Top Banner

of 27

Erlenmeyer Azlactones

Nov 03, 2015

Download

Documents

brownbob1000

Review
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Copyright 2013 by Modern Scientific Press Company, Florida, USA

    International Journal of Modern Organic Chemistry, 2013, 2(1): 40-66International Journal of Modern Organic Chemistry

    Journal homepage: www.ModernScientificPress.com/Journals/IJOrgChem.aspx

    ISSN: 2166-0174Florida, USA

    Review

    Erlenmeyer Azlactones: Synthesis, Reactions and Biological Activity

    Ahmed El-Mekabaty

    Department of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura-Egypt

    E-Mail: [email protected]; [email protected]; Tel: (+2010)03677361.

    Article history: Received 22 February 2013, Received in revised form 19 March 2013, Accepted 272013, Published 1 April 2013.

    Abstract: This review summarizes results from the literature concerning on synthetic

    approaches and chemical properties of title compounds as well as their chemical reactions

    since the azlactone chemistry began in 1893 by Friedrich Gustav Carl Emil Erlenmeyer1 to

    date are reported. These compounds are important intermediates for the synthesis of a

    variety of otherwise difficult to obtain synthetically useful and novel heterocyclic systems.

    The most eye catching features of these structures are their greatest utility resides in

    pharmaceuticals (analgesic, antibacterial, antifungal, antagonists, anti-inflammatory, anti-

    microbial, anti-diabetic).

    Keywords: Oxazolone; imidazolone; reactions, heterocycles, antimicrobial activity.

    1. Introduction

    The Erlenmeyer reaction was first described in 1893 by Friedrich Gustav Carl Emil

    Erlenmeyer1 who condensed benzaldehyde with N-acetyl glycine in the presence of acetic anhydride

    and sodium acetate. The reaction goes via a Perkin condensation following the initial cyclization of the

    N-acetylglycine yielding the so-called Erlenmeyer azlactones.

    Erlenmeyer azlactones have been used in a wide variety of reactions as precursors for

    biologically active peptides, herbicides, fungicides, and as drugs, pesticides and agrochemical

    intermediates. Oxazol-5-ones inhibit the activity of tyrosinase enzyme with a maximum inhibition by

    the derivative which bears a cinnamoyl residue at C-4 of oxazolone moiety. Some prepared 3,4-

    diaryloxazolones showed inhibition of cyclooxygenase-2 (COX-2), in vivo anti-inflammatory and

    excellent activities of arthritis and hyperalgesia [1-5]. Several imidazolidine derivatives are proved as

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    41

    insecticides such as imidazolidin-2-one and imidaclopride; herbicides as imazamethabenz-methyl and

    oxadiargyl and fungicides as iprodione that controlled the brown patch (Rhizoctonia solani) [6]. Great

    fungitoxic effect was exhibited by imidazole derivatives that posse an electron-attracting moiety

    substituted on the imine nitrogen atom [7-9]. Also, oxazolone and imidazolone derivatives are used as

    antioxidant and anticorrosive additives for lubricant oils [10-12].

    2. Synthesis

    The various methods that have been used for the preparation of 2-oxazolin-5-one derivatives

    are discussed as follows.

    2.1. Erlenmeyer Synthesis

    In this process, the interaction between carbonyl compounds (aldehydes and ketones) and

    acylglycines or aroylglycines in the presence of acetic anhydride containing sodium acetate gives the

    corresponding 4-(alkylidene or arylidene)-2-oxazolin-5-one derivatives (1a-s) as shown in Table 1.

    The reaction proceeds via the formation of 2-(alkyl or aryl)-5-oxazolones which undergo Perkin

    condensation with aromatic aldehydes to give the corresponding alkylidene or arylidene oxazolones.

    H2C COOH

    NHCOR

    Ac2OAcONa

    R\-CHOON

    O

    R

    HCR\

    1a-s

    ON

    O

    R

    Table 1: Synthesis of 4-(alkylidene or arylidene)-2-oxazolin-5-one derivatives (1a-s).

    Comp. No. 1 R R' Ref.

    a CH3

    [13-15]b CH3

    Cl

    Cl

    c CH3 MeO[14,16,17]

    d CH3 No2

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    42

    e CH3 Cl[14,16]

    f CH3 (H3C)2N

    g CH3 MeO

    MeO

    Cl

    [18]

    h CH3MeO

    OC

    O

    H3C[19]

    i Ph

    [15, 20-22]

    j Ph H3CO

    k Ph Me

    l Ph Cl

    m Ph CH CH

    n PhMeO

    MeO

    [17]

    o PhNH

    p Ph O [23,24]

    q Ph S [25]

    r Ph

    MeO

    MeO

    OMe

    [26]

    s Ph

    MeO

    O

    MeO

    C

    O

    Me [27-30]

    Some of the above derivatives have been also prepared using acetic anhydride and alumina as a

    mild base [31, 32], or calcium acetate under microwave irradiation [33], giving oxazolone (1).

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    43

    Treatment of 2,3-dihydro-1,3-diphenyl-1H-pyrazole-4-carbaldehyde with hippuric acid

    afforded the corresponding (1,3-diphenyl-4-pyrazolin)-4-methylene-2-oxazolin-5-one (2) [34].

    CH2COOH

    NHCOPh+

    2

    NHN

    Ph

    CHOPh

    NHN

    Ph

    Ph

    N

    O

    O

    Ph

    When phthalic anhydride was condensed with hippuric acid, 2-phenyl-4-phthalyl-2-oxazolin-5-

    one (3) was obtained [35].

    O CH2COOH

    NHCOPh+

    3

    O

    O

    N

    O PhOO

    O

    Condensation of cinnamoylglycine with acetic anhydride and sodium acetate gave a low yield

    of 2-styryl-4-(-hydroxyethylidene)-2-oxazolin-5-one (4) [36].

    CH2COOH

    NHCOCH=CHPh2(CH3CO)2O+

    4

    ON

    O

    CH=CHPh

    CH3C

    OH

    Polyconjugated carbazolyl-oxazolones (6) [37] were synthesized starting from 9-methyl-9H-3-

    carbazolecarbaldehyde (5) as follow:

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    44

    ON

    NO2

    NNH

    CH3

    CHO

    N

    CH3

    O

    5

    a,b c

    a =CH3Clb =POCl3, DMFc =2-(4nitrophenylcarboxamido)acetic acid, Ac2Od =1-ethoxyethyne, Cp2ZrHCl, AgClO4e =HCl

    d,e

    N

    CH3

    CHO

    ON

    NO2

    N

    CH3

    O

    N

    CH3

    CHO

    ON

    NO2

    N

    CH3

    O

    n

    c d,e

    c

    6

    Condensation of sodium 2-[4-{2-[4-(dimethylamino)phenyl]-1-diazenyl}benzoylamino]acetate

    (7) with aromatic aldehydes in the presence of Ph3P/CCl4 reagent afforded 4-arylidene-5(4H)-

    oxazolone azo dyes (8a-d) [38].

    PPh3 + CCl4 PPh3 Cl + CCl3

    H2N C NH

    O

    CH2HOOC

    NaNO2 / HCl

    N(CH3)2

    (H3C)2N N N

    C OHN

    H2CHOOC

    NaOH

    N N N(CH3)2

    CHN

    O

    H2C COO Na

    PPh3 Cl+

    N N N(CH3)2

    CHN

    O

    H2C C

    O

    O PPh3

    7

    -Ph3PO+

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    45

    (H3C)2N N

    N

    N O

    O

    Et3N

    RCHO

    (H3C)2N N

    N

    N O

    OCHR

    8a-d

    a: R= C6H5b: R= 4-ClC6H5c: R= C4H3Od: R = 3-O2NC6H4

    Cycloalkanones (9) were heated with DMF/DMA giving the intermediate -enaminoketones

    (10) which reacted with hippuric acid in the presence of acetic anhydride to give a mixture of pyran-2-

    one derivatives (11) and oxazolone derivatives (12) [39].

    The reaction of N-benzoylglycine with o-formyl benzoic acids (13) in presence of acetic

    anhydride and piperidine as a catalyst afforded 3,5\-dioxo-2\-phenyl-1,3-dihydrospiro[indene-2,4\-

    [1,3]oxazol]-1-ylacetates (14) [40].

    X

    CHO

    COOH

    + PhCONHCH2COOHBase

    Ac2O

    X COOHN

    O

    O

    Ph

    OH

    Base

    X COOHN

    O

    O

    Ph

    OH

    X

    O

    O

    O

    N

    O

    O

    Ph

    13

    14

    X= H, Cl, Br

    Reaction of 1-naphthoyl-glycine (16) with acetic anhydride and triethylorthoformate in ethyl

    acetate under reflux afforded 4-ethoxymethylene-2-[1]-naphthyl-5(4H) -oxazolone (17) [41].

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    46

    CHN

    O

    16

    CH2COOH

    Ac2O / CH(C2H5O)3

    EtOAc

    ON

    OEtO

    17

    2-Aryl-4-[4-(1,4,7,10-tetraoxa-13-azacyclopentadecyl)-benzylidene]-5-oxazolone derivatives

    (19) [42] were prepared by the cyclization of 4-(1,4,7,10-tetraoxa-13-azacyclopentadecyl)

    benzaldehyde (18) with aroyl glycine derivatives in the presence of acetic anhydride.

    The reaction of indole-3-carboxaldehyde (21) with (3-phenyl-propionylamino)-acetic acid (20)

    in presence of acetic anhydride and calcium acetate afforded the oxazolone derivative (22) [43].

    Condensation of 16-formyllambertianic acid methyl ester (23) with hippuric acid in the

    presence of acetic anhydride and potassium carbonate gave labdanoid oxazol-5(4H)-one (24) in a low

    yield [44].

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    47

    Me

    COOMeMe

    CH2

    O

    CHO

    Me

    COOMeMe

    CH2

    O

    N

    O

    O

    Ph

    H2C COOH

    NHCOPhAc2O / K2CO3

    23 24

    Reaction of acylglycines with 4-hydroxybenzaldehyde arenesulfonate esters (25) in presence of

    acetic anhydride and sodium acetate afforded 2-aryl-4-[4-(arylsulfonyloxy) phenylmethinyl]-4,5-

    dihydro-5-oxo-1,3-oxazoles (26). The same products were obtained by allowing acylglycines to react

    with ethyl chloroformate in the presence of triethylamine followed by the reaction with (25) [45-48].

    H2C COOH

    NHCOAr2

    ON

    O

    Ar2

    CHAr1

    OH

    ON

    O

    Ar2

    HCAr1

    Cl C

    O

    OEtEt3N

    H2C C

    HN

    O

    O COOEt

    CO

    Ar2

    -CO2

    ON

    O

    Ar2

    Ar1-CHO(25)

    Ac2O / AcONa

    26a, Ar1= C6H5SO3C6H4- : Ar2= C6H5-b, Ar1= 4-CH3C6H4SO3C6H4- : Ar2= C6H5-c, Ar1= 3,4-(CH3)2C6H3SO3C6H4- : Ar2= C6H5-d, Ar1= 4-CH3C6H4SO3-3-MeOC6H3- : Ar2= C6H5-e, Ar1= C6H5SO3C6H4- : Ar2= C6H5SO2NHC6H4-

    Ar1-CHO(25)

    -EtOH

    2.2. Bergmann Synthesis

    Bergmann and Stern [49] stated that oxazolones can be prepared by the action of acetic

    anhydride on certain -(-haloacyl)-amino acids. Thus, refluxing N-chloroacetyl phenylalanine with

    acetic anhydride gave 4-benzylidene-2-methyl-2-oxazolin-5-one.

    C6H5-CH2-CH-COOHON

    CH2Cl

    H2CC6H5

    ON

    O

    CH2

    H2CC6H5

    ON

    O

    CH3

    HCC6H5O

    NHCOCH2Cl

    Ac2O

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    48

    Similarly, 2-benzyl-4-ethoxymethylene-2-oxazolin-5-one (27) was obtained by treatment of N-

    (-chlorophenylacetyl)-o-ethylserine with acetic anhydride in pyridine [36].

    ON

    O

    CH2Ph

    CHEtO

    Ac2O

    Pyridine

    27

    CH3-CH2OCH2-CH-COOHNHCOCHPh

    Cl

    2.3. Miscellaneous Methods

    Reaction of 4-acetamido-5-phenyl-3-isothiazolidinone-1,1-dioxide (28) with acetic anhydride-

    pyridine mixture gave the corresponding 4-benzylidene-2-methyl-2-oxazolin-5-one (1) [50].

    NH

    O2S

    NHCOCH3

    O

    Ph

    Ac2O

    C5H5NO

    N

    CH

    CH3O

    Ph

    128

    Coupling of aroylglycines with the appropriate aryldiazonium salts in acetic anhydride

    containing freshly fused sodium acetate at 0 C gave 2-aryl-4-arylazo-2-oxazoline-5-ones (29) [51-53].

    H2C COOH

    NHCOAr+ Ar\N=N-Cl

    Ac2O

    AcONa ON

    O

    Ar

    NHNAr\

    29a, Ar= C6H5 : Ar\= 4-OHC6H5b, Ar= 4-ClC6H5 : Ar\= 4-OHC6H5c, Ar= 4-CH3C6H5 : Ar\= 4-OHC6H5

    The acid catalyzed rearrangement of 3-benzamido-1,4-diphenyl-2-azetidinone (30) gave 4-

    benzylidene-2-phenyl-2-oxazolin-5-one (1) [54].

    N

    PhNH

    O Ph

    C

    O

    Ph

    H

    O

    N

    PhO

    CHPh

    NHPh

    O

    N

    PhO

    CHPh

    30 1

    -PhNH2

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    49

    3. Reactions

    3.1. Reaction with Acids and Alkalies

    Carboxylic acids can undoubtedly cause ring fission of oxazolones even in the absence of

    water. Carter and Stevens [55] found that, when 4-benzyl-2-phenyl-2-oxazolin-5-one was heated with

    acetic acid afforded benzoylphenylalanine.

    O

    NPhH2C

    O Ph+ CH3COOH

    Ph-CH2-CH

    CONH

    OCOCH3

    COPhPh-CH2-CH

    COOH

    NHAcOH

    COPh

    The basic hydrolysis of 4-(4\-acetoybenzylidine)-2-methyl-5-oxazolone (1) did not yield the

    expected phenylpyruvic acid, but it gives the enol acetate (31).On the other hand, treatment of (1) with

    acetic acid afforded enolacetate derivative (32) [56].

    N

    O

    O

    CH3

    H3COCOH3COCO

    COOH

    OCOCH3

    HO

    COOH

    AcOH OH / H2O

    3132

    OCOCH3

    1

    Phenyl pyruvic acid (33) was obtained through a two steps hydrolysis of oxazolones (1L) with

    aqueous sodium hydroxide followed by aqueous hydrochloric acid [57].

    3.2. Reaction with Amines

    3.2.1. With aliphatic and aromatic amines

    The 2-oxazolin-5-one derivatives react readily with primary amines than with secondary

    amines via ring opening of oxazolone at C5 to give the corresponding amides [58]. Thus, reaction of

    primary aromatic amines with 2-phenyl-4-arylmethylene-2-oxazolin-5-ones (1) leads to ring opening

    at C5 to give the arylamides of -carboxamido--arylacrylic acids which recyclise to the corresponding

    1,2-diaryl-4-arylmethylene-2-imidazolin-5-ones (34) by heating at 200C under vacuum [59]. It was

    stated by many investigators that 2-imidazolin-5-one derivatives (34) were also prepared directly by

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    50

    the reaction of 2-phenyl-4-arylmethylene-2-oxazolin-5-ones with primary aromatic amines in the

    presence of acetic acid and sodium acetate [60-66], anhydrous ZnCl2 under fussion [67],

    DMF/Me3SiCl [68], or in Pyridine/Zeolite [69-71] under reflux.

    Condensation of 2-phenyl-4-arylmethylene-2-oxazolin-5-ones with sulpha drugs at 140C

    afforded 2-imidazolin-5-one derivatives (35) [72].

    ON

    O

    Ph

    CH

    +R H2N SO2NHR1

    NN

    O

    Ph

    HC

    R

    SO2NHR1

    35

    R= 4-ClC6H4-, 2-NO2C6H4-

    R1=N

    N

    N

    NCH3

    CH3

    ON CH3

    , ,

    It has been reported that reaction of 4-(ethoxymethylene)-2-phenyl-5-oxazolone (36) with

    primary aromatic amines in ethanol gave compounds (37) [73,74].

    O

    N

    HC

    O

    OCH2CH3

    + H2N R

    O

    N

    HC

    O

    HN R

    Ethanol

    R= CH3, SH

    37

    36

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    51

    On the other hand, reaction of 2-oxazolin-5-one (36) with diaminomaleonitrile (DAMN) under

    reflux in alcohol afforded the corresponding propenoates derivatives (38) but at room temperature gave

    oxazolone (39) which on heating in alcohol afforded (38) [75,76].

    ON

    O

    Ph

    EtO

    DAMN / EtOHr.t. ON

    O

    Ph

    NH

    CN

    NH2

    NC

    NH

    NH2

    NC

    CN

    NHCOPh

    COORDAMN / ROH

    ROH /

    36

    38

    39

    R= Methyl, Ethyl, Propyl, Pentyl

    It was stated by many investigators that anthranilic acid reacts with 2-phenyl-4-arylmethylene-

    2-oxazolin-5-ones to give the corresponding benzoxazinone derivatives (40) [77-80].

    3.2.2. With ammonia

    Reaction of (1) with ammonia or ammonium acetate in the presence of potassium carbonate or

    under microwave irradiation using graphite as a catalyst afforded 2-phenyl-4-arylmethylene-2-

    imidazolin-5-ones (41) [67,81,82].

    ON

    O

    Ph

    HCAr

    NH3NHN

    O

    Ph

    HCAr

    1 41

    Sawdey has been reported that, treatment of 4-arylazo-2-aryl-2-oxazolin-5-one (29) with

    ammonia in methanol affects ring opening followed by cyclization to yield 1,5-diaryl-3-carboxamido-

    (1H)-1,2,4-triazoles (42) [83].

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    52

    ON

    O

    Ar

    HNNAr\

    NH3CH3OH

    Ar\-NH-N=C COOCH3

    NHCOAr

    N

    N

    N

    CONH2

    Ar

    Ar\

    29 42

    3.2.3. With heterocyclic amines

    Treatment of 2-phenyl-4-dichloromethylideneoxazole-5(4H)-one (43) with some heterocyclic

    amines namely, 2-amino-1,3-thiazole, 2-amino-4-phenyl-1,3-thiazole, 2-amino-4,5-dimethyl-1,3-

    thiazole, 2-amino-benzothiazole and 2-amino-6-methylbenzothiazole in the presence of THF and

    triethylamine leads to the formation of enamides (44) and (45) via opening of the oxazole ring. Heating

    of these enamides with excess morpholine or piperidine in pyridine gave compounds (46) and (47)

    respectively [84].

    Several authors stated that imidazoline derivatives containing sterically hindered phenols

    possess inhibitors of cyclooxygenase and 5-lipoxygenase [85], -adrenoblockers [86,87], and anti-

    hypertensive action [86-89]. So, the reaction of 4-benzylidene-2-methyl oxazol-5-one (1a) with N-

    acylhydrazones of 3,5-di(tert-butyl)-4-hydroxybenzaldehyde in acetic acid afforded 2-imidazolin-5-

    ones (48) in high yield [90].

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    53

    N

    O

    CHPh

    O Me

    t-Bu

    HO

    t-Bu

    CH

    N R

    t-Bu

    OH

    t-BuN

    N

    CHPh

    OR

    SN

    SCH2CONH N CONHR =

    +

    481a

    ,

    3.2.4. With amino acids

    Azlactones were find diverse applications in the synthesis of aromatic -amino acids [91-94].

    The base catalyzed deprotonation of azlactone and the addition of the resulting anion to aromatic

    aldehydes leads to the formation of arylidene derivatives (1) which are subsequently transformed into

    the amino acids (49) in basic medium [95].

    ON

    O

    Ph

    ON

    O

    Ph

    ON

    O

    Ph

    OH

    Ar

    ON

    O

    Ph

    Ar

    Ar CO2

    NH3

    AcO -H2O

    OHreduction

    49

    1

    ArCHO

    N-Benzoyl dehydro-3-(3-pyridyl)alanyltryptophan (50) [96] was obtained by condensation of

    2-phenyl-4-(3-pyridyliden)-5(4H)-oxazolone with tryptophan in the presence of triethylamine as the

    condensing agent.

    O

    N

    HC

    OPh

    N

    NH

    CH2CH(NH2)COOH

    PhCONHC

    CH

    N

    CONH CH

    H2C

    COOH

    HN

    50

    +

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    54

    The unsaturated oxazolone were converted into the corresponding dipeptide by two reaction

    sequences. One is to condense oxazolone with the amino acid ester to form (51) which was hydrolyzed

    to give (52) [97,98].

    O

    N

    Ph

    HC

    O

    ArH2N COOR1

    R

    Ph NH

    HN COOR1

    OAr

    O R

    Ph NH

    HN COOH

    OAr

    O R

    51

    52

    OH

    On the other hand, reaction of 4-ethoxymethylene-2-(1)-naphthyl-5(4H)-oxazolone (17) with

    the amino group of peptides gave 2,4-disubstituted oxazolone derivatives (53) and ethylalcohol [99].

    O

    N

    HC

    O

    OC2H5

    Naphthyl

    NH2-CH(R1)..............-NH-CH(R2)-CO-XH

    +

    O

    N

    HC

    ONaphthyl

    NH-CH(R1).........-NH-CH(R2)-CO-XH

    1753

    + EtOH

    3.2.5. With hydrazines

    It has been reported that treatment of 4-arylmethylene-2-phenyl-2-oxazolin-5-one with phenyl

    hydrazine in acetic acid containing fused sodium acetate gave the corresponding 1,2,4-triazin-6-one

    derivatives (54) [60,64,100].

    ON

    O

    Ph

    HCAr

    PhNHNH2

    NH

    N

    N Ph

    PhO

    HCAr

    54

    4-Arylmethylene-2-phenyl-2-oxazolin-5-ones react with hydrazines in alcohol to give the

    hydrazides (55) [64,100], which undergoes cyclization by heating under reflux with sodium hydroxide

    to give the corresponding 1,2,4-triazin-6-one derivatives (54) [101,102].

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    55

    Microwave irradiation has become an important method in organic synthesis that can be

    applied to a wide range of reactions within short reaction times and with high yields. So, 2-oxazolin-5-

    ones (56) were irradiated in microwave oven with hydrazine hydrate at 90 W for 10 min. to afford 5-

    [(6-bromo-4-oxochromen-3-yl)methylene]-3-phenyl-2,5-dihydro-1H-[1,2,4] triazin-6-ones (57) [103].

    On the other hand, reaction of 4-benzylidene-2-phenyloxazol-5-one with hydrazine hydrate in

    pyridine afforded N-amino-2-phenyl-4-benzylidene-1,3-diazol-5-one (58) [104].

    Reaction of hydrazine hydrate with 4-arylazo-2-oxazolin-5-ones (29) in the presence of basic

    reagents yielded 1,5-diaryl-1,2,4-triazole-3-carboxylic acid hydrazides (59) [51] via ring opening

    followed by cyclization.

    ON

    O

    Ph

    ArHNN

    NH2NH2

    NHCOPh

    CONHNH2

    N

    N

    N

    CONHNH2

    Ph

    Ar

    29 59

    ArNH-N=C

    1-Acyl-3-hydroxy-1H-pyrazoles (61) were obtained in high yields by the reaction of

    ethoxymethylene oxazolone (36) with hydrazide derivatives via the intermediate pyrazolone derivative

    (60). On the other hand, reaction of (36) with two equivalents of an appropriate hydrazine derivative,

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    56

    the corresponding symmetrically N,N\-disubstituted hydrazines (62) together with the oxazolone (63)

    were obtained. [105,106].

    The chemotherapeutic properties of drugs belonging to the nitrofuran series offer an alternative

    to antibiotics and antimicrobial [107-109]. So, the reaction of 2-oxazolin-5-one with 5-nitro-2-

    furohydrazidimide (64) in dioxane afforded 7-benzylidene-5-methyl-2-(5-nitro-2-furyl)-7H-imidazo-

    (3,4-b)(1,2,4)triazole (65) [110].

    ON

    O

    Me

    CH

    ONO2C

    NH2NH2N O

    NO2N

    N NN

    Me

    CH

    6564+

    3.2.6. With diamines

    Many investigators [111-114] stated that fussion of 4-arylmethylene-2-phenyl-2-oxazolin-5-

    ones with o-phenylenediamine at 140C in the presence of fused sodium acetate gave (o-

    aminophenyl)-4-arylmethylene-2-phenyl-2-imidazolin-5-ones (66) which on refluxing with acetic acid

    containing sodium acetate afforded benzimidazolo-[2,1-e]-imidazoles (67). On the other hand, when

    the reaction was carried out with o-phenylenediamine in ethanol, the product (68) was obtained. While

    heating in presence of acetic acid and sodium acetate gave the benzimidazole derivatives (69).

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    57

    Treatment of 4-arylmethylene-2-phenyl-2-oxazolin-5-one (26) with 2,3-diaminopyridine in

    ethanol containing fused sodium acetate under reflux gave compound (70). Using acetic acid instead of

    ethanol yielded 2-[2-[(4-arylsulfonyloxyphenyl)-1-benzoylamino] ethen-1-yl] -3H-imidazo (4,5-b)

    pyridine (71). On the other hand, when the reaction was carried out by fusion with a catalytic amount

    of fused sodium acetate, 3-amino-2-[4-(4-arylsulfonyloxyphenylmethylene)-5-oxo-2-phenyl

    imidazolin-1-yl]pyridines (72) were obtained [47].

    Condensation of 4-methylbenzylidene-2-phenyl-2-oxazolin-5-one with 1,8-diaminonaphthalene

    in glacial acetic acid at room temperature yielded a mixture of 2-(4-methylbenzyl)-1H-pyrimidine (73)

    and 2-phenyl-1H-pyrimidine (74), respectively [115].

    ON

    O

    Ph

    HCMe

    +

    N

    NH

    CH2

    Me

    NH2

    NH2

    N

    NH

    Ph

    CH3COOH

    73 74

    +

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    58

    It was stated that, 2-alkenyl-4,4-dialkyl-5-oxazolones (75) [116,117] are of special interest for

    the synthesis of bisazlactones and multiazlactones [118-121] because of their ability to undergo

    Michael type addition on the vinyl group. They are also key intermediates for a large number of novel

    monomers and polymers. Their ring opening reaction with primary amines and alcohols has been

    utilized extensively for the synthesis of acrylamide monomers [116,122,123].

    3.2.7. With diazocompounds

    4-Arylmethylene-2-phenyl-2-oxazolin-5-ones were converted into methyl--benzoylamino

    cinnamates (78) by the action of ethereal diazomethane in methanol. When the reaction was carried out

    in dry dioxane, the cyclopropane derivatives (79) were formed [36,124,125]

    ON

    O

    Ph

    CHArCOOCH3

    NHCOPh

    ON

    O

    Ph

    Ar

    79

    78

    CH2N2

    CH3OH

    CH2N2dioxan

    Ar-CH=C

    Mustafa et al. [125] reported that treatment of 4-ethylidene-2-phenyl-2-oxazolin-5-one (1a)

    with diazomethane leads to the formation of 4-isopropylidene-2-phenyl-2-oxazolin-5-one (80).

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    59

    ON

    O

    Ph

    HCH3C

    CH2N2 ON

    O

    Ph

    C

    CH3

    H3C

    1a 80

    On the other hand, reaction of 4-arylmethylene-2-phenyl-2-oxazolin-5-ones with 1,3-

    diphenylnitrilimine at room temperature afforded spiro-pyrazolines (81) [126].

    +

    C

    N

    C6H5

    N

    C6H5

    NN

    C6H5

    C6H5

    Ar

    O

    N

    OPh

    81

    ON

    O

    Ph

    HCAr

    4. Biological Activity

    2-Oxazolin-5-ones can be considered as semi acid anhydrides which undergo many of the

    reactions of true acid anhydrides but at a slower rate. This special reactivity allows this class of

    compounds to be quite useful as serine protease inhibitors, inactivating enzymes such as chymotrypsin

    [127], human leucocytes elastase [5-9,128,129], porcine pancreatic elastase, cathepsin G [130] and CIr

    serine protease [131]. The chemical stability and potency of the oxazolones can be turned by choosing

    substituent which influences the reactivity of the carbonyl by electronic and steric effects.

    A variety of 4-(alkoxymethylene)-2-phenyl-5-oxazolone have been designed to inhibit enzymes

    such as chymotrypsin [132,133], thrombin [134], cathepsin G [128], HSV-1 protease[135], protac R

    [131], human leukocyte proteinase [136], HLE [137] and pancreatic elastase [127]. 2-Phenyl-4-

    arylmethylene-2-oxazolin-5-ones act as Cirserine protease inhibitors [131]. Also it converted to the

    corresponding imidazolones via interaction with 4-amino-1-phenyl-2,3-dimethylpyrazolin-5-one

    (aminoantipyrine), which acts as non-steroidal anti-inflammatory agents [138]. Also, combination of

    2-oxazolin-5-ones with 2-aminothiazole, 2-aminobenzothiazole or 2-aminothiadiazole give substituted

    imidazolones which act as potent anticonvulsant and enzyme inhibitors [139, 146-147]. On the other

    hand, it acts as new class of antimitotic, anticancer agents which inhibit tubulin polymerization [140].

    Compounds 35 are used for inhibitors HCMV protease, Chymotrypsin and human leukocyte

    elastase as well as cell culture assay results for antiviral activity [2, 3].

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    60

    2-Imidazolin-5-ones 48 are useful for the treatment of viral infections, viral protease inhibitors

    and useful for treatment of infection by CMV, HSV-1, HSV-2 [141].

    t-Bu

    OH

    t-BuN

    N

    CHPh

    O

    R 48

    7-Benzylidene-5-methyl-2-(5-nitro-2-furyl)-7H-imidazo-(3,4-b)(1,2,4)triazole 65 has been

    synthesized and tested for inhibitory activity against human leukocyte elastase. It was shown activities

    both in vitro toward human sputum elastase and in vivo in a hemorrhagic assay [142-145].

    5. Conclusion

    The present survey has clearly demonstrated that azlactones may be successfully used to

    synthesize a wide variety of heterocycles of academic and pharmaceutical interest. Moreover, in

    general, the desired compounds may be obtained in a single step with high yield.

    References

    [1] Ladva, K.; Dave, U.; Parekh, H., J. Inst. Chem. 1992, 64: 80.

    [2] Latitha, N.; Bhalerac, U. T.; Iyengar, D. S., J Chem. Soc., Perkin Trans1. 1993: 737.

    [3] Descas, P.; Jarry, C. Eur. pat., 392 929, 17 OCT 1990. C.A. 1991, 114: 143c.

    [4] Benedlt, D.; Daniel, V., J. Med. Chem. 1994, 37: 710.

    [5] Pereira, E. R.; Sancelme, M.; Voldoire, A.; Prudhomme, M., Bioorg. Med. Chem. Lett. 1997, 7:

    2503.

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    61

    [6] Viti, G.; Namnicine, R.; Ricci, R.; Pestelline, V.; Abeli, L.; Funo, M., Eur. J. Med. Chem. 1994,

    29: 401.

    [7] Martinez, A. P.; Lee, W. W.; Goodman, L., Tetrahedron 1964, 20: 2763.

    [8] Gelmi, M. L.; Clerici, F.; Melis, A., Tetrahedron 1997, 53: 1843.

    [9] Mistry, R. N.; Desai, K. R., E-Journal of Chem. 2005, 2: 42.

    [10] Hassan, H. M.; El-Fedway, M.; El-Zimity, M. T., Indian J. Technol. 1985, 23: 473.

    [11] El-Mekabaty, A., Int. J. Modern Org. Chem., 2012, 1: 72.

    [12] El-Mekabaty, A.; Habib, O. M. O.; Hassan, H. M.; Moawad, E. B., Pet. Sci. 2012, 9: 389.

    [13] Srivastava, R. P.; Singh, S. K.; Sharma, S.; Singh, S. N.; Fatma, N.; Chatterjee, R. K., Indian J.

    Chem. 1991, 30B: 859.

    [14] Betlakowska, B.; Banecki, B.; Czaplewski, C.; Lankiewicz, L.; Wiczk, W., J Chem. Kinet. 2002,

    34: 148.

    [15] Abdel-Aty, A. S., World J. Agricult. Sci. 2009, 5: 105.

    [16] Betlakowska, B.; Banecki, B.; Lankiewicz, L.; Wiczk, W., Pol. J. Chem. 2001, 75: 401.

    [17] Mesaik, M. A.; Rahat, S.; Khan, K. M.; Zia-Ullah; Choudhary, M. I.; Murad, S.; Ismail, Z.; Atta-

    Ur-Rahman; Ahmad, A., Bioorg. Med. Chem. 2004, 12: 2049.

    [18] Haasbroek, P. P.; Oliver, D. W.; Carpy, A. J. M., J. Chem. Crystall. 1998, 28: 811.

    [19] Wang, X.; Zhang, M.; Qi, Z.; Ma, S., Acta Cryst. 2005, E61: o1265.

    [20] Rao, P. S.; Venkataratnam, R. V., Indian J. Chem. 1994, 33B: 984.

    [21] Kidwai, M.; Kumar, R.; Kumar, P., Indian J. Chem. 1996, 35B: 1004.

    [22] Bruno, G.; Rotondo, A.; Grassi, G.; Foti, F.; Risitano, F.; Nicolo, F., Acta Cryst. 2004, C60:

    0496.

    [23] Saravanan, S.; Selvan, P. S.; Gopal, N.; Gupta, J. K.; De, B., Arch. Pharm. Chem. Life Sci. 2005,

    338: 488.

    [24] Ozturk, G.; Alp, S.; Ertekin, K., Dyes and Pig. 2007, 72: 150.

    [25] Gil, A. M.; Lopez, P.; Bunuel, E.; Cativiela, C., Arkivoc 2005, x, 90.

    [26] Sanchez-Viesca, F.; Berros, M.; Flores, J. P., Rapid Commun. Mass Spectrom. 2003, 17: 498.

    [27] Sun, Y.; Wang, X.; Li, J.; Zheng, Z.; Wu, R., Acta Cryst. 2007, E63: o4426.

    [28] Imhof, W.; Garms, S., Acta Cryst. 2005, E61: 1413.

    [29] Song, H. C.; Wen, H.; Li, W. M., Spectrochim. Acta. A, 2004, 60: 1587.

    [30] Vasuki, G.; Parthasarathi, V.; Ramamurthi, K.; Singh, R. M.; Srivastava, A., Act Cryst. 2001,

    E57: o120.

    [31] Conway, P. A.; Devine, K.; Paradisi, F., Tetrahedron 2009, 65: 2935.

    [32] Chandrasekhar, S.; Karri, P., Tetrahedron Lett. 2007, 48: 785.

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    62

    [33] Paul, S.; Nanda, P.; Gupta, R.; Loupy, A., Tetrahedron Lett. 2004, 45: 425.

    [34] El-Kaschef, M. A. F.; Abdel-Megeid, F. M. E.; Yassin, S. M. A., Justus Liebigs Ann. Chem.

    1974, 1: 3773.

    [35] Erlenmeyer, E., Ber. 1889, 22: 792.

    [36] Clarke, H. T.; Johnson, J. H. Ed. "The chemistry of Penicillin", Princeton University Press, 1949,

    p. 830.

    [37] Diaz, J. L.; Villacampa, B.; Lopez-Calahorra, F.; Velasco, D., Tetrahedron Lett. 2002, 43: 4333.

    [38] Fozooni, S.; Tikdari, A. M.; Hamidian, H.; Khabazzadeh, H., Arkivoc 2008, xiv: 115.

    [39] Pozgan, F.; Kranjc, K.; Kepe, V.; Polanc, S.; Kocevar, M., Arkivoc 2007, viii: 97.

    [40] Younesi, A.; Sorotskaya, L. N.; Krapivin, G. D., J. Chin. Chem. Soc. 2009, 56: 1.

    [41] Koczan, G.; Csik, G.; Csampai, A.; Balog, E.; Bosze, S.; Sohar, P.; Hudecz, F., Tetrahedron

    2001, 57: 4589.

    [42] Ozturk, G.; Alp, S.; Ergun, Y., Tetrahedron Lett. 2007, 48: 7347.

    [43] Guella, G.; Diaye, I. N.; Fofana, M.; Mancini, I., Tetrahedron 2006, 62: 1165.

    [44] Kharitonov, Y. V.; Shults, E. E.; Shakirov, M. M.; Tolstikov, G. A., Russ. J. Org. Chem. 2007,

    43: 839.

    [45] Hanna, M. A.; Girges, M. M.; Berghot,M. A., Phosphorus, Sulfur, and Silicon 1991, 61: 239.

    [46] Habib, O. M. O.; Moawad, E. B.; El-Morsy, S. S., J. Islamic Acad. Sci. 1989, 2: 135.

    [47] Girges, M. M.; Abou El-Zahab, M. M.; Hanna, M. A., Collect Czech. Chem. Commun. 1989, 54:

    1096.

    [48] Sen, B.; Ozturk, G.; Alp, S.; Aygun, M.; Buyukgungor, O., Acta Cryst. 2007, C63: o223.

    [49] Bergmann, M.; Stern, F., Ann. 1926, 20: 448.

    [50] Howard, J. C., J. Org. Chem. 1971, 36(8): 1073.

    [51] Browne, E. J.; Polya, J. B., J. Chem. Soc. 1962: 575.

    [52] Khalil, A. M.; Abd El-Gawad, I. I.; Hassan, H. M., Aust. J. Chem. 1974: 27.

    [53] Habib, O. M. O.; Moawad, E. B.; El-Hawary, F. I.; Mostafa, M. S., 13th Egyptian Chem. Conf.

    31 1993.

    [54] Bird, C. W.; Twibell, J. D., J. Chem. Soc. 1971: 3155.

    [55] Carter, H. E.; Stevens, C. M., Ibid. 1940, 133: 117.

    [56] Haasbroek, P. P.; Oliver, D. W.; Carpy, A. J. M., J. Molecular Str. 2003, 61: 648.

    [57] Weber, V.; Rubat, C.; Duroux, E.; Lartigue, C.; Madesclaire, M.; Coudert, P., Bioorg. Med.

    Chem. 2005, 13: 4552.

    [58] Kjaer, A., Acta. Chem. Scand. 1953, 7: 889.

    [59] Lure, S. I.; Mamiofe, S. M.; Ravikovich, K. H. M., Obsh. Khim. 1951, 21: 1308.

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    63

    [60] Islam, A. M.; Khalil, A. M.; Abd El-Gawad, I. I., Aust. J. Chem. 1973, 26(4): 827.

    [61] Islam, A. M.; Khalil, A. M.; El-Houseni, A. S., Aust. J. Chem. 1973, 26(4): 1701.

    [62] Habib, O. M. O.; Hassan, H. M.; El-Houseni, A. S., J. Prakt. Chem. 1983, 325: 685.

    [63] Habib, O. M. O.; Hassan, H. M.; Moawad, E. B., J. Prakt. Chem. 1986, 328: 295.

    [64] Badr, M. Z. A.; Mahgoub, S. A. E., Indian J. Chem. 1989, 28B: 829.

    [65] Badr, M. Z. A., El-Sherief, H. A. H.; Tadros, M. E., Bull. Chem. Soc. Jpn. 1982, 55: 2267.

    [66] Demirayak, S.; Karaburun, A. C.; Kayagil, I.; Erol, K.; Sirmagul, B., Arch Pharm. Res. 2004, 27:

    13.

    [67] Badr, M. Z. A., El-Sherief, H. A. H.; Tadros, M. E., Indian J. Chem. 1979, 18B: 240.

    [68] Topuzyan, V. O.; Oganesyan, A. A.; Panosyan, G. A., Russ. J. Org. Chem. 2004, 40: 1644.

    [69] Siddiqui, S. A., Bhusare, S. R., Jarikote, D. V., Pawar, R. P.; Vibhute, Y. B., Bull. Korean Chem.

    Soc. 2001, 22: 1033.

    [70] Bhusare, S. R.; Patil, P. S.; Chavan, V. P.; Pawar, R. P.; Bhawal, B. M.; Vibhute, Y. B.,

    Mendeleev Commun. 2002, 12: 94.

    [71] Bhusare, S. R.; Shekapure, J. L.; Pawar, R. P.; Vibhute, Y. B.; Bhawal, B. M., Chem. Heterocycl.

    Comp. 2003, 39: 726.

    [72] Joshi, H.; Upadhyay, P.; Karia, D.; Baxi, A. J., Eur. J. Med. Chem. 2003, 38: 837.

    [73] Vasuki, G.; Parthasarathi, V.; Ramamurthi, K.; Singh, R. M.; Srivastava, A., Acta Cryst. 2001,

    E57: o120.

    [74] Hosseini, S. M. A.; Amiri, M., J. Iran. Chem. Soc. 2007, 4: 451.

    [75] Trcek, T.; Vercek, B., Acta Chim. Slov. 2005, 52: 171.

    [76] Polak, M.; Vercek, B., Synth. Commun. 2000, 30: 2863.

    [77] Afify, A. A.; El-Nagdy, S.; Sayed, M. A.; Mohey, I., Rev. Roum. Chim. 1990, 35: 567.

    [78] El-Nagdy, S.; El-Khamry, A. A.; Shaban, M. E.; Habashy, M. M., Rev. Roum. Chim. 1988, 33:

    827.

    [79] El-Nagdy, S.; ElHashash, M. A.; Affiy, A. A.; El-Shahed, F., Rev. Roum. Chim. 1990, 35: 55.

    [80] Saleh, R. M.; Bakeer, H. M.; Mustafa, O. E. A., Rev. Roum. Chim. 1994, 39: 567.

    [81] Harhash, A. H.; Kassab, N. A.; El-Banani, A. A., Indian J. Chem. 1971, 9: 789.

    [82] Fozooni, S.; Tikdari, A. M., Catal. Lett. 2008, 120: 303.

    [83] Sawdey, G. W., J. Am. Chem. Soc. 1957, 79: 1955.

    [84] Prokopenko, V. M.; Sviripa, V. N.; Brovarets, V. S.; Rusanov, E. B.; Drach, B. S., Russ. J. Gen.

    Chem. 2008, 78: 649.

    [85] Unangst, P. C.; Connor, D. T.; Cetenko, W. A.; Sorenson, R. J.; Kostlan, C. R.; Sircar, J. C.;

    Wright, C. D.; Schrier, D. J.; Dyer, R. D., J. Med. Chem. 1994, 37: 322.

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    64

    [86] Autret, A. M.; Schmitt, H.; Fenard, S.; Petillot, N., Eur. J. Pharmacol. 1971, 13: 208.

    [87] Sanders, J.; Miller, D. D.; Patil, P. N. J., Pharmacol. Exp. Ther. 1975, 195: 362.

    [88] Hocker, J.; Giesecke, H.; Merten, R., Angew. Chem. 1976, 88: 151.

    [89] Lorezetti, O. J., US Patent (3670087), C. A. 1972, 77: 83751c.

    [90] Kelarev, V. I.; Silin, M. A.; Borisova, O. A., Chem. Heterocycl. Comp. 2003, 39: 729.

    [91] Rosen, T., In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I.; Heathcock, C. H.,

    Eds.; Pergamon: Oxford 1991, 2: 402.

    [92] Seebach, D.; Jaeschke, G.; Gottwald, K.; Matsuda, K.; Formisano, R.; Chaplin, D. A.,

    Tetrahedron 1997, 53: 7539.

    [93] Boaz, N. W.; Debenham, S. D.; Large, S. E.; Moore, M. K., Tetrahedron:Asymm. 2003, 14: 3575.

    [94] Yamada, K.; Oku, H.; Shinoda, S. S.; Katakai, R., J. Pept. Res. 2005, 65: 167.

    [95] Chandrasekhar, S.; Karri, P., Tetrahedron Lett. 2006, 47: 5763.

    [96] Slavinskaya, V. A.; Sile, D. E.; Katkevich, M.; Korchagova, E. K. h.; Lipsbergs, I. U.; Turovskii,

    I. V.; Lukevits, E., Chem. Heterocycl. Comp. 1995, 31: 202.

    [97] Liang, M. T.; Wang, D. X., Chin. Chem. Lett. 2002, 13: 199.

    [98] Edwards, J. V.; Lax, A. R., Int. J. Peptide & Protein Res. 1986, 28: 603.

    [99] Bosze, S.; Csik, G.; Koczan, G.; Hudecz, F., Biopolymers 2006, 81: 81.

    [100] Madkour, H. M. F., Chem. Pap. 2002, 56: 313.

    [101] Nalepa, K.; Slouka. J., Monatsh. Chem. 1967, 98: 412.

    [102] Gucky, T.; Frysova, I.; Slouka, J.; Hajduch, M.; Dzubak, P., Eur. J. Med. Chem. 2009, 44: 891.

    [103] Gasparova, R.; Harsanyiova, E.; Lacova, M., International Electronic Conference on Synthetic

    Organic Chemistry (ECSOC-11) 1-30 Nov., 2007.

    [104] Deshmukh, M. B.; Chavan, P. B., Indian J. Chem. 1996, 35B: 1337.

    [105] Kepe, V.; Pozgan, F.; Golobic, A.; Polanc, S.; Kocevar, M., J. Chem. Soc., Perkin Trans. 1998,

    1: 2813.

    [106] Kepe, V.; Polanc, S.; Kocevar, M., Acta Chim. Slov. 1998, 45: 455.

    [107] Navashin, S. M., Antibiot. Khimioter. 1989, 6: 406.

    [108] Terekhov, V. I.; Pavlov, P. A., Antibiot. Khimioter., 1995, 40: 34.

    [109] Terekhov, V. I.; Pavlov, P. A., Antibiot. Khimioter. 1995, 40: 36.

    [110] Pavlov, P. A.; Basova, N. Yu.; Pavlov, P. P., Pharm. Chem. J. 1998, 32: 376.

    [111] Hassan, H. M.; El-Houseni, M. S.; Habib, O. M. O., J. Prakt. Chem. 1983, 325: 685.

    [112] Harb, A. F. A.; Zayed, S. E.; El-Maghraby, A. M.; Metwally, S. A., Heterocycles 1986, 24:

    1873.

    [113] Subhashini, N. J. P.; Hanumanthu, P., Indian J. Chem. 1987, 26B: 32.

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    65

    [114] Subhashini, N. J. P.; Hanumanthu, P., Indian J. Chem. 1991, 30B: 427.

    [115] Reddy, R. R.; Rao, C. V. C., Indian J. Chem. 1993, 32B: 367.

    [116] Rasmussen, J. K.; Heilmann, S.; Krepski, L.; Mark, H. F.; Bikales, N.; Overberger, C. G.;

    Menges, C. G. Eds., Wiley Interscience, New York 1988, 11: 558.

    [117] Heilmann, S. M.; Rasmussen, J. K.; Krepski, L. R., J. Polym. Sci. 2001, 39: 3655.

    [118] Acevedo, M.; Fradet, A., J. Polym. Sci. 1993, 31: 817.

    [119] Rasmussen, J. K.; Heilmann, S. M.; Palensky, F. J.; Smith, H. K.; Melancon, K. C., Rapid

    Commun. 1984, 5: 67.

    [120] Heilmann, S. M.; Rasmussen, J. K.; Krepski, L. R.; Smith, H. K., J. Polym. Sci. 1986, 24: 1.

    [121] Guichard, B.; Noel, C.; Reyx, D.; Thomas, M.; Chevalier, S.; Senet, J. Macromol. Chem. Phys.

    1998, 199: 1657.

    [122] Taylor, L. D.; Platt, T. E., Polym. Lett. 1969, 7: 597.

    [123] Taylor, L. D.; Cerankowski, L. D., J. Polym. Sci. 1975, 13: 2551.

    [124] Fischer; Hofmann Physiol. Chem. 1936, 245: 139.

    [125] Mustafa, A.; Asker, W.; Harhash, A. H. E.; Fleifel, A. M., Tetrahedron 1965, 21: 2215.

    [126] Raghunathan, R.; Naidu, P. V. R., Indian J. Chem. 1989, 28B: 966.

    [127] Medstrom, L.; Moorman, A. R.; Dobbs, J.; Abeles, R. H., Biochem. 1984, 23: 1753.

    [128] Krantz, A.; Spencer, R. W.; Tam, T. F.; Liak, T. J.; Copp, L. J.; Thomas, E. M.; Rafferty, S. P.,

    J. Med. Chem., 1990, 33: 464.

    [129] Stein, R. L.; Strimpler, A. M.; Viscarello, B. R.; Wildonger, R. A.; Mauger, R. C., Chem.

    Heterocycl. Compd. 1993, 23: 526.

    [130] Teshima, T.; Griffir, J. C.; Powers, J. C., J. Biol. Chem. 1982, 257: 5085.

    [131] Gilmore, J. L.; Hays, S. J.; Caprathe, B. W.; Lee, C.; Emmerling, M. R.; Michael, W.; Jaen, C.,

    Bioorg. Med. Chem. Lett. 1996, 6: 679.

    [132] Avenoza, A.; Busto, J. H.; Cativiela, C.; Paris, M.; Peregrina, J. M., J. Heterocycl. Chem. 1997,

    34: 1099.

    [133] Avenoza, A.; Busto, J. H.; Cativiela, C.; Peregrina, J. M.; Zurbano, M. M.; Attanasi, O. A.;

    Spinelli, D., Eds.; Italian Society of Chemistry: Roma, 1999, 3: 185.

    [134] Davlidis, H. V.; Perry, P. D., Synth. Commun. 1994, 24: 533.

    [135] Kato, S.; Morie, T.; Ohno, K.; Yoshida, N.; Yoshida, T.; Naruto, S., Chem. Pharm. Bull. 1995,

    43: 582.

    [136] El-Naser Osman, A. R.; El-Sayed Barakat, Arzneium. Forsch. 1994, 44: 915.

    [137] Atkinson, R. S.; Coogan, N. P.; Cornell, C. L., J. Chem. Soc. Perkin Trans. 1996, 1: 157.

  • Int. J. Modern Org. Chem. 2013, 2(1): 40-66

    Copyright 2013 by Modern Scientific Press Company, Florida, USA

    66

    [138] Farghaly, A. M.; Chaaban, I.; Khalil, M. A.; Bekhit, A. A., Alexandria J. Pharm. Sci. 1990, 4:

    52.

    [139] Shrimali, M.; Kalsi, R.; Dixit, K. S.; Barthwal, J. P., Arzneium Forsch 1991, 41: 514.

    [140] Jiang, J. B.; Hasson, D. P.; Dusak, B. A.; Dexter, D. L.; Kang, G.. J.; Hamed, E., J. Med. Chem.

    1990, 33: 1721.

    [141] Huang, Y.; Walji, A. M.; Larsen, C. H.; Macmillan, D. W. C., J. Am. Chem. Soc. 2005, 127:

    15051.

    [142] Arcadi, A.; Asti, C.; Brandolini, L.; Caselli, G.; Marinelli, F.; Ruggieri, V., Bioorg. Med.

    Chem. Lett. 1999, 9: 1291.

    [143] Pager, W. E., Brit, V. K. Patent APPI.GB 2, 249, 104, 1992, C. A. 1992, 117: 194065c.

    [144] Mikroyannidis, J. A., Polym. 1996, 37: 2715.

    [145] Condie, G. C.; Bergman, J., Eur. J. Org. Chem. 2004, 1286.

    [146] Habib, O. M. O.; Hassan, H. M.; Moawad, E. B.; El-Mekabaty, A., Int. J. Modern Org. Chem.

    2013, 2: 11.

    [147] Habib, O. M. O.; Hassan, H. M.; Moawad, E. B.; El-Mekabaty, A., Am. J. of Org. Chem. 2012,

    2: 79.