Top Banner

of 98

Engineering Physics 2 Unit-5

Apr 04, 2018

Download

Documents

Sriram J.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/29/2019 Engineering Physics 2 Unit-5

    1/98

    Unit5

    1

    EngineeringMaterials

  • 7/29/2019 Engineering Physics 2 Unit-5

    2/98

    ModernEngineeringMaterials

    Metallicgla

    sses

    Nano-phasematerials

    Ceramics

    Bio-materials

    Shapem

    emoryalloysan

    d

    Syntheticmaterials

    2

    oernengn

    eerngmaerasare

    ,wc

    are

    preparedbyg

    roupingonekindofmaterialwiththeother.

    1.

    Metalmixed

    withpolymer.

    2.

    Ceramicmixedwithmetals.

    Itwasfoundthattheresultantm

    aterialswithpeculiarpropertieswhich

    varieswithrespecttothesize,shapeandthenatureofmixture.

  • 7/29/2019 Engineering Physics 2 Unit-5

    3/98

    ME

    TALLICGLASSES

    ME

    TALLICGLASSES

    ME

    TALLICGLASSES

    ME

    TALLICGLASSES

  • 7/29/2019 Engineering Physics 2 Unit-5

    4/98

    MetallicGlasses

    Modernengineeringmaterials

    withhighstreng

    th,goodmagnetic

    propertiesandbettercorrosionresistance.

    Metalsaresolids,whichexhibitscrystallineproperty,

    malleability(flexible),duc

    tility(abilitytodeformunderstress)etc.

    Glass

    esaresolidsinth

    eamorphousforminwhichtheatoms

    4

    a

    rrangementarenotpero

    canteyarerreguar.

    Theyare

    transparent,brittle(breakable),n

    on-magneticinn

    ature.

    SotheMetallicglassessharethepropertiesofb

    othmetalsandg

    lasses.

    Metallicglassesarestrong,ductile,malleable,o

    paqueandamorphous.

    Theyhavego

    odmagneticpropertiesandhighcorrosionresista

    nce.

    Metallicglass

    =Amorphousmetal

  • 7/29/2019 Engineering Physics 2 Unit-5

    5/98

    Tempe

    ratureatwhich

    theliquidlikeatomicconfigur

    ationcan

    befrozeninto

    asolidisknow

    nasglasstransitiontemperature.

    Glass

    transitiontemperatureform

    etallicalloys

    isabout

    20Cto300C

    .

    GlasstransitionTemperatu

    re(Tg)

    TypesofMetallicGlass

    es

    5

    Metallicglassesareoftwotypes.T

    heyare

    i.Metal-Metalloidglasses:

    (Fe,Co,Ni)-

    (B,Si,C,P

    )

    ii.Met

    al-Metalglass

    es:

    (Ni

    -Nb,Mg-

    Zn,Cu-

    Zr,Hf-Vaalloys)

  • 7/29/2019 Engineering Physics 2 Unit-5

    6/98

    i.

    Twin

    rollersystem

    Moltenalloyispassedthroughtw

    orollersrotatin

    gin

    oppositedirections.

    ii.Melt

    spinningsystem-Quench

    in

    P

    roductiono

    fMetallicG

    lasses

    6

    Moltenalloyjetim

    pingesonafas

    trotatingroller.

    iii.Melt

    extractionsystem

    Fa

    stmovingrollersweepsoffmoltendropletinto

    astrip

    fromasolidrod.

  • 7/29/2019 Engineering Physics 2 Unit-5

    7/98

    "Quenching"isatechniq

    ueusedtoform

    metallicglasses.

    Quenching

    meansrapidcooling.

    Actuallya

    tomsofanymaterialsmovefre

    elyinaliquidstate.

    Atomscan

    bearranedr

    eularlwhenaliuidiscoole

    dslowl.

    MeltS

    pinning

    Principle

    7

    Instead,whenaliquidisquenched,

    therewillbeanirregular

    pattern,w

    hichresultsintheformationofmetallicgla

    sses.

  • 7/29/2019 Engineering Physics 2 Unit-5

    8/98

    F

    abricationProcedure

    Ameltspinn

    erconsistsofadiscmadeupofcopper.

    Discisrotatedatahighspee

    d-50m/s.

    Aproperlysuper-heatedmoltenalloyisejected

    underpress

    ure(heliumorargon)through

    afine

    nozzleatthe

    bottomofarefractorytubeontothe

    spinningdisc.

    8

    Ejectedmelt

    iscooledatafa

    sterratewithth

    ehelpofrotating

    cooledcopp

    erdisc.

    Thus,aglass

    yalloyribbons

    tartsgettingformedovertherollerdisc.

    Alloyismeltedbyinductio

    nheating.

  • 7/29/2019 Engineering Physics 2 Unit-5

    9/98

    PropertiesofMetallicGlasses

    (a)Metallic

    glasseshaveTetrahedralCloselyPacked(TCP)structure

    ratherthanhexagonalc

    loselypacked(HCP)structure.

    (b)Theydo

    nothaveanyc

    rystaldefectssuchasgrainbou

    ndaries,

    dislocations,etc.

    StructuralProperties

    9

    Mechanical(o

    r)GeneralProperties

    (a)Themetallicglassesare

    verystrongin

    nature.

    (b)Theyha

    vehighcorrosionresistance.

    (c)Theypo

    ssessmalleability,ductilityetc.

  • 7/29/2019 Engineering Physics 2 Unit-5

    10/98

    MagneticProperties

    (a)Theyexhibithighsaturationmagnetisation.

    (b)

    Metallicglassesaresoftmagneticmat

    erials

    sotheycanbe

    easilymagnetised&demagnetised.

    (c)

    Theyhaveverynarrow

    hysteresisloop

    .

    Sothehystersislossesarealmostneglig

    ible.

    10

    d)

    Theyexhibitverylowhysteresislossand

    hencetransformercorelossisveryless.

    (e)Theyhavehighmagneticpermeabilityand

    exhibitferromagnetism.

  • 7/29/2019 Engineering Physics 2 Unit-5

    11/98

    4.ElectricalProperties

    (a)Metallic

    glasseshavehighelectricalresistance(100

    -cm).

    (b)Highele

    ctricalresistivityleadstoveryloweddycurrentlosses.

    (c)Atlowte

    mperature,res

    istivityisminimum,

    belowwh

    ichit

    variesasalo

    garithmicfunctionoftemperature.

    (d)Atverylowtemperatur

    e,thermalexpansionco-efficientis

    11

    negave.

    5)Metallicg

    lassesareamorphousmetalal

    loyswhichhavenolong

    rangeatomicorder.

  • 7/29/2019 Engineering Physics 2 Unit-5

    12/98

    Ap

    plicationsofMetallicGlasses

    1.

    Metallicglassesareusedintaperecorderhe

    ads,coresofhig

    hpower

    transformersandmagnetic

    shields,sincemetallicglassespossesslow

    magneticloss,highpermeability,saturation

    magnetization

    andlow

    coercivity.

    2.

    Theyhave

    higherworkability.Theycan

    beeasilybent

    without

    12

    .

    .

    3.

    Metallicglasseshavehigh

    electricalresistancewithnearlyzero

    temperaturecoefficientof

    resistance.Hencetheyareused

    tomake

    accurate

    standard

    resistances,computer

    memories,

    magnet

    resistance

    sensors

    and

    cryo-thermome

    ters

    (low

    tem

    perature

    measuringthermometer).

  • 7/29/2019 Engineering Physics 2 Unit-5

    13/98

    4.

    Metallicglassesareveryusefulintheprodu

    ctionofvery

    highmagneticfields.

    5.

    Sincethey

    arenotaffectedbynuclearradia

    tion,theyareuse

    d

    inmakingcontainersfor

    radioactivew

    astedisposal.

    6.

    Sincethehaveverhihc

    orrosionresistanceCrandP

    13

    basedmeta

    llicglassesareusedinmarinecab

    les,innersurface

    ofreactor

    vessels,orthopaedicalimplantsa

    ndsurgicalclips.

  • 7/29/2019 Engineering Physics 2 Unit-5

    14/98

    mart

    Materials

    mart

    Materials

    mart

    Materials

    mart

    Materials

    14

  • 7/29/2019 Engineering Physics 2 Unit-5

    15/98

    Analloy

    isapartial

    orcompletesolidsolutionof

    oneorm

    oreelementsinametall

    icmatrix.

    Completesolidsolutionalloysgive

    singlesolidphase

    microstru

    cture.

    Alloy

    15

    Partialsolidsolutionsgivetwoormorephasesw

    hich

    arehomogeneousindistributiondepe

    ndingonheat

    treatmen

    t.

    Alloying

    onemetalwithothermetal(s)ornonmetal(s)

    oftenenhancesitsproperties.

  • 7/29/2019 Engineering Physics 2 Unit-5

    16/98

    Physicalproperties

    sucha

    sdensity,reac

    tivity,young's

    modulus,and

    electrical

    andthermalc

    onductivityof

    analloymaynotdiffergreatly

    fromthoseofitselements.

    Engineeringproper

    ties

    suchastensilestrengthandshearstrengthmaybe

    16

    susanay

    rom

    oseo

    e

    consuenma

    eras.

    Steelisametalalloywhosemajorcompon

    entis

    ironwithca

    rboncontentbetween0.02%a

    nd2.14%

    bymass.

    Forexample,steelisstrongerthaniron,itsprimaryelement.

  • 7/29/2019 Engineering Physics 2 Unit-5

    17/98

    Brassisa

    nalloymadef

    romcopperan

    dzinc.

    Bronzeusedforbearing

    s,statues,orn

    amentsandch

    urch

    bells,isanalloyofcopp

    erandtin.

    17

    1.Unlikepuremetals,mostalloyso

    nothaveasingle

    meltingpoint.

    2.Instea

    d,theyhavea

    meltingran

    geinwhichth

    e

    materialisamixture

    ofsolidandliquidphases.

  • 7/29/2019 Engineering Physics 2 Unit-5

    18/98

    SSSShape

    hape

    hape

    hapeMMMMemo

    ry

    emo

    ry

    emo

    ry

    emo

    ryAAAAlloy(SMA),

    lloy(SMA),

    lloy(SMA),

    lloy(SMA),

    ametal

    that"remembersitsgeom

    etry

    18

    Sma

    rtMetal

    Sma

    rtMetal

    Sma

    rtMetal

    Sma

    rtMetal(or)(or)(or)

    (or)MemoryAlloy

    MemoryAlloy

    MemoryAlloy

    MemoryAlloy,,,,

    Intellig

    entMaterials

    Intellig

    entMaterials

    Intellig

    entMaterials

    Intellig

    entMaterials(or)SmartAlloy,

    (or)SmartAlloy,

    (or)SmartAlloy,

    (or)SmartAlloy,

    MuscleWire

    MuscleWire

    MuscleWire

    MuscleWire(or)

    (or)

    (or)

    (or)ActiveMaterials

    ActiveMaterials

    ActiveMaterials

    ActiveMaterials

  • 7/29/2019 Engineering Physics 2 Unit-5

    19/98

    S

    hapeMemo

    ryAlloys(S

    MAs)

    Shapememoryal

    loysarespecia

    ltypeofalloyswhich

    afterbein

    gdeformed

    canrememberandrecovertheir

    originalshapewhensubjectedtothe

    appropriateth

    ermal

    procedure

    (Heating/Coo

    ling).

    19

    Theabilityofthemetallicalloystoretaintheiroriginal

    shapewhe

    nheating/co

    oling.

  • 7/29/2019 Engineering Physics 2 Unit-5

    20/98

    1.Co

    pper-Aluminiu

    m-Nickel(AlNiCo)

    2.Co

    pper-Zinc-Alu

    minum-Nickel

    and

    3.Nickel-Titanium

    (NiTi)alloys.

    Threemaintypeso

    fshapemem

    oryalloys

    SMA'sca

    nalsobeused

    byalloying

    20

    ExamplesofSMAs

    a.Au-Cd

    alloy

    b.

    Ti-Nialloy

    c.Mn-Cua

    lloy

    d.Ni-Mn

    -Gaalloy

    e.Cu-Al-Niallo

    y.

    Z

    inc,Copper,Gold,Mangan

    eseandIron.

  • 7/29/2019 Engineering Physics 2 Unit-5

    21/98

    T

    ransformationTemper

    ature(Tt)

    Shapereco

    veryprocess

    occursnotatasingletem

    perature,

    ratheritoccursoverarangeoftemperature.(60-1450K)

    TherangeoftemperatureatwhichtheSMAswitche

    sfrom

    new

    shape

    toitsorigin

    alshapeisc

    alledTransfo

    rmation

    Temperatu

    re(or)Memo

    ryTransferTemperature.

    21

    BelowTt,SMAcanbebe

    ntintovariousshapes.

    AboveTt,SMAreturnst

    oitsoriginalshape.

    Thischangeinshapewasmainlycausedduetothechangein

    crystalstructure(phase)

    withinthem

    aterials,due

    tothe

    rearrangementofato

    mswithinitse

    lf.

  • 7/29/2019 Engineering Physics 2 Unit-5

    22/98

  • 7/29/2019 Engineering Physics 2 Unit-5

    23/98

    (i)Martensite

    Martensite

    ,namedafterthe

    Germ

    an

    Solidcrystallinestructure

    mostcomm

    onlyreferstoaveryhard

    formofste

    elcrystallinestructure.

  • 7/29/2019 Engineering Physics 2 Unit-5

    24/98

    Martensite

    isaninterstitialsupersolutionofcarb

    onin

    -ironanditcrystallize

    sintotwinned

    structure.

    Ithaspla

    teletstructure

    .

    Martensite

    istherelative

    lysoftandeasilydeformed

    phaseof

    shaemem

    oralloswh

    icexistsatlo

    wertemer

    atures.

    Martensites

    tructurehavet

    woforms

    a)Twinnedmartensite

    beforeloadingand

    b)

    Deform

    edmartensite

    afterloading

    .

  • 7/29/2019 Engineering Physics 2 Unit-5

    25/98

    (ii)

    Austenite

    Austenite(orgammaphaseiron)isa

    metallicnon-magnetic

    allotropeof

    ironorasolidsolutionofiron,withan

    solidsolutionofiro

    n

    .

    Itisnamed

    afterSirWilliamChandler

    Roberts-A

    usten(1843-1902).

  • 7/29/2019 Engineering Physics 2 Unit-5

    26/98

    Austeniteisthesolidso

    lutionofcar

    bon

    andothera

    lloyingelementsing-ironandit

    crystallizes

    intocubicstr

    ucture.

    Ihasneedlelikestructure.

    26

    Austenite

    isthestrongerphaseofsh

    ape

    memorya

    lloyswhicho

    ccursathigher

    tempera

    tures.

  • 7/29/2019 Engineering Physics 2 Unit-5

    27/98

    M

    artensite

    A

    ustenite

    Alp

    haphaseiron

    in

    Cry

    stallinestructure

    Gamm

    aphaseironin

    Cubicstructure

    Plateletstructure

    Needlelikestructur

    e.

    otaneasy

    deformedphas

    e

    Stro

    ngerphase

    Low

    ertemperatures

    Highertemperature

    s

    Twinn

    edmartensitebeforeloading

    Deformedmartensiteafterloading

  • 7/29/2019 Engineering Physics 2 Unit-5

    28/98

    Char

    acteristics

    SMA'sarem

    etalswhichex

    hibittwouniqueproperties

    1.

    ShapeMem

    oryEffect

    2.

    Pseudoelas

    ticity(or)Sup

    erelasticity

    withou

    tchangeintem

    perature

    wtchangeintemperature

  • 7/29/2019 Engineering Physics 2 Unit-5

    29/98

    ShapeM

    emoryEffe

    ct

    Thephenom

    enoninwhich

    theshapemem

    oryalloyapparently

    deformed

    atlowertemp

    andreturns

    toitsoriginalshape

    (formershape)whenheate

    dtohighertemp".

    When

    temperature

    is

    29

    decreased,

    phasetransfo

    rmation

    take

    place

    from

    austenite

    to

    twinnedmartensite.

    i.e.,amicroco

    nstituent

    transformationtakesplace

    fromthe

    AustenitetoMartensite.

    1

    2

    3

  • 7/29/2019 Engineering Physics 2 Unit-5

    30/98

    Duringthisstatethe

    twinned

    martensite

    phasewillhavesame

    sizeasthatofaustenitep

    hase.

    Whenloadisappliedtothe

    3

    1

    30

    ,

    deformed

    martensitephase.

    Whenthe

    materialisheatedit

    will

    go

    from

    deformed

    martensite

    to

    austenite

    form

    andthecyc

    lecontinues.

    2

  • 7/29/2019 Engineering Physics 2 Unit-5

    31/98

    Pseu

    do-elasticity(or)Super

    Elasticity

    a)Pseudo-elasticityoccursin

    shapeme

    moryalloysw

    henthe

    alloyisc

    ompletelycomposed

    ofausten

    ite(temperatu

    reis

    31

    .

    b)Unliketheshapememoryeffect,

    pseudo-el

    asticityoccurs

    without

    achangein

    tempera

    ture.

  • 7/29/2019 Engineering Physics 2 Unit-5

    32/98

    Themartensiticphase

    isgenerated

    bystressin

    gthe

    metalintheaustenitic

    stateandthis

    martensiteph

    aseis

    capableof

    largestrains.

    With

    the

    removal

    of

    the

    load

    ,the

    mart

    ensite

    transformsbackinto

    theaustenite

    phaseandresumes

    Pseu

    do-elasticity

    32

    itsoriginalshape.

    (Process

    similartopre

    ssing

    arubberorspring).

  • 7/29/2019 Engineering Physics 2 Unit-5

    33/98

    H

    ysteresis

    Onhe

    ating-Transfo

    rmMartensi

    tetoAustenite.

    Thedifferencebetweenthetransitionte

    mperaturesupon

    heatingand

    coolingisca

    lledHysteresis.

    The

    difference

    between

    the

    33

    temperatureatwhichthematerial

    is50%transformedtoaus

    tenite

    upon

    hea

    ting

    and

    50%

    transformed

    tomartensite

    upon

    cooling.

    Differenceca

    nbeupto20-30C.

  • 7/29/2019 Engineering Physics 2 Unit-5

    34/98

    34

  • 7/29/2019 Engineering Physics 2 Unit-5

    35/98

    Effects

    ofSMA

    (i)One-wa

    yshapememo

    ryalloy

    (ii)Two-wayshapememo

    ryalloy

    (i)One-waySMA:

    Whenthematerialiscoole

    dbelow

    35

    themartensiteends(Mf)temperature.

    Thenthereexistsomemino

    rchangeandwillremainin

    martensitefo

    rmalone.

    Thus,thoughthereissomechangeinits

    temperature,theSMA

    remainsinthesamephaseandthistyp

    eofmaterial

    iscalled

    onewayshapememoryalloy.

  • 7/29/2019 Engineering Physics 2 Unit-5

    36/98

    Ifthetemperatureisincreasedthen

    themartensite

    becomesa

    usteniteandifthetemperat

    ureisdecrea

    sedit

    reversesitsstate.

    (ii)Two-w

    aySMA:

    36

  • 7/29/2019 Engineering Physics 2 Unit-5

    37/98

    Applica

    tionsofSMAs

    1)

    Firesafetyvalve

    2)

    Antennawires

    3)

    Toysan

    dnovelties

    7)Blood-clotfilter

    8)Cryofith

    ydrauliccouplings

    9)Circuitedgeconnector

    37

    yega

    ssrames

    5)

    Coffeepotthermostats

    6)

    Helicopterblades

    orrectterreguart

    esnteet

    11)Artificialhip-joints,bone-plates

  • 7/29/2019 Engineering Physics 2 Unit-5

    38/98

    Advantagesof

    shapememo

    ryalloys

    Simp

    licity,compactnessandsafety

    mechanism.

    Bio

    compatibility.

    Diversefieldsofap

    plication,clean

    ,silent,sparkf

    ree

    wor

    kingcondition

    .

    Goo

    dmechanicalproperties.(stro

    ng,corrosionr

    esistant)

    38

    Degrad

    ationpoorfatigueproperties.

    Expensive.

    Lowenergyefficiency.

    Limitedbandwidthduetoheatingandcoolingrestrictions.

  • 7/29/2019 Engineering Physics 2 Unit-5

    39/98

    Mo

    dernE

    nineerin

    Mo

    dernE

    nineerin

    Mo

    dernE

    nineerin

    Mo

    dernE

    nineerin

    39

    Mat

    erials

    Mat

    erials

    Mat

    erials

    Mat

    erials

  • 7/29/2019 Engineering Physics 2 Unit-5

    40/98

    Nano-Ph

    aseMaterials

    Nanoscien

    ceisthestudyofthefundamentalprinciplesofmolecules

    andstructu

    reswithatleastonedimensionsintherangeabout109m

    to107m(1to100nm).

    Atomsareextremelysmallandthediameterofasingleatomscanvary

    from0.1to

    0.5nanometersd

    ependingonthetypeofelements

    (nanometer

    is109m).

    40

    molecules

    (or)atomsdonot

    moveawayfrom

    eachother.

    Allmaterialsarecomposedofgrains,whichinturncomprisem

    ayatoms

    Nanomaterialswheninpow

    derform(calledn

    anopowder)havegrain

    sizesinthe

    orderof1-100nm.

    ex:ZnO,Cu-Fealloy,N

    i,Pd,Pt,etc.

  • 7/29/2019 Engineering Physics 2 Unit-5

    41/98

    Innanom

    aterialsthemajorityoftheatomsa

    relocatedonthe

    surface

    ofthepa

    rticlesandhence

    theatomsareofadifferentenvironment.

    Nanomaterialshaveincreasedsurfacearea

    ofthesubstance

    with

    highsurfaceareashaveen

    hancedchemical,mechanicalopticaland

    magnetic

    properties.

    41

    Nanotech

    nologyisafieldofappliedscience

    focusedonthed

    esign,

    synthesis,characterizatio

    nandapplicationofmaterialsand

    devices

    onthenanoscale.

  • 7/29/2019 Engineering Physics 2 Unit-5

    42/98

    ClassificationofNa

    nostructured

    materials

    Classificationbasedonthenumberof

    dimension

    sliewithinthen

    anometerrange.

    (1)Zerodimensionalnanostructure(0D

    )

    Ex:atoms

    42

    (2)Onedimensionalnan

    ostructure(1D)

    Ex:atomclusters

    Multilayeredmaterialwithlayerofthicknessin

    thenanometerrange-1D.

  • 7/29/2019 Engineering Physics 2 Unit-5

    43/98

    ClassificationofNa

    nostructured

    materials

    (3)Twodimensionalnanostructure(2D)

    Ex:Nanotube.

    Layersinthenanometerthicknessrange-2D

    .

    43

    (4)Three

    dimensionalna

    nostructure(3D

    )

    Ex:

    Quantumwell.

    Materialwiththreedimension

    alequiaxednano

    size

    grain.

  • 7/29/2019 Engineering Physics 2 Unit-5

    44/98

    Quantum

    wells,Quantumwiresand

    Quantumdo

    ts

    Whensize

    ofamaterial-reduced-

    bulkormacro

    scopicsize-verysmallsize

    P

    ropertiesremainsame

    Sizedropsbelow100nm

    Drasticchanges

    inpropertiescanoccur.

    If1D-reduced-

    nanorange-

    44

    w

    hiletheothertwodimensions

    r

    emainlargeresultingstructure.

    If2D-reduced-nanorange-

    oneremainslarge-resulting

    s

    tructure.

    S

    izereductioninw

    hichallthree

    d

    imensionsleadstolownanometer

  • 7/29/2019 Engineering Physics 2 Unit-5

    45/98

    Fabrica

    tionmet

    hods

    45

    Itresultsduetobuildingblock

    ssuch

    asatomsandm

    oleculesandassemble

    them

    into

    larger

    nanostructured

    material.

    Itresultsduetobreakin

    gdownof

    largep

    iecesofbulkm

    aterialto

    generatetherequiredfor

    m.

    Bottom-upapproach

    Top-downappr

    oach

  • 7/29/2019 Engineering Physics 2 Unit-5

    46/98

    a.Milling

    b.

    Lithographics

    c.

    Machining

    1.

    Vaporp

    hasedepositionm

    ethods

    a.C

    hemicalvapordeposition

    Bottom-upapproa

    ch

    Top-downapproa

    ch

    46

    b.Physicalvaporde

    position

    2.

    .Plasm

    aassisteddepo

    sitionprocess

    3.

    Molecularbeamepitaxy(MBE)

    4.

    Metalo

    rganicvaporphaseepitaxy(MOVPE)

    5.

    Liquid

    phaseprocesses

    a.C

    olloidalmethod

    b.Sol-gelmethod

  • 7/29/2019 Engineering Physics 2 Unit-5

    47/98

    Top-down

    processesstarts

    withlargescaleobjectandgradually

    reducesitsdimensions.

    Thetop-do

    wnapproachesaresimpler.

    Top-down

    approach

    47

    Methodsu

    sedtoproduce

    nanostructuredm

    aterialsunderto

    p-down

    approacha

    regivenbelow.

    a.

    Milling

    b.

    Lithographics

    c.

    Machinin

    g

  • 7/29/2019 Engineering Physics 2 Unit-5

    48/98

    1)

    Itisalsok

    nownasMechanicalalloyingorMechanicalattrition.

    2)

    Itisasolidstateprocess.

    3)

    Highenergyballmillingcaninducestructuralchangesand

    chemica

    lreactionsatroomtemperature.

    Itconsistsofstainlesssteelrotatingdrumwithhardsteelortungsten

    HighEner

    gyBallMillin

    g

    Procedure:

    TopDownapproach

    48

    carbideballsinsideit.

    Thecontain

    erispurgedand

    argonisintroducedtoprevent

    unwanted

    reactionsuchasoxidation.

    Millingisca

    rriedoutatroom

    temperatureforu

    pto150hours.

    Powdermaterialsarecrushedmechanicallyintherotatingdr

    umbythe

    hardballs.Thisrepeateddeformationcancause

    largereduction

    singrain

    sizeinthepow

    derparticles.

  • 7/29/2019 Engineering Physics 2 Unit-5

    49/98

  • 7/29/2019 Engineering Physics 2 Unit-5

    50/98

    Atoms,mole

    culesandevennanoparticlesthemselvescanbeu

    sedasthe

    buildingblocksforthecreationoflarger

    nanostructurewithrequired

    properties.

    Bychanging

    thesizeoftheb

    uildingblocksan

    dcontrollingtheirassembly

    andarrangementitisposs

    ibletochangethepropertiesofthe

    nanostructuredmaterial.

    Bottom-upapproach

    50

    ,

    ,

    andmoleculesintothelarger

    nanostructureiscarriedoutbyas

    equenceof

    chemicalreactionscontrolledbycatalysts.

    Thisisave

    rypowerfulapp

    roachofcreatingidenticalstructureswith

    atomicprecision.

    1.VaporPha

    seDepositionmethods(CVD)

    2.Plasmaassisteddepositionprocess

    3.Molecular

    BeamEpitaxy(MBE)

    4.Me

    talorganicvapourph

    aseepitaxy

    5.Liquidphaseprocesses

    a.Colloidalmethod

    b.Sol-gelmethod

  • 7/29/2019 Engineering Physics 2 Unit-5

    51/98

    CVDinvolvestheflowofagaswithdiffusedre

    actantsoverahot

    substrate

    surface.

    Gasthatcarriesthereactantsis

    calledthecarriergas.

    Whilethegasflowsoverthehotsolidsurface,theheatenergyprovokes

    chemicalreact

    ionsofthereac

    tantsthatform

    film

    duringandafterthe

    reactions.

    Bottom-Upapproach

    ChemicalVaporDeposition(CVD)

    51

    .

    Thinfilmofd

    esiredcompositioncanthusbecr

    eatedoverthesurfaceofthe

    substrate.

  • 7/29/2019 Engineering Physics 2 Unit-5

    52/98

    Resistanceheaterseithersurroundthechambe

    rorliedirectlyu

    nderthe

    susceptorth

    atholdsthesubstrates.

    InCVDmethodcarbonnanotubesaregrownfromthedecompo

    sitionof

    hydrocarbonsattemperatu

    rerangeof500to1200C.

    Theyaregrownonsubstrate

    ssuchascarbon

    ,quartzandsilic

    onoron

    floatingfin

    ecatalystparticleslikeCO,Fe,N

    ifromhydrocarbonssuch

    Bottom-Upapproach

    52

    Growthof

    nanostructurescanoccureitherintheheatingzon

    ebefore

    oraftertheheatingzone.

    Thegrowthprocesstakesab

    out30minutes.TheflowofH2ga

    sis

    maintainedat200ml/minut

    es.Inertgasisusedtocoolthereactor.

  • 7/29/2019 Engineering Physics 2 Unit-5

    53/98

    Pla

    sma-assisted

    depositionprocess

    Sputtering

    isaprocessinwh

    ichenergetic

    ionsknockatomsormoleculesfromatarget

    thatactason

    eelectrodeand

    subsequently

    depositthemon

    asubstratethatisactingasan

    anotherelectrode.

    Bottom

    -Upapproach

    Thematerialtobedepositedse

    rvesasa

    cathode(target)andthesubstrateon

    53

    whichthematerialtobedepositedserves

    asananode.

    Thetargetandthesubstrateface

    eachother

    inthesputteringchamber.

    Afterevacuat

    ionofthechamber

    aninertgas

    argonisintro

    ducedandservesa

    sthe

    mediuminw

    hichtheelectrical

    dischargeis

    initiatedand

    maintained.

    Theuseofplasmai.e.,ionisedgasduringvapourdepositionisfound

    toyield

    highpurityfinalmaterialrelative

    tothePVDandCV

    Dtechniques.

  • 7/29/2019 Engineering Physics 2 Unit-5

    54/98

    Whendcv

    oltageoffewkilovoltsisapplieda

    ndadjustedbetw

    eenthe

    electrodes

    avisibleglowdischargeisinitiatedandmaintained.

    Nowthefreeelectronswill

    beacceleratedb

    ytheelectricfieldand

    gainsuffic

    ientenergytoioniseargonatoms.

    ResultingpositiveionsAr+

    inthedischargestrikethecathodeand

    physicallyejectorsputter

    targetatomsthr

    oughmomentum

    transfer

    tothem.

    Bottom-Upapproach

    54

    eseaom

    spass

    roug

    e

    scargean

    eposon

    esusrae

    withgrow

    ingfilm.

    Inadditiontothegrowthsp

    eciesotherpartic

    leslikeneutrala

    toms,

    electrons

    andnegativeionsunderelectricfieldwillalsobom

    bardand

    interactwiththesurfaceo

    fthesubstrateorgrownfilm.

    Forthede

    positionofinsula

    tingfilmsanalte

    rnateelectricfieldof

    frequency13.56MHzisappliedtoproduceplasmabetween

    the

    electrodes

    .

  • 7/29/2019 Engineering Physics 2 Unit-5

    55/98

    Multipletargetscanberotatedsoastoproduceamultilayeredcoating

    onthesubstrate.

    Thesputte

    redfilmconsistsofsmallergrainswithbetteradh

    esionto

    thesubstrate.

    Byintrod

    ucingamagneticfieldnearthetargetinthesputtering

    process,thedepositionratecanbeincrease

    dto1mm/minuteand

    alsoitpre

    ventsthesubstrateheatingduetosecondaryelectron

    Bottom-Upapproach

    55

    .

    Suchsputteringprocesswithprocesswithm

    agneticfieldiscalled

    magnetronsputtering.

    Reactivegaseshavealsobeenintroducedintothechamberto

    form

    compound

    filmswhichareknownasreactivesputtering.

    Therearedifferenttypesplasma-assisteddepositiontechniques.

    a).DCsputtering,

    b).R

    Fsputtering

    c).Reactive

    sputtering.

    d).DCmagnetronsputtering

    e).RFmagnetronsputtering.

  • 7/29/2019 Engineering Physics 2 Unit-5

    56/98

    Sol-g

    elMethod

    Itisaversatileindustrialap

    proachforfabric

    atingnanomaterials.

    Itisasolutio

    nphasesyntheticroutetoproduc

    ehighlypureorganic

    orinorganic

    materialsthathavehomogeneousparticleandporesizesas

    wellasdensi

    ties.

    Thismethod

    affordseasycontroloverthestoichiometryandhomogeneity

    thatconventionalmethodslac

    k.

    Thistechni

    ueallowsustochanethecomo

    sitionandstructureof

    Bottom-Upapproach

    56

    materialsonthenanometer

    scale.

    Itsbenefitsincludetheconvenienceoflow-tem

    peraturepreparationusing

    generalandinexpensivelabo

    ratoryequipment.

    Oneoftheimportantfeatures

    ofthetechniqueisitsabilitytoproduce

    materialsin

    differentforms,suchaspowders,films,fibresofnanosize

    andfreestandingpiecesofm

    aterialscalledm

    onoliths.

    Scientistsha

    veusedthistechniquetoproducetheworldslightest

    materialsandsomeoftheto

    ughestceramics

    .

  • 7/29/2019 Engineering Physics 2 Unit-5

    57/98

    Thismethodisbasedonthephasetransform

    ationofasolution

    obtainedfr

    ommetallicalko

    xidesororgano-

    metallicprecursors.

    Solutionco

    ntainingparticles

    insuspensionispolymerizedatlow

    temperatu

    retoformawet

    gel.

    Wetgelisthendensifiedthroughthermalan

    nealingtogetthe

    productslikeaglass,polycrystalsoradrygel.

    Typicallythisinvolvesahyd

    rolysisreactionfollowedbycond

    ensation

    Bottom-Upapproach

    57

    .

    Tetraethylorthosilicate(TEOS)(Si(OC2H5)4)

    +etha

    nol(C2H5OH)

    SiO2+otherproducts

    Polymergel

    soformedisa3Dskeltonsurroundinginterconnectedpores

    andthiscan

    bedriedandshrunktoformarigidsolidform.

    Transforma

    tiontogelisachievedbychangingthepHorthe

    concentrationofthesolution

    .

  • 7/29/2019 Engineering Physics 2 Unit-5

    58/98

    Supercriticaldryingprocessremovestheliquidphasefrom

    thegel

    andproducesalow-densit

    y3Dporusmate

    rialcalledAERO

    GEL.

    Aerogelsdensitiesaretypicallybetween1-

    20%thatofthebulk

    material.

    Whenthe

    gelisdriedslow

    lyinafluidevap

    orationprocess,

    the

    gelsoriginalnetworkcollapses,whichcreatesahighdensity

    material

    knownas

    aXEROGEL.

    -

    Bottom-Upapproach

    58

    .

    Themethodstartswithaso

    lutionconsisting

    ofmetalcompou

    ndssuch

    asmetal

    alkoxidesandacetylacetonatesas

    sourceofoxides,wateras

    hydrolys

    isagent,alcoholassolventandacidorbasecatalyst.

  • 7/29/2019 Engineering Physics 2 Unit-5

    59/98

    Sol-g

    elmethod

    Bottom-Upapproach

    59

    Tetraethylortho

    silicate(TEOS)(Si(OC2H5)4)

    +ethanol(C2H5OH)

    SiO2+otherproducts

  • 7/29/2019 Engineering Physics 2 Unit-5

    60/98

    Bottom-Upapproach

    Itistheprocessinw

    hichchemical

    reactionsoccur

    inaelectrolytes

    olutionbythe

    applicationofvo

    ltage.

    This

    process

    is

    known

    as

    electroplating.

    Electro

    deposition

    processrequiresan

    electricallyconducting

    substrate.

    Electrodeposition

    +

    -

    cd

    Te

    Electrolyt

    ------------------------

    ------------------------

    ------------------------

    ------------------------

    ------------------------

    ------------------------

    ------------------------

    ------------------------

    60

    strong,uniforma

    ndstrong.

    Intheelectrop

    latingprocessthesubstrateisplacedinaliquidsolution

    (electrolyte).W

    henanelectricalpotentialisappliedbetweenacon

    ducting

    areaonthesub

    strateandacounterelectrode(usuallyplatinum)inth

    eliquid,

    achemicalprocesstakesplace

    resultinginthe

    formationofa

    layerof

    materialonth

    esubstrateandusuallysomegas

    generationatthe

    opposite

    electrode.

  • 7/29/2019 Engineering Physics 2 Unit-5

    61/98

    Electrod

    epositionisbasicallyclassifiedinto

    a)

    Anodicelectrodepositio

    n

    and

    b)

    Cathodicelectrodeposition.

    InanAnodicProcess,ametalanode

    iselectrochemically

    oxidizedinthepresenceofoth

    erionsinsolutio

    n,whichthenreact

    togetherand

    depositonthean

    ode.

    Bottom-Upapproach

    61

    Ina

    Cathodicprocesscomponents

    aredepositedontothe

    cathodefrom

    solutionprecursors.

    Ex:

    Cd2++2e

    Cd

    HTeO2++4e+3H+

    Te+2H2O

    Cd2++Te2

    CdTe

    Ex:

    C

    C

    +2e

    Cd2++Te2

    Cd

    Te

  • 7/29/2019 Engineering Physics 2 Unit-5

    62/98

    PropertiesofNanoParticles

    Physicalproperties

    i.

    Sincethesizeoftheparticleisveryless-interparticlespa

    cingis

    verylessinnanomaterials.

    ii.

    Becauseo

    fitsverylesssize

    ,thesenanomate

    rialscannotbefu

    rther

    dividedintosmallparticles

    anditdoesnotha

    veanydislocationinit.

    Thuswec

    ansaythattheyh

    avehighstreng

    thandsuperhardness. 62

    iii.

    Themeltingpointofnanomaterialswillb

    everyless.

    i.

    Thehardnessofnanophasematerialsisduetothephase

    transform

    ation,stressrelief,densityandgra

    inboundaries.

    ii.

    Theyex

    hibitsuperplasticbehaviour.

    Mechanicalproperties

  • 7/29/2019 Engineering Physics 2 Unit-5

    63/98

    Magnetic

    properties

    i.

    Innano-materialsalarge

    numberofatomswillbepresen

    tatthe

    surface.Theseatomswillhaveless-co-ord

    inationnumberandhence

    posseslo

    calmagneticmomentwithinthem

    selves.

    ii.

    Duetolargemagneticmomentthesenano-materialsexhibits

    spontaneousmagnetisa

    tionatsmallersizes.

    iii.Ferro-magneticandantiferromagneticmultilayernano-mate

    rialshas

    63

    antagnetoesstanceeect.

    iv.Thenanomaterialsshows

    variationintheirmagneticpro

    perty,

    whentheychangefrombu

    lkstatetocluster(nanoparticle)s

    tate.

    M

    aterials

    Bulkstate

    Nanophase

    state

    1

    Iron,Ni,Cobalt

    F

    erromagnetic

    Superparam

    agnetic

    2

    Na,K

    F

    erromagnetic

    Ferromagnetic

    3

    C

    r

    An

    tiferromagnetic

    FrustratedPara

    magnetic.

  • 7/29/2019 Engineering Physics 2 Unit-5

    64/98

    Electricalpropertie

    s

    i.

    Theen

    ergybandsinthesematerialswillbeverynarrow.

    ii.

    Theionizationpotentia

    lisfoundtobehigher.

    iii.Whenthenanomaterials

    arepreparedfrom

    bulkmaterials,they

    havemorelocaliedmolecularbands.

    64

    iv.

    Nano-materialsarecapa

    bleofstoringhydrogenatoms.

  • 7/29/2019 Engineering Physics 2 Unit-5

    65/98

    Application

    sofNano-Particles

    a)Sincethey

    arestronger,lighteretc.,theyareusedtomakehard

    metals.

    b

    Smartma

    neticfluidsareusedinvaccumsealsmaneticsear

    ators

    (i)MechanicalEngineering

    65

    etc.,

    c)UsedinG

    iantMagnetoRe

    sistance(GMR)

    spinvalves.

    d)Nano-ME

    MS(Micro-Ele

    ctroMechanicalSystems)areused

    in

    ICs,Opticalswitches,Pressuresensors,Masssensorsetc.

  • 7/29/2019 Engineering Physics 2 Unit-5

    66/98

    (ii)

    Electrical,ElectronicsandCommunic

    ation

    Engineeri

    ng

    a)Orderlyassemblednanomater

    ialsareusedasqu

    antumelectronic

    devices

    andphotoniccrystals.

    b)Theyareuse

    dassensingelem

    ents.

    c)Especiallyth

    emolecularnanomaterialsareusedtodesigntherobots,

    assemblersetc.

    66

    magneticrefrigerationandinionicbatteries.

    d)Dispersednanomaterialsare

    usedinmagneticrecordingdevices,rocket

    propellant,s

    olarcells,fuelcells,etc.

    e)Usedtodesignnano-robots,w

    hichareusedtoremovethedamag

    edcancer

    cellsandalsotomodifytheneutronnetworkin

    humanbody.

  • 7/29/2019 Engineering Physics 2 Unit-5

    67/98

    (iii)

    ComputerS

    cienceEngineeringandIT

    a)Nanomaterialsareusedto

    makeCDsandS

    emiconductorLa

    ser.

    b)Theyar

    eusedastostoreinformationinsm

    allerchips.

    c)Theyar

    eusedinmobiles,Laptops,etc.,

    c

    Thear

    eusedinO

    ticalcom

    uters.

    67

    d)

    Nan-d

    imensionalphoto

    niccrystalsandQ

    uantumelectron

    ic

    devices

    playsavitalroleincomputerindustry.

  • 7/29/2019 Engineering Physics 2 Unit-5

    68/98

  • 7/29/2019 Engineering Physics 2 Unit-5

    69/98

    arbon

    anotubes

    arbon

    anotubes

    arbon

    anotubes

    arbon

    anotubes

    69

  • 7/29/2019 Engineering Physics 2 Unit-5

    70/98

    Certainm

    aterialsshouldhavedesirab

    lepropertiessothat

    nano-sca

    lecomponents&structurescanbebuilt.

    Carbon-onesuchmaterialsuitablefornanotech-b

    ased

    C

    arbon

    C

    arbon

    C

    arbon

    C

    arbon

    (Attractive)

    70

    compone

    nsueosneren

    esra

    epropere

    s.

    Carbonisauniqueatomamongotherelementsbecause

    ofitsabilitytoexistin

    awidevarietyofstructures

    and

    forms.

    (InbuiltorNatural)

  • 7/29/2019 Engineering Physics 2 Unit-5

    71/98

    Carbon

    isthechemicalelementw

    ithsymbolC

    and

    atomicnumber6.

    Asame

    mberofgrou

    p14onthe

    periodictable,

    itis

    Carbon

    Carbon

    Carbon

    Carbon

    71

    Physicalpropofcarbonvarywidelyw

    iththeallotropic

    form.

    nonmeta

    llic

    and

    tetr

    avalentmaking

    four

    elec

    trons

    available

    toformcovale

    ntchemicalbo

    nds.

  • 7/29/2019 Engineering Physics 2 Unit-5

    72/98

    D

    iamond

    G

    raphite

    Highlytransparent.

    Opa

    queandblack

    .

    Hardestmaterials.

    Softmaterials.

    co

    nductivity.

    Verygoodconductor.

    Crystallizesinthecub

    ic

    system.

    Crystallizesinthehexa

    gonal

    system.

    Used-u

    ltimateabrasi

    ve.

    Used-verygoodlubricant.

  • 7/29/2019 Engineering Physics 2 Unit-5

    73/98

    Pu

    reCarbon

    Pu

    reCarbon

    Pu

    reCarbon

    Pu

    reCarbon

    Diam

    ond

    Fullerene

    4structures

    73

    Fulleren

    eandNanotu

    bes-fabricationofnanostructures.

    Graphite

    Nanotubes

  • 7/29/2019 Engineering Physics 2 Unit-5

    74/98

    4

    74

    1

    3

  • 7/29/2019 Engineering Physics 2 Unit-5

    75/98

    Allotropes

    ofcarbon:

    a)Diamond

    b)Graphite

    c)Lon

    sdaleite

    75

    df)fu

    llerenes

    (C60,C

    540,C70)

    g)amorphous

    carbon

    h)carbon

    nanotube.

  • 7/29/2019 Engineering Physics 2 Unit-5

    76/98

    Carbo

    nNanoTube

    s(CNT)

    CNTisformedwhenash

    eetofgraphite(ahexagonal

    latticeofcarbon)rolledintoacylinde

    r.

    CNTsarelong,thincylindersofcarb

    on,werediscovered

    in1991by

    S.Iijima.

    76

    Graphite-unrolledsheets-weakbondsatedges.

    CNT-Hem

    isphericalfullerenecapsat

    end-noweak

    bonds

    atedges.

    CNThollowcylinders-thindia-10,000timessma

    ller

    thanhuma

    nhair.

  • 7/29/2019 Engineering Physics 2 Unit-5

    77/98

    77

  • 7/29/2019 Engineering Physics 2 Unit-5

    78/98

    78

  • 7/29/2019 Engineering Physics 2 Unit-5

    79/98

    Varietyof

    structurehavingdifferentproperties.

    Different

    structure-dep

    endsonhowtheyrolled.

    StructureofCNT

    StructureofCNT

    StructureofCNT

    StructureofCNT

    PointsO

    &

    A

    -on

    graphite

    sheetwithx-axisparallel-side

    o

    oneycom

    rucure.

    Chiralvector(Ch)linejoiningO&A.

    Ch=na1+ma2.

    a1&a2=unitvectorsforH.comblattic

    e.

    n&m=positionofcarbonatom.

  • 7/29/2019 Engineering Physics 2 Unit-5

    80/98

    Drawno

    rmalstoCha

    tO&A-OB

    andAB.

    Superimpo

    se-OBandAB

    toformCNT.

    80

    basedonC

    h.

    1

    2

    h

    C

    na

    ma

    =

    +

    1

    3

    tan

    (2

    )

    n

    m

    n

    =

    +

    1

    2

    2

    2

    3

    (

    2

    )

    c

    c

    h

    a

    m

    mn

    n

    C

    D

    +

    +

    =

    =

    Chiralvector

    Chiralangle

    DiaofCN

    T

    a1and

    a2-realspacelatticetranslationvectors

  • 7/29/2019 Engineering Physics 2 Unit-5

    81/98

    CNT

    Structure

    Ch

    Zig-Zag.

    0

    m=n=0

    .

    .

    .

    C

    hiral.

    0-30

    m,n0.n

    m.

  • 7/29/2019 Engineering Physics 2 Unit-5

    82/98

    82

  • 7/29/2019 Engineering Physics 2 Unit-5

    83/98

    83

  • 7/29/2019 Engineering Physics 2 Unit-5

    84/98

    84

    Sheetofcarbonatoms

    isrolledintoatube,i

    tcreatesaCNT.

    Dependingonthedirectionthesheetisrolledinto,different

    patterns

    emerge.

  • 7/29/2019 Engineering Physics 2 Unit-5

    85/98

    TypesofCNT

    85

    SingleWallCNT

    Mu

    ltiWallCNT

  • 7/29/2019 Engineering Physics 2 Unit-5

    86/98

    SingleWall

    MultipleWall

    Mad

    e-Onegraphite

    sheet.

    Groupg

    raphitesheets.

    Hardestmaterials.

    soft

    materials.

    conductivity.

    verygoo

    dconductor.

    crysta

    llizesinthecu

    bic

    system.

    crysta

    llizesinthe

    hexagonalsystem.

    U

    sed-ultimate

    abrasive.

    Used-verygood

    lubricant.

  • 7/29/2019 Engineering Physics 2 Unit-5

    87/98

    Fabrication

    Fabrication

    Fabrication

    Fabrication

    (i)

    Pulsedl

    aserdepos

    ition.

    ii

    Electric

    dischare

    method.

    (iii)Chemicalvapourdeposition.

  • 7/29/2019 Engineering Physics 2 Unit-5

    88/98

    SWCNT

    -diameterof5.20nm-produced.

    Laserbe

    am-vapouriseagraphitetarget-insideoven.

    Oven-H

    eorArgasmaintainpress

    ureat500Torr.

    Tempera

    tureofoven-maintained-1

    200C.

    Pulsedlas

    erdepositio

    n

    rape

    arge-smaamouns-coa

    annce-acas

    catalyticnucleation

    sites-forma

    tionofCNTs.

    Intenselaserbeam-target-evaporatecarbon-gra

    phite.

    Argon-

    sweepscarbon-hightemperaturezone

    -colder

    coppercollector-cond

    enseintoCNT

    .

  • 7/29/2019 Engineering Physics 2 Unit-5

    89/98

    Presenceofcatalyst-preventstheg

    rowthoffullerene.

    Reaction

    temperature-control-tubediameter.

  • 7/29/2019 Engineering Physics 2 Unit-5

    90/98

    CNTfrom

    hightemperatureplasma-

    3700C.

    Mostcommon&easiest

    waytoproduc

    eCNT.

    AlsocalledDCArcDisc

    harge(DCAD

    )method.

    Pairofcarbonelectrodesasanodeand

    thecathode-potential

    difference

    ofabout20VDC.

    Electric-Arcdischarge

    method

    Electrodes

    -keptinenclosure-filled

    withinertgasat50to

    500mbar.

    Directcurrentof50to1

    00A-creates

    hightempdischarge-

    b/wthetw

    oelectrodes-

    separatedby1

    mm.

    Discharge

    vapourizeoneofCarbonro

    d-produceM

    WCNT.

  • 7/29/2019 Engineering Physics 2 Unit-5

    91/98

    CNT-uniformdia(2to30nm)and1mmlength.

    CNTdep

    ositionrate-approximately1mmpermin

    ute.

    Purecar

    bonelectrodes-produce-M

    WNT.

    AnodedopedwithFe,Co,NiorMo-SWNT.

  • 7/29/2019 Engineering Physics 2 Unit-5

    92/98

    Two-step

    process

    (i)

    Catalystprepa

    rationstep.

    (ii)Synthesisofthenanotubes.

    Fe,Ni,Co

    oranalloyofthethreecatalyticmetalsisinitially

    depositedonasubstra

    te.

    ChemicalVapourDe

    position

    usraew

    epose

    m

    sece

    usngau

    e

    solutionw

    ithdistilledwater.

    Quartzboatcontaining

    -etchedsubstrate-plac

    edina

    CVDreactionfurnace.

    Nanosize

    catalyticme

    talparticles

    -formed

    -after

    additional

    etchingofca

    talyticmetalfilmusingNH3gasata

    temperatureof750to1100C.

  • 7/29/2019 Engineering Physics 2 Unit-5

    93/98

    Afternanosizefinemeta

    lparticlesare

    formed-CN

    Twill

    begrown

    onthemeta

    lparticleson

    thesubstrate

    dueto

    inducecatalystparticlen

    ucleation.

    Diameter

    ofCNTdepen

    ds-thickness

    ofthecatalyticfilm.

    Carbonna

    notubesformedaremulti-walled.

  • 7/29/2019 Engineering Physics 2 Unit-5

    94/98

    Properties

    1.SWNTs

    aremetallicorsemiconductingdepending

    on

    chiralityanddiameter.

    2.Extreme

    lowresistanc

    e.

    3.SWCNT

    withanaturaljunction-ar

    ectifyingdiod

    e.

    -

    94

    .

    .

    5.Youngs

    modulusis1.8

    Tpa-5times

    greaterthansteel.

    6.Therma

    lconductivity

    -6kW/km-6

    timemoretha

    ncopper.

    7.Withsta

    ndhightemp

    -meltingtemp

    -3threetime

    shigher

    thancop

    per.

  • 7/29/2019 Engineering Physics 2 Unit-5

    95/98

    HighEle

    ctricalCondu

    ctivity

    HighThermalConductivity

    VeryHig

    hTensileStre

    ngth

    HighlyF

    lexible-canbebentconsiderablywithoutd

    amage

    Properties

    VeryEla

    stic~18%elongationtofailu

    re

    LowThermalExpansionCoefficient

    GoodFie

    ldEmissionofElectrons

    HighAspectRatio(len

    gth=~1000x

    diameter)

  • 7/29/2019 Engineering Physics 2 Unit-5

    96/98

    Com

    parisonofmechanical

    properties

    Material

    Young's

    Modulus(T

    Pa)

    Tensilestrength

    (GPa)

    Elongationat

    break(%

    )

    SWNT

    ~1(from1to5)

    1353E

    16

    Armchair

    SWNT

    0.94T

    126.2T

    23.1

    96

    ZigzagSW

    NT

    0.94T

    94.5T

    15.617.5

    ChiralSW

    NT

    0.92

    -

    -

    MWNT

    0.80.9E

    11150E

    StainlessS

    teel

    ~0.2

    ~0.653

    1550

    Kevlar

    ~0.15

    ~3.5

    ~2

    KevlarT

    0.25

    29.6

  • 7/29/2019 Engineering Physics 2 Unit-5

    97/98

    (i)Lightw

    eight&verystrong-aerosp

    ace.

    (ii)Constru

    ctionofnanoscaleelectronicdevices

    (iii)Battery

    electrodes,fuelcells,reinforcingfibers.,etc.

    (iv)Flatpaneldisplay-computermonitorsandtelevis

    ions.

    Applica

    tionofCNT

    97

    (v)Shieldingmaterialsforprotectinge.m.radiation.

    (vi)Military&communic

    ationsystems

    -protecting

    com

    putersandelectronicdevices

    .

    (vii)SemicondutingCNTs-switchingdevices.

    (viii)

    Sem

    icondutingCN

    Ts-chemicalreactions.

  • 7/29/2019 Engineering Physics 2 Unit-5

    98/98

    98