Top Banner
Environmental Science from Satellites Jeff Dozier, UCSB
26

Environmental Science from Satellites

Jan 15, 2016

Download

Documents

roden

Environmental Science from Satellites. Jeff Dozier, UCSB. Radiation principles. Atmospheric absorption of solar and infrared radiation. NASA Goddard Institute for Space Studies http://www.giss.nasa.gov. Measurement scale constrained by physics and technology (and money). - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Environmental Science from Satellites

Environmental Sciencefrom Satellites

Jeff Dozier, UCSB

Page 2: Environmental Science from Satellites

Radiation principles

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0.1 1 10 100wavelength (µm)

rad

ian

ce (

Wm

-2µ

m-1

sr-1

)

Sun (5800K)

Scaled for Earth-Sun distance

Earth (288K)

Page 3: Environmental Science from Satellites

Atmospheric absorption of solar and infrared radiation

NASA Goddard Institute for Space Studies http://www.giss.nasa.gov

Page 4: Environmental Science from Satellites

Measurement scale constrained by physics and technology (and money)

• Spatial resolution (IFOV/GSD) and coverage (field-of-view/regard)– Optical diffraction sets minimum aperture size

• Spectral resolution () and coverage (min to max)– Narrow bands need bigger aperture, more detectors, longer

integration time

• Radiometric resolution (S/N, NE, NET) and coverage (dynamic range)– Aperture size, detector size, number of detectors, integration time

• Temporal resolution (revisit) and coverage (repeat)– Pointing agility, period for full coverage

Page 5: Environmental Science from Satellites

5

Spatial, spectral characteristics of some multispectral sensors

1.0 100.4 1.5 153 5 8 120.5 0.80.6 4 6

1

10

100

1000

20

50

200

500

2

5

0.5

wavelength, m

IFO

V,

m

DigitalGlobe(Quickbird)

SPOT (Panchromatic)

SPOT (Multispectral)

Landsat (Panchromatic)ASTER (Multispectral)

Landsat (Multispectral) ASTER (Multispectral)Landsat,

ASTER (Thermal)

Landsat (Thermal)

MODIS (Visible through Infrared)

AVHRR

Page 6: Environmental Science from Satellites

Aircraft hyperspectral data (AVIRIS)

0.4 m

2.5 m

Page 7: Environmental Science from Satellites

7

Data rate

2

2

2

bitsswath width velocity # bands band data rate(spatial resolution)

bitskmkm bandssec band Mbitssecm

e.g., Landsat 5

bitskm185 km 7.4 7 bands 8 sec band Mbits85 sec30 m

Page 8: Environmental Science from Satellites

8

Gulf Stream temperatures from MODIS, May 2, 2001

Page 9: Environmental Science from Satellites

SeaWiFS image—global chlorophyll July 1997 - Sept 1998

Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center and ORBIMAGE

Page 10: Environmental Science from Satellites

10

Fractional snow cover, Sierra Nevada, March 7 2004

Page 11: Environmental Science from Satellites

Surface elevation from interferometric radar

(full resolution image is available from the JPL SRTM image website)

Page 12: Environmental Science from Satellites

12

Applications: snowmelt modeling(Molotch et al., GRL, 2004)

Snow Covered Area net radiation > 0 degree days > 0

Where:

mq = Energy to water depth conversion, 0.026 cm W-1 m2 day-1

*2 2 *

0 0

0

10.622 0.622(ln / )

2 2a

r q h p aa

RHL de La m C k z z u C RH e

dt T

Melt Flux net q d rR m T a SCA

Page 13: Environmental Science from Satellites

Surface wetness with AVIRIS, Mt. Rainier, 6/14/96

AVIRIS image, 409, 1324, 2269 nm

precipitable water, 1-8

mm

liquid water, 0-5 mm

path absorption

vapor, liquid, ice

(BGR)

Page 14: Environmental Science from Satellites

14

Information Lifecycle

• A– Use

– Present

• B– Collect

– Retrieve

• C– Store

– Search

Collect

Store

Search

Retrieve

Use

Present

Page 15: Environmental Science from Satellites

15

2005 status

• Universal connectivity (except Africa, South America)– Internet

– Web

• Comprehensive analysis environments– GIS, image analysis (ArcGIS, ENVI)

– Matrix manipulation (IDL, MATLAB, …)

• Standard formats– Metadata (FGDC, …)

– Data (XML, GeoTIFF, …)

Page 16: Environmental Science from Satellites

16

2005 report card• A

– Do complex analyses, many with off-the-shelf tools

• B– Retrieve/publish data from/to

the Web• C

– Can’t find somebody else’s data / they can’t find yours

» How good is your web site?

– Can’t remember what you did / how you did it

» How good are your notes?

– Your conclusions are in the archival literature;where are your data?

» How good are your backups?

Page 17: Environmental Science from Satellites

17

Major Missing Pieces• Local

– Storage management

» Everything onlineand accessible

– Metadata management

» Everything documented and findable

» Everything connected to where it came from

• Global

– Federation

» Distributed data centers look like a single system

– Service management

» Discover, query, describe, and retrieve information

– Namespace management

» Same names for same things

Digital libraries Personal data centers

Page 18: Environmental Science from Satellites

18

Earth System Science Workbench: conceptual model

(ESIP—Earth Science Information Partners)

• Experiment– Network of models

» … ingesting / synthesizing data

» … generating products

• Notebook– Persistent storage that can be queried

– Keeps track of all experiments

• Laboratory– Experiment execution environment

Page 19: Environmental Science from Satellites

20

SST

tu SST

Combining sensors: sea-surface temperature and height

CD-ROM

TeraScan

calibrate,de-cloud,aggregate

extrapolate

SST gridSST “super data”AVHRR imageHRPT downlink

extrapolatecalibrate,aggregate

MGDRcracker

ocean height“super data”

ocean heightgrid

TOPEX points

GOAL:Local and advective components of upper ocean heat balance:

HRPT Data Handling HRPT Gridding

TOPEXGridding

TOPEXData Handling

Page 20: Environmental Science from Satellites

23

avhrr_handNav

AVHRR telemetry ingest

AHVRR Level 1Bproduct

AVHRR Level 1B:navigatedMulti-channel

sea surfacetemperaturealgorithm

AVHRR Level 0 product

avhrr_copyNav

Hand navigation details

Sea surface temperature (SST)

Copynavigatedimage

SST: navigated

avhrr_sstModel

avhrr_navd_sst

Hand navigationprocedure

avhrr_ingest

avhrr_navd_l1b

avhrr_L0

avhrr_l1b

avhrr_sst

Page 21: Environmental Science from Satellites

24

# SST experiment wrapper # $L1B is the input Level 1B AVHRR image file# $SST is the output SST image file # run legacy command "nitpix": creates SST image from L1B image $base_temp = 5.0;$temp_step = 0.1;... system("nitpix base_temp=$base_temp temp_step=$temp_step ... $L1B $SST"); # start recording ESSW metadata beginXMLBld($ENV{USER}, "PRODUCTION"); # get metadata for input file $L1B_ID = findSciObjFromFile($L1B);

AHVRR Level 1Bproduct

Multi-channelsea surfacetemperaturealgorithm

Sea surfacetemperature

(SST)

avhrr_sstModel

avhrr_l1b

avhrr_sst

Page 22: Environmental Science from Satellites

25

# create metadata for SST experiment $exp = createExperimentMetadata("avhrr_sstModel");$exp_step = createExpStepMetadata($exp, "avhrr_sstExpStp"); addValue($exp_step, "avhrr_sstExpStp.base_temp", $base_temp);addValue($exp_step, "avhrr_sstExpStp.temp_step", $temp_step);... saveToDB($exp_step, "avhrr_sstExpStp");closeMetadata($exp_step);

# connect input and output images to experiment registerExperimentInputs($exp, $L1B_ID);registerExperimentOutputs($exp, $SST_ID); # finish recording ESSW metadata endXMLBld();

AHVRR Level 1Bproduct

Multi-channelsea surfacetemperaturealgorithm

Sea surfacetemperature

(SST)

avhrr_sstModel

avhrr_l1b

avhrr_sst

Page 23: Environmental Science from Satellites

26

Page 24: Environmental Science from Satellites

27

Page 25: Environmental Science from Satellites

28

Page 26: Environmental Science from Satellites

29