ed In

form

atio

n - W

ithhe

ld U

nder

10

CFR

2.3

90}}

} 3G

-260

Figu

re 3

G.3

-5.

Lis

t of F

B W

all a

nd S

lab

Rei

nfor

cem

ent

Page 288: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-1

3H. EQUIPMENT QUALIFICATION DESIGN ENVIRONMENTAL CONDITIONS

3H.1 INTRODUCTION

This appendix specifies plant environmental conditions, which envelop the actual environment expected over the plant life, for which safety-related equipment (Section 3.11) are to be designed and qualified. The plant conditions considered in defining the environmental conditions are normal operation including anticipated operational occurrences (AOOs) and test, and accident conditions including post-accident operations. The accident condition considered is a hypothesized single event (not reasonably expected during the course of plant operation) that has the potential to cause severe environmental conditions for safety-related equipment. The specified accident conditions are based on significantly conservative assumptions.

The primary environmental parameters addressed are pressure, temperature, relative humidity, radiation, and chemical conditions. Safety-related equipment is to be designed and qualified for the environmental conditions specified in this appendix. The parameters specified in this appendix do not include margins that may be required to satisfy applicable codes and standards for equipment qualification. The radiation data specified in this appendix is intended to provide a conservative basis for equipment qualification and is not intended to limit or justify personnel access.

Following areas contain safety-related equipment are considered for these purposes:

• Containment Vessel

• Reactor Building

• Control Room

3H.2 PLANT ZONES

3H.2.1 Containment Vessel

The containment vessel is divided into a drywell region and a pressure wetwell with an interconnecting vent system. The containment vessel is shown in Figure 6.2-1. The drywell volume is divided into an upper drywell and lower drywell by the RPV supports and support pedestal. The upper and lower drywell are interconnected. Table 3.2-1 identifies the safety-related equipment located within the containment vessel.

For normal operating conditions, the containment vessel is divided into three thermodynamic and four radiation zones to represent the enveloping levels of the environmental conditions. The environmental zones are shown in Table 3H-2 and Table 3H-5. For accident conditions, zones a-1 and a-2 have the same thermodynamic properties and the entire containment vessel (zones b-1 through b-4) has the same radiation properties.

3H.2.2 Outside Containment Vessel

The area outside the containment vessel includes:

• Control Building

Page 289: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-2

• Reactor Building outside containment

The region inside the reactor building surrounding the containment encloses penetrations through the containment. The Control Room Habitability Area (CRHA) includes the main control room and areas adjacent to the control room containing operator facilities. Also located in the control building are 1E DCIS rooms, located at elevation -7400. Major equipment zones are shown on the reactor building arrangement drawing (Figures 1.2-1 to 1.2-9).

3H.3 ENVIRONMENTAL CONDITIONS

Table 3H-1 contains a cross listing of the environmental data tables arranged by location and by type of condition.

3H.3.1 Plant Normal Operating Conditions

Tables 3H-2 through 3H-5 define the thermodynamic conditions (pressure, temperature and humidity) for normal operating conditions for areas containing safety-related equipment. Figures showing equipment location and system configurations are referenced in each table.

3H.3.2 Accident Conditions

Thermodynamic conditions for safety-related equipment in the containment vessel, Control Building and Reactor Building are given in Tables 3H-8 through 3H-10 for accident conditions, including post-accident periods. In general, the most severe conditions result from a postulated reactor coolant line break inside the containment, LOCA (bounding case) plus SBO, see Chapter 6 for detailed information. However, conditions were also considered for ruptures occurring in the steam tunnel and breaks in the RWCU/SDC System outside the containment, HELB plus SBO, see Chapter 6 for detailed information. Tables 3H-6, 3H-7 and 3H-11 specify the radiation environmental qualification conditions.

3H.3.3 Water Quality

Reactor water design quality characteristics during normal operation are:

• PH range: 5.6 to 8.6

• Silica (as SiO2) ≤ 200 ppb (100 ppb operating target)

• Conductivity at 25°C ≤ 0.1 µS/cm (0.08 µS/cm operating target)

• Dissolved Oxygen (as O2, ) ≤ 300 ppb

• ≤ 6 ppb corrosion product metals

The Standby Liquid Control (SLC) System injects borated water into the Reactor Pressure Vessel during DBA LOCA. There is no caustic containment spray in the ESBWR project.

3H.3.4 COL Unit-Specific Information

Tables 3H-9 and 3H-10 provide the maximum ambient conditions for safety-related equipment environmental qualification. These ambient conditions per room are in accordance with the housed safety-related equipment. Table 3H-12 contains the heat load capacity and location for safety-related equipment assumed for each room or set of rooms. This table also contains the

Page 290: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-3

heat load for nonsafety-related rooms, because rooms that house nonsafety-related equipment are boundary conditions for rooms that house safety-related structures, systems and components.

The COL Applicant shall confirm that the equipment final heat loads and locations satisfy the maximum ambient conditions addressed in Table 3H-9 and Table 3H-10. If the maximum room qualification temperature is exceeded during detailed ESBWR design, design alternatives are available to bring the temperatures to below the design goal. Some of these alternatives include the following: redistributing room heat loads, reducing component heat loads, more accurate heat transfer modeling, addition of dedicated room coolers, higher EQ Temperatures or the addition of mass and surface area.

3H.4 REFERENCES

3H.4-1 10 CFR 50 Appendix J, “Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors.”

3H.4-2 NUREG-1465, “Accident Source Terms for Light-Water Nuclear Power Plants,” February 1995.

3H.4-3 NUREG-0588, Rev. 1, "Interim Staff Position on Environmental Qualification of Safety-Related Electrical Equipment."

3H.4-4 10 CFR Part 50, Appendix A, General Design Criterion 2, "Design Bases for Protection Against Natural Phenomena.”

3H.4-5 10 CFR Part 50, Appendix A, General Design Criterion 4, "Environmental and Dynamic Effects Design Bases.”

3H.4-6 10 CFR Part 50, 50.49, "Environmental Qualification of Electric Equipment Important to Safety of Nuclear Power Plants.”

Page 291: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-4

Table 3H-1

Cross Reference of Plant Environmental Data and Location

Location Plant Environmental Data Containment Vessel Reactor Building Control Room Zone

Thermodynamic (Normal Conditions) Table 3H-2 Table 3H-3 Table 3H-4

Thermodynamic (Accident Conditions) 1 Table 3H-8 Table 3H-9 Table 3H-10

Radiation 1

Table 3H-5 (Normal Conditions)

Table 3H-11 (Accident Conditions)

Table 3H-6 Table 3H-7

1 Referenced table information is based on preliminary data and is subject to change. See 3H.3.4 for COL information.

Page 292: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-5

Table 3H-2

Thermodynamic Environment Conditions Inside Containment Vessel for Normal

Operating Conditions

Plant Zone/Typical Equipment(1)

Pressure(2)(3) (Gauge)

kPa (psig)

Temperature(3) °C (°F)

Relative Humidity(3)

%

(a-1) Upper drywell and upper area of lower drywell Figure 6.2-1)

10.3 (16.0) 57(135) Ave 65 (150) Max

Not Controlled

(a-2) Lower area of lower drywell (Figure 6.2-1)

10.3 (16.0) 57(135) Ave 60(140) Max

Not Controlled

(a-3) Wetwell - pool and gas space (Figure 6.2-1)

4.8(0.7) Nom 9.0(1.3) Max 0 Min

43(110) Max(4) 100

(1) The containment atmosphere is nitrogen.

(2) The containment vessel will be pressurized during leak rate tests once per refueling outage in accordance with 10 CFR 50, Appendix J.

(3) The worst combination of conditions in the table sets the design requirements of equipment.

(4) The suppression pool water may reach 46°C (115°F) during testing. The maximum abnormal temperature is 49°C (120°F).

Page 293: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-6

Table 3H-3

Thermodynamic Environment Conditions Inside Reactor Building for Normal Operating

Conditions

Plant Zone/Typical Equipment Pressure(1) (Gauge)

kPag (psig)

Temperature °C (°F)

Relative Humidity

Hydraulic Control Unit (HCU) Rooms HCU, RPS solenoids and RPV water level instrument racks Rooms No 1110, 1120, 1130, 1140 (Figure 1.2-1)

-0

29 (85) Max 18 (65) Min

Not controlled

Battery Rooms Div I, II, III and IV batteries Rooms No 1210, 1220, 1230, 1240 (Figure 1.2-2)

-0

29 (85) Max 18 (65) Min

Not controlled

Div I, II, III and IV commodity chases Electrical cables Rooms No 1211, 1221, 1231, 1241 (Figure 1.2-2)

+0

40 (104) Max 10 (50) Min

Not controlled

Electrical Division Rooms Div I, II, III and IV electrical and electronic equipmentRooms No 1311, 1321, 1331, 1341 (Figure 1.2-3)

+0

29 (85) Max 18 (65) Min

Not controlled

Lower drywell non-divisional electrical and mechanical penetration Outboard containment isolation valves Rooms No 1300, 1301, 1302, 1303 (Figure 1.2-3)

+0

40 (104) Max 10 (50) Min

Not controlled

Div I, II, III and IV electrical penetration rooms Electrical cables and penetrations Rooms No 1312, 1322, 1332, 1342 (Figure 1.2-3)

+0 40 (104) Max 10 (50) Min

Not controlled

Remote shutdown panel Rooms No 1313, 1323 (inside rooms 1311 and 1321) (Figure 1.2-3)

+0

29 (85) Max 18 (65) Min

Not controlled

Non-divisional electrical equipment 1 EDCIS panels Rooms No 1500, 1501, 1502, 1503 (Figure 1.2-5)

+0

29 (85) Max 18 (65) Min

Not controlled

Page 294: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-7

Table 3H-3

Thermodynamic Environment Conditions Inside Reactor Building for Normal Operating

Conditions

Plant Zone/Typical Equipment Pressure(1) (Gauge)

kPag (psig)

Temperature °C (°F)

Relative Humidity

Div I, II, III and IV electrical penetrations (EL.13570) Electrical cables and penetration Rooms No 1610, 1620, 1630, 1640 (Figure 1.2-6)

-0

40 (104) Max 10 (50) Min

Not controlled

Div I, II, III and IV corridors rooms (access to penetration area), divisional electrical cables and 1E DCIS RMUs Rooms No 1710, 1720, 1730, 1740 (Figure 1.2-7)

-0

29 (85) Max 18 (65) Min

Not controlled

Div I, II, III and IV electrical penetration (EL. 17500) and Mechanical penetrations Electrical cables and penetrations. Outboard isolation valves Rooms No 1711, 1721, 1731, 1741 and 1712, 1722, 1732, 1742 (Figure 1.2-7)

-0

40 (104) Max 10 (50) Min

Not controlled

SBLC tank rooms SBLC tank instrumentation Rooms No 1713, 1723 (Figure 1.2-7)

-0

29 (85) Max 18 (65) Min

Not controlled

Main Steam Tunnel (2) Main Steamline (MSL) isolation valves MSL drain isolation valves FW isolation valves Rooms No 1770 (Figure 1.2-7)

–0

40 (104) Max 10 (50) Min

Not controlled

ICS/PCC pools ICS pools instrumentation Rooms No 18P3A/B/C/D, 18P4A/B/C/D/E/F, 18P5A/B/C, 18P6A/B/C

(Figure 1.2-8)

–0

40 (104) Max 10 (50) Min

100/Water

(1) Positive or negative pressure relative to surrounding areas.

(2) Values quoted are based on preliminary data and are subject to change.

Page 295: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-8

Table 3H-4

Thermodynamic Environment Conditions Inside Control Building for Normal Operating

Conditions

Plant Zone/Typical Equipment Pressure* (Gauge)

kPag (psig)

Temperature °C (°F)

Relative Humidity

%

Safety portions of CRHA Ventilation SubsystemRooms No 3406, 3407 (Figure 1.2-5)

+0 25.6 (78) Max 22.8 (73) Min

60 Max 25 Min

Control Room Habitability Area Main control room panels Rooms No 3275, 3201, 3202, 3204, 3205, 3270, 3271, 3272, 3273 and 3274 (Figure 3H-1)

+0 25.6 (78) Max 22.8 (73) Min

60 Max 25 Min

(Deleted)

Division I, II, III and IV electrical rooms 1EDCIS panels Rooms No 3110, 3120, 3130 and 3140 (Figure 1.2-2)

+0 25.6 (78) Max 22.8 (73) Min

60 Max 25 Min

* The indicated positive pressure is relative to the atmospheric pressure.

Page 296: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-9

Table 3H-5

Radiation Environment Conditions Inside Containment Vessel for Normal Operating

Conditions

Operating Dose Rate(1)(2) Integrated Dose(2)(3) Plant Zone/Typical Equipment Gamma

(R/h) Beta (R/h)

Gamma (R)

Beta (R)

(b-1) Upper drywell (Figure 6.2-1)

2.61 E+1 Negl.(4) 1.4 E+7 Negl.

(b-2) Upper area of lower drywell (Figure 6.2-1)

2.61 E+1 Negl. 1.4 E+7 Negl.

(b-3) Lower area of lower drywell (Figure 6.2-1)

1.98 E+1 Negl. 1.0 E+7 Negl.

(b-4) Wetwell - Suppression pool and gas space (Figure 6.2-1)

< 1.4 Negl. 1.7 E+2 Negl.

(1) Operating dose rate is at 100% rated power and away from radiation source.

(2) The doses are based on the radiation sources provided in Chapter 12.

(3) Integrated dose means the integrated value over 60 years.

(4) Negl.- Value less than 0.001 mR/h

Page 297: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-10

Table 3H-6

Radiation Environmental Qualification Conditions Inside Reactor Building

Plant Zone/Typical Equipment Integrated gamma dose (Rads)

Hydraulic Control Unit (HCU) Rooms HCU, RPS solenoids and RPV water level instrument racks Rooms No 1110, 1120, 1130, 1140 (Figure 1.2-1)

< 104 * < 10 6

Battery Rooms Div I, II, III and IV batteries Rooms No 1210, 1220, 1230, 1240 (Figure 1.2-2)

< 106

Div I, II, III and IV commodity chases Electrical cables Rooms No 1211, 1221, 1231, 1241 (Figure 1.2-2)

< 106

Electrical Division Rooms Div I, II, III and IV electrical and electronic equipment Rooms No 1311, 1321, 1331, 1341 (Figure 1.2-3)

< 104 *

< 106

Lower drywell non-divisional electrical and mechanical penetration Outboard containment isolation valves Rooms No 1300, 1301, 1302, 1303 (Figure 1.2-3)

< 106

Div I, II, III and IV electrical penetration rooms Electrical cables and penetrations Rooms No 1312, 1322, 1332, 1342 (Figure 1.2-3)

< 106

Remote shutdown panel Rooms No 1313, 1323 (inside rooms 1311 and 1321) (Figure 1.2-3)

< 104 *

< 106

Non-divisional electrical equipment 1 EDCIS panels Rooms No 1500, 1501, 1502, 1503 (Figure 1.2-5)

< 104 *

< 106

Div I, II, III and IV electrical penetrations (EL.13570) Electrical cables and penetration Rooms No 1610, 1620, 1630, 1640 (Figure 1.2-6)

< 106

Page 298: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-11

Table 3H-6

Radiation Environmental Qualification Conditions Inside Reactor Building

Plant Zone/Typical Equipment Integrated gamma dose (Rads)

Div I, II, III and IV corridors rooms (access to penetration area), divisional electrical cables and 1E DCIS RMUs Rooms No 1710, 1720, 1730, 1740 (Figure 1.2-7)

< 104 *

< 106

Div I, II, III and IV electrical penetration (EL. 17500) and Mechanical penetrations Electrical cables and penetrations. Outboard isolation valves Rooms No 1711, 1721, 1731, 1741 and 1712, 1722, 1732, 1742 (Figure 1.2-7)

< 106

SBLC tank rooms SBLC tank instrumentation Rooms No 1713, 1723 (Figure 1.2-7)

< 104 *

< 106

Main Steam Tunnel Main Steamline (MSL) isolation valves MSL drain isolation valves FW isolation valves Rooms No 1770 (Figure 1.2-7)

< 107

ICS/PCC pools ICS pools instrumentation Rooms No 18P3A/B/C/D, 18P4A/B/C/D/E/F, 18P5A/B/C, 18P6A/B/C (Figure 1.2-8)

< 104

* Electronic equipment is qualified for gamma dose < 104 Rads, other equipment is qualified for gamma dose < 106 Rads. In locations where calculated dose is greater than the above values the qualification will be done for the calculated doses plus 10%, or equipment will be protected from radiation.

Page 299: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-12

Table 3H-7

Radiation Environmental Qualification Inside Control Building

Plant Zone/Typical Equipment Integrated gamma dose (Rads)

Safety portions of CRHA Ventilation Subsystem Rooms No 3406, 3407 (Figure 1.2-5)

< 10 3

Control Room Habitability Area Main control room panels Rooms No 3275, 3201, 3202, 3204, 3205, 3270, 3271, 3272, 3273 and 3274 (Figure 3H-1)

< 10 3

Division I, II, III and IV electrical rooms 1EDCIS panels Rooms No 3110, 3120, 3130 and 3140 (Figure 1.2-2)

< 10 3

Page 300: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-13

Table 3H-8

Thermodynamic Environment Conditions Inside Containment Vessel for Accident

Conditions

Plant Zone

(a-1 & a-2) Upper and lower drywell (1) (Figure 6.2-1)

Time (2) Temp. °C (°F) Press. kPag (psig)Humidity %

0 h – 72 h. 145 (293) Max. 413.7 (60) Max. Steam

(a-3) Wetwell (Figure 6.2-1)

Time (2)

Temp. °C (°F) Press. kPag (psig)Humidity %

0 h – 72 h 100 (212) Max. 413.7 (60) Max. 100

Notes:

(1) For a pipe failure inside the containment vessel, water accumulates in the lower drywell. The amount depends upon the break location.

(2) Time denotes the time after the occurrence of LOCA.

Page 301: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-14

Table 3H-9

Thermodynamic Environment Conditions Inside Reactor Building for Accident Conditions

Plant Zone/Typical Equipment*** Hydraulic Control Unit (HCU) Rooms HCU, RPS solenoids and RPV water level instrument racks Rooms No 1110, 1120, 1130, 1140 (Figure 1.2-1)

Time * Temp. °C (°F) ** Press. kPag (psig) Humidity %

0 h - 72 h 50 (122) Max Not controlled Not controlled

96 h - 100 days40 (104) -0 Not controlled

Battery Rooms Div I, II, III and IV batteries Rooms No 1210, 1220, 1230, 1240 (Figure 1.2-2)

Time * Temp. °C (°F) ** Press. kPag (psig) Humidity %

0 h - 72 h 60 (140) Max Not controlled Not controlled

96 h - 100 days40 (104) +0 Not controlled

Div I, II, III and IV commodity chases Electrical cables Rooms No 1211, 1221, 1231, 1241 (Figure 1.2-2)

Time * Temp. °C (°F) ** Press. kPag (psig) Humidity %

0 h - 72 h 110 (230) Max Not controlled Not controlled

96 h - 100 days50 (122) +0 Not controlled

Electrical Division Rooms Div I, II, III and IV electrical and electronic equipment Rooms No 1311, 1321, 1331, 1341 (Figure 1.2-3)

Time * Temp. °C (°F) ** Press. kPag (psig) Humidity %

0 h - 72 h To be determined Not controlled Not controlled

96 h - 100 daysTo be determined +0 Not controlled

Lower drywell non-divisional electrical and mechanical penetration Outboard containment isolation valves Rooms No 1300, 1301, 1302, 1303 (Figure 1.2-3)

Time * Temp. °C (°F) ** Press. kPag (psig) Humidity %

0 h - 72 h 110 (230) Max Not controlled Not controlled

96 h - 100 days50 (122) +0 Not controlled

Div I, II, III and IV electrical penetration rooms Electrical cables and penetrations Rooms No 1312, 1322, 1332, 1342 (Figure 1.2-3)

Time * Temp. °C (°F) ** Press. kPag (psig) Humidity %

0 h - 72 h 110 (230) Max Not controlled Not controlled

96 h - 100 days50 (122) +0 Not controlled

Remote shutdown panel Rooms No 1313, 1323 (inside rooms 1311 and 1321) (Figure 1.2-3)

Time * Temp. °C (°F) ** Press. kPag (psig) Humidity %

0 h - 72 h 50 (122) Not controlled Not controlled

96 h - 100 days40 (104) +0 Not controlled

Non-divisional electrical equipment 1 EDCIS panels Rooms No 1500, 1501, 1502, 1503 (Figure 1.2-5)

Time * Temp. °C (°F) ** Press. kPag (psig) Humidity %

0 h - 72 h 50 (122) Max Not controlled Not controlled

96 h - 100 days40 (104) +0 Not controlled

Page 302: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-15

Table 3H-9

Thermodynamic Environment Conditions Inside Reactor Building for Accident Conditions

Plant Zone/Typical Equipment*** Div I, II, III and IV electrical penetrations (EL.13570) Electrical cables and penetration Rooms No 1610, 1620, 1630, 1640 (Figure 1.2-6)

Time * Temp. °C (°F) ** Press. kPag (psig) Humidity %

0 h - 72 h 110 (230) Max Not controlled Not controlled

96 h - 100 days50 (122) +0 Not controlled

Div I, II, III and IV corridors rooms (access to penetration area), divisional electrical cables and 1E DCIS RMUs Rooms No 1710, 1720, 1730, 1740 (Figure 1.2-7)

Time * Temp. °C (°F) ** Press. kPag (psig) Humidity %

0 h - 72 h 50 (122) Max Not controlled Not controlled

96 h - 100 days40 (104) -0 Not controlled

Div I, II, III and IV electrical penetration (EL. 17500) and Mechanical penetrations. Electrical cables and penetrations. Outboard isolation valves Rooms No 1711, 1721, 1731, 1741 and 1712, 1722, 1732, 1742 (Figure 1.2-7)

Time * Temp. °C (°F) ** Press. kPag (psig) Humidity %

0 h - 72 h 110 (230) Max Not controlled Not controlled

96 h - 100 days50 (122) -0 Not controlled

SBLC tank rooms SBLC tank instrumentation Rooms No1713, 1723 (Figure 1.2-7)

Time * Temp. °C (°F) ** Press. kPag (psig) Humidity %

0 h - 72 h 50 (122) Max Not controlled Not controlled

96 h - 100 days40 (104) -0 Not controlled

Main Steamline (MSL) isolation valves MSL drain isolation valves FW isolation valves Rooms No 1770 (Figure 1.2-7)

Time * Temp. °C (°F) ** Press. kPag (psig) Humidity %

0 h - 72 h 117 (234) Max 76 (11) 100

96 h - 100 days60 (140) -0 Not controlled

ICS/PCC pools ICS pools instrumentation Rooms No 18P3A/B/C/D, 18P4A/B/C/D/E/F, 18P5A/B/C, 18P6A/B/C (Figure 1.2-8)

Time *

Temp. °C (°F)** Press. kPag (psig) Humidity %

0 h - 72 h 112 (234) Max 49 (7.1) 100

96 h - 100 days100 (212) +0 100

* Time indicates the time after the occurrence of the accident. ** After 72h, the temperature decreases to the temperature value shown for 96h. *** Electronic equipment is qualified for 50ºC during 72 hours; other equipment could be qualified for higher temperatures according to the above values. In locations where room temperature is higher than the above values, the qualification will be done for the calculated temperature, or the equipment will be protected from high temperatures.

Page 303: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-16

Table 3H-10

Thermodynamic Environment Conditions Inside Control Room Zone for Accident

Conditions

Plant Zone/Typical Equipment Safety portions of CRHA Ventilation SubsystemRooms No 3406, 3407 (Figure 1.2-5)

Time* Temp. ° Press. Pa (psig) Humidity

0 h - 72 h 50 (122)Max Not controlled Not controlled

10 days – 100 days26 (79) Max +0 Not controlled

Control Room Habitability Area Main control room panels Rooms No 3275, 3201, 3202, 3204, 3205, 3270, 3271, 3272, 3273 and 3274 (Figure 3H-1)

Time* Temp. °C** Press. Pa (psig) Humidity

0 – 72 h 8.3 (15) Max 31 (1/8”) Not controlled

10 days 25.6 (78) max 31 (1/8”) 60% Max

Division I, II, III and IV electrical rooms 1EDCIS panels Rooms No 3110, 3120, 3130 and 3140 (Figure 1.2-2)

Time* Temp. °C Press. Pa (psig) Humidity

0 h - 72 h 45 (133)Ma xNot controlled Not controlled

10 days – 100 days26 (79) Max +0 Not controlled

* Time indicates the time after the occurrence of the accident. ** Maximum rise above normal operating temperature. After 72h, the temperature decreases to

the temperature value shown for 10 days.

Page 304: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-17

Table 3H-11

Radiation Environment Conditions Inside Containment Vessel for Accident Conditions

Operating Dose Rate(1)(2) Integrated Dose(2)(3) Plant Zone/Typical Equipment Gamma

(R/h) Beta (R/h)

Gamma (R)

Beta (R)

(b-1) Upper drywell (Figure 6.2-1)

2.64 E+7 2.64 E+8 2.64 E+8 2.64 E+9

(b-2) Upper area of lower drywell (Figure 6.2-1)

2.64 E+7 2.64 E+8 2.64 E+8 2.64 E+9

(b-3) Lower area of lower drywell (Figure 6.2-1)

2.64 E+7 2.64 E+8 2.64 E+8 2.64 E+9

(b-4) Wetwell - Suppression pool and gas space (Figure 6.2-1)

4.0 E+7 5.3 E+8 4.0 E+8 6.6 E+9

(1) The radiation sources developed in accordance with NUREG-1465 are used.

(2) The gamma and beta doses are bounding values based upon generic design considerations, and are to be revised and/or verified by the COL applicant based upon the site-specific equipment considerations (exact design, specific location, materials of construction and leakage characteristics).

(3) Integrated dose is for 6 months.

Page 305: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-18

Table 3H-12

Room Heat Loads

(See Subsection 3H.3.4 for COL Information) Heat Load (W) *

Rooms Contain

safety-related equipment 0 – 2 hr 2 – 24 hr 24 – 72 hr

Remarks

1110, 1120, 1130, 1140 Yes 2300 2300 2300

1100, 1101, 1102, 1103, 1150, 1151, 1152, 1160, 1161,

1162, 1195

No 1800

HELB HELB HELB

Heat load for LOCA with SBO scenario. Rooms bounded by HELB conditions, see

Chapter 6

1106, 1107, 1196, 1197, 1198 No Negligible 0 0 No heat load and no heat sink

(conservative assumption)

1250, 1251, 1252, 1260, 1261, 1262, 1293, 1294, 1295,

1296

No 1800

HELB HELB HELB

Heat load for LOCA with SBO scenario. Rooms bounded by HELB conditions, see

Chapter 6

1210, 1220, 1230, 1240 Yes 7200 6000 6000

1211, 1221, 1231, 1241 Yes 500 500 500

1203, 1204 No Negligible 0 0 No heat load and no heat sink (conservative assumption)

1311, 1321, 1331, 1341 Yes - - - To be determined

1304, 1305, 1306, 1307, 1308 No HELB HELB HELB Rooms bounded by HELB conditions, see

Chapter 6

1300, 1301, 1302, 1303 Yes 1700 / 500 1700 / 500 1700 / 500

The higher heat load applies to the rooms in which the RWCU/SDC piping is

located.

1312, 1322, 1332, 1342 Yes 500 500 500

1313, 1323 Yes 500 500 500

1400, 1401, 1402, 1403 No 5500 0 0

1500, 1501, 1502, 1503 Yes 17500 2000 2000

1600 No 300 0 0

1610, 1620, 1630, 1640 Yes 500 500 500

1710, 1720, 1730, 1740 Yes 3450 / 2250 3450 / 2250 3450 / 2250

The higher heat load applies to the rooms in which the RWCU/SDC piping is

located.

1711, 1721, 1731, 1741 Yes 500 500 500

1712, 1722, 1732, 1742 Yes 1200 1200 1200

1713, 1723 Yes 200 200 200

Page 306: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-19

Table 3H-12

Room Heat Loads

(See Subsection 3H.3.4 for COL Information) Heat Load (W) *

Rooms Contain

safety-related equipment 0 – 2 hr 2 – 24 hr 24 – 72 hr

Remarks

1770 Yes HELB HELB HELB Room bounded by HELB conditions, see Chapter 6

18P3A/B/C/D, 18P4A/B/C/D/E/F,

18P5A/B/C, 18PA/B/C

Yes HELB HELB HELB Rooms bounded by HELB conditions, see Chapter 6

3110, 3120, 3130, 3140 Yes 5720 4675 3080

3100, 3101 No 0 0 0 No heat loads during a 0 - 72 hour period (heat sink)

CRHA (3275, 3201, 3202, 3204, 3205, 3270, 3271, 3272, 3273,

3274)

Yes

7375 (Note this does not

include the N1E heat

loads. There is a cooling system sized to remove the

N1E heat loads for 2 hr.

See Subsection

9.4.1)

7375 7375

200 l/s of outside air are considered (see Table 9.4-1). It is assumed that the control room habitability area is well mixed. Heat

load provided for overall CRHA.

3276 No 2000 0 0

3200,3203, 3277 No 0 0 0 No heat loads during a 0-72 hour period (heat sink)

3250, 3261 Yes 500 500 500

3251, 3260 No 0 0 0 No heat loads during a 0-72 hour period (heat sink)

3301, 3302 No 54000 0 0 Louver for each room maintains a

maximum temperature of 50ºC during SBO. See Figures 1.2-4, 1.2-5 and 1.2-11.

3401, 3402, 3403, 3404 & corridors No 0 0 0 No heat loads during a 0-72 hour period

(heat sink)

3406, 3407 Yes 500 500 500

* Head Loads provided per room except as noted.

Page 307: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3H-20

Table 3H-13

(Deleted)

Page 308: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

{{{Security-Related Information - Withheld Under 10 CFR 2.390}}} 3H-21

Figure 3H-1. Control Room Habitability Area

Page 309: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3I-1

3I. DESIGNATED NEDE-24326-1-P MATERIAL WHICH MAY NOT CHANGE WITHOUT PRIOR NRC APPROVAL

This appendix presents the necessary NEDE-24326-1-P (Reference 3I-1), “General Electric Environmental Qualification Program,” material for identifying the material, by italics, which shall not be changed without prior NRC approval. (See Section 3.10.)

3I.1 GENERAL REQUIREMENTS FOR DYNAMIC TESTING

(Paragraph 4.4.2.5.1 of Ref. 3I-1)

(a) Mounting – Specimens to be tested will be mounted in a manner that adequately simulates the installed configuration or as described in the applicable GE mounting documentation. Mounting will be specified in the Product Performance Qualification Specification (PPQS).

(b) Monitoring – Sufficient monitoring equipment will be used to evaluate the performance of the specimen before, during, and after the test. Monitoring product is used to allow determination of applied vibration levels and equipment responses. The location of monitoring sensors shall be specified by the PPQS and will be documented in the test report.

When required by the PPQS, the response of the product will be measured using accelerometers. When required by the PPQS, the accelerometers shall be located at a sufficient number of locations on the product to define the mode shapes and/or frequencies which would be required to allow dynamic qualification of individual safety-related components and devices, to support analytical extrapolation of test results, or to verify frequency requirements.

(c) Exploratory Tests – Exploratory vibration tests may be performed on the product to aid in the determination of the test method that will best qualify or determine the dynamic characteristics of the product. If it can be shown that the equipment is not resonant at any frequency within the expected frequency range, it may be considered a rigid body and tested according to methods and procedures discussed in Subsection 4.4.2.5.6 of Reference 3I-1 or analyzed according to the methods of Subsection 4.4.4.1.4.5 of Reference 3I-1.

If the product contains a single resonance or multiple resonances, one of the methods outlined in Subsection 4.4.2.5.3 of Reference 3I-1 will be used to qualify the product by test.

The exploratory test may be performed in the form of a low-level, continuous sinusoidal sweep at a rate no greater than 2 octave per minute over the frequency range equal to or greater than that to which the equipment is to be qualified. All resonances will be recorded for use in determining the test method to be used or the dynamic characteristics of the equipment. If the configuration of the product is such that critical natural frequencies cannot be ascertained, dynamic qualification will be accomplished by testing by the Response Spectrum method as specified in Paragraph 4.4.2.5.3.6 of Reference 3I-1. An acceptable alternative qualification method is a fragility test as described in Subsection 4.4.2.5.7 of Reference 3I-1.

Page 310: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3I-2

(d) Dynamic Event Aging Tests – The dynamic tests simulate the effect of low level earthquake loads combined with Service Level B RBV dynamic loads. The dynamic tests are performed on aged products unless otherwise justified. (See Section 3.10)

The test sequence to be used will be:

(1) Vibration aging (if required);

(2) Low level earthquake loads combined with Service level B RBV dynamic loads; and

(3) SSE loads combined with Service level D RBV dynamic loads

Because most testing is biaxial rather than triaxial, the above sequence and durations are applied twice with the equipment being rotated 90 degrees on the table between the two tests. (See Section 3.10)

The Test Response Spectra (TRS) will envelop the RRS as specified in 4.2.2.a(6) of Reference 3I-1. (See Section 3.10)

(e) Loading – Dynamic tests will be performed with the product subjected to nominal operating service conditions. If significant, normal operating loads such as electrical, mechanical, pressure, and thermal will be included. Where normal operating loads cannot be included in the dynamic tests, supplemental analysis will be used to qualify the product for those effects. (See Section 3.10)

3I.2 PRODUCT AND ASSEMBLY TESTING

(Paragraph 4.4.2.5.2 of Ref. 3I-1)

(a) Products will be tested simulating nominal operating conditions. In addition, dynamic coupling between interacting equipment will be considered. See Section 3.10. The product shall be mounted on the shaker table as stated in Paragraph 4.4.2.5.1(a) of Reference 3I-1. If the product is intended to be mounted on a panel, the panel will be included in the test mounting.

Alternatively, the response at the product mounting location may be measured in the assembly test as specified in Paragraph 4.4.2.5.1(a) of Reference 3I-1. Then the product will be mounted directly to the shaker table, with the dynamic input being that which was determined at the product mounting location.

3I.3 MULTIPLE-FREQUENCY TESTS

(Paragraph 4.4.2.5.3 of Ref. 3I-1)

(a) General – When the dynamic ground motion has not been strongly filtered, the mounting location retains the broadband characteristics. In this case, multi-frequency testing is applicable to dynamic qualification. (See Section 3.10)

Page 311: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3I-3

(b) Response Spectrum Test – Testing shall be performed by applying artificially generated input excitation to the product, the amplitude of which is controlled in 1/3 octave or narrower bands. The excitation will be controlled to provide a test response spectrum (TRS) which meets or exceeds the required response spectrum (RRS). The peak value of the input excitation equals or exceeds the zero period acceleration (ZPA) of the RRS. (See Section 3.10)

3I.4 SINGLE- AND MULTI-AXIS TESTS

(Paragraph 4.4.2.5.4 of Ref. 3I-1)

Single-axis tests may be allowed if the tests are designed to conservatively reflect the dynamic event at the equipment mounting locations or if the product being tested can be shown to respond independently in each of the three orthogonal axis or otherwise withstand the dynamic event at its mounting location.

If the preceding considerations do not apply, multi-axis testing will be used. The minimum is biaxial testing with simultaneous inputs in a principal horizontal axis and the vertical axis. Independent random inputs are preferred, and, if used, the test will be performed in two steps with the equipment rotated 90° in the horizontal plane for the second step. If independent random inputs are not used (such as with single frequency tests), four tests would be run; first, with the inputs in phase; second, with one input 180° out of phase; third, with the equipment rotated 90° horizontally and the inputs in phase; and, finally, with the same equipment orientation as in the third step but with one input 180° out of phase. (See Section 3.10)

3I.5 SINGLE FREQUENCY TESTS

(Paragraph 4.4.2.5.6 of Ref. 3I-1)

If it can be shown that the products, as defined in Regulatory Guide 1.92 have no resonances, or only one resonance, or if resonances are widely spaced and do not interact to reduce the fragility level in the frequency range of interest or, if otherwise justified, single frequency tests may be used to fully test the product. (See Section 3.10)

3I.6 DAMPING

(Paragraph 4.4.2.5.7 of Ref. 3I-1)

The product damping value used for dynamic qualification shall be established. See (Reference 3I-1) Section 5 of IEEE-344. (Also see Subsections 3.9.2.2, 3.9.3, and Section 3.10)

3I.7 QUALIFICATION DETERMINATION

(Paragraph 4.4.3.3 of Ref. 3I-1)

In order for equipment to be qualified by reason of operating experience, documented data will be available confirming that the following criteria have been met:

Page 312: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3I-4

(a) the product providing the operating experience is identical or justifiably similar to the equipment to be qualified;

(b) the product providing the operating experience has operated under service conditions which equal or exceed, in severity, the service conditions and performance requirements for which the product is to be qualified; and

(c) the installed product must, in general, be removed from service and subjected to partial type testing to include the dynamic and design basis event environments for which the product is to be qualified. (See Section 3.10)

3I.8 DYNAMIC QUALIFICATION BY ANALYSIS

(Paragraph 4.4.4.1.4 of Ref. 3I-1)

(a) The analytical procedures described in this section may be used for dynamic qualification of products.

(b) Many factors control the design of a qualification program. Paragraphs 4.2.2.c(3) and 4.2.2.d(1) of Reference 3I-1 provide general guidelines on dynamic analysis techniques. Analytical techniques and modeling assumptions will, when possible, be based on a correlation of the analytical approach with testing or operating experience performed on similar equipment or structures. Analysis may be used as a qualification method for the following conditions:

(1) if maintaining structural integrity is the only required assurance of the safety function (see Section 3.10);

(2) if the response of the equipment is linear or has a simple nonlinear behavior which can be predicted by conservative analytical methods; or

(3) if the product is too large to test.

3I.9 REQUIRED RESPONSE SPECTRA

(Paragraph 4.4.4.1.4.6.2 of Ref. 3I-1)

(a) The required response spectra that define the dynamic criteria for the location(s) of the product under consideration are to be given in the PPQS. If the equipment under consideration is attached to the structural system at more than one location, then the dynamic analysis performed takes into consideration the different response spectra at the different support locations. The effect of multiple support attachment points or multiple locations of the particular product can also be accounted for by selecting a single spectrum which will effectively produce the critical maximum responses due to different accelerations existing at different points. (See Section 3.10.) This may be conservatively accomplished by enveloping the response spectra for the different applicable locations. Alternatively, actual multi-support excitation effects may be taken into account by performing a multi-support excitation analysis.

3I.10 TIME HISTORY ANALYSIS

(Paragraph 4.4.4.1.4.6.3 of Ref. 3I-1)

Page 313: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3I-5

Time history analysis will be performed when conditions arise invalidating the response spectrum method of analysis due to nonlinear phenomena, or when generation of in-equipment response spectra or a more exact result is desired. To integrate or differentiate, the analysis will be done by an applicable numerical integration technique. The largest time step used in the analysis will be 1/10 of the period of the highest significant mode of vibration of the equipment. The dynamic input will be the time history motion at the equipment support location. (See Section 3.10.) For products supported at several locations, the responses will be determined by simultaneous excitations using appropriate time history input at each support location. The scaled time interval will be varied as per Paragraph 4.4.2.a(6) of Reference 3I-1.

If the product frequency is within the range of the supporting structure, then a time interval will be chosen such that the peak of the response spectrum shall be at the product resonance frequency. The total time interval range will be provided with the time history.

3I.11 REFERENCES

3I-1 GE Nuclear Energy, “General Electric Environmental Qualification Program,” NEDE-24326-1-P, Proprietary Document, January 1983.

Page 314: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3J-1

3J. EVALUATION OF POSTULATED RUPTURES IN HIGH ENERGY PIPES

3J.1 BACKGROUND AND SCOPE

The need for an evaluation of the dynamic effects of fluid dynamic forces resulting from postulated ruptures in high energy piping systems is included by Standard Review Plan (SRP) Sections 3.6.1 and 3.6.2. The criteria for performing this evaluation is defined in Subsections 3.6.1 and 3.6.2, SRP Sections 3.6.1 and 3.6.2 and ANS 58.2.

This Appendix defines an acceptable procedure for performing these evaluations. The procedure is based on use of analytical methodology, computer programs and pipe whip restraints used by GE, but it is intended to be applicable to other computer programs and to pipe whip restraints of alternate design. Applicability of alternate programs will be justified by the Combined Operating License (COL) applicant.

The evaluation is performed in four major steps:

(1) Identify the location of the postulated rupture and whether the rupture is postulated as circumferential or longitudinal.

(2) Select the type and location of the pipe whip restraints.

(3) Perform a complete system dynamic analysis or a simplified dynamic analysis of the ruptured pipe and its pipe whip restraints to determine the total movement of the ruptured pipe, the loads on the pipe, strains in the pipe whip restraint, and the stresses in the penetration pipe.

(4) Evaluate safety-related equipment that may be impacted by the ruptured pipe or the target of the pipe rupture jet impingement.

The criteria for locations where pipe ruptures must be postulated and the criteria for defining the configuration of the pipe rupture are defined in Subsection 3.6.2. Also defined in Subsection 3.6.2 are:

• the fluid forces acting at the rupture location and in the various segments of the ruptured pipe, and

• the jet impingement effects including jet shape and direction and jet impingement load.

The high energy fluid systems are defined within Subsection 3.6.2.1, and identified in Tables 3.6-3 and 3.6-4. Safety-related systems, components and equipments, or portions thereof, specified in Tables 3.6-1 and 3.6-2, are to be protected from pipe break effects, which would impair their ability to facilitate safe shutdown of the plant.

The information contained in Subsections 3.6.1 and 3.6.2 and in the SRPs and ANS 58.2 is not repeated in this appendix.

Page 315: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3J-2

3J.2 IDENTIFICATION OF RUPTURE LOCATIONS AND RUPTURE GEOMETRY

3J.2.1 Ruptures in Containment Penetration Area.

Postulation of pipe ruptures in the portion of piping in the containment penetration area is not allowed. This includes the piping between the inner and outer isolation valves. Therefore, examine the final stress analysis of the piping system and confirm that, for piping in containment penetration areas, the design stress and fatigue limits specified within Subsection 3.6.2.1 are not exceeded.

3J.2.2 Ruptures in Areas other than Containment Penetration.

Postulate breaks in Class 1 piping in accordance with Subsection 3.6.2.1.1.

Postulate breaks in Classes 2 and 3 piping in accordance with Subsection 3.6.2.1.1.

Postulate breaks in seismically analyzed non-ASME Class piping in accordance with the above requirements for Classes 2 and 3 piping.

3J.2.3 Determine the Type of Pipe Break

Determine whether the high energy line break is longitudinal or circumferential in accordance with Subsection 3.6.2.1.3.

3J.3 DESIGN AND SELECTION OF PIPE WHIP RESTRAINTS

3J.3.1 Make Preliminary Selection of Pipe Whip Restraint

The load carrying capability of the GE U-Bar pipe whip restraint is determined by the number, size, bend radius and the straight length of the U-bars. The pipe whip restraint must resist the thrust force at the pipe rupture location and the impact force of the pipe. The magnitude of these forces is a function of the pipe size, fluid, and operating pressure.

A preliminary selection of one of the standard GE pipe whip restraints is made by matching the thrust force at the rupture location with a pipe whip restraint capable of resisting this thrust force. This is done by access to the large database contained in the GE REDEP computer file. This file correlates the pipe size and the resulting thrust force at the pipe rupture with the U-bar pipe whip restraints designed to carry the thrust force. REDEP then supplies the force/deflection data for each pipe whip restraint.

3J.3.2 Prepare Simplified Computer Model of Piping-Pipe Whip Restraint System.

Prepare a simplified computer model of piping system as described in Subsection 3J.4.2.1 and as shown in Figure 3J-1 and Figure 3J-2. Critical variables are length of pipe, type of end condition, distance of pipe from structure and location of the pipe whip restraint. Locate the pipe whip restraint as near as practical to the ruptured end of the pipe but establish location to minimize interference to inservice inspection.

Page 316: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3J-3

3J.3.3 Run Pipe Dynamic Analysis

Run the Pipe Dynamic Analysis (PDA) computer program using the following input.

• The information from the simplified piping model, including pipe length, diameter, wall thickness and pipe whip restraint location.

• Piping information such as pipe material type, stress/strain curve and pipe material mechanical properties.

• Pipe whip restraint properties such as force-deflection data and elastic plastic displacements.

• Force time-history of the thrust at the pipe rupture location.

3J.3.4 Select Pipe Whip Restraint for Pipe Whip Restraint Analysis

PDA provides displacements of pipe and pipe whip restraint, pipe whip U-bar strains, pipe forces and moments at fixed end, time at peak load and lapsed time to achieve steady state using thrust load and pipe characteristics.

Check displacements at the pipe broken end and at the pipe whip restraint and compare loads on the piping and strains of pipe whip restraint U-bars with allowable loads and strains. If not satisfied with output results rerun PDA with different pipe whip restraint parameters.

3J.4 PIPE RUPTURE EVALUATION

3J.4.1 General Approach

There are several analytical approaches, which may be used in analyzing the pipe/pipe whip restraint system for the effects of pipe rupture. This procedure defines two acceptable approaches.

(1) Dynamic Time-History Analysis With Simplified Model - A dynamic time history analysis of a portion of a piping system may be performed in lieu of a complete system analysis when it can be shown to be conservative by test data or by comparison with a more complete system analysis. For example, in those cases where pipe stresses in the containment penetration region need not be calculated, it is acceptable to model only a portion of the piping system as a simple cantilever with a fixed or pinned end or as a beam with both ends fixed or with one end pinned and one end fixed.

When a circumferential break is postulated, the pipe system is modeled as a simple cantilever, the thrust load is applied opposite the fixed (or pinned) end and the pipe whip restraint acts between the fixed (or pinned) end and the thrust load. It is then assumed that deflection of the pipe is in one plane. As the pipe moves a resisting bending moment in the pipe is created and later a restraining force at the pipe whip restraint. Pipe movement stops when the resisting moments about the fixed (or pinned) end exceed the applied thrust moment.

When a longitudinal break is postulated, the pipe system has both ends supported. To analyze this case, two simplifications are made to allow the use of the cantilever model described above. First, an equivalent point mass is assumed to exist at D (Figure 3J-2)

Page 317: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3J-4

instead of pipe length DE. The inertia characteristics of this mass, as it rotates about point B, are calculated to be identical to those of pipe length DE, as it rotates about point E. Second, an equivalent resisting force is calculated (from the bending moment-angular deflection relationships for end DE) for any deflection for the case of a built-in end. This equivalent force is subtracted from the applied thrust force when calculating the net energy.

See Figure 3J-1 and Figure 3J-2 for the models described above.

(2) Dynamic Time-History Analysis with Detailed Piping Model—In many cases it is necessary to calculate stresses in the ruptured pipe at locations remote from the pipe whip restraint location. For example, the pipe in the containment penetration area must meet the limits of SRP 3.6.2. In these cases it is required that the ruptured piping, the pipe supports, and the pipe whip restraints be modeled in sufficient detail to reflect their dynamic characteristics. A time-history analysis using the fluid forcing functions at the point of rupture and the fluid forcing functions of each pipe segment is performed to determine deflections, strains, loads to structure and equipment and pipe stresses.

3J.4.2 Procedure For Dynamic Time-History Analysis With Simplified Model

3J.4.2.1 Modeling of Piping System

For many piping systems, required information on the response to a postulated pipe rupture can be determined by modeling a portion of the piping system as a cantilever with either a fixed or pinned end. The fixed end model, as shown in Figure 3J-1, is used for piping systems where the stiffness of the piping segment located between A and B is such that the slope of the pipe length, BD, at B, would be approximately zero. The pinned end model, as shown in Figure 3J-1, is used for piping systems where the slope of the pipe length, BD, at B, is much greater than zero. The pinned end model is also used whenever it is not clear that the pipe end is fixed.

A simplified cantilever model may also be used for a postulated longitudinal break in a pipe supported at both ends, as shown in Figure 3J-2. The pipe can have both ends fixed or have pinned end at B and a fixed end at E, as shown in Figure 3J-2. Subsection 3J.4.1(1) discusses the simplification techniques used to allow the use of a cantilever model. A fixed end is used when rotational stiffness of the piping at that location is such that the slope of the pipe at that end is approximately zero. A pinned end is used when the pipe slope at that end is much greater than zero. If it is not clear whether an end is fixed or pinned, the end condition giving more conservative results should be assumed.

The pipe whip restraint is modeled as two components acting in series; the restraint itself and the structure to which the restraint is attached. The restraint and piping behave as determined by an experimentally or analytically determined force-deflection relationship. The structure deflects as a simple linear spring of representative spring constant.

The model must account for the maximum clearance between the restraint and the piping. The clearance is equal to the maximum distance from the pipe during normal operation to the position of the pipe when the pipe whip restraint starts picking up the rupture load. This simplified model is not used if the piping has snubbers or restraints strong enough to affect the pipe movement following a postulated rupture.

Page 318: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3J-5

3J.4.2.2 Dynamic Analysis of Simplified Piping Model

When the thrust force (as defined in Subsection 3.6.2.2) is applied at the end of the pipe, rotational acceleration would occur about the fixed (or pinned) end. As the pipe moves, the net rotational acceleration would be reduced by the resisting bending moment at the fixed end and by the application of the restraining force at the pipe whip restraint. The kinetic energy would be absorbed by the deflection of the restraint and the bending of the pipe. Movement would continue until equilibrium is reached. The primary acceptance criteria is the pipe whip restraint deflection or strain must not exceed the design strain limit of 50% of the restraint material ultimate uniform strain capacity.

The analysis may be performed by a general purpose computer program with capability for nonlinear time-history analysis such as ANSYS, or by a special purpose computer program especially written for pipe rupture analysis such as the GE computer program, “Pipe Dynamic Analysis”.

3J.4.3 Procedure For Dynamic Time-History Analysis Using Detailed Piping Model

3J.4.3.1 Modeling of Piping System

In general, the rules for modeling the ruptured piping system are the same as the modeling rules followed when performing seismic/dynamic analysis of Seismic Category I piping. These rules are outlined in Subsection 3.7.3.3. The piping, pipe supports and pipe whip restraints are modeled in sufficient detail to reflect their dynamic characteristics. Inertia and stiffness effects of the system and gaps between piping and the restraints must be included.

If the snubbers or other seismic restraints are included in the piping model they should be modeled with the same stiffness used in the seismic analysis of the pipe. However, credit for seismic restraints cannot be taken if the applied load exceeds the Level D rating.

The pipe whip restraints are modeled the same as for the simplified model described in Subsection 3J.4.2.1. For piping designed with the GE U-Bar pipe whip restraints, the selected size and dimensions, and the resulting force-deflection and elastic/plastic stiffness is first determined according to the procedure previously defined in Section 3J.3.

3J.4.3.2 Dynamic Analysis using Detail Piping Model

The pipe break nonlinear time-history analysis can be performed by ANSYS or other NRC approved non-linear computer programs. The force time histories acting at the break location and in each of the segments of the ruptured pipe are determined according to the criteria defined in ANS 58.2. The time step used in the analysis must be sufficiently short to obtain convergence of the solution. (GE has shown that for a rupture of the main steam pipe a time step of 0.001 second is adequate for convergence.) The analysis must not stop until the peaks of the dynamic load and the pipe response are over.

The primary acceptance criteria are:

• The piping stresses between the primary containment isolation valves are within the allowable limits specified in Subsection 3.6.2.1.

Page 319: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3J-6

• The pipe whip restraint loads and displacements due to the postulated break are within the design limits.

• Specified allowable loads on safety-related valves or equipment to which the ruptured piping is attached are not exceeded.

3J.5 JET IMPINGEMENT ON ESSENTIAL PIPING

Postulated pipe ruptures result in a jet of fluid emanating from the rupture point. Safety-related systems and components require protection if they are not designed to withstand the results of the impingement of this jet. Subsection 3.6.2.3.1 provides the criteria and procedure for:

(1) defining the jet shape and direction;

(2) defining the jet impingement load, temperature and impingement location; and

(3) analysis to determine effects of jet impingement on safety-related equipment.

The paragraphs below provide some additional criteria and procedure for the analysis required to determine the effects of jet impingement on piping.

• Jet impingement is a faulted load and the primary stresses it produces in the piping must be combined with the stresses caused by SSE to meet the faulted stress limits for the designated ASME class of piping.

• If a pipe is subjected to more than one jet impingement load, each jet impingement load is applied independently to the piping system and the load which supplies the largest bending moment at each node is used for evaluation.

• A jet impingement load may be characterized as a two part load applied to the piping system—a dynamic portion when the applied force varies with time and a static portion which is considered steady state.

For the dynamic load portion, when static analysis methods are used, apply a dynamic load factor of 2. Snubbers are assumed to be activated. Stresses produced by the dynamic load portion are combined by SRSS with primary stresses produced by SSE.

For the static load portion, snubbers are not activated and stresses are combined with SSE stresses by absolute sum.

Page 320: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3J-7

Figure 3J-1. Simplified Piping Models

Page 321: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3J-8

Figure 3J-2. Representation of Pipe With Both Ends Supported With a Longitudinal Break

Page 322: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3K-1

3K. RESOLUTION OF INTERSYSTEM LOSS OF COOLANT ACCIDENT

3K.1 INTRODUCTION

An Intersystem Loss of Coolant Accident (ISLOCA) is postulated to occur when a series of failures or inadvertent actions occur that allow the high pressure from one system to be applied to the low design pressure of another system, which could potentially rupture the pipe and release coolant from the reactor system pressure boundary. This may also occur within the high and low pressure portions of a single system. Future advanced light water reactor (ALWR) designs like the ESBWR are expected to reduce the possibility of a LOCA outside the containment by designing to the extent practicable all piping systems, major system components (pumps and valves), and subsystems connected to the reactor coolant pressure boundary (RCPB) to an ultimate rupture strength at least equal to the full RCPB pressure. The general Ultimate Rupture Strength (URS) criteria was recommended by the Reference 1 and the NRC Staff recommended specific ultimate rupture strength design characteristics by Reference 2.

3K.2 REGULATORY POSITIONS

In SECY-90-016 and SECY-93-087 (References 3 and 4), the NRC staff resolved the ISLOCA issue for advanced light water reactor plants by requiring that low-pressure piping systems that interface with the reactor coolant pressure boundary be designed to withstand reactor pressure to the extent practicable. However, the staff believes that for those systems that have not been designed to withstand full reactor pressure, evolutionary ALWRs should provide (1) the capability for leak testing the pressure isolation valves, (2) valve position indication that is available in the control room when isolation valve operators are de-energized and (3) high-pressure alarms to warn main control room operators when rising reactor pressure approaches the design pressure of attached low-pressure systems or when both isolation valves are not closed. The staff noted that for some low-pressure systems attached to the RCPB, it may not be practical or necessary to provide a higher system ultimate pressure capability for the entire low-pressure connected system. The staff will evaluate such exceptions on a case-by-case basis during specific design certification reviews.

GE provided a proposed implementation of the issue resolution for the ABWR in Reference 5 and again in Reference 6. The staff in the Civil Engineering and Geosciences Branch of the Division of Engineering completed its evaluation of the Reference 5 proposal. Specifically, as reported by Reference 2 and summarized below, the staff has evaluated the minimum pressure for which low-pressure systems should be designed to ensure reasonable protection against burst failure should the low-pressure system be subjected to full RCPB pressure.

The design pressure for the low-pressure piping systems that interface with the RCPB should be equal to 0.4 times the normal operating RCPB pressure, the minimum wall thickness of low-pressure piping should be no less than that of a standard weight pipe, and that Class 300 valves are adequate. The design is to be in accordance with the ASME Boiler and Pressure Vessel Code, Section III, Subarticle NC/ND-3600. Furthermore, the staff will continue to require periodic surveillance and leak rate testing of the pressure isolation valves via Technical Specifications, as a part of the ISI program.

Page 323: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3K-2

The periodic surveillance and leak rate testing requirements for high-pressure to low-pressure isolation valves are not applicable to the ESBWR, because, as shown in this appendix, the ESBWR design does not contain a pressure isolation valve between the reactor coolant pressure boundary and a low pressure piping system.

3K.3 BOUNDARY LIMITS OF ULTIMATE RUPTURE STRENGTH

Guidance given by Reference 3 provides provision for applying practical considerations for the extent to which systems are upgraded to the ultimate rupture strength design pressure. The following items form the basis of what constitutes practicality and set forth the test of practicality used to establish the boundary limits of ultimate rupture strength for the ESBWR:

• It is impractical to consider a disruptive open flow path from reactor pressure to a low pressure sink. A key assumption to understanding the establishment of the boundary limits from this practicality basis is that only static pressure conditions are considered. Static conditions are assumed when the valve adjacent to a low pressure sink remains closed. Thus, the dynamic pressurization effects accompanied by violent high flow transients and temperature escalations are precluded that would occur if the full RCPB pressure was connected directly to the low pressure sink. As a consequence, the furthest downstream valve in such a path is assumed closed so that essentially all of the static reactor pressure is contained by the ultimate rupture strength upgraded region.

• It is impractical to design or construct large tank structures to the ultimate rupture strength design pressure that are vented to atmosphere and have a low design pressure.

• It is impractical to design piping systems that are connected to low pressure sink features to the ultimate rupture strength design pressure when the piping is always locked open to a low pressure sink by locked open valves. These piping sections are extensions of the low pressure sink and need no greater design pressure than the low pressure sink to which they are connected.

3K.4 EVALUATION PROCEDURE

The pressures of each system piping boundary on the ESBWR system drawings were reviewed to identify where changes were needed to provide ultimate rupture strength protection. Where low pressure piping interfaces with higher pressure piping connected to piping with reactor coolant at reactor pressure, design pressure values are at least rated to the ultimate rupture strength design pressure. The low pressure piping boundaries were upgraded to ultimate rupture strength pressures and extend to the last closed valve connected to piping interfacing a low pressure sink.

3K.5 SYSTEMS EVALUATED

The following systems, interfacing directly with the RCPB, were evaluated.

• Control Rod Drive (CRD) system Section 4.6

• Standby Liquid Control (SLC) system Section 9.3

• Reactor Water Cleanup/Shutdown Cooling (RWCU/SDC) system Section 5.4

• Fuel and Auxiliary Pools Cooling System (FAPCS) Section 9.1

Page 324: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3K-3

• Nuclear Boiler System (NBS) Section 5.1

• Condensate and Feedwater System (C&FS) Section 10.4

Attachment 3KA contains a system-by-system evaluation of potential reactor pressure application to piping and components, discussing the ultimate rupture strength boundary and listing the upgraded components. For some systems, certain regions of piping and components not upgraded are also listed.

3K.6 PIPING DESIGN PRESSURE FOR ULTIMATE RUPTURE STRENGTH COMPLIANCE

Guidelines for ultimate rupture strength compliance were established by Reference 2, which concluded that for the ESBWR:

• The design pressure for the low-pressure piping systems that interface with the RCPB pressure boundary should be equal to 0.4 times the normal operating RCPB pressure, and

• The minimum wall thickness of the low-pressure piping should be no less than that of a standard weight pipe.

3K.7 APPLICABILITY OF ULTIMATE RUPTURE STRENGTH NON-PIPING COMPONENTS

Reference 2 also provided the NRC Staff's position that:

(1) The remaining components in the low-pressure systems should also be designed to a design pressure of 0.4 times the normal operating reactor pressure. This is accomplished in DCD by the revised boundary symbols on system design drawings to the design pressure, which includes the piping and components associated with the boundary symbols. A stated parameter (e.g., design pressure) of a boundary symbol on the system design drawing applies to the piping and components that extend away from the boundary symbol, including along any branch line, until another boundary symbol occurs on the drawing. The components include flanges, and pump seals, etc.

(2) A Class 300 valve is adequate for ensuring the pressure of the low-pressure piping system under full reactor pressure. The rated working pressure for Class 300 valves varies widely depending on material and temperature (ASME/ANSI B16.34).

3K.8 RESULTS

The results of this work are incorporated into the ESBWR system drawings.

3K.9 VALVE MISALIGNMENT DUE TO OPERATOR ERROR

The ESBWR design with the ISLOCA ultimate rupture strength applied for the boundary described by this appendix and its attachment, has extended the increased design pressure (ultimate rupture strength) over the full extent of regions that could potentially experience reactor pressure, so that operator misaligned valves will not expose piping to reactor pressure not designed to the ultimate rupture strength pressure.

Page 325: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3K-4

3K.10 SUMMARY

Based on the NRC staff's new guidance cited in References 1 through 4, the ESBWR is in full compliance. For ISLOCA considerations, a design pressure of at least the ultimate rupture strength design pressure and pipe having a minimum wall thickness equal to standard grade has been provided as an adequate margin with respect to the full reactor operating pressure, by applying the guidance recommended by Reference 2. This design pressure was applied to the low pressure piping at their boundary symbols on the system drawings, therefore, imposes the requirement on the associated piping, valves, pumps, tanks, instrumentation and other equipment shown between boundary symbols. Notes were added to each ultimate rupture strength upgraded drawing, requiring pipe to have a minimum wall thickness equal to standard grade and requiring valves with a design pressure of at least the ultimate rupture strength design pressure to be a minimum of Class 300.

3K.11 REFERENCES

3K-1 USNRC, Dino Scaletti, NRC, to Patrick Marriott, “GE, Identification of New Issues for the General Electric Company Advanced Boiling Water Reactor Review,” September 6, 1991.

3K-2 Chester Poslusny, NRC, to Patrick Marriott, “GE, Preliminary Evaluation of the Resolution of the Intersystem Loss-of-Coolant Accident (ISLOCA) Issue for the Advanced Boiling Water Reactor (ABWR) - Design Pressure for Low-Pressure Systems,” December 2, 1992, Docket No. 52-001.

3K-3 James M. Taylor, NRC, to The Commissioners, SECY-90-016, “Evolutionary Light Water Reactor (LWR) Certification Issues and Their Relationship to Current Regulatory Requirements,” January 12, 1990.

3K-4 James M. Taylor, NRC, to The Commissioners, SECY-93-087, “Policy, Technical, and Licensing Issues Pertaining to Evolutionary and Advanced Light-Water Reactor (ALWR) Designs,” April 2, l993.

3K-5 Jack Fox, GE, to Chet Poslusny, NRC, “Proposed Resolution of ISLOCA Issue for ABWR,” October 8, 1992.

3K-6 Jack Fox, GE, to Chet Poslusny, NRC, “Resolution of Intersystem Loss of Coolant Accident for ABWR,” April 30, 1993.

Page 326: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3K-5

ATTACHMENT 3KA. ULTIMATE RUPTURE STRENGTH SYSTEM BOUNDARY EVALUATION

3KA.1 CONTROL ROD DRIVE SYSTEM

3KA.1.1 System URS Boundary Description

The Control Rod Drive (CRD) system interfaces with the reactor in a manner that makes low pressure piping over pressurization very unlikely. The minimum failure path from the reactor to the low pressure piping has three check valves in series and the second check valve is 12.7 mm in size. This path is from the purge flow channels of the CRD, out through the first check valve in the CRD housing, through the purge supply line that has the second 12.7 mm check valve, and to the pump discharge check valve. An alternate path through the accumulator charging line has additionally the normally closed scram valve, and this path is less likely for failure, therefore not considered. The path from the pump discharge, back through the pump to its suction, and back through the suction lines to the condensate storage tank or the condensate feedwater source is an open path. The open pump suction pipeline is a minimum 100 mm diameter through the pump suction filters in the normal mode of operation, and 200 mm diameter when the suction filter bypass lines are open during the reactor high pressure makeup mode of operation. The CRD pumps run continuously while the reactor is at operating pressure, which prevents reactor pressure from reaching the low pressure piping except for the unlikely case when both CRD pumps have failed. Therefore, an ISLOCA condition from a 12.7 mm diameter source could only occur when three check valves in series fail open at the same time both CRD pumps have failed. The ISLOCA guidelines do not provide credit for this rare condition, so the low pressure piping has been upgraded to the URS design criteria over the entire low pressure piping region of the CRD system. The suction path through the Condensate Storage and Transfer System (CS&TS) to the Condensate Storage Tank (CST) from the CRD interface is an open path whose design pressure was not upgraded to URS design criteria. The piping design of the primary suction path through the Condensate and Feedwater System has not been established, but if a check valve is in the path, the design pressure up to and including the check valve will be the URS design pressure.

The normal key assumption, as stated in the Boundary Limits of URS section above, that the valve adjacent to a low pressure sink remains closed, means that the pump discharge check valve remains closed as a given. However, this valve is in the high pressure piping, which is unique for the CRD system according to this accepted line of reasoning. The low pressure piping would not have to be upgraded because it would not experience the high reactor pressure. However, the low-pressure piping has been designed to the URS design pressure based on the guidance that states “for all interfacing systems and components which do not meet the full URS criteria, justification is required, which must include engineering feasibility; not solely a risk benefit analysis.” Designing the low-pressure piping to the URS design pressure is feasible and was done.

3KA.1.2 Downstream Interfaces

Other systems are listed below that interface with the CRD system and could possibly be exposed to reactor pressure. A description of the interface location and a statement of its applicability to ISLOCA are given.

Page 327: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3K-6

• RWCU/SDC system at the output of the CRD pump discharge filter units. The RWCU/SDC design pressure exceeds the URS design pressure without upgrade.

• NBS at the output of the CRD pump discharge filter units. The NBS design pressure exceeds the URS design pressure without upgrade.

• CS&TS provides an alternate source of water for the CRD system if the C&FS is not available. Its interfaces with the CRD system are located at pump suction from and system return to the CST. This line cannot be pressurized because of the open communication to the CST, and the CST is vented to atmosphere. There is no source to pressurize the CS&TS line because of closed pump discharge check valves in the CRD URS region.

• C&FS provides a source of water for the CRD pump suction from the turbine building condensate supply. This system is expected to be an open path to a large source similar to CS&TS. Because of the open path, the piping was not considered practical for upgrade to the URS design pressure.

• Process Sampling System (PSS) at the output of the CRD pump discharge filter units. The PSS design pressure exceeds the URS design pressure without upgrade.

3KA.1.3 Low-Pressure Piping Systems and Components Designed to URS Pressure

The following is a listing of low-pressure piping systems and components within CRD that are designed to the minimum URS design pressure of 2.82 MPaG based on the ISLOCA considerations outlined in Appendix 3K.

Pipeline / Component Description (see Figure 4.6-8)

CRD Pump Suction Piping and Associated Components

Page 328: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3K-7

3KA.2 STANDBY LIQUID CONTROL SYSTEM

3KA.2.1 System URS Boundary Description

The SLC system is a high pressure system which injects enriched sodium pentaborate solution inside the reactor through normally closed squib valves. The leakage path includes two 80 mm check valves in series in addition to a redundant set of normally closed pyrotechnic-type squib valves. The entire SLC system is designed for pressure higher than reactor pressure except the low pressure section from piston pump suction to open mixing drum used for preparation of sodium pentaborate solution. Instrumentation, pressure relief, drain piping and valving are designed to higher than URS design criteria to reduce the level of pressure challenge to these components. The system does not require upgrade to URS design pressure.

3KA.2.2 Downstream interfaces

The SLC system has no further downstream system interfaces that could possibly be exposed to reactor pressure.

3KA.2.3 Low Pressure Piping Systems and Components Designed to URS Pressure

None

Page 329: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3K-8

3KA.3 REACTOR WATER CLEANUP/SHUTDOWN COOLING SYSTEM

3KA.3.1 System URS Boundary Description

The RWCU/SDC system is a high pressure system that is designed above the URS pressure with the following exception. Low pressure piping connected to the condenser and the liquid waste management system are provided at the downstream of the overboarding line isolation valves. On the upstream side of the isolation valves is provided a pressure reducing control valve that reduces the pressure before the flow enters the low pressure piping.

3KA.3.2 Downstream Interfaces

Other systems are listed below that interface with RWCU/SDC system and could possibly be exposed to reactor pressure. A description of the interface location and a statement of its applicability to ISLOCA are given.

• FAPCS interfacing piping from the reactor well at the upstream of the Train B of RWCU/SDC system non-regenerative heat exchanger has two locked closed isolation valves in series and the piping provides an open free path to reactor well which is an atmospheric pressure pool.

• FAPCS Low Pressure Coolant Injection (LPCI) interfacing piping with Train B of RWCU/SDC system return piping to Feedwater Line A is designed to a pressure that is above the URS pressure.

• CRD system interfacing piping with Train A of RWCU/SDC system return piping to Feedwater Line B is designed to a pressure that is above the URS pressure.

3KA.3.3 Low-Pressure Piping Systems and Components Designed to URS Pressure

The RWCU/SDC system low pressure piping connected at the downstream side of the overboarding line isolation valves is designed to pressure so that the stresses do not exceed the allowable stresses if the piping is subjected to full reactor pressure.

Page 330: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3K-9

3KA.4 FUEL AND AUXILIARY POOLS COOLING SYSTEM

3KA.4.1 System URS Boundary Description

FAPCS is a low pressure piping system. Its LPCI line is connected to RWCU/SDC system Loop B discharge line, which has an interface with reactor coolant pressure boundary via the Feedwater Loop A discharge line [Figure 9.1-A]. During reactor power operation, an unisolated break outside the reactor coolant pressure boundary could lead to an ISLOCA with the release of reactor coolant from the reactor system pressure boundary. In the FAPCS case, it would require multiple failures before a LOCA could occur, i.e., a break in the FAPCS piping plus failures of the Feedwater line check valves, which maintain the reactor coolant pressure boundary.

3KA.4.2 Downstream Interfaces

The following design features are provided to the interface between the high and low pressure interfaces to prevent an intersystem LOCA from occurring in FAPCS piping:

• Normally closed isolation valves consisting of an air-operated check valve and a motor-operated gate valve are provided on the LPCI line to separate the low pressure FAPCS piping from the high pressure condition in the RWCU/SDC pipe during reactor power operation.

• Valve position lights are provided to the operator in the main control room (MCR) to confirm these isolation valves in the closed positions.

• The isolation valves are provided with a reactor pressure interlock that closes these valves and prevents them from opening whenever a high reactor pressure signal from the NBS is present. Reactor pressure signals ensure high reliability that the isolation valves remain closed.

• The FAPCS LPCI pipe and components between its interface with RWCU/SDC system and the motor-operated gate valve, including the gate valve are Quality Group B components designed to above URS pressure.

3KA.4.3 Low-Pressure Piping Systems and Components Designed to URS Pressure

The low pressure side of LPCI line and the rest of FAPCS piping are not required to be designed to the URS pressure because they are properly protected by the interlock closed isolation valves described above and by a relief valve installed on the LPCI line that protects the line from the overpressure condition, in case of leakage from the RWCU/SDC system side through the isolation valves.

Page 331: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3K-10

3KA.5 NUCLEAR BOILER SYSTEM

3KA.5.1 System URS Boundary Description

The Main Steam (MS) and Feedwater piping and instrumentation are designed for reactor pressure and do not require upgrading to URS design pressure.

3KA.5.2 Downstream Interfaces

Other systems are listed below that interface with MS and could possibly be exposed to reactor pressure. A description of the interface location and a statement of its applicability to ISLOCA are given.

• The outlet of the CRD pump discharge filter units provide flow to the NBS.

• The CRD design pressure exceeds the URS design pressure without upgrade.

• RWCU/SDC provides high pressure return flow to the Feedwater lines. The RWCU/SDC design pressure exceeds the URS design pressure without upgrade.

• The Isolation Condenser system connects to a piping stub that connects the DPVs to the RPV, and also there are IC vent lines that connect to the main steam lines. The IC design pressure exceeds the URS design pressure without upgrade.

3KA.5.3 Low-Pressure Piping Systems and Components Designed to URS Pressure

None

Page 332: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3K-11

3KA.6 CONDENSATE AND FEEDWATER SYSTEM

3KA.6.1 System URS Boundary Description

The feedwater subsystem of the C&FS provides high pressure feedwater to the reactor. The feedwater subsystem is designed for high pressure except for the feedwater pump suction and the outlet of the feedwater cleanup valve.

In the feedwater pump, the transition to low pressure occurs from the feedwater pump suction into the direct contact feedwater heater (feedwater tank). The feedwater tank is a low pressure sink. The last closed valve in the path from the reactor is the feedwater pump discharge check valve. The piping to the feedwater pump suction can remain below the URS design pressure because it connects to the low pressure heat sink feedwater tank. The maintenance block valves in the feedwater pump suction lines were upgraded to a LOCK OPEN status.

In the feedwater cleanup control valve, the transition to low pressure occurs from the feedwater cleanup control valve outlet connection into the condenser shell (hotwell). The hotwell is a low pressure sink. The last closed valve in the path from the reactor in the feedwater cleanup control valve is the normally closed block valve. The piping from the feedwater cleanup control valve to the condenser can remain below the URS design pressure because it connects to the low pressure heat sink hotwell.

The Condensate subsystem of the C&FS provides condensate to the feedwater tank, and the condensate subsystem is designed for a pressure higher than the feedwater tank, except for the condensate pump suction. The high pressure design includes the condensate polishing (hollow fiber filters and demineralizers) units and the feedwater bypass valve. The transition to low pressure occurs from the condensate suction into the HP condenser shell (hotwell, which is a low pressure sink). The last closed valve in the path from the feedwater tank is the condensate pump discharge check valve. The piping to the condensate pump suction can remain below the feedwater tank design pressure because it connects the low pressure heat sink hotwell. The maintenance block valves in the condensate pump suction lines were upgraded to a LOCK OPEN status.

3KA.6.2 Downstream Interfaces

None

3KA.6.3 Low-Pressure Piping Systems and Components Designed to URS Pressure

The maintenance block valves in the condensate pump suction lines were upgraded to a LOCK OPEN status.

Page 333: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-1

3L. REACTOR INTERNALS FLOW INDUCED VIBRATION PROGRAM

3L.1 INTRODUCTION

A flow-induced vibration (FIV) testing program of the reactor internal components of the ESBWR prototype plant is to be completed to demonstrate that the ESBWR internals design can safely withstand expected FIV forces for reactor operating conditions up to and including 100% power and core flow. This program includes an initial evaluation phase that has the objective of demonstrating that the reactor internals are not subject to FIV issues that can lead to failures due to material fatigue, or fretting and wear issues. Throughout this part of the program, the emphasis will be placed on demonstrating that the reactor components will safely operate for the design life of the plant. The results of this evaluation are shown in Reference 3L-1. The second phase of the program is focused on preparing and performing the startup test program that demonstrates through instrumentation and inspection that no FIV problems exist. This part of the program meets the requirements of Regulatory Guide 1.20 with the exception of those requirements related to preoperational testing that are not applicable to a natural circulation plant.

Page 334: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-2

3L.2 REACTOR INTERNAL COMPONENTS FIV EVALUATION

The ESBWR reactor internals are part of an evolutionary BWR design, but fundamentally the components and operation of the reactor vessel and internals are very similar to past BWRs. To a large extent the ESBWR design of the components relies heavily on the prior design of internals in operating plants to assure that new vibration issues are not introduced. Also, to assure that the flow of steam or water in the reactor vessel is comparable to prior reactors, efforts were made to maintain traditional spacing and dimensional relationships of components. A unique feature of the ESBWR, with respect to FIV, is the fact that it is a natural circulation plant where no recirculation motors exist that would create pressure pulses from the pump vanes that would travel into the reactor vessel. In previous BWR product lines, the pump vane passing frequency, that is variable with flow, typically has a maximum frequency of 120 Hz at full reactor flow. This source of excitation has caused failures in small components inside BWR reactor vessels. For ESBWR this source of flow excitation does not exist. The design of the ESBWR reactor internals is shown in Figure 5.3-3.

3L.2.1 Evaluation Process – Part 1

The first step in the evaluation process was to establish selection criteria for reactor internal components related to susceptibility to vibration. All reactor internal components were considered as potential candidates for further evaluation. Each component is evaluated against the following selection criteria:

• Is the component critical to safety?

• Is the component of a significantly different or new design compared to earlier BWRs?

• Does the component have a history of FIV-related problems?

• Is the component subjected to significantly different or new flow conditions?

Based on these criteria, the following internal component structures are considered to be candidates for additional evaluation and potential to be instrumented in the startup FIV test program:

• Steam Dryer Bank Hoods and End Plates based on history of past FIV related problems (fatigue cracking between hood and endplate).

• Steam Dryer Skirt based on history of past FIV-related problems (fatigue cracking between skirt and drain channels).

• Steam Dryer Drain Channels based on history of FIV-related problems (fatigue cracking between skirt and drain channels).

• Steam Dryer Support Ring based on history of FIV-related problems (dryer rocking) and the resulting new design features for replacement dryer designs (e.g., strengthened weld joints, castings).

• Chimney partition assembly based on new design features (elongated chimney shell, partition assembly, chimney restraint), potential new flow conditions, difficulty of repair in event of failure, and limited ability to change the design due to dimensional constraints.

Page 335: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-3

• Chimney Head / Steam Separator assembly based on new design (flat head with beam reinforcement and elongated standpipes).

• Shroud /Chimney assembly based on new design features (discrete shroud support members and the chimney connection), potential new flow conditions and difficulty of repair in event of failure.

• Standby Liquid Control (SLC) internal piping based on new design and being critical to safety.

Components that were evaluated but were not considered important for further evaluation were the following components:

• Control Rod Drive Housing (CRDHs)

• Control Rod Guide Tubes (CRGTs)

• In-Core Monitor Guide Tubes (ICMGTs)

• In-Core Monitor Housings (ICMHs)

For each of these components, the length of the components has decreased from prior BWR product lines due to the plant having shorter fuel. This increases the natural frequency of these components and moves it well beyond the predominated frequency measured at the prototype ABWR plant. Also, the flow conditions in the RPV bottom head region have decreased and the calculated vortex shedding frequencies are well below the natural frequencies of components.

Other components such as the top guide and core plate that are not specifically identified as candidates for the instrumentation program are basically proven by past trouble-free BWR experience, and have designs and flow conditions that are similar to prior operating BWR plants.

The results of the Part 1 evaluation are contained in Reference 3L-1.

From the components listed in the forgoing, the first priority was determined to be the chimney partition assembly. This selection was made since it was a new component where only limited operating experience was available. Also, it is a structure where the geometry of the partitions places limitations on the plate thicknesses, has a long extended length, and is subject to high velocity two-phase steam flow. From this initial selection, a test and analysis program was established and the results are discussed in Subsection 3L.3.3. For this case, testing was required since no prior relevant test data was available for this component.

The steam dryer was established as the second priority. An initial analysis program was started to study the acoustic and flow effects of the ESBWR configuration in comparison to the ABWR steam dryer design. It was determined that the increase in the size of the steam dryer support ring and skirt design, and the increase in steam velocity did not have any adverse effects on the steam dryer structural integrity. At the time of the initial assessment, it was also recognized that the evaluation of BWR operating plant dryer loads was an ongoing program that would need to be ultimately factored into the ESBWR steam dryer design and evaluation effort. The progress of the generic steam dryer program is now at a stage that a meaningful effort can now be planned for the ESBWR steam dryer. The detailed program that is planned is described in Section 3L.4. As a result of the advances in the understanding of dryer vibration, differential pressure loads

Page 336: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-4

and steam dryer design improvements, the ESBWR will use a steam dryer design patterned after the new steam dryer design developed for BWR operating plants.

3L.2.2 Evaluation Process – Part 2

The next phase of the evaluation program will be to perform additional work to demonstrate the adequacy of the remaining components where it was determined that additional evaluations were required. The objective of this phase is to complete a more quantitative evaluation and to document the existing facts regarding the individual components. This part of the evaluation will focus on the following:

(1) Similarities and differences of the ESBWR component design configurations as compared to prior designs. In most cases the comparison design will be with the ABWR components.

(2) A review of prior component calculations for the components being evaluated, to establish the mode shapes and natural frequencies. Estimates of the ESBWR component natural frequencies will then be determined based on this data.

(3) Prior plant startup instrumentation data from the prototype ABWR plant will be reviewed to establish the magnitude and frequency of the measured vibration data, and to review the resulting calculated stress for the components that were instrumented.

(4) A comparison of the flow paths and characteristics of the ESBWR design will be compared to prior BWR designs where a startup vibration test program was conducted.

(5) Using the results of the above items, an assessment as to likelihood of FIV issues will be completed and documented in a supplemental report. The objective in some cases will be to conclusively demonstrate that FIV will not be an issue and that safety will not be adversely affected. In other cases, the conclusions may determine that additional evaluation or instrumentation is necessary. For these cases, no FIV issues are anticipated, and the objective is to provide additional supporting information that clearly demonstrates that FIV is not an issue.

During this phase, the process as identified in Subsection 3.9.2.3 will be followed to prepare finite element analysis models per the details shown in Subsection 3L.5.5.1, establish correlation functions based on prior instrumentation data, and apply the correlation functions to the model to determine expected stress amplitude. This information is then used as basis for the instrumentation in the ESBWR startup test program. The results of these evaluations will be documented in a supplemental report.

Because most of the reactor internal components are large durable components where there has been no history of FIV issues, no FIV issues are anticipated. Also, because it is still early in the program, there is still the opportunity to make adjustments as necessary in the component designs to make them more resistant to FIV.

Page 337: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-5

3L.3 CHIMNEY PARTITION ASSEMBLY EVALUATION

3L.3.1 Design and Materials

The chimney partition assembly design consists of a bottom ring of the partition assembly that rests on and is bolted and pinned to the bottom flange of the chimney. The top ring of the partition assembly is supported against the inside of the chimney shell. The partitions are a grid of square structures, each of which encompasses 16 fuel assemblies. The partitions are to be fabricated using austenitic stainless steel plate that is full length welded at the junctions of the partitions. The austenitic stainless steel material has a 0.02% maximum carbon content to resist Intergranular Stress Corrosion Cracking (IGSCC). The chimney structure that houses the partition structure is cylindrical and similar to the core shroud. A sketch of the chimney and partition assembly is shown in Figure 3L-1. Because the chimney has structural characteristics similar to the shroud, this component is considered under the generic reactor internals vibration program, and the partition assembly is considered to be the unique component that requires special vibration consideration

3L.3.2 Prior Operating Experience

Prior to the ESBWR design, only one other BWR plant had operating experience with this chimney design. This was the BWR-1 Dodewaard plant, which did not have a vibration instrumentation program. For this plant, the partition size was a square configuration that encompassed four fuel assemblies within the cell, which is ¼ the dimension of the ESBWR partitions. Also, the height was approximately ½ the length of the ESBWR design. The partition thickness was 3 mm (0.125 inch) as compared to 9 mm for ESBWR, and the partitions were welded together using intermittent fillet welds as compared to full-length welds for ESBWR. Although the partitions were not instrumented, the plant operated for almost 30 years without any issues related to the chimney structure. Since the design of the ESBWR chimney partitions is more robust, this Dodewaard operational history provides additional assurance that the ESBWR will not have FIV issues.

3L.3.3 Testing and Two-phase Flow Analysis

For the ESBWR, the chimney lattice partition assembly constitutes a structure that needs to have a unique vibration evaluation program as part of the ESBWR reactor internals. In order to assess its capability to maintain structural integrity under plant operating conditions, a flow induced vibration evaluation has been performed in which the fluctuating fluid force acting on the partition plates has been evaluated by a combination of scale tests and two-phase flow analysis.

The test scope comprised both 1/6-scale (100mm × 100mm) and 1/12-scale (50mm × 50mm) air and water two-phase flow testing of a single chimney cell. The superficial velocities of the gas and liquid components of the two-phase flow were adjusted to be consistent with ESBWR values to simulate the actual two-phase flow pattern. Different inlet flow conditions were used to investigate the influence of inlet mixing within the partition to simulate different power conditions. Pressure fluctuation was measured on the inner surface of the partition wall with pressure transducers.

The results of the scale testing were extrapolated by a two-phase flow analysis to determine the characteristics of the pressure fluctuations acting on the partition wall of a full size cell in steam-

Page 338: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-6

water conditions. This extrapolation included the use of a 1/12 and full scale analytical model. The resulting peak-to-peak pressure fluctuation was determined to be 15 kPa at a peak frequency of approximately 2 Hz.

A structural analysis of the chimney and partition design was then conducted using finite element methods. First, an eigenvalue analysis determined that the lowest natural frequency of the chimney structure is approximately 56 Hz. This was sufficiently greater than the predominant frequency of pressure fluctuation determined by testing (2 Hz) that a static analysis of the structure was concluded to be proper. Based on the results of that static analysis, a maximum stress of 41 MPa was calculated near the edge of the partition plate joint. This stress value is bounded by the allowable vibration peak stress amplitude of 68.9 MPa specified in Subsection 3.9.2.3.

Page 339: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-7

3L.4 STEAM DRYER EVALUATION PROGRAM

3L.4.1 Steam Dryer Design and Performance

The ESBWR steam dryer will be designed using modules of dryer vanes enclosed in a housing to make up the steam dryer assembly. The modules or subassemblies of dryer vanes, called dryer units, will be arranged in six parallel rows called banks. The dryer banks will be attached to an upper support ring, which is supported by steam dryer support brackets that are welded attachments to the reactor pressure vessel (RPV). The steam dryer assembly will not physically connect to the shroud head and steam separator assembly and will have no direct connection with the core support or shroud. A cylindrical skirt will attach to the upper support ring and will project downward to form a water seal around the array of steam separators. Normal operating water level will be approximately mid-height on the dryer skirt.

Wet steam from the core will flow upward from the steam separators into an inlet header, horizontally through the dryer vanes, the outlet side perforated plates, vertically in the outlet header and out into the RPV dome. Dry steam will then exit the RPV through the steam outlet nozzles. Moisture (liquid) will be separated from the steam by the vane surface and the hooks attached to the vanes. The captured moisture will flow downward, under the force of gravity, to a collection trough that carries the liquid flow to vertical drain channels. The liquid will flow by gravity through the vertical drain channels to the lower end of the skirt where the flow will then exist below normal water level. The prototype for the ESBWR steam dryer is the replacement dryer recently tested and installed in several BWR/3 plants that had experienced high pressure loads under extended power uprate operating conditions. These loads were characterized by an abnormally high pressure tone at approximately 155 Hz that emanated from an acoustic resonance in one or more of the SRV standpipes. The replacement dryer was specifically designed to withstand the flow-induced vibration and acoustic resonance loading that led to fatigue failures in the dryers for these plants. Table 3L-1 provides a comparison between major configuration parameters of the ESBWR and the prototype replacement steam dryer.

During normal refueling outages, the ESBWR steam dryer will be supported from the floor of the equipment pool by the lower support ring that is located at the bottom edge of the skirt. The steam dryer will be installed and removed from the RPV by the reactor building overhead crane. A steam separator and dryer lifting device, which attaches to four steam dryer lifting rod eyes, will be used for lifting the dryer. Guide rods in the RPV will be used to aid dryer installation and removal. Upper and lower guides on the dryer assembly will be used to interface with the guide rods. The ESBWR steam dryer assembly is shown in Figure 3L-2.

3L.4.2 Materials and Fabrication

Current industry practice will be applied to the materials and fabrication of the ESBWR steam dryer. The steam dryer materials are selected to be resistant to corrosion and stress corrosion cracking in the BWR steam/water environment. New industry dryers are currently constructed from wrought 300 series stainless steel and Grade CF3 stainless steel castings. Except for the dryer vane material, the maximum carbon content of the wrought stainless steel will be limited to 0.02% and the maximum hardness of wrought 300 series stainless steel will be limited to Rockwell B92. Fabrication process controls are applied to minimize the degradation of material properties by forming, cold working, etc. Susceptibility to stress corrosion cracking will be

Page 340: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-8

avoided by careful control of the solution heat treatment, sensitization testing and testing for intergranular attack (IGA).

3L.4.3 Load Combinations

Design loads for the steam dryer will be based on evaluation of the ASME load combinations provided in Table 3.9-2 except that the load definitions that pertain to the steam dryer are modified as shown in Table 3L-2. These load combinations consist of dryer deadweight loads, static and fluctuating differential pressure loads (including turbulent and acoustic sources), seismic, thermal, and transient acoustic and fluid impact loads.

3L.4.4 Fluid Loads on the Dryer

During normal operation, the dryer experiences a static differential pressure loading across the dryer plates resulting from the pressure drop of the steam flow across the vane banks. The dryer also experiences fluctuating pressure loads resulting from turbulent flow across the dryer and acoustic sources in the vessel and main steamlines. During transient and accident events, the dryer may also experience acoustic and flow impact loads that result from system actions (e.g., turbine stop valve closure) or from the system response (e.g., the two-phase level swell following a main steamline break).

Of particular interest are the fluctuating pressure loads that act on the dryer during normal operation that has led to fatigue damage in previous dryer designs. Scale model testing has identified the likely sources of fluctuating pressure loading acting on the steam dryer. The results of this testing showed that the fluctuating pressure load frequency spectrum can be divided into four regions based on the postulated source of the loading:

• 0-10 Hz: The pressure loads in this frequency range are dominated by the fundamental main steamline piping acoustics. The source of these pressure loads is believed to be turbulence in the main steamline or vortex shedding in steam dome.

• 10-30 Hz: The source of the pressure loads in this frequency range is postulated to be a stationary vortex on the outer hood of the steam dryer adjacent to the vessel outlet nozzles. The frequency characteristics of this pressure loading may be governed by harmonics of the main steamline acoustics.

• >30 Hz: The lowest steam plenum acoustic modes are located in this frequency range. The dominant excitation is due to broadband turbulent sources located in main steamlines but the acoustic modes may also be excited by sources in the vessel. The plenum acoustic modes have a very high amplification effect on pressure oscillations in this frequency range. The lower frequency vessel acoustic modes exhibit the most significant response to the turbulent excitation present in the system. Higher frequency vessel acoustics exist but are not significantly excited except as discussed below.

• 120-200 Hz: Strong narrow band pressure loads in this frequency range are caused by acoustic resonances in safety and relief valve branch lines attached to the main steamlines. Higher frequency steam plenum acoustic modes can be excited if the vessel is acoustically coupled to the branch line. The ESBWR SRV standpipe design is intended to reduce or eliminate acoustic resonances in these branch lines. It should be noted that the 120-200 Hz frequency range is approximate and is dependent on the SRV

Page 341: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-9

standpipe design. The frequency range monitored in the FIV test program will be adjusted to bound the range of frequencies determined for the final design.

A detailed description of the acoustic load definition process for the ESBWR steam dryer is provided in Reference 3L-5. The steam dryer acoustic load definition process consists of three primary elements:

• Scale model testing (physical testing using an ESBWR scale model to acquire load definition data, pressure and frequency, monitored by approximately 60 transducers),

• Acoustic finite element modeling of the reactor steam dome region to determine the natural frequencies and mode shapes of the steam volume, and

• A load interpolation algorithm to refine the measured fluctuating load into a fine mesh consistent with the structural finite element model nodalization in order to perform an accurate stress analysis of the dryer.

Flow induced turbulent and acoustic loads for the design of the ESBWR steam dryer will be determined from scale model testing of the dryer design and resultant acoustic modeling performed in the GE scale model testing facility located at the Vallecitos Nuclear Center in Sunol, California. The scale model test apparatus models the outside surface of the steam dryer above the vessel water level, the vessel steam dome region, and the main steamline piping to the turbine inlet, including major branch lines (e.g., SRV standpipes, turbine bypass piping). The testing is performed in ambient air conditions. Because the fluctuating pressure loads are primarily acoustic in nature, the test results are scaled to reactor conditions while preserving an equivalent Mach number between the model and the plant. GE has recently successfully completed a power ascension test program with an instrumented replacement BWR 3 steam dryer that is the prototype for the ESBWR steam dryer. The scale model test has been benchmarked against the plant data acquired from this instrumented dryer and confirms the capability of the GE scale model test methodology to predict the steam dryer acoustic load definitions.

The acoustic finite element modeling models the steam dryer and reactor steam dome cavity. This model is used to predict the acoustic mode shapes of the cavity and provides the framework for the load interpolation algorithm.

The load interpolation algorithm is used to provide a fine mesh load definition for input to the dynamic structural analysis. The algorithm uses the acoustic normal modes of the RPV steam plenum as a basis to describe the domain of interest. The algorithm uses the test measurements taken from the approximately 60 transducer locations on the scale model test and the acoustic finite element model to develop a fine-mesh array of pressure time histories that are consistent with the structural finite element model nodalization.

3L.4.5 Structural Evaluation

A finite element analysis (FEA) will be performed to confirm that the ESBWR steam dryer is structurally acceptable for operation. The FEA will use the scale model test loads as input. The finite element analysis will be performed using a whole dryer analysis model of the ESBWR steam dryer to determine the most highly stressed locations. The FEA consists of time history dynamic analyses for the load combinations identified in Table 3.9-2. If required, locations of

Page 342: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-10

high stress identified in the whole dryer analysis will be further evaluated using solid finite element models to more accurately predict stresses at these locations. The analysis will also confirm that the RPV dryer support lugs will accommodate the predicted dryer loads under normal operation and transient and accident conditions. (Also see 3.L.5.5.1.5.)

The structural evaluation of the ESBWR steam dryer design (Reference 3L-6) will be presented during the certification phase.

3L.4.6 Instrumentation and Startup Testing

The prototype ESBWR steam dryer will be instrumented with temporary vibration sensors to obtain flow induced vibration data during power operation. The primary function of this vibration measurement program is to confirm the actual pressure loading on the dryer during power operation is consistent with the pressure loading assumed in the structural fatigue evaluation and to verify that the new steam dryer can adequately withstand flow induced vibration forces for extended period as designed. The detailed objectives are as follows:

• Determine the dryer as-built modal parameters: This will be achieved by impact (hammer) testing the dryer components. The results will yield natural frequencies, mode shapes and damping of the dryer components for the as-built dryer. These results will be used to verify portions of the analytical model of the dryer.

• Confirm the pressure loading: In order to confirm the pressure loading on the dryer due to turbulence, acoustics and other sources, dynamic pressure sensors will be installed on the dryer. These measurements will provide the actual pressure loading on the dryer under various operating conditions.

• Verify the new dryer design: Based on past knowledge gained from different dryers, as well as information gleaned from analysis of the new dryer design, selected areas of the dryer will be instrumented with strain gages and accelerometers to measure vibratory stresses and displacements on the dryer during power operation. The measured strain values will be compared with the allowable values (acceptance criteria) obtained from the analytical model to confirm that the dryer alternating stresses are within allowable limits.

The objective of the steam dryer hammer test is to identify the as-built frequencies and mode shapes of several key components of the steam dryer at ambient conditions. Different components of the steam dryer have different frequencies and mode shapes associated with them. The areas of interest are the drain channel, the outer hood panel, the inner hood panel, the side panel, tie bars and the skirt. These results will be used to verify portions of the finite element model of the dryer.

The concern is that local natural frequencies may coincide with existing forcing functions to cause resonance conditions. The resonance could cause high stresses to occur in localized areas of the steam dryer. A finite element modal analysis can calculate the frequency and mode shape of a component, but they are only ideal approximations to the real values due to variations such as plate thickness, welding, and residual stresses that affect the assumed boundary conditions in the finite element model. The mode shapes and frequencies determined by the hammer test will be used to validate the finite element modal analysis and determine the uncertainty in the finite element model predictions of the modal response.

Page 343: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-11

The impact hammer test will be performed inside the plant with the dryer inside the dryer/separator pool. The tests will be performed with dryer resting on simulated dryer support blocks similar to the way the dryer will be seated inside the reactor vessel. The hammer test will be performed when the installation of the sensors for in-reactor vibration measurement is completed.

Two types of impact tests will be performed on the dryer: a (1) Dry hammer test, and a (2) Wet hammer test with the steam dryer skirt and drain channels partially submerged in different water levels (to approximate in-reactor water level). Both tests will be conducted in ambient conditions. Temporary bondable accelerometers will be installed at predetermined locations for these tests. An instrumented hammer will be used to excite the steam dryer at several pre-determined locations and the hammer impulse force and the structural responses from the accelerometers will be recorded on a computer. The data will then be used to compute experimental mode shape, frequency and damping of the instrumented dryer components using appropriate software. The temporary sensors will then be removed and the dryer will be cleaned prior to installation in to the reactor vessel.

The steam dryer vibration sensors will consist of strain gauges, accelerometers and dynamic pressure sensors, appropriate for the application and environment. A typical list of vibration sensors with their model numbers is provided in Table 3L-3. The selection and total number of sensors will be based on past experience of similar tests conducted on other BWR steam dryers. These sensors will be specifically designed to withstand the reactor environment. Details of the steam dryer instrumentation are provided in Reference 3L-7.

Each of the sensors will be pressure tested in an autoclave prior to assembly and installation on the dryer. An uncertainty analysis will be performed to calculate the expected uncertainty in the measurements.

Prior to initial plant start-up, strain gauges will be resistance spot-welded directly to the dryer surface. Accelerometers will be tack welded to pads that are permanently welded to the dryer surface. Surface mounted pressure sensors will be welded underneath a specially designed dome cover plate to minimize flow disturbances that may affect the measurement. The dome cover plate with the pressure transducer will be welded to an annular pad that is welded permanently to the dryer surface. The sensor conduits will be routed along a mast on the top of the dryer and fed through the RPV instrument nozzle flange to bring the sensor leads out of the pressure boundary. Sensor leads will be routed through the drywell to the data acquisition area outside the primary containment.

Pressure transducers and accelerometers are typically piezoelectric devices, requiring remote charge converters that will be located in junction boxes inside the drywell. The data acquisition system will consist of strain gauges, pressure transducers and accelerometer signal conditioning electronics, a multi-channel data analyzer and a data recorder. The vibration data from all sensors will be recorded on magnetic or optical media for post processing and data archival. The strain gauges, accelerometer and pressure transducers will be field calibrated prior to data collection and analysis. The temporary vibration sensors will be removed after the first outage.

In addition to the instrumentation on the steam dryer, the main steamlines will be instrumented in order to measure the acoustic pressures in the steamlines. These pressure measurements will be used as input to an acoustic model for determining the pressures acting on the steam dryer. This

Page 344: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-12

acoustic model will be calibrated against the pressure transducer measurements taken on the steam dryer to provide an acoustic load definition for use in performing confirmatory structural evaluations. For non-prototype ESBWRs, the steamlines will be instrumented and the calibrated acoustic model will be used to confirm the pressure loads acting on the steam dryer. Details of the main steamline measurement instrumentation and acoustic model are provided in Reference 3L-7.

During power ascension, the steam dryer instrumentation (strain gages, accelerometers and dynamic pressure transducers) will be monitored against established limits to assure the structural integrity of the dryer is maintained. If resonant frequencies are identified and increase above the predetermined criteria, power ascension will stop. The acceptability of the dryer for continued operation will be evaluated by revising the load definition based on the measured loading, repeating the structural analysis using the revised load definition, and determining revised operating limits based on the results of the structural analysis.

Future steam dryer inspections will be in accordance with Reference 3L-2, and in accordance with Boiling Water Reactor Vessel Internals Program (BWRVIP) guidance.

Page 345: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-13

3L.5 STARTUP TEST PROGRAM

This section summarizes the program for preparing and performing the startup FIV testing including the methods and analysis that will be performed when the startup test data is available. This section assumes that the initial selection of components identified in Subsection 3L.2.1 will be part of the analysis and instrumentation associated with the startup testing program.

3L.5.1 Component Selections

The components that are selected for instrumentation are determined from the initial evaluation phase as discussed in Subsection 3L.2.1. Many different sensors of four different types are utilized to measure vibration related data on several different reactor internal component structures.

3L.5.2 Sensor Locations

Having determined the components to instrument during the test, sensor locations on those structures are determined based upon the analytically predicted mode shapes for each structure or, in some cases, based upon the location of past FIV-related failures. Strain gages, accelerometers and linear variable differential transformer (LVDT) type relative displacement sensors are used for monitoring vibration levels. Strain gages measure local strain from which local stress can be calculated. Based on knowledge of the natural mode shapes of the structure, peak stresses at other locations on the structure are determined from these data. Accelerometers (with double integration of the output signal) and LVDTs provide measurements of local structural displacement. This information, together with knowledge of the natural mode shapes of the structure, allows the peak stresses to be calculated at other locations. Pressure sensors are also utilized at various locations in the vessel. These are not used to measure structural vibration directly, but rather to measure the pressure variation that is often a forcing function that causes the structural vibration. These pressure sensor data are very useful for determining the source of any excessive vibration amplitudes, if they are to occur during testing. Typical sensor types and potential locations are listed in Table 3L-4.

3L.5.3 Test Conditions

Test conditions are selected early in the FIV test program to consider a variety of steady-state and transient operating conditions that could be expected to occur during the life of the plant.

Reactor pressure vessel (RPV) internals vibration at steady-state conditions is more important than transient conditions for evaluating the structural integrity of components. This is because steady-state normal operating conditions can exist for long periods of time, allowing a very large number of vibration cycles to accumulate. Flow-induced vibration caused by transient operating conditions is far less influential because of the relatively low number of vibration cycles that will occur over the lifetime of the plant. The purpose in including transient test conditions is to confirm that extremely high stresses do not occur during transients. This check is accomplished during the actual startup transient tests by the vibration engineers monitoring the test equipment. Transient stress levels near the allowable limit would be easily and immediately detected by the vibration engineers. No such high stress levels are expected to occur during the ESBWR prototype plant FIV transient tests. Therefore, for the purposes of confirming the structural

Page 346: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-14

capability of the internals, steady-state test conditions are the most important conditions to evaluate.

Total volumetric core flow rate is also an important parameter that affects the vibration magnitude of the internals. Vibration amplitude generally increases as the volumetric flow rate increases.

3L.5.4 Data Reduction Methods

Basically, two types of data reduction are performed: (1) time history analyses and (2) spectrum analyses. In either data reduction method, the measured peak-to-peak (p-p) value of each sensor signal is compared to the allowable p-p value. Even though both time history and spectrum analyses are performed for each selected sensor and test condition, the results from only one data reduction method are used for comparison to the allowable values. The selection of the method is dependent on the analysis method used for data evaluation. The different methods of data evaluation are described in detail in Section 3L.5.5. Briefly, Method I is used for components that have many closely spaced natural vibration modes and utilizes the strain energy weighting method applied to all modes over the frequency range of interest. This method has previously been applied to the In-core Monitor (ICM) housings, shroud, top guide, and steam dryer skirt and support ring. Method II is similar to Method I, except that it is applied to two frequency bands, 0-100 Hz and 100-200 Hz. This method has previously been applied to the steam dryer drain channels and hood. Method III is used for components that have relatively few, distinct dominant natural modes that are matched to the analytical modes. This method has previously been applied to the in-core guide tubes. Table 3L-5 describes the method of data reduction that is applicable to each component. It should be noted that the 200 Hz frequency range is approximate and is dependent on the SRV standpipe design. The frequency range monitored and evaluated in the FIV test program will be adjusted to bound the range of frequencies determined for the final SRV standpipe design.

3L.5.4.1 Time History Analysis

The time history method uses the analyzer’s time capture mode of operation. The time capture is performed for a period of several minutes for all the selected sensors and test conditions. The frequency bandwidth for the time capture is chosen to accommodate 0-200 Hz as a minimum for most channels.

For comparison to the allowable vibration amplitude, the measured peak-to-peak (p-p) value over specified bandwidths needs to be obtained for sensors in specific components. The bandwidths used for p-p measurements for various components are shown in Table 3L-5. There are four bandwidths for time history p-p measurement: 0-200 Hz, 0-100 Hz, 100-200 Hz and 0-1600 Hz. The 0-1600 Hz is used only for the accelerometer for the purpose of detecting impacts. The other three bandwidths are used for normal vibrations.

For the 0-200 Hz bandwidth, the maximum p-p values over several minutes of data for selected sensors and test conditions are obtained directly from the time capture. Specification of the bandwidth for time capture (0-200 Hz) automatically results in a low-pass filtered signal.

In order to obtain the maximum p-p in the 0-100 Hz range, the histogram operation is employed on the time capture traces. When the bandwidth (0-100 Hz) is specified in the histogram operation, the signal is automatically low-pass filtered in the specified frequency range. The

Page 347: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-15

histogram measurement shows how the amplitude of the input signal is distributed between its maximum and minimum values. The horizontal axis is the amplitude axis and usually the center of the horizontal axis is the zero point with positive and negative amplitudes on either side of the zero. The vertical axis is the number of counts or the number of times a particular amplitude value occurs in a time-history. From the histogram, the maximum positive and maximum negative values in a time history can be obtained, from which the maximum p-p of the time history can be obtained.

For the 100-200 Hz bandwidth range, the time captured traces are filtered in the 100-200 Hz range and the p-p is obtained over a period of several minutes. The filtered time history between 100 and 200 Hz is scanned to obtain maximum and minimum values to get p-p values.

For the 0-1600 Hz range for accelerometers, the time history signal is examined for the presence of any impacts.

3L.5.4.2 Frequency Analysis

The spectrum shows the signal in the frequency domain. There are several different types of spectra. The linear spectrum is the Fourier transform of the time history signal. The auto power spectrum is the magnitude squared of the linear spectrum, which is computed by multiplying the Fourier transform of the signal by its complex conjugate. This spectrum contains magnitude information only. The spectra generated for ESBWR data reduction are auto power spectra. The spectra for selected sensors and test conditions are obtained from the captured time history described previously.

Signal averaging is used to obtain better statistical properties. It is possible to select the number of averages and the type of averaging. There are three types of averaging:

• Stable (normal)

• Exponential

• Peak Hold

The averaging method used for ESBWR is “Peak Hold”, which compares the current spectral value of each individual frequency during the analysis interval to the last spectral value and holds the larger of the two. The resultant spectrum is a composite spectrum which envelopes the spectrums of all analysis intervals. The parameters used in the spectrum generation are described in Table 3L-6.

In order to obtain greater accuracy on amplitude of the frequency spectrum, a flat top window is selected.

From the spectrum, the dominant frequencies of vibration and their root mean square (RMS) magnitudes can be identified. The frequency is in the horizontal axis and the RMS magnitude is in the vertical axis. The p-p value of vibration at each dominant frequency is obtained by multiplying the RMS value (from the peak hold spectrum) by a factor of 6. This factor is obtained from many years of reactor experience and is a conservative estimate of the p-p value. This p-p value is then used to compute the stress at the sensor location and the maximum stress in the structure.

Page 348: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-16

3L.5.5 Data Evaluation Methods

This section describes the methods used to evaluate the reduced test data for the purpose of determining whether maximum stress levels are below the maximum allowable fatigue stress limits for the materials. A significant portion of this evaluation lies in the determination of the natural vibration modes of the instrumented components as determined using finite element models. Subsection 3L.5.5.1 describes the finite element models used in this process. Subsection 3L.5.5.2 describes the steps involved in determining the maximum stress amplitudes from the reduced data.

3L.5.5.1 Finite Element Models

Dynamic analytical finite-element models are developed for the following ESBWR prototype plant reactor internal components:

• Chimney Head and Steam Separators

• Shroud and Chimney

• Steam Dryer

• Standby Liquid Control Line

The dynamic analytical finite-element models are used to predict the natural vibration frequency, modal displacement, and modal strain and stress for each of the dominant vibration response modes. Descriptions of the finite-element models are given in the following sections.

3L.5.5.1.1 Chimney Head and Steam Separators

In order to determine the chimney head and steam separator vibration frequencies and mode shapes, an axisymmetric model is developed using the ANSYS computer code (Reference 3L-3). The detailed model consists of the components that provide structural members within the assembly. Since the separator assembly units are the standard product used on prior BWR product lines, and that operates within the range of the design steam flow rates, detailed modeling is not required. In this model, each nodal point has four degrees of freedom, namely:

• radial displacement;

• tangential displacement;

• vertical displacement; and

• meridian rotation.

3L.5.5.1.2 Shroud and Chimney

In order to determine the shroud vibration frequencies and mode shapes, an axisymmetric shell model is developed using the ANSYS computer code (Reference 3L-3). The detailed shell model consists of both the reactor pressure vessel (RPV), chimney, chimney support, and shroud such that the hydrodynamic interaction effects between the components are accounted for. In this model, each nodal point has four degrees of freedom, namely:

• radial displacement;

• tangential displacement;

Page 349: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-17

• vertical displacement; and

• meridian rotation.

This shell model is applicable only to the axisymmetric finite element analysis of the shroud and vessel. Responses calculated from this model, other than that of the shroud, shall not be construed as being representative of other reactor components.

The following assumptions are made in generating the axisymmetric shell model:

(1) Discrete components move in unison for guide tubes, steam separators, standpipes, and control rod drive housings and guide tubes.

(2) Masses are lumped at the nodal points. Rotational inertias of the masses are neglected.

(3) Stiffnesses of control rods, control rod drives, steam dryers, and incore housings are neglected.

(4) Top guide beam and core plate are assumed to have zero rotational stiffness.

(5) Masses of CRD housings below the vessel are lumped to the bottom head.

Equivalent shells are used to model the mass and stiffness characteristics of the guide tubes, steam separators, and standpipes such that they match the frequencies obtained from a horizontal beam model.

Diagonal hydrodynamic mass terms are selected such that the beam mode frequencies of the shell model agree with those from the beam model.

The RPV, chimney and shroud are modeled as thin shell elements. Discrete components such as guide tubes are modeled as equivalent thin shell elements. The shell element data are defined in terms of thickness, mass density, modulus of elasticity, and Poisson’s ratio for the appropriate material and temperature.

The natural frequencies and mode shapes of the shroud shell model are given in terms of two parameters, termed “n” and “m”. The “n” parameter refers to the number of circumferential waves, while the “m” parameter refers to the number of axial half-waves. Thus, for beam types of 1 vibration, n=1.

3L.5.5.1.3 Steam Dryer

The design of the steam dryer assembly for the ESBWR prototype plant is somewhat different from the original steam dryers used in previous BWR designs. Specifically, the major differences are in:

(1) the skirt and support ring diameters;

(2) the annulus size between the skirt and reactor pressure vessel;

(3) the flow path between the dryer banks and the vessel head; and

(4) the design details of the dryer skirt, drain channels and hoods.

In addition, the total steam flow rate of the ESBWR prototype plant is different from past designs. These differences warrant a detailed vibration analysis and test monitoring to assure the adequacy of the new design to withstand the flow-induced vibration.

Page 350: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-18

In the ESBWR prototype plant FIV test program of the dryer assembly, accelerometers and strain gages are located directly on the skirt, drain channels, support ring and hoods (Reference 3L-7). In addition, pressure sensors are used to measure the pressure differentials between the inside and outside of the dryer hood and dryer skirt. The differential pressure fluctuation across the dryer hoods is the primary forcing function causing vibration of the upper part of the dryer structure. The differential pressure fluctuation across the dryer skirt is the primary forcing function causing the vibration of the steam dryer skirt.

A dynamic finite element model of the dryer assembly is developed using the ANSYS computer code (References 3L-3 and 3L-6). Due to the complicated geometry and the large size of the analytical model, major components may be modeled with coarse meshes such that their dynamic contributions are accounted for in the whole dryer assembly vibration responses. Separate refined dynamic finite element models of the major components are then developed to provide a high resolution of the component’s response calculation.

The structural material properties and density for the dryer components at temperature are used in the model. The effect of the water on the dynamic responses is accounted for by using a direct lumped mass input. These added mass inputs include the submerged portions of the dryer skirt, drain channels, and the lower support ring.

Prior analytical models have predicted that the vibration modes are very closely spaced.

3L.5.5.1.4 Standby Liquid Control Lines

In the ESBWR prototype plant reactor, there are two standby liquid control pipes that enter the reactor vessel and are routed to the shroud. To accurately predict the vibration characteristic of the standby liquid control line, a dynamic finite element model of the entire line is developed using the ANSYS computer code. In the model the ends of the line are fixed anchor points since the lines are welded at the vessel nozzle and the shroud attachment points.

3L.5.5.2 Stress Evaluation

Maximum stress amplitude values for evaluation against allowable limits are determined from the test data and finite element models using one of three different evaluation methods. The method used for a particular component depends on the complexity of that component’s vibration characteristics. All three methods yield conservatively high predictions of the maximum stress anywhere on the structure. These conservatively high stress predictions are compared against conservatively low acceptance criteria to assure that none of the components is experiencing high stress vibrations that might cause fatigue failures. Table 3L-7 lists the methods that are used for each instrumented component for the ESBWR prototype plant FIV test program. The acceptable fatigue limit stress amplitude for the reactor internals component material [68.9 MPa (10,000 psi)], with the exception of the steam dryer. The fatigue analysis performed for the ESBWR steam dryer will use a fatigue limit stress amplitude of [93.7 MPa (13,600 psi)]. For the outer hood component, which is subjected to higher pressure loading in the region of the main steam lines, the fatigue limit stress amplitude of [74.4 MPa (10,800 psi)]. The higher limit is justified because the dryer is a non-safety component, performs no safety functions, and is only required to maintain its structural integrity (no loose parts generated) for normal, transient and accident conditions.

Page 351: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-19

Method I is used for components that have many closely spaced vibration frequencies and/or closely spaced natural vibration modes distributed over a relatively narrow frequency range. The method utilizes a strain energy weighting method applied to all modes over the entire frequency range. It is applied by determining the maximum peak-to-peak (p-p) amplitude from an unfiltered time history segment. This maximum value is multiplied by a combined shape factor (derived from the strain energy weighting method) and stress concentration factors to yield the maximum stress value that could be expected to be found anywhere on the structure. This value is then compared against the acceptable fatigue limit stress amplitude for the component and material.

Method II is used for components that have many closely spaced vibration frequencies and/or closely spaced natural vibration modes that are unevenly distributed over several frequency ranges. The method is very similar to Method I, except that it is applied over several separate frequency bands. The maximum stress amplitude values for each frequency band are then added together absolutely to yield a conservatively high value for the overall maximum stress amplitude that could be found anywhere on the structure. This value is then compared against the acceptable fatigue limit stress amplitude for the component and material.

Method III is used for components that have relatively few, distinct dominant natural modes that can be easily identified and matched to the modes predicted by the finite element models. This method utilizes a mode shape factor for each vibration mode that relates the stress at the sensor location to the stress at the maximum stress location for that mode. Appropriate stress concentration factors are also considered in this process. Response spectra are generated from the sensor output, from which the equivalent maximum p-p strain amplitude for each mode can be determined. The mode shape and stress concentration factors are applied mode by mode to determine the maximum stress amplitude associated with each mode. Then the maximum stress amplitudes from each of the modes are added together absolutely to yield a conservatively high maximum overall stress amplitude for the structure. This value is then compared against the acceptable fatigue limit stress amplitude for the component and material.

All three methods have identical initial steps to obtain mode shape factors for each natural mode. The first five steps for all three methods are as follows (Note: The evaluation method described here relates to strain gages. Similar steps are used for accelerometers used in their displacement mode and for LVDTs. The example assumes a maximum allowable stress amplitude for the material of [68.9 MPa (10,000 psi)] for the purposes of illustration):

(1) The dynamic finite element model of each instrumented component is used to predict the natural vibration modal displacement, frequency and stress for each vibration response mode. Specifically, the computer model provides the following results for each mode:

ωi = Natural frequency for vibration mode i

{φ}i = Mass normalized displacement mode shape for vibration mode i.

(Normalized such that the generalized mass, {φ}iT[M]{φ}i, is unity, where

[M] is the mass matrix.)

{σ}i = Normalized stress distribution for vibration mode i. (The stress corresponding to the mass normalized mode shape, {φ}i)

Page 352: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-20

The theory and methods for calculation of these parameters may be found in text books on the subject of basic vibration analysis, such as Reference 3L-4.

(2) For each vibration mode, stress concentration factors are applied at weld locations and regions with high stress gradient. From this information, the maximum stress intensity location and value is determined for each vibration mode.

σ σi i iMax SCF,max { }= ⋅ considered over the entire structure

where

SCFi = Stress concentration factor at some location σi = Normalized stress intensity at the same location σi,max = Normalized maximum stress intensity for mode i

(3) From the stress distribution of Step 1, a mode shape factor is derived relating the stress at the sensor to the stress at the maximum stress location as determined in Step 2:

sensor,i

ii

location)intensity stress maximumat (MSF σσ=

where

MSFi = Mode shape factor

σi,sensor = Normalized stress at sensor location for vibration mode i

(4) The mode shape factor from Step 3 and the maximum allowable stress amplitude for the material [68.9 MPa (10,000 psi)] are used to determine the maximum allowable stress value at the sensor location for each mode.

( ) ( )σ i sensor allowedi i

MPaMSF SCF, ,

.=⋅

68 9

where

σi,sensor,allowed = Maximum allowed zero to peak stress amplitude at sensor location for vibration mode i (stress amplitude at sensor when maximum stress amplitude in structure is 68.9 MPa)

(5) The allowable strain for mode i (εi,allowed) is then calculated from this maximum allowed stress amplitude at the sensor location:

εσ

i allowedi sensor allowed

E,, ,=

where

E = Young’s modulus [e.g., 1.862 x 105 MPa (27.0 x 106 psi) at 160°C]

This equation is for uniaxial stress components. A similar, but more complex procedure will be used for biaxial stress structures such as the dryer skirt, drain channel and hood.

Page 353: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-21

At this point, Methods I and II diverge from Method III.

3L.5.5.2.1 Methods I and II

The next two steps are identical for Methods I and II.

(6) A weighting factor is determined by the strain energy method, which begins by obtaining the solution to the following equation based on the expected forcing function:

{ } { } { } { }∑=

φ=+φ+φN

1iii2211 qqq=U K

where

{U} = A vector representing the displacement response of the structure when subjected to the expected forcing function shape. This displacement response to an input forcing function is calculated from the finite element model on the computer.

{φ}i = Mass normalized mode shape for vibration mode i. Mode shapes were determined from the modal analysis of the finite element model on the computer. The modes shapes are normalized such that the generalized mass, {φ}i

T[M]{φ}i, is unity (where [M] is the mass matrix).

qi = Mode i response, dependent on load distribution. These coefficients are calculated from the previously calculated {U} and {φ}i using formulas derived from the generalized Fourier Theorem.

This is an application of the generalized Fourier Theorem, which establishes that a displacement function such as {U} can be represented by a linear sum of the eigenfunctions, {φ}i. The theory and methods for calculation of these coefficients may be found in any good text book on the subject of basic vibration analysis, such as Reference 3L-4.

(7) The strain energy contribution, ei, for each mode is then calculated:

{ } [ ] { }e q Ki i iT

i= ⋅ ⋅ ⋅ ⋅12

2 φ φ

where

[K] = The structural stiffness matrix (For a more detailed explanation of the theory and calculation methods, see any good vibration analysis textbook, such as Reference 3L-4.)

The next step is similar for both Methods I and II, the only difference being that Method I will include the entire frequency range into one group, while Method II will break into several frequency ranges.

(8) Then the strain energy weighted allowable strain vibration amplitude is calculated over a given frequency range by combining the weighted strain allowable values for each mode as follows:

Page 354: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-22

For ω ω ω ω ω

εε ε ε

I n II

II allowedallowed allowed n n allowed

n

e e ee e e

< ≤

=⋅ + ⋅ + + ⋅

+ + +

1 2

1 1 2 2

1 2

, , ,

,, , ,

K

K

K

where

εII,allowed = Allowable strain value between ωI and ωII, which includes the stress concentration factor, SCF

It should be noted that this step conservatively assumes that the peak stress of each mode occurs at the same physical location on the structure. In reality, the maximum stress locations for different modes may occur at different locations. Since the purpose of this calculation is just to confirm that the maximum stress is less than an acceptable limit, it is quite acceptable to add this conservatism. However, it should be understood that the value calculated is conservatively high, and it is not an accurate prediction of the actual stress amplitude. If a stress calculated in this manner should exceed the limit in a few situations, then a less conservative calculation can be used in those few cases.

The strain value in the above equation is the allowable strain used during the actual execution of the test. It represents the strain level at the sensor location when the maximum stress on the structure is 68.9 MPa (10,000 psi).

Step 9 is the same for both Methods I and II, except that it is applied to each of the multiple frequency ranges associated with Method II; whereas, Method I is only for one frequency range.

(9) The combined shape factor (CSF) is derived to relate the maximum zero-to-peak strain value measured at the sensor location to the corresponding maximum zero-to-peak stress intensity value on the structure.

σε

εεII

II measured

II allowedII measuredMPa CSF,max

, ,max

,, ,max( . )= ⋅ = ⋅68 9

where

CSF MPa

II allowed= ( . )

,

68 9ε

= Combined Shape Factor with the SCF included.

σII,max = Maximum zero-to-peak stress value anywhere on the structure for modes within the frequency range of ωI to ωII.

εII,measured,max = Maximum measured zero-to-peak strain (one-half of maximum measured peak-to-peak) from time history of sensor band pass filtered over the frequency range ωI to ωII.

Page 355: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-23

This is the maximum zero-to-peak stress value anywhere on the structure as determined by Method I. For Method I, this value is compared to 68.9 MPa (10,000 psi) for determination of acceptability. One additional step remains for Method II.

(10) The maximum stress values for each frequency band are added together absolutely to determine the overall maximum stress on the structure for comparison to the 68.9 MPa (10,000 psi) limit for the material.

σ σ σ σMAX II III N= + + +,max ,max ,max...

where

σMAX = Maximum overall zero-to-peak stress anywhere on structure as determined by Method II.

σN,max = Maximum zero-to-peak stress anywhere on structure within the frequency range of ωN-1 to ωN (N-1 frequency ranges total).

σ MAX is compared to the 68.9 MPa (10,000 psi) limit in order to determine acceptability under Method II.

It should be noted that this step conservatively assumes that the peak stress of each mode occurs at the same time. In reality, the maximum stress occurs at different times. Since the purpose of this calculation is just to confirm that the maximum stress is less than an acceptable limit, it is quite acceptable to add this conservatism. However, it should be understood that the value calculated is conservatively high, and it is not an accurate prediction of the actual stress amplitude. If a stress calculated in this manner should exceed the limit in a few situations, then a less conservative calculation can be used in those few cases.

3L.5.5.2.2 Method III

Method III uses the mode shape factor (MSF) from Step 3, the stress concentration factor (SCF) and the measured strain value to determine the maximum stress amplitude anywhere on the structure for each natural mode. Picking up after Step 5 from Section 3L.5.5.2:

(6) Maximum stress in the structure is calculated from the measured strain value at the sensor location.

σ εi MAX i measured i iE MSF SCF, , ,max= ⋅ ⋅ ⋅

where

σi,MAX = Maximum zero-to-peak stress anywhere on structure for mode i.

εi,measured,max = Maximum zero-to-peak strain for mode i as determined from power spectrum from sensor signal.

E = Young’s Modulus

MSFi = Mode Shape Factor for mode i.

SCFi = Stress Concentration Factor as applicable for maximum stress location for mode i.

Page 356: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-24

(7) The maximum stress values for each mode are added together absolutely to determine the overall maximum stress on the structure for comparison to the 68.9 MPa (10,000 psi) limit for the material.

σ σ σ σMAX MAX MAX n MAX= + + +1 2, , ,...

where

σMAX = Maximum overall zero-to-peak stress anywhere on structure as determined by Method III.

σi,MAX = Maximum zero-to-peak stress anywhere on structure for mode i (n total dominant modes).

σMAX is compared to the 68.9 MPa (10,000 psi) limit in order to determine acceptability under Method III.

It should be noted that this step conservatively assumes that the peak stress of each mode occurs at the same physical location on the structure and at the same time. In reality, the maximum stress locations for different modes may occur at different locations and at different times. Since the purpose of this calculation is just to confirm that the maximum stress is less than an acceptable limit, it is quite acceptable to add these conservatisms. However, it should be understood that the value calculated is conservatively high, and it is not an accurate prediction of the actual stress amplitude. If a stress calculated in this manner should exceed the limit in a few situations, then a less conservative calculation can be used in those few cases.

In summary, all three methods involve two significant conservatisms:

• The assumption of the maximum stresses occurring at the same location in a component, and

• The assumption that the maximum stresses for different modes occur at the same time.

Inclusion of these two significant conservatisms results in significantly higher calculated stresses.

Page 357: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-25

3L.6 REFERENCES

3L-1 General Electric Company, “ESBWR Reactor Internals Flow Induced Vibration Program – Part 1”, NEDE-33259P, Class III (Proprietary), January 2006, and NEDO-33259, Class I (Non-proprietary), January 2006.

3L-2 General Electric Company, “BWR Steam Dryer Integrity”, SIL 644 Revision 2, August 30, 2006.

3L-3 ANSYS Engineering Analysis System User’s Manual, G.J. DeSalvo and R.W. Gorman, Swanson Analysis Systems, Inc., Houston, PA, Revision 4.4a, May 1989.

3L-4 Elements of Vibration Analysis, Leonard Meirovitch, McGraw Hill Book Co., 1975.

3L-5 General Electric Company, “Steam Dryer - Acoustic Load Definition,” NEDE-33312P, Class III (Proprietary), October 2007, and NEDO-33312, Class I (Non-Proprietary), October 2007.

3L-6 General Electric Company, “Steam Dryer - Structural Evaluation,” NEDE-33313P, Class III (Proprietary), October 2007, and NEDO-33313, Class I (Non-Proprietary), October 2007.

3L-7 General Electric Company, “Steam Dryer - Instrumentation and Power Ascension Monitoring,” NEDE-33314P, Class III (Proprietary), October 2007, and NEDO-33314, Class I (Non-Proprietary), October 2007.

Page 358: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-26

Table 3L-1

Comparison of Major Steam Dryer Configuration Parameters

Steam Dryer Configuration Parameter

ESBWR Dryer Replacement BWR/3 Dryer

Number of Banks 6 6

Active height (flow area) for vane modules

1829 mm (65.6 m2)

1829 mm (54.3 m2)

Approximate weight 60,000 Kg 45,545 Kg

Outside diameter of upper support ring

6920 mm 6096 mm

Overall height 5700 mm 5436 mm

Length of skirt 2736 mm 2692 mm

Skirt thickness 9 mm 9.65 mm

Cover plate thickness 25.4 mm 25.4 mm

Hood thickness 25.4 mm (outer bank) 12.7 mm (inner banks)

25.4 mm (outer bank) 12.7 mm (inner banks)

Upper support ring cross-section

89 x 242 mm 152.4 x 203.2 mm

Average steamline flow velocity

49.7 m/s 61.6 m/s

Page 359: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-27

Table 3L-2

Specific Steam Dryer Load Definition Legend

Normal (N) Normal and/or abnormal loads associated with the system operating conditions, including thermal loads, depending on acceptance criteria. These include deadweight, static differential pressure, and fluctuating pressure loads.

TSV Turbine stop valve closure induced loads in the main steam piping and components integral to or mounted thereon. For the dryer, these include acoustic and flow impact loads. Separate load cases will be evaluated for load components that are separated in time (e.g., acoustic impact and flow impact).

LOCA8 Acoustic impact loads on the dryer due to a postulated steamline break. Separate load cases will be evaluated for load components that are separated in time (e.g., acoustic impact and level swell impact).

LOCA9 Level swell impact loads on the dryer due to a postulated steamline break. Separate load cases will be evaluated for load components that are separated in time (e.g., acoustic impact and level swell impact).

Table 3L-3

Typical Vibration Sensors

Vibration sensor type Typical sensor model

Strain gauge Kyowa Model KHC-10-120-G9

Accelerometer Vibro-meter Model CA901

Dynamic pressure transducer Vibro-meter Model CP104 and/or Model CP211

Page 360: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-28

Table 3L-4

Typical Sensor Locations and Types

Equipment Item Location on Equipment Sensor Type Location Basis

Steam Dryer Support Ring

On top of dryer support Accelerometer (Acceleration Mode)

Past experience of dryer rocking.

Steam Dryer Skirt

At bottom of dryer Accelerometer (Displacement Mode)

Modal analysis.

Steam Dryer Hood

At edge of dryer bank hood and end plate.

Strain Gage Pressure Transducer

Past experience of cracks at weld & to obtain forcing function data if problem occurs

Steam Dryer Drain Channel

At top & bottom, side edge of dryer channels.

Strain Gage Modal analysis. Past experience of cracks at weld.

Steam Dryer Skirt

At top & bottom of dryer skirt.

Strain Gage Pressure Transducer

Modal analysis & to obtain forcing function data if problem occurs

Shroud On the outside diameter Strain Gage Modal analysis. Top Guide On the outside diameter of

the top guide mounted to measure tangential & radial relative displacements between top guide and vessel.

Linear Variable Differential Transformer (LVDT)

Past experience to measure shroud motion.

Vessel Dome Region

On steam dryer FIV instrument post.

Pressure Transducer

To obtain forcing function data if problem occurs.

Vessel Annulus

On the vertical FIV mounting bar in the annulus between the shroud and vessel walls.

Pressure Transducer

To obtain forcing function data if problem occurs.

Standby Liquid Control Line

On the joints between the vertical and horizontal runs

Strain Gage New design

Page 361: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-29

Table 3L-5

Applicable Data Reduction Method for Comparison to Criteria

Component Sensor Type Applicable Data Reduction Method

Frequency Bandwidth

(Hz)*

Shroud Strain Gages I Time History 0-100

Steam Dryer Skirt Strain Gages I Time History 0-100

Steam Dryer Drain Channels

Strain Gauges II Time History 0-100, 100-200

Steam Dryer Hoods Strain Gages II Time History 0-100, 100-200

Steam Dryer Support Ring

Accelerometer Impact Time History 0-1600 0-80, 80-200

Top Guide Displacement I Time History 0-100

Vessel Annulus Pressure sensors I Time History 0-200

Standby Liquid Control Lines

Strain Gages I Time History 0-200

* It should be noted that the 200 Hz frequency range is approximate and is dependent on the SRV standpipe design. The frequency range monitored and evaluated in the FIV test program will be adjusted to bound the range of frequencies determined for the final SRV standpipe design.

Page 362: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-30

Table 3L-6

Parameters Used in Spectrum Generation

Parameter Value

Bandwidth 0-200 Hz*

Time length 3 minutes

No. of Fourier Lines 400

Resolution 0.5 Hz

Window Flat Top

No. of averages 90

Overlap 0%

Noise reduction None

Average Type Peak-hold

P-P Value = RMS x 6

* It should be noted that the 200 Hz frequency range is approximate and is dependent on the SRV standpipe design. The frequency range monitored and evaluated in the FIV test program will be adjusted to bound the range of frequencies determined for the final SRV standpipe design.

Table 3L-7

Data Evaluation Methods to be Used for Each Component

Internal Component Data Evaluation Method Used

Shroud and Chimney I

Steam Dryer I & II

Standby Liquid Control Line I

Page 363: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-31

Figure 3L-1. Chimney and Partition Assembly

Page 364: ESBWR Design Control Document - NRC: Home Page

26A6642AN Rev. 03 ESBWR Design Control Document/Tier 2

3L-32

Figure 3L-2. ESBWR Steam Dryer Assembly