Top Banner
ES 240 Project: Finite Element Modeling of Nano-Indentation of Thin Film Materials
14

ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

Dec 31, 2015

Download

Documents

Leo Murphy
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

ES 240 Project: Finite Element Modeling of Nano-Indentation of Thin Film Materials

Page 2: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

1. Introduction to Nanoindentation Process2. Model Description3. Model Validation4. Results and Discussion5. Effect of Substrates6. Conclusion and Future Work

Outline

Page 3: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

Displacement Sensor

Force Sensor

Film

Substrate

Indenter

Displacement of Indenter h Ap

plie

d L

oa

d o

n I

nd

en

ter

P

LoadingUnloading

dP/dh

1. Introduction to Nanoindentation Process

Page 4: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

100 nm

100 nm

1000 nm

900 nm

Indenter: Diamond

Film: Copper

Substrate: 1. Copper 2. Sapphire 3. Silicon 4. Glass 5. Polymer

2. Model Description-Dimensions and Materials of The Model

3.70

Page 5: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

Elastic

Materials

E (GPa)

v (-)

Diamond 1147 0.3

Sapphire 440 0.3

Silicon 172 0.3

Glass 73 0.3

Polymer 30 0.3

Elastic/Plastic

Mateirial

E

(GPa)

V(-) Y

(GPa)

Plastic Constitutive

Copper 130 0.3 1.3 nK

0 0.01 0.02 0.03 0.04 0.050

0.5

1

1.5

2

2.5

3

(-)

(G

Pa

) Elastic Plastic

2. Model Description -Materials Properties

Page 6: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

Indenter

Film

Substrate

Element Type: 4-Noded Axisymmetric

Element Size (Edge length):~2 nm (Indentation region)~10 nm (Other region)

Mesh Sensitivity:Refined-mesh model gives similar results.

2. Model Description -Mesh and Element

Page 7: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

cA

unloadingcr dh

dP

AE

2/12/11

4

Experimental :

Theoretical:

i

i

s

s

r

Ev

Ev

E22 11

1

rE : Reduced Modulus

sE sv : Film’s E and v

sE sv : Indenter’s E and v

: Indenter and film’s contact area

3. Model Validation-Reduced Modulus (copper substrate)

Page 8: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

0 5 10 15 20 25 30

0

2

4

6

8

10

12

14x 104

Displacement of Indenter h (nm)

Ap

plie

d Lo

ad o

n I

nden

ter

P (

nN

)

Simulated P vs. hTheoretical P vs. h

Pa)128.6056(GrESimulated:

Theoretical: Pa)128.2340(GrE

3. Model Validation-Theoretical and Simulated Results (copper substrate)

Page 9: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

4. Model Results- Mises Stress (copper substrate)

Page 10: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

4. Model Results- Effective Plastic Strain (copper substrate)

Page 11: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

0 5 10 15 20 25 30 3502468

1012141618

x 104

Displacement of Indenter h (nm)

Fo

rce

on I

nden

ter

P (

nN

)

coppersapphiresiliconglasspolymer

E reducing

Model’s Prediction Experimental Results (W, Nix et al, Acta Materialia, 50, 23, 2002)

5. Effect of Substrates- Load vs. Displacement

Page 12: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

0 50 100 150 200 250 300 350 400 450 50060

80

100

120

140

160

180

200

220

Substrate Youngs Modulus Es(GPa)

Re

duce

d Y

oun

gs

Mod

ulus

Er

(GP

a)

coppersappsiliconglasspolymerTheoretical Er

y=-0.00090793*x2

+0.75727*x+46.0508

Model’s Prediction Experimental Results (W, Nix et al, Acta Materialia, 50, 23, 2002)

5. Effect of Substrates- Reduced Modulus

Page 13: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

0 100 200 300 400 500 600 700 800 900 1000-12

-10

-8

-6

-4

-2

0

X (nm)

De

flect

ion

of S

ubs

trat

e T

op

Sur

face

(nm

)

coppersappsiliconglasspolymer

5. Effect of Substrates- Deflection of Substrate

Page 14: ES 240 Project: Finite Element Modeling of Nano- Indentation of Thin Film Materials.

1. Nanoindentation process can be simulated using finite element method.

2. The reduced modulus predicted by the finite-element model is very close to analytical results.

3. Stiff substrate tends to overestimate thin film’s modulus, and compliant substrate tends to underestimate thin film’s modulus.

5. Conclusion