Top Banner
ENGINE COMBUSTION NETWORK ECN6 Topic 9 : Internal and Near Nozzle Flow Gasoline Spray Organizer & Presenter: David P. Schmidt Chinmoy K. Mohapatra UMass, Amherst
87

ENGINE COMBUSTION NETWORK

Mar 25, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ENGINE COMBUSTION NETWORK

ENGINE COMBUSTION NETWORK

ECN6 Topic 9 :

Internal and Near Nozzle Flow Gasoline Spray

Organizer & Presenter:

David P. Schmidt

Chinmoy K. Mohapatra

UMass, Amherst

Page 2: ENGINE COMBUSTION NETWORK

CONTRIBUTORS

David Schmidt, Chinmoy Mohapatra, UMass, Amherst

Pedro Marrtí , María Martínez, CMT-Motores Térmicos

Dimitrios Papoulias, Samir Muzaferija, Kshitij Nerrorkar , Siemens CD Adapco

Zongyu Yue, Sibendu Som, Argonne National Laboratory

Boxiong Chen, Michael Oevermann, Chalmers University

Balalji Mohan, Hong G. Im, Jihad A Badra, KAUST

Mathis Bode, RWTH Aachen University

2

Page 3: ENGINE COMBUSTION NETWORK

Modelling Approaches

– Simulation Techniques

– Boundary Conditions

– Meshing

ECN 6 Simulation Results

– ROI comparison

– Hole-Hole Rate of Injection comparison

– Hole-Hole variation at Z = 2mm plane

– Representative contour plots

Next Steps for Gasoline sprays

– Encouraging more contributors for experiments, new models for CFD

3

PRESENTATION CONTENTS

Page 4: ENGINE COMBUSTION NETWORK

SPRAY G , G2 , G3 NOMINAL OPERATING CONDITIONS

Condition SprayG SprayG2 SprayG3

Fuel Isooctane Isooctane Isooctane

Injection

Pressure

20 MPa 20MPa 20MPa

Fuel Temperature 90° C (363.15 K) 90° C (363.15 K) 90° C (363.15 K)

Ambient

Temperature

300° C (573.15 K) 60° C (333.15 K) 60° C (333.15 K)

Ambient Density 3.5 kg/m3 0.5 kg/m3 1.2 kg/m3

Back Pressure 600 kPa (N2) 50 kPa (N2) 100 kPa (N2)

Injected Quantity 10 mg 10 mg 10 mg

Injection Duration 780 µs (“actual”) 780 µs (“actual”) 780 µs (“actual”)

Page 5: ENGINE COMBUSTION NETWORK

5

MODELING APPROACHES

Page 6: ENGINE COMBUSTION NETWORK

6

INTERNAL MODELING CODES

Institution UMassCD-

Adapco

CMT

Converge

CMT

CCM+ANL Chalmers KAUST

Code HRMFoamSTAR-

CCM+Converge

STAR-

CCM+Converge SchnerrSauer Converge

Origin UMassCD-

Adapco

Convergent

Science

CD-

Adapco

Convergent

ScienceChalmers

Convergent

Science

External

CouplingEulerian Eulerian Eulerian Eulerian Eulerian Eulerian Eulerian

CasesSpray G,

G2G, G2 G,G2,G3 G G G G

Page 7: ENGINE COMBUSTION NETWORK

7

APPROACHES

Institution UMassCD-

Adapco

CMT

ConvergeCMT ANL Chalmers KAUST

Liquid FuelIso-

Octane

Iso-

OctaneIso-Octane

Iso-

OctaneIso-Octane

Iso-

OctaneIso-Octane

Compressibility Yes No Yes No No No Yes

Cavitation Yes Yes Yes Yes No Yes Yes

Phase Change

ModelHRM HRM HRM HRM No

Rayleigh-

PlessetHRM

Turbulence k-ω SST k-ω SST k-ε RNG k-ω SST

LES

dynamic

structure

LES

Smagorin

sky

k-ε RNG

(Cε1 = 1.1)

Spatial

DIscretization2nd order 2nd order 1st order 1st order - 1st order -

Fuel Properties REFPROP NIST

CONVERGE,

Dymond et al.

1985

Star

CCM+CONVERGE

Dymond et

al.,NISTCONVERGE

Page 8: ENGINE COMBUSTION NETWORK

8

APPROACHES

Institution UMassCD-

Adapco

CMT

Converge

CMT

CCM+ANL Chalmers KAUST

Ambient

PropertiesIdeal Gas

Ideal

GasIdeal Gas Ideal Gas Ideal Gas Liquid Fuel Ideal gas

Liquid/Gas

interface

Eulerian,

diffuse-

interface

(Pseudo

fluid)

Volume

of Fluid -

Mixture

type

approach

VOF VOF VOF-PLIC HEM VOF

Heat transferNo,

IsenthalpicAdiabatic Isothermal Isothermal Adiabatic Isothermal Isothermal

Page 9: ENGINE COMBUSTION NETWORK

9

COMPUTATIONAL DOMAIN

Institution UMassCD-

Adapco

CMT

Conv.

CMT

CCM+ANL Chalmers KAUST

Dimensionality 3 3 3 3 3 3 3

Cell Type

Hexahedral

with anisotropic

refinement

between needle

and wall

Hex &

prism

cells+

wall

layers

Hex +

wall

layers

Hex &

poly

hedra

with wall

layers

Hex + wall

layers

Hexa-

hedral

cells

Hex +

wall

layers

Meshing Tool Grid Pro Star CCM+ Converge Star CCM+ ConvergeGrid

Pro(refined)Converge

Cell Count 1.5 million 8 million1

million

11.4

million,

5.08

million

- 9.8 million -

Adaptive or

static

refinement

Static Static AMR Static AMR Static AMR

Page 10: ENGINE COMBUSTION NETWORK

10

GEOMETRY AND BOUNDARY CONDITION

Institution UMassCD-

Adapco

CMT

Conv.

CMT

CCM+ANL Chalmers KAUST

Initial lift 5 μm 50 μm 2 μm 50 μm 5 μm 50 μm 2 μm

Needle

MotionYes No Yes No Yes No Yes

GeometryGen 1 with 9mm

plenum

Gen 1

with 9

mm

plenum

Gen 1

with 6

mm

plenum

Gen 1

with 9

mm

plenum

Realistic

geometry

X-Ray

Gen1 Gen 2

Time Accurate

ROI Profile?Predicted No Predicted No Predicted No

Predicted

InletConstant

Pressure

Constant

Pressure

Constant

Pressure

Constant

Pressure

Constant

Pressure

Constant

Pressure

Constant

Pressure

Wall BCs L.O.W. L.O.W. L.O.W. L.O.W. L.O.W. - L.O.W.

Needle

ClosureYes No No No No No No

Page 11: ENGINE COMBUSTION NETWORK

11

NEEDLE LIFT

Data and figure

provided by Dan

Duke at Argonne

National Lab

Page 12: ENGINE COMBUSTION NETWORK

12

COMPUTATIONAL MESH (UMASS)

• Transient lift based upon ensemble

averaged Argonne measurements

• Laplacian smoothing for mesh motion

• 10 μm and 7 μm grid spacing in the sac

and nozzle hole

Page 13: ENGINE COMBUSTION NETWORK

13

COMPUTATIONAL MESH (CD-ADAPCO)

Inside the nozzle

holes, the sac-

volume and along

the vicinity of the

spray jets the mesh

is refined with cells

which ranged from 5

to 25 μm in size,

respectively

Page 14: ENGINE COMBUSTION NETWORK

14

HEXAHEDRAL MESH (CMT- STARCCM+)

Base size 140 µm

Cells 11.44 millions

Prism Layer 3

Layer Total

Thickness8.75 µm

Surface Control:

- Minimum cell size: 17.5 µm

- Surface Growth Rate: 1.05

- Trimmer Surface Growth Rate:

Medium

Volumetric Control:

- Minimum cell size: 8.75 µmCell size: 17.5 µmCell size: 35

µm

Page 15: ENGINE COMBUSTION NETWORK

15

POLYHEDRAL MESH (CMT- STARCCM+)

Base size 60 µm

Cells 5.08 millions

Prism Layer 3

Layer Total

Thickness8.625 µm

Surface Control:

- Minimum cell size: 18 µm

- Surface Growth Rate: 1.05

Volumetric Control:

- Minimum cell size: 18 µm

Page 16: ENGINE COMBUSTION NETWORK

16

Nozzle

Holes

Chamber

COMPUTATIONAL MESH (CMT- CONVERGE)- Base Size: 140 µm

- Grid Scaling: -1

- Fixed Embedding:

- Region (Nozzle &

Holes)

- Mode: Permanent

- Scale: 3

- Boundary (Nozzle)

- Mode: Permanent

- Scale: 4

- Embed layers: 1

- AMR:

- Chamber & Holes

- Embedding: 4

- Sub-grid criterion:

1.0

- Timing control

type: PermanentCell count at start of simulation: 1.018.865

Page 17: ENGINE COMBUSTION NETWORK

ANL CONVERGE

• Red surface: X-ray scanned realistic

geometry (1.7 μm resolution)

• Immediately adjacent holes simulated at

low resolution

Page 18: ENGINE COMBUSTION NETWORK

CHALMERS OPENFOAM

Page 19: ENGINE COMBUSTION NETWORK

19

SIMULATION RESULTS

Page 20: ENGINE COMBUSTION NETWORK

INTERNAL OBSERVATIONS

CCM+ CD Adapco

Iso-surface of

14MPa total

pressure,

streamlines

Similar to vorticity seen

in Baldwin et al. 2016

Page 21: ENGINE COMBUSTION NETWORK

21

CAD GeometryHOLE ORIENTATION

Page 22: ENGINE COMBUSTION NETWORK

22

ROI, MOMENTUM RATE MEASUREMENT LOCATION (NOZZLE EXIT PLANE)

Hole 1

Hole 5

Hole 2

Hole 6

Hole 3 Hole 7

Hole 4

Hole 8

Page 23: ENGINE COMBUSTION NETWORK

23

RATE OF INJECTION – SPRAY G

Page 24: ENGINE COMBUSTION NETWORK

24

RATE OF INJECTION – SPRAY G2

Page 25: ENGINE COMBUSTION NETWORK

25

NCG RATE OF INJECTION

Page 26: ENGINE COMBUSTION NETWORK

26

VAPOR RATE OF INJECTION

Page 27: ENGINE COMBUSTION NETWORK

27

RADIALLY AVERAGED LVF AT 2MM COMPARED TO EXPT.

“Eulerian modeling of flash-boiling in multihole gasoline nozzles using

the homogeneous relaxation model” by Papoulias et al. 2018

• Experiment is with

viscor under non-

flashing conditions

• Simulation is with

flashing conditions

LV

F

Radial Location

Page 28: ENGINE COMBUSTION NETWORK

28

ROI – HOLE 1

Spray G Spray G2

Page 29: ENGINE COMBUSTION NETWORK

29

MOMENTUM RATE – HOLE 1

Spray G Spray G2

Page 30: ENGINE COMBUSTION NETWORK

30

ROI – HOLE 2

Spray G Spray G2

Page 31: ENGINE COMBUSTION NETWORK

31

MOMENTUM RATE – HOLE 2

Spray G Spray G2

Page 32: ENGINE COMBUSTION NETWORK

32

ROI – HOLE 3

Spray G Spray G2

Page 33: ENGINE COMBUSTION NETWORK

33

MOMENTUM RATE – HOLE 3

Spray G Spray G2

Page 34: ENGINE COMBUSTION NETWORK

34

ROI – HOLE 4

Spray G Spray G2

Page 35: ENGINE COMBUSTION NETWORK

35

MOMENTUM RATE – HOLE 4

Spray G Spray G2

Page 36: ENGINE COMBUSTION NETWORK

36

ROI – HOLE 5

Spray G Spray G2

Page 37: ENGINE COMBUSTION NETWORK

37

MOMENTUM RATE – HOLE 5

Spray G Spray G2

Page 38: ENGINE COMBUSTION NETWORK

38

ROI – HOLE 6

Spray G Spray G2

Page 39: ENGINE COMBUSTION NETWORK

39

MOMENTUM RATE – HOLE 5

Spray G Spray G2

Page 40: ENGINE COMBUSTION NETWORK

40

ROI – HOLE 6

Spray G Spray G2

Page 41: ENGINE COMBUSTION NETWORK

41

MOMENTUM RATE – HOLE 6

Spray G Spray G2

Page 42: ENGINE COMBUSTION NETWORK

42

ROI – HOLE 7

Spray G Spray G2

Page 43: ENGINE COMBUSTION NETWORK

43

MOMENTUM RATE – HOLE 7

Spray G Spray G2

Page 44: ENGINE COMBUSTION NETWORK

44

ROI – HOLE 8

Spray G Spray G2

Page 45: ENGINE COMBUSTION NETWORK

45

MOMENTUM RATE – HOLE 8

Spray G Spray G2

Page 46: ENGINE COMBUSTION NETWORK

46

TIME AVERAGED QUANTITIES AT Z= 2MM

Hole 1

Hole 5

Hole 2

Hole 6

Hole 3Hole 7

Hole 4

Hole 8

Page 47: ENGINE COMBUSTION NETWORK

47

TIME AVERAGED QUANTITIES AT Z= 2MM (HOLE1-HOLE5)

Hole1 Hole5 Hole1 Hole5

Page 48: ENGINE COMBUSTION NETWORK

48

TIME AVERAGED QUANTITIES AT Z= 2MM(HOLE1-HOLE5)

Hole1 Hole5 Hole1 Hole5

Page 49: ENGINE COMBUSTION NETWORK

49

TIME AVERAGED QUANTITIES AT Z= 2MM(HOLE2-HOLE6)

Hole2 Hole6 Hole2 Hole6

Page 50: ENGINE COMBUSTION NETWORK

50

TIME AVERAGED QUANTITIES AT Z= 2MM(HOLE2-HOLE6)

Hole2 Hole6 Hole2 Hole6

Page 51: ENGINE COMBUSTION NETWORK

51

TIME AVERAGED QUANTITIES AT Z= 2MM(HOLE3-HOLE7)

Hole3 Hole7 Hole3 Hole7

Page 52: ENGINE COMBUSTION NETWORK

52

TIME AVERAGED QUANTITIES AT Z= 2MM(HOLE3-HOLE7)

Hole3 Hole7 Hole3 Hole7

Page 53: ENGINE COMBUSTION NETWORK

53

TIME AVERAGED QUANTITIES AT Z= 2MM(HOLE4-HOLE8)

Hole4 Hole8 Hole4 Hole8

Page 54: ENGINE COMBUSTION NETWORK

54

TIME AVERAGED QUANTITIES AT Z= 2MM(HOLE4-HOLE8)

Hole4 Hole8 Hole4 Hole8

Page 55: ENGINE COMBUSTION NETWORK

55

TIME AVERAGED TEMPERATURE (Z=1MM)-UMASS HRMFOAM

Spray G Spray G2

h3 h7

h1

Page 56: ENGINE COMBUSTION NETWORK

56

TIME AVERAGED TEMPERATURE (Z=1MM)-CMT CONVERGE

Spray G Spray G2

h3 h7

h1

Page 57: ENGINE COMBUSTION NETWORK

57

TIME AVERAGED TEMPERATURE (Z=1MM)-CHALMERS

Spray G

h3 h7

h1

Page 58: ENGINE COMBUSTION NETWORK

WHAT IS THE RIGHT ANSWER?

Zhang, Gaoming, David LS Hung, and Min Xu.

"Experimental study of flash boiling spray vaporization

through quantitative vapor concentration and liquid

temperature measurements." Experiments in fluids 55.8

(2014): 1804

Kamoun, H., Lamanna, G., Ruberto, S.,

Komenda, A., Weigand, B., & Steelant, J.

(2014). Experimental investigations of fully

flashing jets.

Page 59: ENGINE COMBUSTION NETWORK

59

TIME AVERAGED TEMPERATURE AT Z= 1MM (HOLE1-HOLE5)

Hole1 Hole5 Hole1 Hole5

Spray G Spray G2

Page 60: ENGINE COMBUSTION NETWORK

60

TIME AVERAGED TEMPERATURE AT Z= 2MM (HOLE1-HOLE5)

Hole1 Hole5 Hole1 Hole5

Spray G Spray G2

Page 61: ENGINE COMBUSTION NETWORK

61

TIME AVERAGED TEMPERATURE AT Z= 1MM (HOLE2-HOLE6)

Hole2 Hole6 Hole2 Hole6

Spray G Spray G2

Page 62: ENGINE COMBUSTION NETWORK

62

TIME AVERAGED TEMPERATURE AT Z= 2MM (HOLE2-HOLE6)

Hole2 Hole6 Hole2 Hole6

Spray G Spray G2

Page 63: ENGINE COMBUSTION NETWORK

63

TIME AVERAGED TEMPERATURE AT Z= 1MM (HOLE3-HOLE7)

Hole3 Hole7 Hole3 Hole7

Spray G Spray G2

Page 64: ENGINE COMBUSTION NETWORK

64

TIME AVERAGED TEMPERATURE AT Z= 2MM (HOLE3-HOLE7)

Hole3 Hole7 Hole3 Hole7

Spray G Spray G2

Page 65: ENGINE COMBUSTION NETWORK

65

TIME AVERAGED TEMPERATURE AT Z= 1MM (HOLE4-HOLE8)

Hole4 Hole8 Hole4 Hole8

Spray G Spray G2

Page 66: ENGINE COMBUSTION NETWORK

66

TIME AVERAGED TEMPERATURE AT Z= 2MM (HOLE4-HOLE8)

Hole4 Hole8 Hole4 Hole8

Spray G Spray G2

Page 67: ENGINE COMBUSTION NETWORK

67

TIME AVERAGED DENSITY AT Z= 2MM (SPRAY G2)

Hole1 Hole5 Hole3 Hole7

Page 68: ENGINE COMBUSTION NETWORK

68

TIME AVERAGED DENSITY AT Z= 2MM (HOLE4-HOLE8)

Hole2 Hole6 Hole4 Hole8

Page 69: ENGINE COMBUSTION NETWORK

69

DENSITY (NOZZLE & CB EXIT)-CMT CONVERGE

Spray G Spray G2

h1

h3 h7

Page 70: ENGINE COMBUSTION NETWORK

70

DENSITY (NOZZLE & CB EXIT)-UMASS HRMFOAM

Spray G Spray G2

h1

h3 h7

Page 71: ENGINE COMBUSTION NETWORK

71

VELOCITY (NOZZLE & CB EXIT)-CMT CONVERGE

Spray G Spray G2h1

h3 h7

Page 72: ENGINE COMBUSTION NETWORK

72

VELOCITY (NOZZLE & CB EXIT)-UMASS HRMFOAM

Spray G Spray G2

h1

h3 h7

Page 73: ENGINE COMBUSTION NETWORK

73

LIQUID VOLUME FRACTION (NOZZLE & CB EXIT)-CMT CONVERGE

Spray G Spray G2h1

h3 h7

Page 74: ENGINE COMBUSTION NETWORK

74

LIQUID VOLUME FRACTION (NOZZLE & CB EXIT)-UMASS HRMFOAM

Spray G Spray G2

h1

h3 h7

Page 75: ENGINE COMBUSTION NETWORK

75

VAPOR VOLUME FRACTION (NOZZLE & CB EXIT)-UMASS HRMFOAM

Spray G Spray G2

h1

h3 h7

Page 76: ENGINE COMBUSTION NETWORK

76

DENSITY (MID PLANE CLIP)-CMT CONVERGE

Spray G Spray G2

h3 h7

Page 77: ENGINE COMBUSTION NETWORK

77

DENSITY (MID PLANE CLIP)-UMASS HRMFOAM

Spray G Spray G2

h3 h7

Page 78: ENGINE COMBUSTION NETWORK

78

VELOCITY (MID PLANE CLIP)-CMT CONVERGE

Spray G Spray G2

h3 h7

Page 79: ENGINE COMBUSTION NETWORK

79

VELOCITY (MID PLANE CLIP)-UMASS HRMFOAM

Spray G Spray G2

h3 h7

Page 80: ENGINE COMBUSTION NETWORK

80

LIQUID MASS FRACTION (MID PLANE CLIP)-CMT CONVERGE

Spray G Spray G2

h3 h7

Page 81: ENGINE COMBUSTION NETWORK

81

LIQUID MASS FRACTION (MID PLANE CLIP)-UMASS HRMFOAM

Spray G Spray G2

h3 h7

Page 82: ENGINE COMBUSTION NETWORK

82

LIQUID VOLUME FRACTION (MID PLANE CLIP)-CMT CONVERGE

Spray G Spray G2

h3 h7

Page 83: ENGINE COMBUSTION NETWORK

83

LIQUID VOLUME FRACTION (MID PLANE CLIP)-UMASS HRMFOAM

Spray G Spray G2

h3 h7

Page 84: ENGINE COMBUSTION NETWORK

84

VAPOR VOLUME FRACTION (MID PLANE CLIP)-UMASS HRMFOAM

Spray G Spray G2

h3 h7

Page 85: ENGINE COMBUSTION NETWORK

85

LIQUID VOLUME FRACTION (SPRAY G)-CHALMERS

h3 h7

h3

h1

Mid plane viewCB and Nozzle exit cut plane view

Page 86: ENGINE COMBUSTION NETWORK

86

NEXT STEPS

• Get a Generation 3 file from ANL

• “Stanford Bunnied”: a verb

• Separated into separate parts

• Start paying a lot more attention to hole

numbering convention

• G3 and other conditions

Page 87: ENGINE COMBUSTION NETWORK

EXPERIMENT AND MODELING NEEDS

• Broken:

• Eulerian liquid/gas exchange rates are broken--At

the maximum bound of instantaneous transfer

• Only ANL is contributing experimental data

• HRM in different codes gives VERY different results

• Requisite modeling work:

• Finite-rate momentum and energy exchange

• Requisite experimental work:

• Geometry that is CFD-ready

• Temperature measurements

• Individual hole mass flow rates

• Momentum rate measurements