Top Banner
ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden
34

ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Jan 20, 2016

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

ESA’s Darwin space interferometer

Huub RöttgeringSterrewacht Leiden

Page 2: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

The InfraRed Space InterferometerDARWIN

• 2014• 6 1.5 m telescopes• Hexagonal configuration• Beam combiner• Passive cooling (40 K): 5-20 micron

Page 3: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 3

Overview

Introduction– Timeline / status project– Relation with NASA’s Terrestrial Planet

Finder Imaging considerations Science

Page 4: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 4

Finding and characterising exo-Earth’s– Nulling interferometry

Science

Page 5: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

The Problem

Detecting light from planets beyond solar system is hard:– Planet emits few

photons/sec/m2 at 10 m– Parent star emits 106 more– Planet within 1 AU of star– Dust in target solar

system 300 brighter than planet

Finding a firefly next to a searchlight on a foggy night

Page 6: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 6

Finding and characterising exo-Earth’s– Nulling interferometry– Atmosphere -> CO2

– Wet and pleasant H20– Life O3 (? / !)

High resolution and sensitive IR imaging– Cophasing using an off-axis reference star

Science

CO2

O3

H2O

(m)

6 8 10 12 14 16 18

Earth at 10pc

Page 7: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 7

Darwin timeline 1993: Léger et al

– ``Darwin proposal’’ 2000 Presentation Alcatel system level study 2004 Results significant technology development

program (15 Meuro)– Optical components, coolers, thrusters, metrology,

control software, 2 breadboards … 2007 – SMART2 techno demonstration flight

– (mainly LISA technology) 2010 – SMART3 techno demonstration flight

– 2-3 space craft 2014 – launch

Page 8: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 8

NASA’s TPF

Similar goals and timelines

1999:

IR interferometer with cooled 4x3.5 m mirrors and ~75-1000 m baseline

Page 9: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Vegetation edge

Blue sky

Earthspectrum

fromEarth-shine

2000

Page 10: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Variable-Pupil Coronagraph IR Nulling Interferometers

Large Aperture IR Coronagraph

SVS

coronagraphe

M2

M3

M1

Hyper-telescope

2001: 4 different studies

Page 11: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Variable-Pupil Coronagraph

IR Nulling Interferometers

•Coronagraph – Difficult•10-15 meter mirror with rms surface ~< 1 Å

–Deformable mirrors - control to <1 Å rms over wide range of scales

–Wavefront sensing - adequate for <1 Å control

•Interferometer - Complex–Cryogenic nulling - 10-5 or 10-6 depth across ~1 octave

–Wavefront & amplitude control - spatial filter in mid-IR (+ DM for low spatial freqs) + control of thermal & vibration effects + acc. amplitude measurement

–Beam transport issues (rejection of stray light at small angles)

2002: down selection for 2 concepts

Page 12: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 12

Joined ESA/NASA mission MOU: aims for a joining in 2006 Plan

– Both sides continue technical studies– Regular scientific contact– Criteria to guide continuation after 2006

• #1: Sensitivity in finding and characterizing exoplanets• #2: Richness of astrophysical science opportunities• #3: Technology development needed• #4: Life-cycle costs• #5: Risk of cost, technology, schedule, on-orbit failures• #6: Reliability and robustness

Page 13: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 13

Astrophysical imaging with Darwin

1. Imaging considerations2. Science

Röttgering et al. 2003, Heidelberg conference

Page 14: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 14

Imaging performance at 10 micron

Sensitivity (Takajima and Matshura, 2001)• Limited by shot noise from the zodiacal background.• Similar to JWST

– Point source sensitivity• 1 hour, s/n=5: 2.5 microJy

– Image sensitivity • S_integrate/noise > 50 within FOV• > 2.5 microJy for a 100 hour

Resolution– Baselines up to 500 meter– 200 m baseline: 10 mas

• JWST 350 mas

Page 15: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 15

Imaging considerations

PSF of an individual telescope: 1.4 arcsec– = maximum FOV for pupil combination

Mapsize (200 m baseline/telescope diameter) <~ 100 * 100 independent pixels

Complexity– per configuration maximum 6*5/2 = 15 uv points– number of uv-points >>~ number of image

parameters– for a complex map of 100 * 100 independent pixels:

• >>~ 666 configurations

Page 16: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 16

Baseline dynamics

Fastest reconfiguration cycle takes about 16 hours

Snapshots will be taken “on the fly”

Basic reconfiguration approach

a single expansion up to baselines of 500 m and

contraction coupled to a 60o rotation

bang-bang thrust profile both radially and tangentially

<dB/dt> = 1.5 cm/s @ 1 mN

16

d’Arcio et al. 2001

Page 17: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 17

UV coverageHexagonal array -> 9 independent visibilities per snapshot 600 snapshots, ~ 5400 uv points/reconfiguration cycle

-> Filling the UV plane is ’’easy’’ Ground based telescopes are ``fixed’’ (radio) Baseline/apertureis huge

17

d’Arcio et al. 2001

Page 18: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 18

Issue: Cophasing How to phase-up the array not using the target?

– Essential to• integrate longer than the coherence time of the interferometer

(~10 sec)• Measure complex visibilities (Amplitude and phase) needed for

imaging– Off-axis bright stars (there are enough!)

• Similar to PRIMA instrument for the VLTI (Quirrenbach, this meeting)

• Multiplexing in wavelengths has the advantage that science and reference beams travel along common path (Alcatel)

– Implementation1. Modification to the nulling beamcombiner (Alcatel)2. Separate imaging beamcombiner

Page 19: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

How to get a large Field of View?– Mosaicing

• Expensive in time– homothetic mapping

• Relative complex• Pupil matching in

magnification and orientation before image plane combining

• Implementation

– Pupil matching/zooming optics at central beamcombiner

– Pupil matching/zooming at telescopes

(see d’Arcio and le Poole, 2003)

positioning stages

4kx4k detector

imaging telescope

Zoom optics(5-50x)

Light f rom telescope

Afocal zoomoptics (5-50x)

Lo

(fi xed)

Light f rom telescope

conventionalpupil mapping

variable magnification

positioning stages

4kx4k detector

imaging telescope

Zoom optics(5-50x)

Light f rom telescope

Afocal zoomoptics (5-50x)

Lo

(fi xed)

Light f rom telescope

conventionalpupil mapping

variable magnification

Page 20: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Physical processes observable at 6-20 micron– Molecules: Rotational and

vibrational lines • Temperatures, densities,

kinematics, Chemistry

– Ions: Forbidden fine-structure lines• Temperatures, densities,

kinematics, abundance's

– Dust: PAH features, continuum shape• Composition, temperature

– Late type stars: continuum (high z)• Spatial scales

ISO observationsStarburst galaxy

Circinus

Page 21: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 21

Appropriate sensitivity and angular resolution ?

Star and planet formationAGN

Distant galaxies

Page 22: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Star and Planet formation

Sketch of scenario maybe in place (Shu et al. 87)

Vast range of conditions and relevant timescales– densities 10^4 - 10^13

/cm^3– temperatures 10 - 10,000 K – month - 10^6 years

Issues– density, temperature and

dynamical structure of disks?

– At what stage and when do planets form?

Page 23: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Compendium of Monnier and Millan-Gabet of K-band sizes of YSOs

Disk models of D’Alessio, Merin

Page 24: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

An unphysical, unrealistic extrapolation-> fainter YSO are small (10-100 mas ?)

Log

Rad

ius[

mas

]

4

2

0-2 -1 0

Log flux @ 14 micron [Jy]

ISOCAM survey of your starclusters at 6.6 and 14.3 micron (Eiroa et al)

Darwin

MIDI

Page 25: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 25

Active galactic Nuclei Zoo: Seyfert, Starburst

quasars ... – unification: orientation,

time-evolution, mass, spin

1000 times more AGN at z=2 than z=0

Every galaxy has a central massive Blackhole (?)

Issues:– Physics? When and how

do BH form?– Relation to Galaxy

formation?

Page 26: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 26

AGN may contain dusty tori– can obscure the central QSO– feeds the massive Black Hole

Radiative transfer model of a dusty torus – size scales with QSO

luminosity– SED from = 1 - 300 m– morphologies at = 10 m

Models of Tori of Granato et al.

Adapted to NGC 1068, Heijligers etal.

Page 27: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Darwin observations of Tori D = 300 times the sublimation radius

NGC1068:

– Bight, low luminosity nearby AGN

• ~10 Jy: prime target for MIDI/VLTI in 2003

• 1.7 1031 erg/s/Hz at = 10 m

– (prime target for MIDI/VLTI in 2003)

Weak AGN observable up to z = 1 - 2

Stronger AGN up to z = 10NGC1068

0.01 0.1 1 10 redshift

1’’

0.1’’

0.01’’

50 Jy

5 JyL (

10

m [

1030

erg

/s/H

z]

Page 28: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Distant Galaxies When and how do galaxies form?

– Star formation history, galaxies shapes– Relation to black hole formation

8-10 meter telescopes: a few thousand with 3<z<6 and still counting– Hardly morphological information

Darwin: morphologies of the older stellar component– observe 2 micron rest == 10 micron for z=4

Semi-analytical models of galaxy formation as guidance – input: evolution of cold-dark matter halos, prescriptions for cooling, star

formation and feedback, dust…– output: large samples of mock galaxies and their properties (SF, mass,

type)

Page 29: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

FIRES survey IsaacVLT

: 2.5^2 arcmin 96 h in J, H, K

HDFS limit in K = 24.4

mag Image HST

I+H+K Franx, Labbe,

Forster,schreiber, Rix, Rudnick, Röttgering, etal.

Page 30: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 30

SED fittingwith galaxy templates

•Photometric redshift•Estimate 10 micron flux density

Rudnick, Labbe et al.

Page 31: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 31

JWST resolutionAt 10 micron(0.35 arcsec)

Page 32: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 32

100 hour, S_int/noise=50

F (

10

m )

J

y

(photometric) redshift

100 hourPointsource S/N=5

Page 33: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

Ringberg, 5-Sept-2003 Imaging with Darwin Page 33

Conclusion

Darwin will be a powerful instrument for – Finding and characterizing exo-Earth– Astrophysical studies

Sensitivity is similar to JWST– Cophasing is an important issue

Size scales, AGN, YSOs, distant galaxies are appropriate– Case for larger fields

Page 34: ESA’s Darwin space interferometer Huub Röttgering Sterrewacht Leiden.

2025Terrestrial planet imager?20 8-m telescopes