Top Banner
Enhancing Genome Editing with Engineered CRISPR Enzymes Sunday April 28 th , 2019
21

Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Mar 09, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Enhancing Genome Editing with Engineered CRISPR Enzymes

Sunday April 28th, 2019

Page 2: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Introduction: Genome editing and targeting range

Outline: Expanding the genome editing toolbox

Part 2: Challenges & applications

Russell Katie Joey

Kleinstiver Lab

• assay development• protein engineering• molecular medicines

Part 1: Engineering improved CRISPR-Cas12a enzymes

Page 3: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Safe / specificBroadly targetableHigh activity

Ideal genome editing properties

Samson et al. 2013 Nat. Rev. Micro

Protein engineeringto impart desirable

properties

Page 4: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

PAM preference can limit editing applications

SpCas9 PAM = NGG =𝟏𝟖 𝒃𝒑

=𝟏𝟑𝟐 𝒃𝒑

=𝟏𝟒𝟑 𝒃𝒑

SaCas9 PAM = NNGRRT

Cas12a PAM = TTTV

Page 5: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Ways to expand targeting via protein engineering

wild-type SpCas9 = NGG

SpCas9-VRQR = NGA

SpCas9-VRER = NGCGKleinstiver et al., Nature, 2016

Kleinstiver et al., Nature, 2015

[ 1 ]alter PAM

SELECTIVE

xCas9 = NGN

SpCas9-NG = NGNHu et al., Nature, 2018

Nishimasu et al., Science, 2018

[ 2 ]relax PAM

EXPANDED

Page 6: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Introduction: Genome editing technologies

Outline: Expanding the genome editing toolbox

Part 2: Challenges & applications

Russell Katie Joey

Kleinstiver Lab

• assay development• protein engineering• molecular medicines

Part 1: Engineering improved CRISPR-Cas12a enzymes

Page 7: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

PAM requirement prohibits wide use of Cas12a

CRISPR typeSize (# AA)

PAMDNA breakguide RNA

multiplex

type V-A~1300

TTTV (5’)5’ overhang, PAM distal

~40nt, single RNAsimple

type II-A1368

NGG (3’)blunt, PAM prox.~100nt (sgRNA)

challenging

type II-A1053

NNGRRT (3’)blunt, PAM prox.~100nt (sgRNA)

challenging

Page 8: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Kleinstiver et al., Nature Biotechnol., 2019

Improving CRISPR-Cas12a targeting range

enAsCas12 à expanded PAM preference

Methods to improve properties:a. Orthologsb. Engineering

i. Directed evolutionii. Structure-guided

RussellAlex

Page 9: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Kleinstiver et al., Nature Biotechnol., 2019

Expanded targeting in human cells with enAsCas12a

AsCas12a = TTTVenAsCas12a = TTTV, TTTT, TTCN, VTTV, TRTV, and more

~7-fold expanded targeting range[ 2 ] relax PAM preference

Page 10: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Kleinstiver et al., Nature Biotechnol., 2019

Improved nuclease activity with enAsCas12a

enAsCas12a

~7-fold expanded targeting range~2-3 fold improved on-target activity

Page 11: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Improved base editing with enAsCas12a

Kleinstiver et al., Nature Biotechnol., 2019

enAsCas12a ~5-10 fold improved base editor activity

Page 12: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Summary 1: Improved activities of enAsCas12a

• ~7-fold expanded targeting range• ~2-3 fold improved on-target activity• enhanced activities at lower temperatures• can improve other variants (~2-fold, enRVR & enRR)• improved base editing & gene activation• efficient editing in primary human T cells

enAsCas12a

Kleinstiver et al., Nature Biotechnology, 2019

epigenome editingbase editing

Page 13: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Introduction: Genome editing technologies

Outline: Expanding the genome editing toolbox

Part 2: Challenges & applications

Russell Katie Joey

Kleinstiver Lab

• assay development• protein engineering• molecular medicines

Part 1: Engineering improved CRISPR-Cas12a enzymes

Page 14: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Important properties for allele-specific editing

low medium high0

20

40

60

80

100

% e

dite

d

AB

activitytargeting range edit outcome

Challenge: Single allele editing

Mut-GATCCAATCGGAATCGGATTTCGWT-GATCCAATCGGAATCGTATTTCG

Position the SNP in PAMNGG

Need library of PAM selective variants

Page 15: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

SpCas9

AsCas12a

eAsCas12a

0

20

40

60

80

100%

TRAC

kno

ckou

t

SpCas9AsCas12aeAsCas12a

Challenge: Assessing improved tools in primary cells

Page 16: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Building a primary human T cell editing workflow

Kleinstiver et al., Nature Biotechnol., 2019

Page 17: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

RNP delivery of enAsCas12a in human cells

Kleinstiver et al., Nature Biotechnol., 2019

Cas12a

Page 18: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

SpCas9

AsCas12a

eAsCas12a

0

20

40

60

80

100

% TRAC

kno

ckou

t

SpCas9AsCas12aeAsCas12a

RNP delivery of CRISPR nucleases in primary T cells

CRISPR typeSize (# AA)

PAMDNA breakguide RNA

multiplex

type V-A~1300

TTTV (5’)5’ overhang, PAM distal

~40nt, single RNAsimple

type II-A1368

NGG (3’)blunt, PAM prox.~100nt (sgRNA)

challenging

Page 19: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Introduction: Genome editing technologies

Summary 2: Addressing challenges of genome editing

Part 2: Challenges & applications

Russell Katie Joey

Kleinstiver Lab

• assay development• PAM selective Cas9 variants• Activities in 1o T cells

Part 1: Engineering improved CRISPR-Cas12a enzymes

Page 20: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Molecular medicines + applications

Protein engineering to enhance CRISPR enzymes

Genome editing technologies

Summary + Research in the Kleinstiver lab

Page 21: Enhancing Genome Editing with Engineered CRISPR Enzymeswild-type SpCas9 = NGG SpCas9-VRQR = NGA SpCas9-VRER = NGCG Kleinstiver et al., Nature, 2016 Kleinstiver et al., Nature, 2015

Joung LabAlexander Sousa

Russell WaltonMoira WelchEsther TakJoy Horng

Jon Hsu, et al.Martin Aryee – MGH

Jose Lopez, Sara Garcia

Luca Pinello – MGHKendell Clement

Marcela Maus - MGHIrene Scarfo

Kleinstiver Lab

Colleagues & CollaboratorsFriends & Family

Thanks to those who help ask & answer questions

Margaret Q. LandenbergerResearch Foundation

RussellWalton

KatieChristie

JoeyRissman

Recruiting postdocs,students, & technicians

www.kleinstiverlab.org