Top Banner
Equation of state for distributed mass quark matter T.S.Bíró , P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark matter Consistent eos with mass distribution Fit to lattice eos data Arguments for a mass gap Strange Quark Matter 2006, 27.03.2006. Los Angeles
28

Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Dec 22, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Equation of state for distributed mass quark matter

T.S.Bíró, P.Lévai, P.Ván, J.Zimányi

KFKI RMKI, Budapest, Hungary

• Distributed mass partons in quark matter

• Consistent eos with mass distribution

• Fit to lattice eos data

• Arguments for a mass gap

Strange Quark Matter 2006, 27.03.2006. Los Angeles

Page 2: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Why distributed mass?

valence mass hadron mass ( half or third…)

c o a l e s c e n c e : c o n v o l u t i o n

Conditions: w ( m ) is not constant zero probability for zero mass

Zimányi, Lévai, Bíró, JPG 31:711,2005

w(m)w(m) w(had-m)

Page 3: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Previous progress (state of the art…)

• valence mass + spin-dependent splitting :

• too large perturbations (e.g. pentaquarks)

• Hagedorn spectrum (resonances):

• no quark matter,

• forefactor uncertain

• QCD on the lattice:

• pion mass is low

• resonances survive Tc

• quasiparticle mass m ~ gT leads to p / p_SB < 1

Page 4: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Strategies

1. guess w ( m ) hadronization rates

eos (check lattice QCD)

2. Take eos (fit QCD) find a single w ( m ) rates, spectra

o r

Page 5: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Consistent quasiparticle thermodynamics

∫ ∫

∫ ∫

Φ+=−+=

∂Φ∂

−∂∂

+=∂∂

=

∂Φ∂

−∂∂

+=∂∂

=

Φ−=

dmemwpsTne

dmpw

dmnmwp

n

Tdmp

T

wdmsmw

T

ps

TdmTpmwTp

m

mm

mm

m

)(

)(

)(

),(),()(),(

μ

μμμ

μμμ

This is still an ideal gas (albeit with an infinite number of components) !

Page 6: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Consistent quasiparticle thermodynamics

μμ ∂∂Φ∂

=∂∂Φ∂

TT

22

Integrability (Maxwell relation):

1. w independent of T and µ Φ constant

2. single mass scale M Φ(M) and ∂ p / ∂ M = 0.

Page 7: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

pressure – mass distribution

z)((z)

zKz

(z)

dttf

dtgttfp

pg

SB

−=

=

==

=Φ+

=

∫∞

expK :ation transformLaplace

)(2

K :nnsformatio Meijer tra

1)()0( :limit SB

ation transformintegral )( K )()(

2

2

0

0

σ

σ

Page 8: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Adjust M(µ,T) to pressure

Page 9: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

t = m / M

f (

t )

= M

w(

m )

Page 10: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

T / M (T, 0)

All lattice QCD data from: Aoki, Fodor, Katz, Szabó hep-lat/0510084

Page 11: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.
Page 12: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Adjusted M(T) for lattice eos

Page 13: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

MeVTT

TTM c 170,)36.3(024.0

1.028.0),0(

3=

++=

Page 14: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.
Page 15: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.
Page 16: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

T and µ-dependence of mass scale M

Boltzmann approximation starts to fail

Page 17: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

pressure – mass distribution 2

Page 18: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Analytically solvable case

Page 19: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Example for inverse Meijer trf.

SBp

p

)( gσ

)( xF )(tf

Page 20: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

eos fits to obtain eos fits to obtain σσ(g) (g) f(t) f(t)

● sigma values are in (0,1)● monotonic falling● try exponential of odd powers● try exponential of sinh● study - log derivative numerically● fit exponential times Wood-Saxon (Fermi) form

All lattice QCD data from: Aoki, Fodor, Katz, Szabó hep-lat/0510084

Page 21: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

exp(-λg) / (1+exp((g-a)/b) ) fit to normalized pressure

1 / g =

σ(g)

=

Page 22: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

MASS GAP: fit exp(λg) * data

g =

Page 23: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Fermi eos fit mass distribution

mass gap (threshold behavior)

Page 24: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

⎟⎠

⎞⎜⎝

⎛+

+→ε

εβλπ 1

4)(

2ttf

asymptotics:

4104.2 −⋅=ε

Page 25: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

zoom

Page 26: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Moments of the mass distribution

( )∫ ∫∞ ∞

−+−

Γ=

0 0

123

21 )(,

)(

12)( dgggB

ndttft nnn σ

π

n = 0 limiting case: 1 = 0 ·

n < 0 all positive mass moments diverge

due to 1/m² asymptotics

n > 0 inverse mass moments are finite

due to MASS GAP

Page 27: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Conclusions

1) Lattice eos data demand finite width T-independent mass distribution, this is unique

2) Adjusted < m >(T) behaves like the fixed mass in the quasiparticle model

3) Strong indication of a mass gap:

• best fit to lattice eos: exp · Fermi

• SB pressure achieved for large T

• all inverse mass moments are finite

• - d/dg ln σ(g) has a finite limit at g=0

Page 28: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark.

Interpretation

Does the quark matter interact?

Mass scale vs mean field:

* M(T) if and only if Φ(T)

* w(m) T-indep. Φ const.

What about quantum statistics and color confinement?

From what do (strange) hadrons form?

How may the Hagedorn spectrum be reflected in our analysis?