Top Banner
EPSL, 2004, 229/1-2 pp. 31-43. Maxime LE GOFF and Yves GALLET A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements : Applications to paleo- and archeointensity determinations
24

EPSL, 2004, 229/1-2 pp. 31-43 .

Mar 16, 2016

Download

Documents

tahlia

A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements : Applications to paleo- and archeointensity determinations. Maxime LE GOFF and Yves GALLET. EPSL, 2004, 229/1-2 pp. 31-43. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: EPSL, 2004,  229/1-2 pp. 31-43 .

EPSL, 2004, 229/1-2 pp. 31-43.

Maxime LE GOFF and Yves GALLET

A new three-axis vibrating sample magnetometer for continuous high-temperaturemagnetization measurements :

Applications to paleo- and archeointensity determinations

Page 2: EPSL, 2004,  229/1-2 pp. 31-43 .

Paleo- and archeointensity studiesare fastidious and often unproductive

due to poor data quality

It is possible to make them fasterby measuring the magnetization

at high temperatures

Page 3: EPSL, 2004,  229/1-2 pp. 31-43 .

TRIAXE SENSOR

Page 4: EPSL, 2004,  229/1-2 pp. 31-43 .
Page 5: EPSL, 2004,  229/1-2 pp. 31-43 .

must take into account the thermal dependence of the spontaneous

magnetization

High-temperature version of the Thellier and Thellier method revised by Coe

Page 6: EPSL, 2004,  229/1-2 pp. 31-43 .

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

NRM

T1 = 148°C

H = 0

High-Temperature Magnetization Measurements

Heating Troom to T1 (H=0)

Page 7: EPSL, 2004,  229/1-2 pp. 31-43 .

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

H = 0NRM

T1 = 148°C

T2 = 448°CCurve #1

High-Temperature Magnetization Measurements

Heating T1 to T2 (H=0)

Page 8: EPSL, 2004,  229/1-2 pp. 31-43 .

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

H = 0NRM

T1 = 148°C

T2 = 448°C

Curve #1

Curve #2

Curve #3

High-Temperature Magnetization Measurements

Cooling to T1 andHeating T1 to T2 (H=0)

Page 9: EPSL, 2004,  229/1-2 pp. 31-43 .

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

H = 70µT

H = 70 µTNRM

T1 = 148°C

T2 = 448°CCurve #1

Curve #2

Curve #3

High-Temperature Magnetization Measurements

Applying Hlab = 70µT

Page 10: EPSL, 2004,  229/1-2 pp. 31-43 .

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

NRM

T1 = 148°C

T2 = 448°C

Curve #1

Curve #2

Curve #3

Curve #4

High-Temperature Magnetization Measurements

Cooling T2 to T1 (H = 70µT)

Page 11: EPSL, 2004,  229/1-2 pp. 31-43 .

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

H = 0NRM

T1 = 148°C

T2 = 448°C

Curve #1

Curve #2

Curve #3

Curve #4

High-Temperature Magnetization Measurements

Hlab = 0µT

Page 12: EPSL, 2004,  229/1-2 pp. 31-43 .

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

NRM

T1 = 148°C

T2 = 448°C

Curve #1

Curve #2

Curve #3

Curve #4Curve #5

High-Temperature Magnetization Measurements

Heating T1 to T2 (H=0)

Page 13: EPSL, 2004,  229/1-2 pp. 31-43 .

R(Ti) = Hlab * 1(Ti) / 5(Ti)

R’(Ti) = Hlab * 1’(Ti) / 5’(Ti)

Remaining NRM (1) and TRM (5) fractions between Ti and T2

R ratio

Lost NRM (1’) and TRM (5’) fractions between T1 and Ti

R’ ratio

0

50

100

150

200

250

300

350

400

100 150 200 250 300 350 400 450

TiT1 = 150°C

T2 = 450°C

Two possibilities to derive intensity data

NRM

TRM

Page 14: EPSL, 2004,  229/1-2 pp. 31-43 .

20

30

40

50

60

70

80

150 200 250 300 350 400 450

Temperature (°C)

R, R

' (µT

)

R

R'

Test on a pseudo NRM acquired in a field of 50µT in the same conditions as the laboratory TRM (Hlab=50 µT)

Page 15: EPSL, 2004,  229/1-2 pp. 31-43 .

0

10

20

30

40

50

60

70

80

150 200 250 300 350 400 450

R

R'

Ancient NRM : R increasing, R’ much more constant

Ti, (°C)

R, R’ (µT)

Page 16: EPSL, 2004,  229/1-2 pp. 31-43 .

45

50

55

60

65

150 200 250 300 350 400 450

Temperature (°C)

R, R

' (µT

)

NRM 0.5°/mn; TRM 25°/mn

NRM 0.5°/mn, TRM 6°/mn

NRM 0.5°/mn, TRM 2°/mn

Cooling rate effect

R’ must be considered

Page 17: EPSL, 2004,  229/1-2 pp. 31-43 .

Correction for the TRM anisotropy

Page 18: EPSL, 2004,  229/1-2 pp. 31-43 .

Comparison between archeointensity

data obtained from the Thellier and

Thellier method revised by Coe and

from the Triaxe

(Samples from Mesopotamia previously studied by Genevey et al., JGR, 2003)

Page 19: EPSL, 2004,  229/1-2 pp. 31-43 .

0

10

20

30

40

50

60

70

80

150 200 250 300 350 400 450

R

R'

0

50

100

150

200

250

150 250 350 450

Selection criteria

• A large NRM fraction must be involved

• Expected behaviour of R and R’ curves

Page 20: EPSL, 2004,  229/1-2 pp. 31-43 .

0

20

40

60

80

100

120

140

200 250 300 350 400 450 500

Temperature (°C)

R

R'

Example of rejected sample

Page 21: EPSL, 2004,  229/1-2 pp. 31-43 .

MR 15

10

20

30

40

50

60

70

150 200 250 300 350 400 450

Temperature (°C)

R' (

µT)

Archeointensity results from a site of baked bricks from Mesopotamia (Mari, Syria)

6 samples

Page 22: EPSL, 2004,  229/1-2 pp. 31-43 .

0

10

20

30

40

50

60

70

80

-4000 -3000 -2000 -1000 0

Thellier Thellier - CoeTriaxe Same SiteTriaxe New Site

Comparison between archeointensity results obtained from the Thellier and Thellier and Triaxe methods

H (µT)

Age (BC)

Page 23: EPSL, 2004,  229/1-2 pp. 31-43 .

CONCLUSIONS

• The experimental procedure was successfully tested with archeological baked materials. We need now to work on volcanic samples.

• Other applications of the Triaxe :- Viscosity at high temperature.- Alteration.- Coupling between different magnetic phases.- etc.

Page 24: EPSL, 2004,  229/1-2 pp. 31-43 .