Top Banner
4c - Wet Detention Control Practices 1 1 2013 International Low Impact Development Symposium August 18, 2013 Saint Paul, Minnesota John Voorhees, PE, PH AECOM Madison, WI Entering Wet Detention Pond Data into the Model Model Output
12

Entering Wet Detention Pond Data into the Model Model Outputrpitt.eng.ua.edu/SLAMMDETPOND/WorkshopPresentations/4c...V-Notch Weir 60 degrees h Sharp Crested Weir Evaporation and Water

Nov 26, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Entering Wet Detention Pond Data into the Model Model Outputrpitt.eng.ua.edu/SLAMMDETPOND/WorkshopPresentations/4c...V-Notch Weir 60 degrees h Sharp Crested Weir Evaporation and Water

4c - Wet Detention Control Practices

1

1

2013 InternationalLow Impact Development Symposium

August 18, 2013Saint Paul, Minnesota

John Voorhees, PE, PHAECOM

Madison, WI

Entering Wet Detention Pond Data into the Model

Model Output

Page 2: Entering Wet Detention Pond Data into the Model Model Outputrpitt.eng.ua.edu/SLAMMDETPOND/WorkshopPresentations/4c...V-Notch Weir 60 degrees h Sharp Crested Weir Evaporation and Water

4c - Wet Detention Control Practices

2

•NURP (1983) found particulates reduced by between 0% (for small ponds and large drainage areas) and 90+% for large ponds.  For well designed ponds BOD and COD removals were 70%, and heavy metals between 60 – 95%.

•Oliver (1981) reported 88% reductions in SS and 54% and 60% reductions for COD and total phosphorus.

•Yousef (1986) found 85% removal of soluble nutrients due to plant uptake.

WinSLAMM assumes a 3.0 ft scour depth for complete settling; reduces treatment effectiveness for shallower depths.

Pond routing is performed using the Modified Puls – Storage Indication Method.

Time increments are established by the user; default = 6 minutes.

Page 3: Entering Wet Detention Pond Data into the Model Model Outputrpitt.eng.ua.edu/SLAMMDETPOND/WorkshopPresentations/4c...V-Notch Weir 60 degrees h Sharp Crested Weir Evaporation and Water

4c - Wet Detention Control Practices

3

Snowmelt can contribute the majority of the annual pollutant loads from urban areas that experience heavy winter snowfalls.

Summer runoff is typically only considered in the design of stormwater controls

Cold weather hinders all stormwater control processes (such as infiltration, settling, and plant uptake)

Deicing salts are a special threat to urban groundwater quality

Surface area of pond

Water quality volume (live storage above lowest pond water surface elevation, usually the pond volume between the water quality outlet and the emergency spillway)

Depth of water over the sediment to prevent scour

Stage‐discharge relationship for all outlets

Particle size distribution of inflowing particulates

Hydrograph of influent flows

Page 4: Entering Wet Detention Pond Data into the Model Model Outputrpitt.eng.ua.edu/SLAMMDETPOND/WorkshopPresentations/4c...V-Notch Weir 60 degrees h Sharp Crested Weir Evaporation and Water

4c - Wet Detention Control Practices

4

Page 5: Entering Wet Detention Pond Data into the Model Model Outputrpitt.eng.ua.edu/SLAMMDETPOND/WorkshopPresentations/4c...V-Notch Weir 60 degrees h Sharp Crested Weir Evaporation and Water

4c - Wet Detention Control Practices

5

Ideal Settling: Particle path is vector sum of particle velocity through pond and settling (upflow) velocity

L = Pond Length

D = Outlet Depth

V = Water Velocity through Pond

v = Settling Velocity

Qout = Outflow from Pond

A = Pond Surface Area

Particle settling is a function of the pond outflow rate and the pond surface area only.  This calculation is applied to each flow entering the pond during continuous modeling.

The “dead” storage is needed to prevent scour of previously deposited material and should be at least 3 ft deep over the sediment. Sediment storage volume is also needed and can be estimated using the program, or should be at least 2 ft deep.

Sediment Storage

Water Quality “Live” Storage

Scour Protection“Dead” Storage

Additional Storage for Emergency Spillway and Freeboard

3 ft minimum

2 ft minimum

Lowest Invert Elevation

Conceptual Issues – Pond Geometry and Scour

Page 6: Entering Wet Detention Pond Data into the Model Model Outputrpitt.eng.ua.edu/SLAMMDETPOND/WorkshopPresentations/4c...V-Notch Weir 60 degrees h Sharp Crested Weir Evaporation and Water

4c - Wet Detention Control Practices

6

33% Removal at Sediment Level of 5 ft.50% Removal at Sediment Level of 4.5 ft.

100% Sediment Removal Up to 3 ft. Stage

1. Pond Geometry2. Flow, Initial Stage and Particle Size Data3. Outlet Information

Page 7: Entering Wet Detention Pond Data into the Model Model Outputrpitt.eng.ua.edu/SLAMMDETPOND/WorkshopPresentations/4c...V-Notch Weir 60 degrees h Sharp Crested Weir Evaporation and Water

4c - Wet Detention Control Practices

7

Pond Datum is always zero ft.

3 ft

Pond Geometry

Information

Flow, Initial Stage and

Particle Size Information

Particle Size Distribution File not accessible if

Flows and Particle Sizes transferred

through the drainage system

Page 8: Entering Wet Detention Pond Data into the Model Model Outputrpitt.eng.ua.edu/SLAMMDETPOND/WorkshopPresentations/4c...V-Notch Weir 60 degrees h Sharp Crested Weir Evaporation and Water

4c - Wet Detention Control Practices

8

Pond Outlet Information

Broad Crested

Weir

Page 9: Entering Wet Detention Pond Data into the Model Model Outputrpitt.eng.ua.edu/SLAMMDETPOND/WorkshopPresentations/4c...V-Notch Weir 60 degrees h Sharp Crested Weir Evaporation and Water

4c - Wet Detention Control Practices

9

Orifice

Stone Weeper

Page 10: Entering Wet Detention Pond Data into the Model Model Outputrpitt.eng.ua.edu/SLAMMDETPOND/WorkshopPresentations/4c...V-Notch Weir 60 degrees h Sharp Crested Weir Evaporation and Water

4c - Wet Detention Control Practices

10

V-Notch Weir

60 degrees

h

Sharp Crested Weir

Evaporation and Water

Withdraw Rate

Natural Seepage and Other Outflow

Seepage Basin

Vertical Stand Pipe

Page 11: Entering Wet Detention Pond Data into the Model Model Outputrpitt.eng.ua.edu/SLAMMDETPOND/WorkshopPresentations/4c...V-Notch Weir 60 degrees h Sharp Crested Weir Evaporation and Water

4c - Wet Detention Control Practices

11

Wet Detention Pond Model Results

Wet Detention Pond Output

For this Example, the Wet Detention Pond is the only control practice.

Note pollutant reduction.

Wet Detention Pond Model Results

Wet Detention Pond Output

For this Example, the Wet Detention Pond overflowed during the model run – this message flags that fact

Page 12: Entering Wet Detention Pond Data into the Model Model Outputrpitt.eng.ua.edu/SLAMMDETPOND/WorkshopPresentations/4c...V-Notch Weir 60 degrees h Sharp Crested Weir Evaporation and Water

4c - Wet Detention Control Practices

12

Outfall Runoff Volume

Pond Outlet

Structure Failure (over-

topping)

Maximum Flushing Ratio

Maximum Peak Reduction Factor

Maximum Stage

Stage Outflow

Stone Weeper Flow Detailed Output by Time Step Pond Water Balance Stage Area Storage Values

Questions?