Top Banner
Nuclear Physics A 745 (2004) 155–362 Energy levels of light nuclei A = 8, 9, 10 D.R. Tilley a,b , J.H. Kelley a,b,, J.L. Godwin a,c , D.J. Millener d , J.E. Purcell a,e , C.G. Sheu a,c , H.R. Weller a,c a Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308, USA b Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA c Department of Physics, Duke University, Durham, NC 27708-0305, USA d Brookhaven National Laboratory, Upton, NY 11973, USA e Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA Received 23 September 2004; accepted 23 September 2004 Available online 19 October 2004 Abstract A review of the evidence on the properties of the nuclei A = 8, 9 and 10, with emphasis on material leading to information about the structure of the A = 8, 9, 10 systems. 2004 Elsevier B.V. All rights reserved. Introduction In this article, the Triangle Universities Nuclear Laboratory Nuclear Data Evaluation Project continues the series of reviews summarizing experimental information on the prop- erties of the nuclei with mass numbers five through twenty. This A = 5–20 series began with a 1966 review of A = 5–10 nuclei by T. Lauritsen and Fay Ajzenberg-Selove and was This work is supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Grant No. DEFG02-97-ER41042 (North Carolina State University); Grant No. DEFG02-97-ER41033 (Duke University); and Contract No. DE-AC02-98-CH10886 (Brookhaven National Laboratory). * Corresponding author. E-mail address: [email protected] (J.H. Kelley). 0375-9474/$ – see front matter 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.nuclphysa.2004.09.059
208

Energy levels of light nuclei A = 8,9,10

Sep 11, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Energy levels of light nuclei A = 8,9,10

ial

ationprop-

nwas

s,3

Nuclear Physics A 745 (2004) 155–362

Energy levels of light nucleiA = 8,9,10

D.R. Tilleya,b, J.H. Kelleya,b,∗, J.L. Godwina,c, D.J. Millenerd,J.E. Purcella,e, C.G. Sheua,c, H.R. Wellera,c

a Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308, USAb Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA

c Department of Physics, Duke University, Durham, NC 27708-0305, USAd Brookhaven National Laboratory, Upton, NY 11973, USA

e Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA

Received 23 September 2004; accepted 23 September 2004

Available online 19 October 2004

Abstract

A review of the evidence on the properties of the nucleiA = 8, 9 and 10, with emphasis on materleading to information about the structure of theA = 8,9,10 systems. 2004 Elsevier B.V. All rights reserved.

Introduction

In this article, the Triangle Universities Nuclear Laboratory Nuclear Data EvaluProject continues the series of reviews summarizing experimental information on theerties of the nuclei with mass numbers five through twenty. ThisA = 5–20 series begawith a 1966 review ofA = 5–10 nuclei by T. Lauritsen and Fay Ajzenberg-Selove and

This work is supported by the US Department of Energy, Office of High Energy and Nuclear Physicunder: Grant No. DEFG02-97-ER41042 (North Carolina State University); Grant No. DEFG02-97-ER4103(Duke University); and Contract No. DE-AC02-98-CH10886 (Brookhaven National Laboratory).

* Corresponding author.E-mail address: [email protected] (J.H. Kelley).

0375-9474/$ – see front matter 2004 Elsevier B.V. All rights reserved.doi:10.1016/j.nuclphysa.2004.09.059

Page 2: Energy levels of light nuclei A = 8,9,10

. 22

95

ys.

Lightlayedcom-

156 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 1Energy levels of light nuclei—previous evaluations

Reference key Mass chainscovered (A)

Reference

[1937LI1A] 7–38 M.S. Livingston, H.A. Bethe, Rev. Mod. Phys. 9 (1937) 245[1948HO1A] 7–20 W.F. Hornyak, T. Lauritsen, Rev. Mod. Phys. 20 (1948) 191[1949LA1A] T. Lauritsen, NRC Preliminary Report No. 5 (1949)[1950HO1A] 1–23 W.F. Hornyak, T. Lauritsen, P. Morrison, W.A. Fowler, Rev. Mod. Phys

(1950) 291Ajzenberg-Selove evaluations:[1952AJ38] 5–23 F. Ajzenberg, T. Lauritsen, Rev. Mod. Phys. 24 (1952) 321[1955AJ61] 5–23 F. Ajzenberg, T. Lauritsen, Rev. Mod. Phys. 27 (1955) 77[1959AJ76] 5–24 F. Ajzenberg, T. Lauritsen, Nucl. Phys. 11 (1959) 1[1966LA04] 5–10 T. Lauritsen, F. Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1[1974AJ01] 5–10 F. Ajzenberg-Selove, Nucl. Phys. A 227 (1974) 1[1979AJ01] 5–10 F. Ajzenberg-Selove, Nucl. Phys. A 320 (1979) 1[1984AJ01] 5–10 F. Ajzenberg-Selove, Nucl. Phys. A 413 (1984) 1[1988AJ01] 5–10 F. Ajzenberg-Selove, Nucl. Phys. A 490 (1988) 1[1968AJ02] 11–12 F. Ajzenberg-Selove, Nucl. Phys. A 114 (1968) 1[1975AJ02] 11–12 F. Ajzenberg-Selove, Nucl. Phys. A 248 (1975) 1[1980AJ01] 11–12 F. Ajzenberg-Selove, Nucl. Phys. A 336 (1980) 1[1985AJ01] 11–12 F. Ajzenberg-Selove, Nucl. Phys. A 433 (1985) 1[1990AJ01] 11–12 F. Ajzenberg-Selove, Nucl. Phys. A 506 (1990) 1[1970AJ04] 13–15 F. Ajzenberg-Selove, Nucl. Phys. A 152 (1970) 1[1976AJ04] 13–15 F. Ajzenberg-Selove, Nucl. Phys. A 268 (1976) 1[1981AJ01] 13–15 F. Ajzenberg-Selove, Nucl. Phys. A 360 (1981) 1[1986AJ01] 13–15 F. Ajzenberg-Selove, Nucl. Phys. A 449 (1986) 1[1991AJ01] 13–15 F. Ajzenberg-Selove, Nucl. Phys. A 523 (1991) 1[1971AJ02] 16–17 F. Ajzenberg-Selove, Nucl. Phys. A 166 (1971) 1[1977AJ02] 16–17 F. Ajzenberg-Selove, Nucl. Phys. A 281 (1977) 1[1982AJ01] 16–17 F. Ajzenberg-Selove, Nucl. Phys. A 375 (1982) 1[1986AJ04] 16–17 F. Ajzenberg-Selove, Nucl. Phys. A 460 (1986) 1[1972AJ02] 18–20 F. Ajzenberg-Selove, Nucl. Phys. A 190 (1972) 1[1978AJ03] 18–20 F. Ajzenberg-Selove, Nucl. Phys. A 300 (1978) 1[1983AJ01] 18–20 F. Ajzenberg-Selove, Nucl. Phys. A 392 (1983) 1[1987AJ02] 18–20 F. Ajzenberg-Selove, Nucl. Phys. A 475 (1987) 1TUNL evaluations:[1993TI07] 16–17 D.R. Tilley, H.R. Weller, C.M. Cheves, Nucl. Phys. A 564 (1993) 1[1995TI07] 18–19 D.R. Tilley, H.R. Weller, C.M. Cheves, R.M. Chasteler, Nucl. Phys. A 5

(1995) 1[1998TI06] 20 D.R. Tilley, C.M. Cheves, J.H. Kelley, S. Raman, H.R. Weller, Nucl. Ph

A 636 (1998) 249[2002TI10] 5–7 D.R. Tilley, C.M. Cheves, J.L. Godwin, G.M. Hale, H.M. Hofmann,

J.H. Kelley, H.R. Weller, Nucl. Phys. A 708 (2002) 3

continued by Professor Ajzenberg-Selove with separate reviews forA = 5–10,A = 11–12, 13–15, 16–17, and 18–20 nuclides. It comprised a total of 23 “Energy Levels ofNuclei” reviews which extended over a period from 1966 through 1991 and which pa very significant role in nuclear physics research worldwide during these years. A

plete list of theseA = 5–20 reviews is given in Table 1 along with several earlier reviewsand the more recent TUNLA = 5–7, 16–17, 18–19 and 20 reviews. In form, arrangement
Page 3: Energy levels of light nuclei A = 8,9,10

s

ster ta-ornu-ingac-ctice

ac-entedin thecleuser-dsr the

ndticohemat-lness

e it hasculatedmbersgrams,

re

UNL,u-us as

haveappro-use

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 157

and purpose, this present paper summarizingA = 8–10 is similar to the previous reviewdealing with theA = 5–20 nuclides.

Arrangement of material

Following earlier practice, each nucleus is represented by a diagram and a mable exhibiting the known properties of the energy levels as adopted in this evaluationretained from the previous “Energy Levels of Light Nuclei” reviews. A listing of theclear reactions from which the information derives is also provided. The accompanytext contains an abbreviated discussion and aselected bibliography for each relevant retion. In addition to discussion of experimental work we have continued the TUNL praof including a brief discussion of new theoretical work for each reaction.

Since most nuclear reactions provide information on more than one nucleus, each retion is listed under both the compound and the residual nucleus, with differently oridiscussions and partially overlapping bibliographies. With bombarding energiestens of MeV, where direct interactions predominate, it is frequently the target nuwhich is mainly concerned, and here, a thirdtype of listing has been necessary. Genally speaking, in a reaction such asX(a,b)Y , information relating to resonances, yieland angular distributions in the resonance region will be found under the listing fonucleus(X + a); particle spectra, angular correlations involving secondary decays, aresults from stripping reactions are listed underY ; pickup reactions, high-energy elasscattering, or quasielastic scattering studies are discussed underX. Where they appear tbe relevant to compound nucleus levels, selected excitation functions have been scically indicated on the diagrams; lack of space has severely limited both the faithfuand the number of such reproductions.

Extensive use has been made of tabular presentations of numerical data. Wherseemed appropriate to do so, we have added “mean” or “best” values, generally calwith inverse square weighting of the cited errors. In both the text and the tables, nuor parameters with uncertain identifications are enclosed in parentheses. On the diauncertain levels are indicated by dashed lines.

Electromagnetic transitions for A = 8,9,10Electromagnetic transitions are only occasionally exhibited in the diagrams; where mo

information is available, it has been summarized in a table.

General tablesIn previous evaluations by Fay Ajzenberg-Selove, as well as most of those by T

a “general” bibliography was found at the beginning of the text material for each ncleus, consisting of a listing of mainly theoretical papers dealing with the nuclewell as some experimental papers not otherwise classifiable. TUNL evaluationslisted these publications by key number and a one-line description of each underpriate categorical headings, e.g., shell model, cluster model, astrophysics, etc. Becathe lists have become quite lengthy, the authors, beginning with theA = 5, 6, 7 review

and continuing with the presentA = 8,9,10 review have chosen to omit them in thepublished review and instead provide them on the TUNL Data Evaluation Projects web-
Page 4: Energy levels of light nuclei A = 8,9,10

he

s forhifted tothe lat-e

ntvirtues

ke

, d, t,

f an

nt

ture];

r

158 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

site at www.tunl.duke.edu/nucldata/General_Tables/General_Tables.shtml along with tabridged version of this and other reviews (see Electronic Data Services below).

Isobar diagrams and tables

To facilitate comparison of level structures of isobars, skeletonized level diagrameach mass number are included. In each instance, the energy scales have been stake into account the neutron–proton mass difference and the Coulomb energies,ter calculated fromEC = 0.60Z(Z − 1)/A1/3 MeV corresponding to a uniform chargdistribution in a sphere of radiusR = 1.44A1/3 fm. This admittedly arbitrary adjustmeignores such matters as proton correlations and other structural details, but has theof uniformity and simplicity.

Conventions and symbols

The notations in the literature are reasonably uniform and unambiguous, but for the saof definiteness we list here the principal symbols which we have used:

E: energy in MeV, in lab coordinates unless otherwise specified; subscripts petc. refer to protons, deuterons, tritons, etc;

Eb: the separation energy, in MeV;Ex: excitation energy, in MeV, referred to the ground state;Ecm: energy in the center-of-mass system;Ebrem: energy of bremsstrahlung photons;Eres: energy corresponding to a reaction resonance;µN: nuclear magneton;Γ : full width at half maximum intensity of a resonance excitation function or o

level; subscripts when shown indicate partial widths for decay via channel showby the subscript;

ΓW: The Weisskopf estimates (ΓW in eV, Eγ in MeV) are: ΓW(E1) = 6.8 ×10−2 A2/3E3

γ , ΓW(E2) = 4.9 × 10−8 A4/3E5γ , ΓW(E3) = 2.3 × 10−14 A2E7

γ ,

ΓW(E4) = 6.8 × 10−21 A8/3E9γ , ΓW(M1) = 2.1 × 10−2 E3

γ , ΓW(M2) = 1.5 ×10−8 A2/3E5

γ . The values for theseγ -ray strengths are occasionally differefrom those listed in other tables of this paper because different values ofr0 wereused. See also [1979EN05] and Table 3 in [2002TI10];

θ2: dimensionless reduced width,γ 2λ 2µR2/3h2;

ε-capture: electron capture;S(E): astrophysical factor at energyE;σ(E): reaction cross section at energyE;ωγ : ωγ = ωΓiΓγ /Γ is derived from the resonant cross section for radiative cap

to a narrow resonance approximated by aBreit–Wigner expression [1999AN35on resonance,Γi andΓγ are the entrance and exit channel partial widths,Γ is thetotal width, andω = (1+ δ12) (2J + 1)/(2I1 + 1)(2I2 + 1) is the statistical facto

whereI1, I2 andJ are the spins of the interacting nuclei and of the resonance;

AX∗(E): excited state of the nucleusAX, at energyE;

Page 5: Energy levels of light nuclei A = 8,9,10

ets.

areirect.

uke.

nmentt

ationsMLs for

PSout thethat

DFia ourse for

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 159

B(F), B(GT): f τ1/2(B(F) + B(GT)) = 6144.4 ± 4.0 s, where [1993CH06]f is theFermi integral, averaged over a resonance if necessary,τ1/2 is the partial half-life for β decay,B(F) = 〈τ 〉2, B(GT) = (gA/gV)2〈στ 〉2, and the constant is from[2003TO29];

PWBA: plane-wave Born approximation;DWBA: distorted-wave Born approximation;Ma: mega-years [1× 106 years].

The reader is reminded of the following abbreviations: 1 µeV= 10−6 eV; 1 meV=10−3 eV; 1 ps= 10−12 s; 1 fs= 10−15 s; 1 W.u.= 1 Weisskopf unit.

Other review papers on light nuclei

We wish to remind the readers of the papers onA = 3 [1987TI07],A = 4 [1992TI02],andA = 21–44 [1990EN08]. Higher mass chains are discussed in Nuclear Data She

Electronic data services

Nuclear physics electronicThis review forA = 8–10 nuclides in its entirety, as well as other TUNL reviews,

available through ScienceDirect by way of the World Wide Web at www.sciencedcom.

TUNL nuclear data evaluation group WWW serverThe TUNL Nuclear Data Evaluation Group maintains WWW pages at www.tunl.d

edu/nucldata.Our website is extensive and comprehensive, and provides a user-friendly enviro

for viewing and/or downloading information on theA = 5–20 Energy Levels of LighNuclei series.

We have made available on our website abridged versions of our published evaluand preliminary reports in PDF and HTML formats. We also provide PDF and HTversions of Fay Ajzenberg-Selove’s evaluations (1959–1991). Energy level diagramthe TUNL and Fay Ajzenberg-Selove evaluations are provided in GIF, PDF and EPS/formats. We also provide on our website General Tables (please see the section abGeneral Tables in the Introduction above), Update Lists, and Tables of Energy Levelscorrespond to the evaluations of theA = 5–20 Energy Levels series. Links to the ENSinformation, and the Berkeley’s Isotopes Project’s Tables of Isotopes are provided vwebsite. Our website is also browser-friendly and provides a stable platform of u

both old and new browsers. Please visit our website to view all that we have to offer to theNuclear Physics community.
Page 6: Energy levels of light nuclei A = 8,9,10

A = 8, 8n

ugges-rlly ap-riangleersonenter

S DataHenry,

ledgendess ofNLerabledged.

e-f de-t

n of

160 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 2Parameters of n, p, d, t andα [2003AU03]

Atomic mass excess (keV) τ1/2 Decay Jπ ; T

1n or n 8071.3171± 0.0005 613.9± 0.6 s β− 12

+; 1

21H or p 7288.9705± 0.0001 stable stable 1

2+

; 12

2H or d 13135.7216± 0.0003 stable stable 1+; 0

3H or t 14949.8060± 0.0023 12.32± 0.02 y β− 12

+; 1

24He orα 2424.9156± 0.0001 stable stable 0+; 0

Acknowledgments

We are extremely grateful to our many colleagues who have provided valuable stions and corrections to the preliminary versions ofA = 8, 9, 10 evaluations. In particulawe acknowledge with special thanks the help of Professor F.C. Barker. We especiapreciate the support and encouragement of Professor Werner Tornow, Director of TUniversities Nuclear Laboratories, as well as former directors Professors N.R. Roband E.G. Bilpuch. We are grateful to the personnel of the National Nuclear Data Cfor their generous support and services as well as to the other personnel of the UProgram and the US Department of Energy, especially Drs. R.A. Meyer and Geneand Dr. Sidney Coon. We also thank Dr. Carl Schwarz and the staff ofNuclear PhysicsA and the Elsevier Science Publishers for their support. Finally we wish to acknowin the strongest possible terms our gratitude for the cooperation, encouragement, help avaluable advice provided by Professor F. Ajzenberg-Selove beginning with the proctransferring theA = 5–20 evaluation project from the University of Pennsylvania to TUand continuing to the present time. The high quality of her reviews and their considvalue to the nuclear physics community is well known and has been widely acknowle

A = 8

General

References to articles on general properties ofA = 8 nuclei published since the prvious review [1988AJ01] are grouped into categories and listed, along with briescriptions of each item, in the General Tables forA = 8 located on our website awww.tunl.duke.edu/nucldata/General_Tables/08.shtml.

8n(not illustrated)

The nucleus8n has not been observed. Reaction products from the interactio

700 MeV and 400 GeV protons with uranium showed no evidence of an8n resonance:see [1979AJ01]. See also [1988AJ01].
Page 7: Energy levels of light nuclei A = 8,9,10

8n, 8He

ed

wh

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 161

Table 3Parameters of the ground states of the light nuclei withA = 8,9,10

Atomic mass excess (keV)a τ1/2 or Γcmb Decayb Jπ ; T c

8He 31598± 7 τ1/2 = 119.0± 1.5 ms β− 0+; 28Lid 20946.84± 0.09 τ1/2 = 839.9± 0.9 mse β− 2+; 18Be 4941.67± 0.04 Γ = 5.57± 0.25 eV α 0+; 08Bf 22921.5± 1.0 τ1/2 = 770± 3 ms β+ 2+; 18C 35094± 23 Γ = 230± 50 keV p,α 0+; 29He 39770± 60g n 1

2+

; 52

9Lih 24954.3± 1.9 τ1/2 = 178.3± 0.4 ms β− 32

−; 3

29Bei 11347.6± 0.4 stable 3

2−

; 12

9B 12415.7± 1.0 Γ = 0.54± 0.21 keV p,α 32

−; 1

29C 28910.5± 2.1 τ1/2 = 126.5± 0.9 ms β+ 3

2−

; 32

9N see text T = 52

10He 48810± 70 Γ = 0.3± 0.2 MeV n 0+; 310Li 33051± 15 see text n (1−, 2−); 210Be 12606.7± 0.4 τ1/2 = (1.51± 0.04) × 106 yj β− 0+; 110Bk 12050.7± 0.4 stable – 3+; 010C 15698.7± 0.4 τ1/2 = 19.290± 0.012 s β+ 0+; 110Nl 38800± 400 Γ = 2.3± 1.6 MeV (p) T = 2

a The values of the mass excesses shown here were used to calculateQm. Mass excesses of nuclei not includin this table, but also used inQm calculations were obtained from [2003AU03]. The mass excesses ofπ±, π0

andµ were taken to be 139570.18± 0.35, 134976.6 ± 0.6 and 105658.357± 0.005 keV [2000GR22].b Values taken from [2003AU03] unless otherwise noted.c Jπ values in parentheses are taken from [2003AU03] or derived from systematics.d µ = +1.653560(18) µN [1989RA17],Q = +32.7± 0.6 mb [1993MI34].e See reaction 1 in8Li.f µ = 1.0355(3) µN [1996FIZY], Q = 68.3± 2.1 mb [1992MI18,1993MI35].g [2001CH31], and private communicationfrom AME 2004, Audi, Wapstra and Jokinen.h µ = +3.4391(6) µN [1983CO11,2001STZZ], Q = −27.4 (10) mb [1992AR07].i µ = −1.1778(9) µN [1978LEZA], Q = 58.6 (6) mb [1991GL02].j See reaction 1 in10Be.k µ = 1.80064475± 0.00000057µN [1989RA17],Q = 84.72± 0.56 mb [1978LEZA,1989RA17].l This is the only resonance observed in10N; however, it may not be the ground state.

8He(Figs. 1 and 5)

GeneralReferences to articles on general properties of8He published since the previous revie

[1988AJ01] are grouped into categories andlisted, along with brief descriptions of eac

item, in the General Tables for8He located on our website at www.tunl.duke.edu/nucldata/General_Tables/8he.shtml.
Page 8: Energy levels of light nuclei A = 8,9,10

8He

by

and 9.tions of a10),

is

o.

n

are

e also

-

e

162 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 8.1Energy levels of8Hea

Ex (MeV)b Jπ ; T τ1/2 or Γ Decay Reactions

g.s. 0+; 2 119.0± 1.5 ms β− 1, 2, 5, 6, 7, 8, 9, 10, 122.7–3.6c,f 2+ 0.6± 0.2 MeV 2, 6, 7, 8, 9, 10, 124.36± 0.2d,f (1−) 1.3± 0.5 MeVd,e 5, 7, 9, 10, 12

(6.03± 0.10)f 0.15± 0.15 MeV 97.16± 0.04f (3−) 0.1± 0.1 MeV 6, 9

a Excited states are calculated atEx = 5.83, 7.92 and 8.18 MeV, withJπ = 2+, 1− and 2− [(0+ 1)hω modelspace]. In the(0+ 2)hω model space the excited states are at 5.69, 9.51 and 11.59 MeV, withJπ = 2+, 1+ and0+ [1985PO10].

b A level has been reported at 1.3 MeV in reactions 7 and10. However, this result has not been supportedother measurements.

c This 2+ level is reported near 2.7 MeV in reactions 6, 7, 10, and 12, and near 3.6 MeV in reactions 2, 8d Uncertainty enlarged for weighted average. This may represent a group of states based on observa

broad resonance observed at 4.4 MeV (reactions 5 and12), a narrow resonance at 4 MeV (reactions 7 andand a narrow resonance at 4.54 MeV (reaction 9).

e Measured widths range from 500± 300 keV to 1.8± 0.2 MeV.f From data reviewed in this evaluation.

Mass of 8He The atomic mass excess of8He adopted by us and by [2003AU03]31598± 7 keV. 8He is then stable with respect to decay into6He+ 2n by 2.140 MeV.See [1979AJ01,1984AJ01,1988AJ01].

The interaction nuclear radius of8He is 2.48±0.03 fm [1985TA13,1985TA18] [see alsfor derived nuclear matter, charge and neutron matter r.m.s. radii. See also reaction 12]

1. 8He(β−)8Li, Qm = 10.651

The half-life of8He is 119.0± 1.5 ms. The decay takes place(84± 1)% to 8Li ∗(0.98)[logf t = 4.20] and(16± 1)% via the neutron unstable states8Li ∗(3.21,5.4). A smalldecay branch (≈ 0.9%) populates8Li ∗(9.67). (32 ± 3)% of the emitted neutrons thepopulate 7Li ∗(0.48). The decay to8Li ∗(3.21, 5.4) suggestsπ = + for 8Li ∗(3.21)and 0+ or 1+ for 8Li ∗(5.4) [1981BJ03]. Branching ratios for intermediate statesgiven in [1988BA67]: see also reaction 11 in8Li and Fig. 2. For discussion of8Heβ-decay [1988BA67,1991BO31,1993BO24,1996BA66,1996GR16,1997SH19]. Se[1990ZH01,1993CH06,1994HA39].

2. 1H(8He,8He)1H, Eb = 13.933

Invariant mass spectroscopy was used to determine the8He excitation spectra in a complete kinematics measurement of the1H(8He,8He+p) reaction at 72 MeV/A [1993KO34,1995KO27]. The ground state and an excited state at 3.55±0.15 MeV were observed. Th3.55 MeV state hasJπ = 2+, Γ = 0.50± 0.35 MeV andΓ (α + 4n)/Γ (6He+ 2n) 5%[1995KO27]; possible evidence for a resonance at 5–6 MeV is seen.

The 1H(8He,8He+ p) scattering distribution atE(8He)= 674 MeV/A was analyzed

using a Glauber scattering model and yields an8He matter radiusRr.m.s. = 2.45± 0.07 fm[1997AL09]. Elastic and inelastic scattering distributions from1H(8He,8He + p) at
Page 9: Energy levels of light nuclei A = 8,9,10

8He

adius

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 163

Fig. 1. Energy levels of8He. For notation see Fig. 2.aSee commentc in Table 8.1.

72 MeV/A were evaluated in an eikonal approximation and indicate a matter rRr.m.s. = 2.52 fm and a deformation parameterβ2 = 0.3 for the first 2+ excited state

[1995CH19]. A folding model analysis of the8He first excitedJπ = 2+ state, usingEx = 3.57 MeV, indicatesL = 2 and a deformation parameterβ = 0.28 [2002GU02].
Page 10: Energy levels of light nuclei A = 8,9,10

8He

2,eor.).

tri-d

finalGO30]

ed at

164 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Evaluation of the four-momentum transfer distribution yieldsRr.m.s = 2.45±0.07 fm atE(8He)= 800 MeV/A [2002EG02] andRr.m.s = 2.53±0.08 fm atE(8He)≈ 700 MeV/A

[2002AL26]. See also ([2003LA22];E(8He)= 15.6 MeV/A), ([2002WO08];E(8He)=26 MeV/A), ([1995KO10];E(8He)= 33 MeV/A), ([1997KO06];E(8He)= 66 MeV/A),([1997KO12]; E(8He) = 73.5 MeV/A), ([1995NE04]; E(8He) = 674 MeV/A),([2002EG02]; E(8He) ≈ 700 MeV/A), and ([1995BE26,1995CR03,1995GO31998AN25,2000GU19,2000KA04,2000WE03,2001AV02,2001SA79,2003BA65]; th

3. 4He(8He,8He)4He, Eb = 8.946

The Generator-Coordinate Method was used to calculate8He(α,α) scattering in aninvestigation of excited states in12Be [2000BB06]. A search for 4-neutron cluster conbutions to the reaction was performed atE(8He)= 26 MeV/A, no evidence was observe[2003WO13].

4. 8He(p, t)6He, Qm = 6.342

The 2-neutron transfer reaction1H(8He, t) was measured atE(8He) = 61.3 MeV/A.The results indicate a significant contribution of6He∗(1.8) in the 8He ground state[2003KO11]; spectroscopic factors yieldS(6Heg.s.)/S(6He∗(1.8)) = 1.

5. (a) 9Be(π−, p)8He, Qm = 112.031(b) 11B(π−, p+ d)8He, Qm = 96.215

Using Eπ− = 125 MeV, the8He ground state was observed in the9Be(π−, p) miss-ing mass spectra; the measured6He+ 2n phase space appears to favor a dineutronstate [1991SE06]. The ground state and the 4.4 MeV state were observed in [1998following the capture of stoppedπ−-mesons in9Be(π−, p), Ex = 4.4 ± 0.2 MeV, Γ =1.8± 0.2 MeV and in11B(π−, p+ d) Ex = 4.4± 0.4 MeV, Γ = 1.2± 0.2 MeV.

6. 9Be(7Li, 8B)8He, Qm = −28.264

At E(7Li) = 83 MeV, θ = 10, the population of8Heg.s., an excited state at 2.8 ±0.4 MeV (presumablyJπ = 2+) and a structure nearEx ≈ 7 MeV are reported by[1985AL29].

7. 9Be(9Be,10C)8He, Qm = −24.602

At E(9Be) ≈ 11 MeV/A, the ground state and three excited states are populat

Ex = 1.3± 0.3 MeV, Ex = 2.7± 0.3 MeV, Γ = 0.5± 0.3 MeV andEx = 4.0± 0.3 MeV,Γ = 0.5± 0.3 MeV [1988BE34].
Page 11: Energy levels of light nuclei A = 8,9,10

8He

a-t

rted.

inary

re-

scin-

entiald

e

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 165

8. 9Be(13C,14O)8He, Qm = −25.133

At E(13C) = 380 MeV, the ground state of8He was observed [1988BO20]. A mesurement atE(13C) = 337 MeV observed the ground state and the first 2+ excited state a3.59 MeV,Γ ≈ 800 keV [1995VO05].

9. 10Be(12C,14O)8He, Qm = −26.999

At E(12C) = 357 MeV, population of the ground state and 3.6 MeV state are repoExcited states are also observed atEx = 4.54 ± 0.15 MeV [Γ = 0.70 ± 0.25 MeV],6.03± 0.10 MeV [Γ = 0.15± 0.15 MeV] and 7.16± 0.04 MeV [Γ = 0.10± 0.10 MeV][1995ST29,1999BO26]. The narrow width of the 7.16 MeV state leads to a prelimJπ = (3−) assignment [1999BO26].

10.11B(7Li, 10C)8He, Qm = −23.721

At E(11B) = 87 MeV the ground state of8He is populated and excited states areported atEx = 1.3, 2.6 and 4.0 MeV (±0.3 MeV). The width of the latter is 0.5±0.3 MeV[1987BE2B]. In [1988BE34] the ground state and a state at 2.7 ± 0.3 MeV with Γ =1.0± 0.5 MeV are reported. See also [1988BEYJ].

11.natC(µ, 8He)X

A measurement to determine muon induced background rates in large-volumetillation solar neutrino detectors foundσ = 2.12 ± 1.46 µb for natC(µ, 8He or 9Li) atEµ = 100 GeV [2000HA33].

12. (a) 12C(8He,6He+ 2n)(b) Al(8He,6He+ 2n)(c) Sn(8He,6He+ 2n)(d) Pb(8He,6He+ 2n)(e) C(8He, X)(f ) Si(8He, X)

At E(8He)= 227 MeV/A structures are seen in reaction (a) corresponding to sequdecay through theJπ = 3

2− 7Heg.s. (Eres= 0.44 MeV, Γ = 0.16 MeV), and a suggeste

Jπ = 12−

resonance atEres = 1.2 ± 0.2 MeV with Γ = 1.0 ± 0.2 MeV [2001MA05].A reconstruction of the6He+ 2n reaction kinematics indicated that8He∗(2.9± 0.2 MeV,Γ = 0.3±0.3 MeV (2+) and 4.15±0.20 MeV,Γ = 1.6±0.2 MeV (1−)) participate in thebreakup. Cross sections for the one- and two-neutron knockout reactions (i.e., where onor none of the removed neutrons is observed) were determined asσ1n = 129± 15 mb andσ2n = 29± 23 mb. Contributions for various cluster configurations in8He were estimated

to be 45%6He∗ + 2n (p3/2, p1/2), 33% 6He+ 2n (p3/2) and 22%6He+ 2n (p1/2). See[1996NI02] for earlier work atE(8He) = 240 MeV by this group, whereEx = 3.72±
Page 12: Energy levels of light nuclei A = 8,9,10

8He, 8Li

ere

k%) of

firstot beup to

re-thanlsosec-tcate

13,ctions

0, and

whta/

166 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

0.24 MeV andΓ = 0.53± 0.43 MeV, were reported for the first excited state, and whthe total 2-neutron removal cross section was determined asσ2n = 0.27± 0.03 b.

Complete reaction kinematics were measured for reactions (b, c, d) in (8He,6He+ 2n)on Al, Sn and Pb targets atE(8He) = 24 MeV/A [2000IW05]. Observation of a peain the 6He + n relative energy spectra indicates a substantial participation (40–60sequential decay via7He+ n. A peak in the missing mass spectra corresponds to theexcited state of8He, which is assumed to dominate in nuclear breakup since it cannexcited by E1 Coulomb processes. By integrating the remaining excitation strength3 MeV (assumed to be E1 Coulomb)B(E1)= 0.091± 0.026e2 fm2 was determined.

Measurements of8He breakup on C and Pb are presented in [2002ME09]; thesults indicate that the8He Coulomb dissociation cross section is 3 times smallerthe Coulomb dissociation cross section for6He. The measurements of [2002ME09] asupportJπ = 1− for 8He∗(4.15). The two-neutron- and four-neutron-removal crosstions were measured for reaction (e) at 800 MeV/A [1992TA18], and for reaction (f ) aE(8He)= 20–60 MeV/A [1996WA27]. The large neutron removal cross sections india8He matter radius of 2.49±0.04 fm [1992TA18]. Analysis indicates that8He is well rep-resented as four neutrons that are bound to a4He core. See also ([1994ZH14,1995SU2001CA50]; theor.), and a review of nuclear radii deduced from interaction cross sein [2001OZ04].

13.14C(8He,8He)14C

A double folding model was used to predict the influence of the8He neutron skinon 14C(8He,8He) elastic-scattering angular-dependent cross sections at 20, 30, 460 MeV [1988KN02].

8Li(Figs. 2 and 5)

GeneralReferences to articles on general properties of8Li published since the previous revie

[1988AJ01] are grouped into categories andlisted, along with brief descriptions of eacitem, in the General Tables for8Li located on our website at www.tunl.duke.edu/nucldaGeneral_Tables/8li.shtml.

Ground state properties

µ = +1.653560± 0.000018µN see [1989RA17];Q = +32.7± 0.6 mb see [1993MI34].

The interaction nuclear radius of8Li is 2.36± 0.02 fm [1985TA18] [see [1985TA18]also for derived nuclear matter, charge and neutron matter r.m.s. radii].

Page 13: Energy levels of light nuclei A = 8,9,10

8Li

22

inay

s

y to

edI34].4itive

n

one also

SR02,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 167

Table 8.2Energy levels of8Lia

Ex (MeV ± keV) Jπ ; T τ or Γcm (keV) Decay Reactions

g.s. 2+; 1 τ1/2 = 839.9± 0.9 msc β− 1, 3, 4, 8, 9, 10, 14, 15, 16, 17, 18, 21,0.9808± 0.1 1+; 1 τm = 12± 4 fsc γ 3, 8, 9, 11, 14, 15, 16, 21, 22, 282.255± 3 3+; 1 Γ = 33± 6 keVc γ , n 3, 4, 5, 8, 14, 15, 16, 313.21 1+; 1 ≈ 1000 n 6, 115.4d 1+; 1 ≈ 650 n 6, 116.1± 100 (3); 1 ≈ 1000 n 56.53± 20 4+; 1 35± 15 n 3, 5, 8, 15, 167.1± 100 ≈ 400 n 5(9) ≈ 6000 14≈ 9.67b,c 1+ ≈ 1000c t 1110.8222± 5.5 0+; 2 < 12 19

a For additional states see reactions 5 and 16.a From multi-level multi-channelR-matrix fit to 8He decay spectra.a From information given in this evaluation.d A level atEx = 5.4 MeV with uncertainJπ = (2+) was observed in7Li(n, n′) [1972PR03].

8Li atomic transitions Atomic excitations in the lithium isotopes were analyzed[2000YA05] where a theoretical framework was developed that correlates the atomic decenergies in neutral Li ions with the nuclear sizes.

1. 8Li(β−)8Be, Qm = 16.0052

Theβ− decay is mainly to the broad 2+ first-excited state of8Be, which then breakup into 2α [see reaction 24 in8Be]. The weighted average of the8Li half-life is 839.9±0.9 ms based on measured values of 838±6 ms [1971WI05], 836±3 ms [1979MI1E] and840.3± 0.9 ms [1990SA16]. The logf t 5.6, usingτ1/2 = 839.9 ms,Q = 16.0052 MeVand branching ratio 100%; other values in the literature that account for the decathe broadΓ ≈ 1.5 MeV 8Be*(3.0) state are logf t = 5.37 [1986WA01] and logf t = 5.72[1989BA31].

The quadrupole moment of8Li was deduced by measuring the asymmetry inβ-NMRspectra. We adoptQ(8Li) = +32.7± 0.6 mb, which results from a new method, modifiβ-NMR (NNQR), that is 100 times more sensitive than previous methods [1993MThis value is larger than 28.7± 0.7 mb [1988AR17] and the previous adopted value 2±2 mb [1988AJ01]. The sign of the8Li quadrupole moment was measured and is pos[1994JA05].

The tilted foil technique was used to polarize atomic8Li, and the hyperfine interactioled to a nuclear polarization of 1.2 ± 0.3% which was deduced from the measuredβ-decay asymmetry [1987NO04]. The polarizationquantum beat in the hyperfine interactiwas measured by varying the foil separation distances [1993MO33,1996NO11]. Se[1987AR22] for discussion of hyperfine structure splitting inlithium isotopes.

The pure Gamow–Teller ( T = 1) β-decay of 8Li to the 8Be∗(3.0) level hasbeen measured in a search for time-reversal violation [1990SR03,1992AL01,1996

2003HU06]; the present constraint for the time violating parameter isR = (0.9 ± 2.2) ×10−3. See also [1992DE07,1995YI01,1998KA51]. Searches for second-class currents in
Page 14: Energy levels of light nuclei A = 8,9,10

8Li

For an,n-eis

ns ofCH06,

o

tod

d

168 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 8.3Electromagnetic transitions in8Li

Exi → Exf (MeV) Jπi → Jπ

f Γγ (eV) Mult. Γγ /ΓW

0.9808→ 0 1+ → 2+ (5.5± 1.8) × 10−2 M1 2.8± 0.92.255→ 0 3+ → 2+ (7.0± 3.0) × 10−2 M1 0.29± 0.13

Table 8.4Measuredγ -rays from thermal neutron capture on7Lia

Eγ (keV)b σγ (mb) Iγ (γ /100n)

980.6± 0.2 4.82± 0.50 10.6± 1.01052.0± 0.2 4.80± 0.50 10.6± 1.02032.5± 0.3 40.56± 1.00 89.4± 1.0

a See Table I in [1991LY01].b Eγ not corrected for recoil.

8Li β-decay have yielded negative results: see [1988HA21,1989TE04,2003SM02].analysis of the anti-neutrino energy distribution shape in8Li β-decay, see [1987LY052002BH03]. For a comment on the usefulness ofβ-decay asymmetries to reveal iformation on spin dynamics in nuclear reactions involving polarized projectiles se[2001DZ02]. A suggestion to use8Li β-decay for calibration of the SNO detectordescribed in [1998JO09,2002TA22].β-NMR is used to measure the8Li quadrupole-coupling constants in Mg and Zn [1993OH11]. For condensed matter applicatio8Li β-decay see [1993BU29,1993NO08,1994HO23,1996EB01]. See also [19931993MO28,2003SU04].

2. 1H(8Li, 8Li) 1H

Small angle scattering in the1H(8Li, 8Li) reaction was measured atE(8Li) =698 MeV/A [2002EG02,2003EG03].

3. 6Li(t, p)8Li, Qm = 0.80079

Angular distributions have been obtained atEt = 23 MeV for the proton groups t8Li ∗(0,0.98,2.26,6.54± 0.03); Γcm for 8Li ∗(2.26,6.54) are 35± 10 and 35± 15 keV,respectively.J for the latter is 4: see [1979AJ01]. A multi-cluster model is usedcalculate excitation function andγ -ray flux from6Li(t, p1)8Li ∗(0.981), which is proposeas a diagnostic tool for fusion reactions [2000VO22,2001VO02].

4. 7Li(n, γ )8Li, Qm = 2.03229

At En = 1.5–1340 eV agreement was found with the expected 1/v (velocity) energydependence, and a thermal cross section of 40± 2(stat.)± 4(syst.) µb was measure

[1996BL10]. [1998HE35] measuredσave. = 101.9 mb for an energy bin forEn = 1.7–20 meV, andσave. = 36.6 µ-barns forEn = 5–150 keV. A reanalysis of the ion chamber
Page 15: Energy levels of light nuclei A = 8,9,10

8Li

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 169

Fig. 2. Caption on next page.

Page 16: Energy levels of light nuclei A = 8,9,10

8Li

dngularn the,ecitation

es of theesents

of

zed

n

od-BE25,

-

170 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Fig. 2. Energy levels of8Li. In these diagrams, energy values are plotted vertically in MeV, based on the grounstate as zero. For theA = 8 diagrams all levels are represented by discrete horizontal lines. Values of total amomentumJπ , parity, and isobaric spinT which appear to be reasonably well established are indicated olevels; less certain assignments are enclosed in parentheses. For reactions in which8Li is the compound nucleussome typical thin-target excitation functions are shown schematically, with the yield plotted horizontally and thbombarding energy vertically. Bombarding energies are indicated in the lab reference frame, while the exfunction is scaled into the cm reference frame so that resonances are aligned with levels. Excited statresidual nuclei involved in these reactions have generally not been shown. For reactions in which the prnucleus occurs as a residual product, excitation functions have not been shown.Q values and threshold energieare based on atomic masses from [2003AU03]. Further information on the levels illustrated, including a listingthe reactions in which each has been observed, is contained in Table 8.2.

Table 8.5Resonance parameters for8Li∗(2.26)a

Eres (keV) 254± 3Ex (MeV)b 2.261Γ (keV) 35± 5Γn (Er) (keV) 31± 7c

Γγ (eV)b 0.07± 0.03

γ 2n (keV) 594

θ2 0.091radius (fm) 3.30σmax 12.0Jπ 3+ln 1

a Energies in lab system except for those labeledb. For references see[1974AJ01,1979AJ01].

b Energies in cm system.c Γn ≈ Γ sinceΓγ is small.

efficiencies used by [1989WI16] led to a revised cross sectionσ (En = 25 keV)= 57± 9µ-barns andΓγ = 0.18 eV [1998HE35]. Measurements by [1991LY01], who analyσ(E) from Ethermal to 3.0 MeV, determinedσthermal = 45.4 ± 3.0 µ-barns and theγ -ray branching ratios atEn = thermal (see Table 8.4). AtEn = 30 keV, [1991NA16,1991NA19] measuredσγ0 = 35.4 ± 6.0 µ-barns andσγ1 < 9.1 µ-barns. The excitatiofunction shows the resonance corresponding to8Li ∗(2.26): Eres = 254± 3 keV, Γn =31 ± 7 keV, Γγ = 0.07 ± 0.03 eV: see Table 8.5 and [1974AJ01]. Theoretical mels are discussed in [1988DE38,1993KR18,1994DE03,1996SH02,1997BA04,19992000BE21,2000CS01,2001KO54]. The decay of8Li ∗(2.26)→ 7Li g.s. + n in the interac-tion of 35 MeV/A 14N ions on Ag is reported by [1987BL13].

5. 7Li(n, n)7Li, Eb = 2.03229

The thermal cross section is 0.97± 0.04 b [see [1981MUZQ]],σfree = 1.07± 0.03 b[1983KO17]. The real coherent scattering length is−2.22± 0.01 fm. The complex scat

tering lengths areb+ = −4.15± 0.06 fm andb− = 1.00± 0.08 fm [1983KO17]; see also[1979GL12]. See [1984AJ01] for earlier references.
Page 17: Energy levels of light nuclei A = 8,9,10

8Li

tion of

ar-k

lr the

natingces

ld

ss sec-

].

eV

6f

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 171

Total and elastic cross sections have been reported forEn = 5 eV to 49.6 MeV: see[1979AJ01,1984AJ01,1988AJ01]. Cross sections have also been reported for n0, n0+1 andn2 atEn = 6.82, 8.90 and 9.80 MeV. ([1987SC08]; n2 at the two higher energies).

A pronounced resonance is observed atEn = 254 keV withJπ = 3+, formed by p-waves: see Table 8.5. A good account of the polarization is given by the assumplevels atEn = 0.25 and 3.4 MeV, withJπ = 3+ and 2−, together with a broadJπ = 3−level at higher energy. Broad peaks are reported atEn = 4.6 and 5.8 MeV (±0.1 MeV)[8Li ∗(6.1, 7.1)] withΓ ≈ 1.0 and 0.4 MeV, respectively, and there is indication of a nrow peak atEn = 5.1 MeV [8Li ∗(6.5)] with Γ 80 keV and of a weak, broad peaat En = 3.7 MeV: see [1974AJ01,1984AJ01,1988AJ01]. A multi-level, multi-channeR-matrix calculation is reported by [1987KN04]. This analysis leads to predictions focross section for elastic scattering, for (n, n′) to 7Li ∗(0.48,4.68,6.68) and for triton pro-duction. A number of additional (broad) states of8Li, unobserved directly in this and iother reactions, derive from this analysis [1987KN04]. See [1989FU03] for a resongroup study of8Li ∗(6.53) [Jπ = 4+; T = 1]; see also [2002GR25]. See also referencited in [1988AJ01].

6. (a) 7Li(n, n′)7Li, Eb = 2.03229(b) 7Li(n, n′)3H + 4He, Qm = −2.44832

The excitation function for 0.48 MeVγ -rays shows an abrupt rise from thresho(indicating s-wave formation and emission) and a broad maximum (Γ ≈ 1 MeV) atEn = 1.35 MeV. A good fit is obtained with eitherJπ = 1− or 1+ (2+ not excluded),Γlab = 1.14 MeV. A prominent peak is observed atEn = 3.8 MeV (Γlab = 0.75 MeV)and there is some indication of a broad resonance (Γlab = 1.30 MeV) atEn = 5.0 MeV.At higher energies there is evidence for structure atEn = 6.8 and 8 MeV followed by adecrease in the cross section to 20 MeV: see [1979AJ01,1984AJ01]. The total crotion for (n0 + n1) and n2 have been reported atEn = 8.9 MeV [1984FE1A]. ForR-matrixanalyses see [1987KN04] in reaction 5 and [1984AJ01].

The cross section for reaction (b) rises from threshold to≈ 360 mb atEn ≈ 6 MeVand then decreases slowly to≈ 250 mb atEn ≈ 16 MeV: see [1985SW01,1987QA01Cross sections for tritium production have been reported from threshold toEn = 16 MeV[1983LI1C], 4.57 to 14.1 MeV [1985SW01], 7.9 to 10.5 MeV [1987QA01], 14.74 M[1984SMZX] and at 14.94 MeV ([1985GO18]: 302± 18 mb). At En = 14.95 MeVthe total α production cross section [which includes the (n, 2n d) process] is 33±16 mb [1986KN06]. Spectra at 14.6 MeV may indicate the involvement of states o4H[1986MI11]. See also references cited in [1988AJ01].

7. 7Li(n, 2n)6Li, Qm = −7.25030, Eb = 2.03229

See [1985CH37,1986CH1R]. See also [1988AJ01].

8. 7Li(p, π+)8Li, Qm = −138.32024

Angular distributions and analyzing powers for the transitions to8Li ∗(0,0.98,2.26)have been studied atEp = 200.4 MeV. [The (p,π−) reaction to the analog states in8B is

Page 18: Energy levels of light nuclei A = 8,9,10

8Li

dedenceat

d

inst that

.

totar-n yieldout

ess

172 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 8.6The7Li(d, p)8Li peak cross section at the 0.6 MeV resonancea

σ (mb) Ref.

138± 20 [1975MC02]144± 15a,b [1996ST18]146± 13 [1982EL03]146± 19a,b [1982FI03]148± 12 [1982FI03]

147± 11 Recommended valuea

a [1998AD12].b Re-evaluated.

discussed: see reaction 4 in8B.] The (p,π+) cross sections are an order of magnitugreater than the (p,π−) cross sections and show a much stronger angular depen[1987CA06]. Angular distributions of cross section andAy have also been measuredEp = 250, 354 and 489 MeV to the first three states of8Li. Those to8Li ∗(0,2.26) havedifferential cross sections which exhibit a maximum near the invariant mass of the (1232)andAy which are similar to each other and to those of thepp→ dπ+ reaction.8Li ∗(6.53)is populated [1987HU12,1988HU11].

9. 7Li(d, p)8Li, Qm = −0.19228

Measurements in the vicinity of theEcm = 0.61 MeV 9Be∗(17.3) resonance foun

σ [7Li(d, p)] = 143.6 ± 8.9 mb [1996ST18],σ [7Li(d, 8Li)p:8Liβ−→ 8Be → 2α] = 151±

20 mb [1996ST18], andσ [7Li(d, p)] = 155± 8 mb [1998WE05]. An extensive review[1998AD12] presented the results found in Table 8.6. However, [1998WE05] suggesystematic errors may persist in the [1998AD12] evaluation.

Angular distributions of the p0 and p1 groups [ln = 1] at Ed = 12 MeV have beenanalyzed using DWBA:Sexpt. = 0.87 and 0.48 respectively for8Li ∗(0,0.98). Angulardistributions have also been measured at several energies in the range ofEd = 0.49 to3.44 MeV (p0) and 0.95 to 2.94 MeV (p1). The lifetime of8Li ∗(0.98), determined from2H(7Li, p)8Li via the Doppler-shift attenuation method, is 10.1± 4.5 fs: see [1979AJ01]See also references cited in [1988AJ01].

The 7Li(d, p)8Liβ−→ 8Be → 2α reaction was studied in the range of 0.4–1.8 MeV

investigate a mechanism where the8Li reaction products are backscattered out of theget which introduces up to a 20% systematic error in measurements of the reactio[1998ST20]. They determined that8Li reaction products are increasingly backscatteredof the target with: (i) increasing theZ of the backing material, (ii) decreasing the thicknof the deposited Li/Be target, and (iii) decreasing the incident projectile energy.

10. (a) 7Li( 6Li, 5Li) 8Li, Qm = −3.632(b) 7Li( 7Li, 6Li) 8Li, Qm = −5.21801

See [1984KO25].

Page 19: Energy levels of light nuclei A = 8,9,10

8Li

n;-sed a

c-

sly E1

fren

n (b))

J01].

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 173

Table 8.7R-matrix parameters for8He decay to 1+ levels in8Lia

Decay to8Li∗ (MeV) logf t

0.98 4.203.08 4.525.15 4.539.67 2.91

a From [1988BA67,1996BA66].

11.8He(β−)8Li, Qm = 10.651

See reaction 1 in8He.The triton spectrum observed in8He β-decay was analyzed in a single-levelR-matrix

model that indicated the triton emission branching ratio is(8.0± 0.5) × 10−3 [1991BO31,1993BO24]. TheR-matrix fit indicates a level at8Li ∗(9.3 ± 1.0 MeV, Jπ = 1+) with areduced widthγreduced= 0.978± 0.012 MeV1/2 that decays primarily by triton emissiothis corresponds toB(GT) = 5.18 and logf t = 2.87 [B(GT) = 8.29, using the definition given in the introduction]. A subsequent analysis of the [1993BO24] data umulti-level, multi-channelR-matrix model that included low-lying 1+ states in8Li thatparticipate in8He β-decay (see Table 8.7) and suggestsEx = 9.67 MeV, B(GT) = 4.75and logf t = 2.91 [1996BA66] [B(GT) = 7.56, using the definition given in the introdution]. Branching ratios for8Li states are given in [1988BA67]. See also Fig. 2.

12.9Be(γ , p)8Li, Qm = −16.8882

The9Be(γ , p0) reaction was measured in the range fromEγ = 22–25.5 MeV and waevaluated in a simple cluster model [1999SH05]. The analysis indicated that mainand E2 multipolarities contribute to the breakup cross section. Thephotodisintegration o9Be was measured atEγ = 180–240 MeV, and the (γ + nucleon) reaction dynamics westudied by measuring9Be(γ , p) atEγ = 187–427 MeV in the (1232) resonance regio[1988TE04].

13.9Be(γ , pπ0)8Li, Qm = −151.8648

The total cross section for9Be(γ , pπ0) was measured with bremsstrahlungγ -rays inthe range ofEγ = 200–850 MeV [1987AN14].

14. (a) 9Be(e, ep)8Li, Qm = −16.8882(b) 9Be(p, 2p)8Li, Qm = −16.8882

For reaction (a) see [1984AJ01,1985KI1A].The summed proton spectrum (reactioat Ep = 156 MeV shows peaks corresponding to8Li g.s. and 8Li ∗(0.98 + 2.26) [unre-solved]. In addition, s-states [Jπ = 1−, 2−] are suggested atEx = 9 and 16 MeV, withΓcm ≈ 6 and 8 MeV; the latter may actually be due to continuum protons: see [1974A

At Ep = 1 GeV the separation energy between 5 and 8 MeV broad 1p3/2 and 1s1/2 groupsis reported to be 10.7± 0.5 MeV [1985BE30,1985DO16]. See also [1987GAZM].
Page 20: Energy levels of light nuclei A = 8,9,10

8Li

evalu-edon

to

entiald-

,

;

log

174 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 8.8Spectroscopic factors of the9Be(t,α) reactiona

Ex (MeV) Jπ l C2Srel. C2Sabs.

0 2+ 1 0.843 1.0590.981 1+ 1 0.506 0.6362.255 3+ 1 0.552 0.6932.4–2.8 1 0.099

a See [1988LI27].

For reaction (b) angular distributions were measured at 70 MeV. The data wereated using the distorted waveT -matrix approximation (DWTA) where it was determinthat the 1s and 1p shells dominate in the nucleus–nucleon single-particle-knockout reactimechanism [2000SH01].

15.9Be(d,3He)8Li, Qm = −11.3947

Angular distributions have been reported for the3He ions to8Li ∗(0,0.98,2.26,6.53)at Ed = 28 MeV [C2S (abs.)= 1.63, 0.61, 0.48, 0.092] and 52 MeV. The distributions8Li ∗(6.53)[Γ < 100 keV] are featureless: see [1979AJ01].

16.9Be(t,α)8Li, Qm = 2.9257

At Et = 12.98 MeV, angular distributions of theα-particles to8Li ∗(0,0.98,2.26,6.53±0.02[Γcm < 40 keV]) have been measured: see [1974AJ01]. Angular dependent differcross sections for9Be(t,α) at Et = 15 MeV were compared with DWBA and couplechannel Born approximation calculationsto extract the relative and absoluteC2S factorsfor 8Li + p: see Table 8.8 [1988LI27]. AtEt = 17 MeV, σ(θ) and Ay measurementsanalyzed by CCBA, lead toJπ = 4+ for 8Li ∗(6.53): see [1984AJ01]. For8Li ∗(0.98),τm = 14± 5 fs,Ex = 980.80± 0.10 keV: see [1974AJ01].

17.9Be(7Li, 8Be)8Li, Qm = 0.3669

At E(7Li) = 52 MeV, numerous12B states are observed withEx between 10–18 MeV8Li ∗(0,0.98,2.25) participate [2003SO22]. See also [1984KO25].

18.9Be(11B, 12C)8Li, Qm = −0.931

See [1986BE1Q].

19.10Be(p,3He)8Li, Qm = −15.9824

At Ep = 45 MeV, 3He ions are observed to a state atEx = 10.8222± 0.0055 MeV(Γcm < 12 keV): the angular distributions for the transition to this state, and to its ana

(8Be∗(27.49)), measured in the analog reaction [10Be(p, t)8Be] are very similar. They areboth consistent withL = 0 using a DWBA (LZR) analysis: see [1979AJ01].
Page 21: Energy levels of light nuclei A = 8,9,10

8Li

solid

-

V

in

dd nu-

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 175

20.11B(π+, 3p)8Li, Qm = 105.424

The11B(π+, 3p) reaction was studied at 50, 100, 140 and 180 MeV using a largeangle detector to measure the missing energy spectra [1992RA11].

21.11B(n,α)8Li, Qm = −6.633

The excitation function for11B(n,α)8Li was measured atEn = 7.6–12.6 MeV to determine, via detailed balance, the astrophysical rate for the8Li(α, n) reaction in the vicinityof the12B∗(10.58) level [1990PA22].

Angular distributions of theα0 andα1 groups have been measured atEn = 14.1 and14.4 MeV: see [1974AJ01,1984AJ01,1988AJ01]. Energy dependent8Li(α,α) elastic scat-tering phase shifts, which are important for calculating the11B(n,α)8Li reaction rate, werecalculated in the range ofEcm < 4 MeV [1996DE02].

22.11B(7Li, 10B)8Li, Qm = −9.422

At E(7Li) = 34 MeV angular distributions have been studied involving8Li ∗(0,0.98)and10Bg.s. [1987CO16].

23. (a) 12C(π−, 2d)8Li, Qm = 92.35190(b) 12C(π−, α)8Li, Qm = 116.19842

Differential and total cross sections for12C(π−, 2d) were measured at 165 Me[1990PA03]. See [1987GA11] for a theoretical treatment of the reaction mechanism.

24.12C(π+, 4p)8Li, Qm = 89.46746

Theπ+ absorption reaction mechanism was studied by measuring protons produced12C+ π+ reactions at 30–135 MeV [2000GI07].

25. (a) 12C(p, X)(b) 13C(p, X)

Nuclear effects in the spallation reaction mechanism (i.e., even–odd and odd–ocleon pairing) were studied via12,13C(p,6,7,8,9Li) reactions at 1 GeV [1992BE65].

26.13C(d,7Be)8Li, Qm = −20.45614

See [1984NE1A].

27.13C(7Li, 8Li) 12C, Qm = −2.91402

Angular distributions were measured atE(7Li) = 9 MeV/A, and a DWBA analysis wasused to determine the ratio of p1/2/p3/2 contributions, and the Asymptotic Normalization

Page 22: Energy levels of light nuclei A = 8,9,10

8Li

en

onr

a-

s on Cap-nt totalitherac-

ortedted

176 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Constant (ANC) for7Li + n → 8Li [2003TR04]. Then, using charge symmetry, the7Be+p → 8B ANC was deduced, which corresponds toS17(0) = 17.6± 1.7 eV b.

28. (a) C(8Li, 8Li ′)C(b) Ni(8Li, 8Li ′)Ni(c) Au(8Li, 8Li ′)Au(d) Pb(8Li, 8Li ′)Pb

Elastic and inelastic scattering of8Li on natC were measured atE(8Li) = 13.8–14 MeV[1991SM02]. Optical model parameters were deduced for the 2+ ground state and thfirst 1+ excited state at≈ 1 MeV andB(E2)↑= 30± 15 e2 fm4 was deduced. In additionatAu(8Li, 8Li) was measured for comparison with Rutherford scattering.

The8Li first 1+ excited state at 1.0± 0.1 MeV was observed in Coulomb excitationnatNi atE(8Li) = 14.6 MeV [1991BR14] andB(E2)↑= 55±15 e2 fm4 was determined fothis excitation. See [2003BE38] for elastic and inelastic scattering on Pb atE(8Li) = 20–36 MeV.

29.natC(µ, 8Li)X

A measurement to determine muon induced background rates in large-volume scintilltion solar neutrino detectors foundσ = 2.93± 0.80 µb and 4.02± 1.46 µb fornatC(µ, 8Li)atEµ = 100 and 190 GeV, respectively [2000HA33].

30. (a) C(8Li, X)(b) Si(8Li, X)(c) Pb(8Li, X)

Total cross sections and charge-changing cross sections for the lithium isotopeand Pb were measured at 80 MeV/A [1992BL10]; it was deduced that post-abrasion evoration plays a minor role in these reactions. For reaction (b) the energy-dependereaction cross sections at 20–60 MeV/A were measured [1996WA27] and compared wmicroscopic and shell model predictions. A review of nuclear radii deduced from inttion cross sections is given in [2001OZ04].

31. (a) natAg(14N, 8Li)(b) natAg(14N, n+ 7Li)(c) 165Ho(14N, X)

Population of the8Li ground state and 2.255 MeV neutron unbound state was repin reactions (a) and (b) at 35 MeV/A. The reaction nuclear temperature was estima

[1987BL13]. In a similar study of 35 MeV/A 14N on 165Ho, [1987KI05] deduced that the8Li ∗(2.255) state hasΓ = 33 keV from the7Li + n relative energy spectrum.
Page 23: Energy levels of light nuclei A = 8,9,10

8Be

e-ns ofdu/

nces

1].es

ixing

nsfor-

ofto

state

NN

ns

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 177

8Be(Figs. 3 and 5)

GeneralReferences to articles on general properties of8Be published since the previous r

view [1988AJ01] are grouped into categories and listed, along with brief descriptioeach item, in the General Tables for8Be located on our website at www.tunl.duke.enucldata/General_Tables/8be.shtml.

1. 8Be→ 4He4He, Qm = 0.0918

Γcm for 8Beg.s. = 5.57± 0.25 eV: see reaction 4. See also reaction 29 and referecited in [1974AJ01,1988AJ01].

2. 4He(α, γ )8Be, Qm = −0.0918

The yield ofγ1 has been measured forEα = 32 to 36 MeV. The yield ofγ0 for Eα = 33to 38 MeV is twenty times lower than forγ1, consistent with E2 decay: see [1979AJ0Angular distributions were measured in the4He(α, γ ) reaction in the region around th16 MeV isospin mixed doublet as a study of CVC inA = 8 nuclei and second clascurrents [1994DE30,1995DE18]. No evidence for CVC violation was observed. Mratios were reported asε = [Γ T =0

M1 /Γ T =1M1 ]1/2 = +0.04± 0.02, δ0 = [Γ T =0

E2 /Γ T =1M1 ]1/2 =

+0.21 ± 0.04, δ1 = [Γ T =1E2 /Γ T =1

M1 ]1/2 = +0.01 ± 0.03 andΓ T =1M1 = 2.80 ± 0.18 eV

[1995DE18], and they note that earlier values [1978BO30] were troubled by a tramation error. TheEx of 8Be∗(3.0) is determined in this reaction to be 3.18± 0.05 MeV[1979AJ01] [see also Table 8.11].

The E2 bremsstrahlung cross section to8Beg.s. has been calculated as a functionEx over the 3 MeV state: the totalΓγ for this transition is 8.3 meV, corresponding75 W.u. [1986LA05]. A calculation of theΓγ from the decay of the 4+ 11.4 MeV stateto the 2+ state yields 0.46 eV (19 W.u.). The maximum cross section for the intraγ -ray transition within the 2+ resonance is calculated to be 2.5 nb atEx ≈ 3.3 MeV[1986LA19]. See also [2001CS04] for discussion of the impact of variation in theforce on the nucleosynthesis rates of8Be and12C.

3. (a) 4He(α, n)7Be, Qm = −18.99152, Eb = −0.09184(b) 4He(α, p)7Li, Qm = −17.34695(c) 4He(α, d)6Li, Qm = −22.372683

The cross sections for formation of7Li ∗(0, 0.48) [Eα = 39 to 49.5 MeV] and7Be∗(0,0.43) [39.4 to 47.4 MeV] both show structures atEα ≈ 40.0 and≈ 44.5 MeV: they are duepredominantly to the 2+ states8Be∗(20.1, 22.2): see [1979AJ01]. The excitation functio

for p0, p2, d0, d1 for Eα = 54.96 to 55.54 MeV have been measured in order to studythe decay of the firstT = 2 state in8Be: see Table 8.5 in [1984AJ01]. Cross sections for
Page 24: Energy levels of light nuclei A = 8,9,10

8Be

,,,,,

,,,,

,

,,

,,

,

,

,

1

178 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 8.9Energy levels of8Be

Ex (MeV ± keV) Jπ ; T Γcm (keV) Decay Reactions

g.s. 0+; 0 5.57± 0.25 eVi α 1, 2, 4, 5, 10, 11, 12, 1314, 19, 20, 21, 22, 23, 2528, 29, 30, 31, 33, 36, 3940, 41, 42, 43, 44, 45, 4647, 50, 51, 52, 53, 54, 5556, 57, 58, 59, 60, 61, 62

3.03± 10i 2+; 0 1513± 15i α 2, 4, 5, 10, 11, 12, 13, 1419, 20, 21, 22, 24, 27, 2829, 30, 31, 33, 36, 40, 4142, 43, 44, 50, 51, 53, 5461

i,j 2+ 4, 24, 27, (29)11.35± 150i 4+; 0 ≈ 3500b α 4, 12, 13, 19, 21, 29, 30

31, 41, 51, 53, 5416.626± 3 2+; 0+ 1 108.1± 0.5 γ , α 2, 4, 10, 11, 13, 14, 19, 20

21, 27, 29, 30, 31, 40, 4144, 51, 53

16.922± 3 2+; 0+ 1 74.0± 0.4 γ , α 2, 4, 10, 11, 13, 14, 19, 2021, 29, 30, 31, 40, 41, 4451, 53

17.640± 1.0f 1+; 1 10.7± 0.5 γ , p 5, 11, 14, 16, 19, 20, 2930, 31, 41, 53

18.150± 4 1+; 0 138± 6 γ , p 11, 14, 16, 19, 20, 29, 3041, 44

18.91 2−; 0(+1) 122e γ , n, p 11, 14, 15, 16, 19, 2319.07± 30 3+; (1) 270± 20 γ , p 11, 14, 16, 19, 29, 3019.235± 10i 3+; (0) 227± 16i n, p 15, 16, 19, 29, 30, 31, 41

6419.40 1− ≈ 645i n, p 11, 15, 16, 2919.86± 50g 4+; 0 700± 100 p,α 4, 11, 18, 21, 22, 30, 31, 420.1h 2+; 0 880± 20i n, p,α 4, 15, 16, 18, 19, 22, 4120.2 0+; 0 720± 20i α 4, 19, 4120.9 4− 1600± 200 p 1621.5 3(+) 1000 γ , n, p 14, 15, 4122.0c 1−; 1 ≈ 4000 γ , p 1422.05± 100 270± 70 29, 3122.2 2+; 0 ≈ 800 n, p, d,α 4, 9, 13, 15, 16, 18, 4122.63± 100 100± 50 3122.98± 100 230± 50 3124.0c (1, 2)−; 1 ≈ 7000 γ , p,α 14, 18, 4125.2 2+; 0 p, d,α 4, 9, 18, 4125.5 4+; 0 broad d,α 927.4941± 1.8d 0+; 2 5.5± 2.0 γ , n, p, d, t,3He,α 5, 7, 9, 35(28.6) broad γ , p 14(32)i 1 MeVi 41(≈ 41)i 9

(continued on next page)

Page 25: Energy levels of light nuclei A = 8,9,10

8Be

].

oss

te

01,ons forto

rences

re-ossibleent-meters

re

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 179

Table 8.9 (continued)

Ex (MeV ± keV) Jπ ; T Γcm (keV) Decay Reactions

(≈ 43)i 9(≈ 50)i 9

a See also Table 8.10 and reaction 4.b See, however, reaction 29.c Giant resonance: see reaction 14.d For the parameters of this state please see Table 8.5 in [1984AJ01].e FromR-matrix fit: see reaction 23.f Γγ0/Γ(γ0+γ1) = 0.72± 0.07 [1995ZA03].g Γα/Γp = 2.3± 0.5 [1992PU06].h Γα/Γp = 4.5± 0.6 [1992PU06].i From data reviewed in this evaluation.j Intruder state at≈ 9 MeV, deduced fromR-matrix analysis ofβ-delayed 2α breakup spectra [2000BA89

The placement of this level is dependent on the channel radius used in theR-matrix fit [1986WA01,2000BA89].However, [1986WA01] finds no need to introduce intruder states belowEx = 26 MeV.

p0+1 are also reported atEα = 37.5 to 140.0 MeV: see [1979AJ01,1984AJ01]. The crsections for reaction (c) has been measured at three energies in the rangeEα = 46.7 to49.5 MeV: see [1979AJ01] and below.

The production of6Li, 7Li and 7Be [and 6He] has been studied atEα = 61.5 to158.2 MeV by [1982GL01], at 198.4 MeV by [1985WO11], and atEα = 160, 280 and320 MeV by [2001ME13]. The production of7Li (via reactions (a) and (b)) and of6Liis discussed. At energies beyondEα ≈ 250 MeV theα + α reaction does not contributo the natural abundance of lithium, reinforcing theories which produce6Li in cosmic-rayprocesses and the “missing”7Li in the Big Bang: thus the universe is open [1982GL1985WO11]. The measurements of [2001ME13] have observed smaller cross secti6Li production than previous extrapolations, and reduce uncertainty in extrapolationhigher energies.

The inclusive cross section for production of3He has been measured atEα = 218 MeV[1984AL03]. For a fragmentation study at 125 GeV see [1985BE1E]. See also refecited in [1988AJ01].

4. 4He(α,α)4He, Eb = −0.091839

The 8Beg.s. parameters are determined fromα–α scattering across the resonancegion. Evaluation of the parameters requires an analysis of the influence of various pcharge states in the low-energy4He(α,α) scattering process [1992WU09]. A measuremthat detectedα–α coincidences atθ(α1, α2) = (45,45) and(30,60) was performed using a gas jet target, which permitted an energy resolution of 26 eV; the resulting parafor 8Beg.s. areEb = −92.04± 0.05 keV andΓ = 5.57± 0.25 eV [1992WA09]. Previousvalues that had been obtained in a configuration that yielded 95 eV energy resolution weEb = −92.12± 0.05 keV andΓ = 6.8 ± 1.7 eV [1968BE02]. ForEα = 30 to 70 MeVthe l = 0 phase shift shows resonant behavior atEα = 40.7 MeV, corresponding to a 0+

state atEx = 20.2 MeV, Γ < 1 MeV, Γα/Γ < 0.5. No evidence for other 0+ states is seenaboveEα = 43 MeV.
Page 26: Energy levels of light nuclei A = 8,9,10

8Be

a.

by-

180 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Fig. 3. Energy levels of8Be. For notation see Fig. 2.

The d-wave phase shift becomes appreciable forEα > 2.5 MeV and passes throughresonance atEα = 6 MeV (Ex = 3.18 MeV, Γ = 1.5 MeV, Jπ = 2+): see Table 8.11Five 2+ levels are observed froml = 2 phase shifts measured fromEα = 30 to 70 MeV:8Be∗(16.6,16.9) with Γα = Γ [see Table 8.11], and states withEx = 20.1, 22.2 and25.2 MeV. The latter has a smallΓα . The l = 2 α-α phase shifts have been analyzed[1986WA01] up toEα = 34 MeV: intruder states belowEx = 26 MeV need not be intro

duced. However, see discussion in reactions 24 and 27, and see [1988BA75,1989BA31,2000BA89] which introduces an intruder state at≈ 9 MeV.
Page 27: Energy levels of light nuclei A = 8,9,10

8Be

at

s

.

first

,s

,ross

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 181

Table 8.10Electromagnetic transition strengths in8Be

Ei → Ef (MeV) Jπi ;Ti → Jπ

f ;Tf Γγ (eV) Mult. Γγ /ΓW

16.626→ 0a 2+;0+ 1→ 0+;0 (7.0± 2.5) × 10−2 E2 (7.1± 2.5) × 10−2

16.92→ 0a 2+;0+ 1→ 0+;0 (8.4± 1.4) × 10−2 E2 (7.8± 1.3) × 10−2

(16.626+ 16.92) → 3.03b 2+;1→ 2+;0 2.80± 0.18 M1 (5.3± 0.3) × 10−2

17.64→ 0c 1+;1→ 0+;0 15.0± 1.8 M1 0.13± 0.02→ 3.03c,d → 2+;0 6.7± 1.3 M1 0.10± 0.02

0.12± 0.05 E2 0.23± 0.10→ 16.626e,f → 2+;0+ 1 (3.2± 0.3) × 10−2 M1 1.5± 0.2→ 16.92e → 2+;0+ 1 (1.3± 0.3) × 10−3 M1 0.17± 0.04

18.15→ 0g 1+;0→ 0+;0 1.9± 0.4 M1 (1.5± 0.3) × 10−2

→ 3.03g → 2+;0 4.3± 1.2 M1 (5.9± 1.7) × 10−2

→ 16.626e → 2+;0+ 1 (7.7± 1.9) × 10−2 M1 1.0± 0.3→ 16.92e → 2+;0+ 1 (6.2± 0.7) × 10−2 M1 1.6± 0.2

18.91→ 16.626h 2−;0→ 2+;0+ 1 0.17± 0.07 E1 (5.3± 2.0) × 10−2

→ 16.92h → 2+;0+ 1 (9.9± 4.3) × 10−2 E1 (4.6± 2.0) × 10−2

19.07→ 3.03i 3+; (1) → 2+;0 10.5 M1 0.12227.49→ 17.64j 0+;2→ 1+;1 21.9± 3.9 M1 1.10± 0.20

a From [1995DE18].a From [1995DE18]. TheT = 1 centroid of the isospin-mixed 16.626 MeV and 16.92 MeV levels is

16.80 MeV. For mixing ratios, see reaction 2 or [1995DE18].c σγ0+γ1 = 5.9±0.5 mb andσγ0/σγ0+γ1 = 0.69±0.05 from [1995ZA03]. UsingΓcm = 10.7±0.5 keV from

Table 8.10 givesΓγ0+γ1 = 21.8± 2.1 eV.d From [1961ME10], the mixing ratio is 0.133± 0.027.e From [1969SW01].f From [1969SW02], the mixing ratio is−0.014± 0.013.g From [1995ZA03].h From the cross sections andΓcm = 131± 44 keV of [1969SW01].i From [1976FI05].j From [1979FR04].

The l = 4 phase shift rises fromEα ≈ 11 MeV and indicates a broad 4+ level atEx =11.5 ± 0.3 MeV [Γ = 4.0 ± 0.4 MeV]. A rapid rise ofδ4 at Eα = 40 MeV correspondto a 4+ state at 19.9 MeV withΓα/Γ ≈ 0.96; Γ < 1 MeV and thereforeΓα < 1 MeV,which is< 5% of the Wigner limit. A broad 4+ state is also observed nearEα = 51.3 MeV(Ex = 25.5 MeV). Over the rangeEα = 30 to 70 MeV a gradual increase inδ6 is observedSome indications of a 6+ state atEx ≈ 28 MeV and of an 8+ state at≈ 57 MeV have beenreported;Γcm ≈ 20 and≈ 73 MeV, respectively. A resonance is not observed at theT = 2 state,8Be∗(27.49). See [1979AJ01] for references.

The elastic scattering has also been studied atEα = 56.3 to 95.5 MeV [1987NE1C]158.2, 650 and 850 MeV, and at 4.32 and 5.07 GeV/c [see [1979AJ01,1984AJ01]], awell as at 198.4 MeV [1985WO11]. Forα–α correlations involving8Be∗(0,3.0) see[1987CH33,1987PO03]. Resonances inα–α scattering and the role ofα clustering in8Be have been investigated in theoretical studies of4He(α,α) [1987PR01,1987VI051987WA07,1995LI07,1996KU08,1996VO15,2000MO07,2002BH03]. For inclusive c

sections see [1984AJ01] and ([1984AL03]; 218 MeV). For studies at very high energiessee reaction 3 and references cited in [1988AJ01].
Page 28: Energy levels of light nuclei A = 8,9,10

8Be

del:ion

romran-on

d

rn

atal

,

Vixed

ispa-

-.

182 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

5. 6Li(d, γ )8Be, Qm = 22.2809

The yield of γ -rays to 8Be∗(17.64) [1+; T = 1] has been measured forEd = 6.85to 7.10 MeV. A resonance is observed atEd = 6965 keV [Ex = 27495.8 ± 2.4 keV,Γcm = 5.5 ± 2.0 keV]; Γγ = 23± 4 eV [1.14± 0.20 W.u.] for this M1 transition fromthe first 0+; T = 2 state in8Be, in good agreement with the intermediate coupling mosee Table 8.5 in [1984AJ01].1 Angular distributions of cross sections and polarizatobservables [A(θ)

y , A(θ)yy , T

(θ)20 ] were measured atEd = 9 MeV [1991WI19] andEd = 2

and 9 MeV [1994WI08]. In addition, [1994WI08] measured the excitation function fEd = 7–14 MeV; capture to the8Be ground state and 3.0 MeV state were observed. A tsition matrix element analysis for6Li( d, γ0) at 9 MeV indicates a 13–21% E1 contributiin addition to the expected dominant E2 strength. This suggests≈ 1.5%D-state admixturein the8Be ground state. See also [1979AJ01].

6. 6Li(d, n)7Be, Qm = 3.38117, Eb = 22.28085

Yield curves and cross sections have been measured forEd = 48 keV to 17 MeV:see [1979AJ01,1984AJ01]. AtEcm = 96.6 keV σ = 3.17 mb±3%(stat.)± 7.5%(syst.)[2001HO23]. Polarization measurements are reported atEd = 0.27 to 3.7 MeV. Angu-lar distributions were measured for6Li(d, n) at Ed = 0.7–2.3 and 5.6–12.1 MeV anexcitation functions for neutrons corresponding to7Be∗(0,0.43,4.57,7.21) are reported[1996BO27]. Comparisons of the populations of7Be∗(0,0.43) and of7Li ∗(0,0.48) havebeen made at energies up toEd = 7.2 MeV. The (d, n)/(d, p) ratios are closely equal foanalog states, as expected from charge symmetry: see [1979AJ01]. However, the1/p1yield ratio decreases from 1.05 atEd = 160 keV to 0.94 at 60 keV: it is suggested ththis is due to charge polarization of the deuteron [1985CE12]. See reaction 7 for additioncomments about the (d, p)/(d, n) ratio. See also7Be in [2002TI10,1988AJ01].

7. 6Li(d, p)7Li, Qm = 5.02573, Eb = 22.28085

Excitation functions have been measured forEd = 30 keV to 5.4 MeV: see [1979AJ011984AJ01]. The thick target yield of 0.48 MeVγ -rays is reported from≈ 50 to 170 keV[1985CE12]. An anomaly is observed in the p1/p0 intensity ratio atEd = 6.945 MeV [see[1979AJ01]], corresponding to the first 0+; T = 2 state,Γ = 10± 3 keV, Γp0 Γp1,Γp0 < Γd. The (d, p0)/(d, n0) ratio is measured in the astrophysical range from 65 ke<

Ed < 200 keV [1993CZ01,1997CZ04]. In this region the subthreshold isospin m2+ level at 8Be∗(22.2; Γ ≈ 800 keV) could influence the (d, p0)/(d, n0) ratio, whichis important in inhomogeneous Big Bang nucleosynthesis models. The observed ratioΓn0/Γp0 = 0.95± 0.03 which is consistent with the presently accepted isospin mixingrameterε = 0.20. The6Li(d, p) and6Li(d, α) reactions were measured atEd = 20–135 keV[1993CE02], and a nearly constantσ (d, p0 + p1)/σ (d,α) ratio of 0.55 was observed indicating that there is no anomalous behavior in the low energy6Li(d, p) cross section

1 However, please note that there is an error in Table 8.5 from [1984AJ01]. For the 27.5 MeV level, theparameter given asΓγ0 should be listed asΓγ (27.5 to 17.6).

Page 29: Energy levels of light nuclei A = 8,9,10

8Be

].

theor.).ly

]

abovergy

ractgeunted

mea-oV: see

astro-n

owers.

e sug-gests

ac-.

ts)t

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 183

Polarization measurements have been reported atEd = 0.6 to 10.9 MeV: see [1979AJ01See also7Li in [2002TI10] and ([1984KU15]; theor.).

8. (a) 6Li(d, d)6Li, Eb = 22.280845(b) 6Li(d, t)5Li, Qm = 0.593

The yield of elastically scattered deuterons has been measured forEd = 2 to 7.14 MeV.No resonances are observed: see [1974AJ01]. See also ([1983HA1D,1985LI1C];The cross section for tritium production rises rapidly to 190 mb at 1 MeV, then more slowto 290 mb near 4 MeV: see [1974AJ01]. For VAP and TAP measurements atEd = 191 and395 MeV see [1986GA18].

9. (a) 6Li(d, α)4He, Qm = 22.372683, Eb = 22.280845(b) 6Li(d, αp)3H, Qm = 2.558823

Cross sections and angular distributions (reaction (a)) have been measured atEd =10 keV to 31 MeV: see [1979AJ01,1984AJ01,1992EN01,1992EN04] forEd = 10–1450 keV, and [1997CZ01] forEd = 50–180 keV. A DWBA analysis by [1997CZ01of data up to 1 MeV evaluated the impact of the subthreshold resonance8Be∗(22.2) onthe measured cross sections. In the DWBA analysis, data was limited to energiesEd = 60 keV in order to minimize the effect of screening; the analysis indicated an eneEres= (−50± 20) keV for the subthreshold resonance. The6Li( 6Li, 2α)4He reaction wasmeasured atE(6Li) = 6 MeV and was evaluated in the “Trojan Horse” method to extthe 6Li(d, α) reaction cross sections andS-factors in the astrophysically relevant ranfrom Ecm = 13 to 750 keV [2001SP04]; a detailed analysis of these data, that accofor the electron screening process, deducedS(0) = 16.9 ± 0.5 MeV b [2001MU30]. Seealso [1992EN01,1992EN04] for detailed discussion of electron screening in directsurements of6Li(d, α) and2H(6Li, α) in the energy range ofEcm < 1500 keV. See als[2002BA77]. Polarization measurements are reported in the range 0.4 to 11 Me[1979AJ01,1984AJ01] and see below. See also reaction 7 for comments about thephysical (d, p)/(d,α) ratio. See [1984AJ01] for a critical analysis of thermonuclear reactiorate parameters.

Pronounced variations are observed in the cross sections and in the analyzing pMaxima are seen atEd = 0.8 MeV, Γlab ≈ 0.8 MeV andEd = 3.75 MeV,Γlab ≈ 1.4 MeV.The 4 MeV peak is also observed in the tensor component coefficients withL = 0, 4and 8 and in the vector component coefficients: two overlapping resonances argested. At higher energies all coefficients show a fairly smooth behavior which sugthat only broad resonances can exist. The results are in agreement with those from retion 4, that is with two 2+ states atEx = 22.2 and 25.2 MeV and a 4+ state at 25.5 MeVA strong resonance is seen in theα∗ channel [to4He(20.1),Jπ = 0+] presumably dueto 8Be∗(25.2,25.5). In addition the ratio of theα∗/α differential cross sections at 30shows a broad peak centered atEx ≈ 26.5 MeV (which may be due to interference effecand suggests a resonance-like anomaly atEx ≈ 28 MeV. Ayy = 1 points are reported a

Ed = 5.55± 0.12 (θcm = 29.7 ± 1.0) and 8.80± 0.25 MeV (θcm = 90.0± 1.0) [corre-sponding toEx = 26.44 and 28.87 MeV]. For references see [1974AJ01,1979AJ01].
Page 30: Energy levels of light nuclei A = 8,9,10

8Be

184 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 8.11Some8Be states with 3.0< Ex < 23.0 MeVa

Ex (MeV ± keV) Γcm (keV) Reaction

3.18± 50 4He(α,γ )2.83±200 1750± 300 6Li(3He, p),10B(d,α)

1200± 300 6Li(α, d)3.1± 100 1750± 100 7Li(d, n)3.10± 90 1740± 80 7Li(d, n)2.90± 60 1530± 40 7Be(d, p)

1500± 100 9Be(p, d)3.038±25 1500± 20 9Be(p, d)3.03± 10 1430± 60 9Be(d, t)2.90± 40 1350± 150 9Be(3He, α)

1480± 70 11B(p,α)3.03 ± 0.01 1513 ± 15 “mean” valued

11.5± 300 4000± 400 4He(α,α)

11.3± 400 6Li(α, d)11.3± 200 2800± 300 7Li(d, n)

5200± 100 9Be(p, d)11.35 ± 150 ≈ 3500 “mean” value

16.627± 5 113± 3 7Li(3He, d)90± 5 10B(d,α)

16.623± 3 107.7± 0.5 4He(α,α)b

16.630± 3 108.5± 0.5 4He(α,α)c

16.626 ± 3 108.1 ± 0.5 “mean” value

16.901± 5 77± 3 7Li(3He, d)70± 5 10B(d,α)

16.925± 3 74.4± 0.4 4He(α,α)b

16.918± 3 73.6± 0.4 4He(α,α)c

16.922 ± 3 74.0 ± 0.4 “mean” value

17.640 ± 1.0 10.7 ± 0.5 7Li(p, γ )

18.155± 5 147 7Li(p, p′γ )18.150± 5 138± 6 10B(d,α)18.144± 5 9Be(d, t)18.150 ± 4 138 ± 6 “mean” value

19.06± 20 270± 20 7Li(p, γ )

19.071±10 270± 30 9Be(d, t)19.07 ± 30 270 ± 20 “mean” value

19.21 208± 30 9Be(p, d)19.22± 30 265± 30 9Be(3He, α)19.234±12 210± 35 natAg(14N, 8Be)19.26± 30 220± 30 9Be(d, t)19.235 ± 10 227 ± 10 “mean” value

19.86 ± 50 700 ± 100 9Be(d, t)22.05 ± 100 270 ± 70 9Be(3He,α)

9 3

22.05 ± 100 270 ± 70 Be( He,α)(continued on next page)
Page 31: Energy levels of light nuclei A = 8,9,10

8Be

e

oth

t]ayeted in

o

t

s sec-

es,on-

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 185

Table 8.11 (continued)

Ex (MeV ± keV) Γcm (keV) Reaction

22.63 ± 100 100 ± 50 9Be(3He,α)22.98 ± 100 230 ± 50 9Be(3He,α)

a See Table 8.5 in [1979AJ01] for references. See also Tables 8.11 and 8.12 here.b FromR-matrix analysis.c Complex eigenvalue theory.d These parameters represent the weighted average of values given in Table 8.4 of [1974AJ01]: the valueEx =

3.18± 0.05 MeV from4He(α, γ ), the valuesEx = 3.038± 0.025 MeV,Γ = 1500± 20 keV from9Be(p, d) thatwere adopted in [1984AJ01]; andEx = 3.03± 0.01 MeV,Γ = 1430± 60 keV from9Be(d, t). The average of thmost recent values from9Be(p, d) and9Be(d, t) yieldsEx = 3.03± 0.01 MeV andΓ = 1490± 20 keV. See also[2002BH03].

At Ed = 6.945 MeV, theα0 yield shows an anomaly corresponding to8Be∗(27.49),the 0+; T = 2 analog of8Heg.s.. This T = 2 state has recently been studied using bpolarized deuterons and6Li ions. The ratio of the partial widths for decay into6Li + dstates with channel spin 2 and 0,Γ2/Γ0 = 0.322± 0.091 [1986SO07].

A measurement of angular distributions and the excitation function for6Li(d, α) forEd = 18.2–44.5 MeV [1994AR24] found evidence for possible states at≈ 41 MeV, ≈43 MeV and≈ 50 MeV.

A kinematically complete study of reaction (b) has been reported atEd = 1.2 to8.0 MeV: the transition matrix element squared plotted as a function ofEαα∗ (the rel-ative energy in the channel4Heg.s. + 4He∗(20.1) [0+]) shows a broad maximum aEx ≈ 25 MeV. Analysis of these results, and of a study of7Li(p, α)α∗ [see reaction 18which shows a peak of different shape atEx ≈ 24 MeV, indicate the formation and decof overlapping states of high spatial symmetry, if the observed structures are interprterms of8Be resonances: see [1984AJ01]. For other work see [1984AJ01]. See also6Li in[2002TI10] and references cited in [1988AJ01].

10.6Li(t, n)8Be, Qm = 16.0236

At Et = 2 to 4.5 MeV 8Be∗(0,3.0,16.6,16.9) are populated [1984LIZY]. See als[1966LA04,1974AJ01].

11. (a) 6Li( 3He, p)8Be, Qm = 16.7874(b) 6Li(3He, p)4He4He, Qm = 16.879206

Angular distributions have been studied in the rangeE(3He)= 0.46 to 17 MeV and aE(6 Li) = 21 MeV.8Be∗(0,3.0,16.63,16.92,17.64,18.15,19.0,19.4,19.9) are populatedin this reaction: see [1974AJ01,1979AJ01,1984AJ01]. Angular distributions of crostions andAy(θ) were measured for6Li( 3 He, p0 and p1) at E3 He = 4.6 MeV [1995BA24].A DWBA analysis indicates that a direct reaction mechanism dominated for both statin contradiction with previous results that suggested a dominant compound nucleus c

tribution. See also [2003VO02,2003VO08] for an evaluation of the reaction rates belowE(3He)= 1 MeV. For reaction (b) see [1974AJ01,1987ZA07]. See also9B.
Page 32: Energy levels of light nuclei A = 8,9,10

8Be

ac-

d

nt

lombets

ly

le

d

d

icateyement

from

186 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

12. (a) 6Li(α, d)8Be, Qm = −1.5657(b) 6Li(α, 2α)2H, Qm = −1.473844

Deuteron groups have been observed to8Be∗(0,3.0,11.3± 0.4). Angular distributionshave been measured atEα = 15.8 to 48 MeV: see [1974AJ01,1979AJ01]. A study of retion (b) shows that the peak due to8Be∗(3.0) is best fitted by usingΓ = 1.2 ± 0.3 MeV.At Eα = 42 MeV theα–α FSI is dominated by8Be∗(0,3.0). See also Table 8.11 an([1983BE1H]; theor.).

13. (a) 6Li( 6Li, α)8Be, Qm = 20.8070(b) 6Li(6Li, α)4He4He, Qm = 20.898839(c) 6Li(6Li, 2d)4He4He, Qm = −2.947688

At Emax(6Li) = 13 MeV reaction (a) proceeds via8Be∗(0,3.0,16.6,16.9,22.5). Theinvolvement of a state atEx = 19.9 MeV (Γ = 1.3 MeV) is suggested. Good agreemewith the shapes of the peaks corresponding to8Be∗(16.6,16.9) is obtained by using asimple two-level formula with interference, corrected for the effect of final-state Couinteraction, assumingΓ (16.6) = 90 keV andΓ (16.9) = 70 keV: see also Table 8.11. Thratio of the intensities of the groups corresponding to8Be∗(16.6,16.9) remains constanfor E(6Li) = 4.3 to 5.5 MeV:I (16.6)/I (16.9) = 1.22± 0.08. Partial angular distributionfor the α0 group have been measured at fourteen energies forE(6Li) = 4 to 24 MeV.See [1979AJ01] for the references. The reaction mechanism for6Li( 6Li, X) was studiedby measuring charged particle angular distributions forE(6Li) = 2–16 MeV [1990LE05].Analysis in a statistical model indicated that the6Li( 6Li, α) reaction proceeds dominantvia direct, cluster transfer rather than an intermediate compound nucleus.

At E(6Li) = 36 to 46 MeV sequential decay (reaction (b)) via8Be states atEx = 3.0,11.4, 16.9 and 19.65 MeV is reported: see [1984AJ01]. [1987LA25] report the possibinvolvement of the 2+ state8Be∗(22.2). At E(6Li) = 6 MeV the “Trojan Horse” methodwas used to evaluate6Li( 6Li, 2α) data to extract the6Li(d, α) reaction cross sections anS-factors [2001SP04,2001MU30]: see reaction 9.

For reaction (c) see [1983WA09] and12C in [1985AJ01]. See also [1983MI10] an([1982LA19,1985NO1A]; theor.).

14. (a) 7Li(p, e+e−)8Be, Qm = 16.2331(b) 7Li(p, γ )8Be, Qm = 17.2551

For reaction (a) electron/positron pair decay from8Be∗(17.6,18.15) J π = 1+ levelswas measured in a search for M1 de-excitation via pair production that would indthe involvement of a short-lived isoscalar axion 4–15 MeV/c2 in mass. While an anomalis seen in the pair production, the overall results are not consistent with the involvof a neutral boson [1996DE51,1997DE46,2001DE11]. Limits of< 10−3 [1990DE02] and4.1× 10−4 [2001DE11] were obtained for the axion toγ -ray ratio.

For reaction (b) cross sections and angular distributions have been reported

Ep = 30 keV to 18 MeV. Gamma rays are observed to the ground (γ0) and to thebroad, 2+, excited state at 3.0 MeV (γ1) and to8Be∗(16.6,16.9) (γ3,γ4). An R-matrix
Page 33: Energy levels of light nuclei A = 8,9,10

8Be

om-

at-

g ra-d at.sed

ic

ctioness.

axi-the

2

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 187

Table 8.128Be levels from7Li(p, γ )8Bea

Eres (keV) Γlab (keV) 8Be∗ (MeV) lp Jπ Res.b

441.4± 0.5c 12.2± 0.5 17.640 1 1+ γ0, γ1, γ3, γ41030± 5 168 18.155 1 1+ γ0, γ1, γ3, γ41890 150± 50 18.91 (2−) γ3, γ42060± 20 310± 20 19.06 J = 1, 2, 3, γ1

π = (−)d

(3100) (20.0) γ14900 21.5 γ15000 ≈ 4500 21.6 0 1−; T = 1 γ06000 22.5 γ17500 ≈ 8000 23.8 (0) (1−, 2−); T = 1 γ1(11100) (27.0) γ113000 broad 28.6

a See Tables 8.6 in [1974AJ01,1979AJ01] for the references.b γ0, γ1, γ3, γ4 represent transitions to8Be∗(0,3.0,16.6,16.9), respectively.c See [1959AJ76]. See also [1983FI13,1984JE1B].d See, however, reaction 16.

fit to the γ -ray spectrum obtained atEp = 7.5 and 8 MeV yieldedEx = 2.91 MeV andΓ = 1.23 MeV for the8Be first excited state [1990RI06]. See also [1994DE09] for cments on model dependences for deduced widths. Resonances for bothγ0 andγ1 occurat Ep = 0.44 and 1.03 MeV, and forγ1 alone atEp = 2, 4.9, 6.0, 7.3, and possibly3.1 and 11.1 MeV. The excitation function was measured forγ0 andγ1 across the resonance atEp = 441 keV; the peak cross section wasσγ0+γ1 = 5.0 ± 0.7 mb (yielding anaverage of 5.9± 0.5 mb when weighted with previous measurements). The branchintio wasσ(γ0)/σ (γ0 + γ1) = 0.72± 0.07 [1995ZA03]. Broad resonances are reporteEp ≈ 5 MeV (γ0), Γ ≈ 4–5 MeV, and atEp ≈ 7.3 MeV (γ1), Γ ≈ 8 MeV: see Table 8.12TheEp ≈ 5 MeV resonance (Ex ≈ 22 MeV) represents the giant dipole resonance baon 8Beg.s. while theγ1 resonance,≈ 2.2 MeV higher, is based on8Be∗(3.0). Theγ0 andγ1 giant resonance peaks each contain about 10%of the dipole sum strength. The maintrend betweenEp = 8 and 17.5 MeV is a decreasing cross section.

At the Ep = 0.44 MeV resonance (Ex = 17.64 MeV) the radiation is nearly isotropand has been interpreted as arising from p-wave formation,Jπ = 1+, with channel spinratio σ(Jc = 2)/σ (Jc = 1) = 3.2 ± 0.5. Radiative widths for theγ0 and γ1 decay aredisplayed in Table 8.10. A careful study of theα-breakup of8Be∗(16.63,16.92) [bothJπ = 2+] for Ep = 0.44 to 2.45 MeV shows that the non-resonant part of the cross sefor production of8Be∗(16.63) is accounted for by an extranuclear direct-capture procTheγ -ray transitions to8Be∗(16.63,16.92) are observed atEp = 0.44, 1.03 and 1.89 MeV[8Be∗(17.64,18.15,18.9)]. The results are consistent with the hypothesis of nearly mmal isospin mixing for8Be∗(16.63,16.92): decay to these states is not observed from3+ states atEx = 19 MeV, but rather from the 2− state atEx = 18.9 MeV. SquaredT = 1components calculated for8Be∗(16.6,16.9) are 40 and 60%, and for8Be∗(17.6,18.2) theyare 95 and 5%, respectively. AtEp = 25 MeV, the capture cross section to the 16 MeV+

doublet was measured(σθ(γ )=90 < 0.04 µb/sr) via a triple coincidenceγ + 2α method[1991BR11]. The cross section for(γ3 + γ4) has also been measured forEp = 11.5 to
Page 34: Energy levels of light nuclei A = 8,9,10

8Be

yedustses

ibes1]. See

n andcap-

lement

calcu-SP01,eo 1P01]ro,.el calcu-nces atats

acti-

ro-yta-

188 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

30 MeV (θ = 90) by detecting theγ -rays and forEp = 4 to 13 MeV (at five energies) bdetecting the twoα-particles from the decay of8Be∗(16.6, 16.9): a broad bump is observat Ep = 8 ± 2 MeV [1981MA33]. The angle and energy integrated yield only exha8.6% of the classical dipole sum forEp = 4 to 30 MeV, suggesting that this structure donot represent the GDR built on8Be∗(16.6, 16.9). A weak, very broad [Γ 20 MeV] peakmay also be present atEx = 20–30 MeV. A direct capture calculation adequately descrthe observed cross section [1981MA33]. For the earlier references see [1979AJ0also references cited in [1988AJ01].

Low energy7Li(p, γ ) angular distributions and cross sections, mainly forγ0 andγ1capture, were measured atEp = 40–180 keV [1992CE02],Ep = 80 keV [1994CH23,1996GO01,1997GO13],Ep = 100–1500 keV [1995ZA03],Ep = 80, 402 and 450 keV[1996HA06], andEp = 40–100 keV [2000SP01]. The angular dependent cross-sectioanalyzing power data indicate significant near-threshold contributions from p-waveture. Estimates of the p-wave strength have been deduced from Transition Matrix E(TME) fits to the polarization data [1994CH23,1996GO01,1997GO13],R-matrix fits to thedata [1995BB21,1996BB26,2000BA89], and other direct-plus-resonances capturelations [1992CE02,1994RO16,1995WE11,1996CS05,1997BA04,1997GO13,20002001SA30]. The estimates range from< 10% up to≈ 95%. It was suggested that thorigin of p-wave strength was the result of interference in the extended tails of the tw+resonances atEp = 441 keV and 1030 keV, while a more recent measurement [2000Sthat observed a negative slope in the astrophysicalS-factor, as the energy approaches zeindicates that the sub-threshold8Be state atEx = 16.92 MeV is involved in the captureThere appears to be some agreement on the issue that there is a need for new modlations for low-energy capture that include the subthreshold state and the two resonaEp = 441 and 1030 keV. Polarized proton capture to the8Be∗(16.6) state was measuredEp = 80 keV [1996GO01]. See [1995ZA03,2000NE09] for thermonuclear reaction rateand [1994CH70] for applications. Thick target proton inducedγ -ray yields, useful for el-emental analysis, were measured atEp = 2.2–3.8 MeV [1988BO37] andEp = 7–9 MeV[1987RA23].

15.7Li(p, n)7Be, Qm = −1.64456, Eb = 17.25512

Measurements of cross sections have been reported forEp = 1.9 to 199.1 MeV [see[1974AJ01,1979AJ01,1984AJ01]] and in the range 60.1 to 480.0 MeV ([1984DA22];vationσ ). Polarization measurements have been reported atEp = 2.05 to 5.5 MeV, 30 and50 MeV [see [1974AJ01]] and atEp = 52.8 MeV [1988HE08] [Kz′

z = 0.07± 0.02]. Seealso below.

The yield of ground state neutrons (n0) rises steeply from threshold and shows pnounced resonances atEp = 2.25 and 4.9 MeV. The yield of n1 also rises steeplfrom threshold and exhibits a broad maximum nearEp = 3.2 MeV and a broad dip aEp ≈ 5.5 MeV, also observed in the p1 yield. Multi-channel scattering length approximtion analysis of the 2− partial wave near the n0 threshold indicates that the 2− state at

Ex = 18.9 MeV has a widthΓ = 50±20 keV. See, however, reaction 23 here. The ratio ofthe cross section for7Li(p, γ )8Be∗(18.9) → 8Be∗(16.6+16.9)+γ to the thermal neutron
Page 35: Energy levels of light nuclei A = 8,9,10

8Be

-

.

eak

.1–

hesection

2]erse

in

otons

rgies in

lso

d

ion data

attings atof a

]].

ys

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 189

capture cross section7Be(n,γ )8Be∗(18.9) →8Be∗(16.6+ 16.9)+ γ , provides a rough estimate of the isospin impurity of8Be∗(18.9): σp,γ /σn,γ ≈ 1.5× 10−5. TheT = 1 isospinimpurity is 10% in intensity. See also reaction 23 here and [1979AJ01,1984AJ01]

The structure atEp = 2.25 MeV is ascribed to aJπ = 3+, T = (1), l = 1 resonancewith Γn ≈ Γp andγ 2

n /γ 2p = 3 to 10: see [1966LA04]. At higher energies the broad p

in the n0 yield at Ep = 4.9 MeV can be fitted byJπ = 3(+) with Γ = 1.1 MeV, γ 2n ≈

γ 2p . The behavior of the n1 cross section can be fitted by assuming a 1− state atEx =

19.5 MeV and aJ = 0, 1, 2, positive-parity state at 19.9 MeV [presumably the 2020.2 MeV states reported in reaction 4]. In addition the broad dip atEp ≈ 5.5 MeV maybe accounted for by the interference of two 2+ states. See Table 8.8 in [1979AJ01]. T0 differential cross section increases rapidly to≈ 35 mb/sr at 30 MeV and then remainconstant to 100 MeV: see references cited in [1988AJ01]. The total reaction cross s[7Be∗(0,0.43)] decreases inversely withEp in the range 60.1 to 480.0 MeV [1984DA2[note: the values ofσt supersede those reported earlier in [1979AJ01]]. The transvpolarization transfer,DNN(0), for the ground-state transition has been measured atEp =160 MeV [1984TA07]. See also ([1986MC09];Ep = 800 MeV) and references cited[1988AJ01].

16. (a) 7Li(p, p)7Li, Eb = 17.25512(b) 7Li(p, p′)7Li ∗

Absolute differential cross sections for elastic scattering have been reported forEp =0.4 to 12 MeV and at 14.5, 20.0 and 31.5 MeV. The yields of inelastically scattered pr(to 7Li ∗(0.48)) and of 0.48 MeVγ -rays have been measured forEp = 0.8 to 12 MeV: see[1974AJ01]. Polarization measurements have been reported at a number of enethe rangeEp = 0.67 MeV to 2.1 GeV/c [see [1974AJ01,1979AJ01,1984AJ01]], atEp =1.89 to 2.59 MeV ([1986SA1P]; p0) and at 65 MeV ([1987TO06]; continuum). See a[1983GLZZ].

Anomalies in the elastic scattering appear atEp = 0.44, 1.03, 1.88, 2.1, 2.5, 4.2 an5.6 MeV. Resonances atEp = 1.03, 3 and 5.5 MeV and an anomaly atEp = 1.88 MeVappear in the inelastic channel. A phase-shift analysis and a review of the cross-sectshow that the 0.44 and 1.03 MeV resonances are due to 1+ states which are a mixture of5P1and3P1 with a mixing parameter of+25; that the 2− state at the neutron threshold (Ep =1.88 MeV) has a width of about 50 keV [see also reaction 14]; and that theEp = 2.05 MeVresonance corresponds to a 3+ state. The anomalous behavior of the5P3 phase aroundEp = 2.2 MeV appears to result from the coupling of the two 3+ states [resonancesEp = 2.05 and 2.25 MeV]. The3S1 phase begins to turn positive after 2.2 MeV suggesa 1− state atEp = 2.5 MeV: see Table 8.13. The polarization data show structureEp = 1.9 and 2.3 MeV. A phase-shift analysis of the (p, p) data finds no indicationpossible 1− state with 17.4< Ex < 18.5 MeV [see, however, reaction 15 in [1979AJ01

An attempt has been made to observe theT = 2 state [8Be∗(27.47)] in the p0, p1 and p2yields. None of these shows the effect of theT = 2 state. Table 8.5 in [1984AJ01] displathe upper limit forΓp0/Γ .

The proton total reaction crosssection has been reported forEp = 25.1 to 48.1 MeVby [1985CA36]. [1987CH33,1987PO03] have studied p–7Li correlations involving8Be∗

Page 36: Energy levels of light nuclei A = 8,9,10

8Be

8.9 and

eholddences

onding

ge:y-M),or neu-

pub-

190 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 8.138Be levels from7Li(p, p0)7Li and 7Li(p, p1)7Li∗a

Ep (MeV) Γlab (keV) 8Be∗ (MeV) Jπ Γp′ (keV)

0.441 12.2b 17.640c 1+1.030± 0.005 168 18.155 1+ ≈ 61.895d,i 55± 20 18.912i 2−2.058i ≈ 294i 19.055i 3+ small2.245i ≈ 203i 19.218i 3+ small2.451i ≈ 640e,i 19.399i 1− > 0f

4.2± 0.2 1800± 200g 20.9 4− (> 0)5.6 broad 22.2 h > 0

a See references in Table 8.9in [1979AJ01] and [1988GU10].b θ2

p = 0.064.c See also ([1981BA36]; theor.).d (p, n) threshold: see reaction 15.e See also Table 8.8 in [1979AJ01],γ 2

n1 andγ 2p1 ≈ 1% of Wigner limit.

f A 2+ state atEx ≈ 20 MeV appears to be necessary to account for the cross sections: see Tablereaction 4.

g Reduced width is 70% of the Wigner limit.h May be due to two 2+ states. See also reaction 15.i [1988GU10].

(17.64,18.15,18.9+ 19.1+ 19.2). Elastic proton scattering on7Li was measured near th(p, n) threshold,Ecm = 1.2–2.4 MeV [1988GU10]. Parameters for observed near-thresresonances are in Table 8.13. See also [1994DE09] for comments on model depenfor deduced widths. See also7Li in [2002TI10] and references cited in [1988AJ01].

17.7Li(p, d)6Li, Qm = −5.02573, Eb = 17.25512

Angular distributions were measured for7Li(p, d) atEp = 18.6 MeV [1987GO27]; neu-tron spectroscopic factors were deduced, via DWBA analysis, for deuterons correspto the6Li ground state and first excited state. The excitation function for d0 measured forEp = 11.64 to 11.76 MeV does not show any effect from theT = 2 state [8Be∗(27.47)]:see [1979AJ01]. See also [1984BA1T].

18.7Li(p, α)4He, Qm = 17.34695, Eb = 17.25512

The cross section increases from(4.3 ± 0.9) × 10−5 mb at Ep = 28.1 keV to6.33 mb at 998 keV. AstrophysicalS-factors have been calculated over that ranS(0) = 52± 8 keV b [1986RO13],S(0) = 0.59 keV b [1992EN01,1992EN04]. An analsis of the 2H(7Li, α) reaction (see reaction 19) in the Trojan Horse Method (THwhich assumes that the deuteron acts as a participant proton plus an spectattron and is not sensitive to electron screening effects, indicatesS(0) = 55 ± 3 keV b[2001LA35,2003PI13,2003SP02]. Earlier work on the THM by the same group

lished the valueS(0) = 36± 7 keV b [1997CA36,1999SP09,2000AL04]. For commentson the S factor see [1990RA28,1991SC12,1991SC25,1991SC32,1992SC22,1992SO25,
Page 37: Energy levels of light nuclei A = 8,9,10

8Be

addi-BO12,

ordial1].

out for

been

pt near

of theire in-

ible.

ny

fer-

-].d

-

MeV

ss

ita-

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 191

1993RA14,1993SC06,1994KA02,1995IC02,1995YA02,1997KI02,2000BA89]. Seetional comments on electron screening in [1992EN01,1992EN04,1997BA95,19972002BA77,2002HA51,2003PI13]. See comments on nucleosynthesis rates and primabundances in [1991RI03,1998FI02,2000BU10]. For the earlier work see [1984AJ0

Excitation functions and angular distributions have been measured atEp = 10 keV–62.5 MeV: see [1979AJ01,1984AJ01],Ep = 20–250 keV [1989HA14], andEcm = 10–1450 keV [1992EN01,1992EN04]. Polarization measurements have been carriedEp = 0.8 to 22 MeV: see [1974AJ01],Ep = 9–22 MeV [1992TA21]. In the rangeEp =23 keV to 62.5 MeV: see [1979AJ01,1984AJ01]. Polarization measurements havecarried out forEp = 0.8 to 10.6 MeV [see [1974AJ01]]: in the rangeEp = 3 to 10 MeVthe asymmetry has one broad peak in the angular distribution at all energies exce5 MeV; the peak value is 0.98± 0.04 at 6 MeV and is essentially 1.0 forEp = 8.5 to10 MeV. Above 10 MeV the asymmetry begins to decrease slowly.

Broad resonances are reported to occur atEp = 3.0 MeV [Γ ≈ 1 MeV] and at≈ 5.7 MeV [Γ ≈ 1 MeV]. Structures are also reported atEp = 6.8 MeV and atEp =9.0 MeV: see [1979AJ01]. The 9.0 MeV resonance is also reflected in the behaviorA2 coefficient. The experimental data on yields and on polarizations appear to requcluding two 0+ states [atEx ≈ 19.7 and 21.8 MeV] with very smallα-particle widths, andfour 2+ states [atEx ≈ 15.9, 20.1, 22.2 and 25 MeV]. See, however, reaction 4. A 4+ statenear 20 MeV was also introduced in the calculation but its contribution was negligThe observed discrepancies are said to be probably due to the assumption of pureT = 0for these states. AtEp = 11.64 to 11.76 MeV the excitation function does not show aeffect due to theT = 2 state atEx = 27.47 MeV. See [1979AJ01] for references.

A study of the7Li(p, α)4He∗ reaction to4He∗(20.1) [0+] at Ep = 4.5 to 12.0 MeVshows a broad maximum atEx ≈ 24 MeV: see reaction 9 and [1984AJ01]. See also reences cited in [1988AJ01].

19. (a) 7Li(d, n)8Be, Qm = 15.0306(b) 7Li(d, n)4He4He, Qm = 15.12239

The population of8Be∗(0,3.0,16.6,16.9,17.6,18.2,18.9,19.1,19.2) has been reported in reaction (a). For the parameters of8Be∗(3.0) see Table 8.4 in [1974AJ01Angular distributions were measured for7Li(d, n) atEd = 0.7–2.3 and 5.6–12.1 MeV anexcitation functions were reported for neutrons corresponding to8Be∗(0 + 3.0,16.6 +16.9,17.6,18.15) [1996BO27]. The8Be∗(11.4) level is not observed. Angular distributions of n0 and n1 have been reported atEd = 0.7 to 3.0 MeV and atEd = 15.25 MeV [see[1974AJ01,1979AJ01]], at 0.19 MeV [1983DA32,1987DA25] and at 0.40 and 0.46([1984GA07]; n0 only). The angular distributions of the neutrons to8Be∗(16.6,17.6,18.2)

are fit by lp = 1: see [1974AJ01]. AtEcm = 50, 83 and 199 keV, the measured crosections areσ = 0.125, 2.11 and 4.01 mb, respectively (± ≈ 5%(stat.),±7.5%(syst.))[2001HO23].

Reaction (b) atEd = 2.85 to 14.97 MeV proceeds almost entirely through the exction and sequential decay of8Be∗(16.6,16.9) [1987WA21]. See also [1988AJ01]. AtEd =

19.7 MeV, 8Be∗(11.4) was observed atEx = 11.3 ± 0.2 MeV with Γ = 3.7 ± 0.2 MeV[1995AR25]. AtEd = 7 MeV, population of the twoT = 0 levels at 20.1, 2+ and 20.2,
Page 38: Energy levels of light nuclei A = 8,9,10

8Be

eretasure-taina-

asuredtudied

1,

-an

192 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

0+ is reported with widthsΓ20.1 = 0.85 ± 0.25 MeV andΓ20.2 = 0.75 ± 0.25 MeV[1991AR18], andΓ20.1 = 0.90± 0.20 MeV andΓ20.2 = 0.70± 0.20 MeV [1992DA22].A complete kinematics measurement of d3σ/(dΩθ dΨ dE12) at Ed = 3–6 MeV reportedpopulation of the 2+ doublet at 16.6 MeV and 16.9 MeV; intense forward neutrons wobserved corresponding to the 16.6 MeV state indicating the7Li + p configuration of thastate [1999GO15]. See [2001LA35,2003PI13,2003SP02], and reaction 18 for mements atEp = 19–21 MeV that are evaluated in the “Trojan Horse” method to obinformation on the astrophysical7Li(p, α) rate. See also [2000HA50] for fusion applictions. See also9Be.

20. (a) 7Li( 3He, d)8Be, Qm = 11.7616(b) 7Li(3He,αd)4He, Qm = 11.85348

Deuteron groups are observed to8Be∗(0,3.0,16.6,16.9,17.6,18.2). For theJπ =2+ isospin mixed states see Table 8.11. Angular distributions have been mefor E(3He) = 390–1130 keV [2003FR22], forE(3He) = 0.9 to 24.3 MeV and aE(3 He)= 33.3 MeV: see [1974AJ01,1979AJ01,1984AJ01]. Reaction (b) has been stat E(3He)= 5.0 MeV [1985DA29] and at 9, 11 and 12 MeV [1986ZA09].8Be∗(0, 3.0)are reported to be involved [1985DA29]. Implications of this reaction for destroying7Liand7Be in astrophysical environments is discussed in [2003FR22]. See also10B.

21. (a) 7Li(α, t)8Be, Qm = −2.5588(b) 7Li(α,αt)4He, Qm = −2.46691

Angular distributions have been measured toEα = 50 MeV: see [1974AJ01,1979AJ01988AJ01]. The ground state of8Be decays isotropically in the cm system:Jπ = 0+. Se-quential decay (reaction (b)) is reported atEα = 50 MeV via8Be∗(0,3.0,11.4,16.6,16.9,

19.9): see [1974AJ01]. See also [1992KO26].

22. (a) 7Li( 7Li, 6He)8Be, Qm = 7.2789(b) 7Li(7Li, α + 6He)4He, Qm = 7.3707

8Be∗(0,3.0) have been populated. For reaction (a) see ([1987BO1M];E(7Li) =22 MeV), and for reaction (b) see ([1996SO17];E(7Li) = 8 MeV).

23. (a) 7Be(n, p)7Li, Qm = 1.64456, Eb = 18.89968(b) 7Be(n,α)4He, Qm = 18.99152(c) 7Be(n,γα)4He, Qm = 18.99152

The total (n, p) cross section has been measured from 25× 10−3 eV to 13.5 MeV. Forthermal neutrons the cross sections to7Li ∗(0,0.48) are 38400± 800 and 420± 120 b,respectively. A departure from a 1/v shape inσt is observed forEn > 100 eV. The astrophysical reaction rate is≈ 1

3 lower than that previously used, which could lead to

increase in the calculated rate of production of7Li in the Big Bang by as much as 20%[1988AJ01]: see also [1998FI02]. Results from aR-matrix analysis of reaction (a) over
Page 39: Energy levels of light nuclei A = 8,9,10

8Be

eirt

widththat(n,ee

ed:taor.

elyxi-

in-e,atrix

the

ser

sured

eyis

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 193

Table 8.14R-matrix parameters for8Be levels observed in7Be(n, p) [2003AD05]

Ex (MeV) Eres (MeV) Γn (MeV) Γp (MeV)

18.90 0.0027 0.225 1.40919.23 0.33 0.077 0.08821.56 2.66 0.490 0.610

the range fromEcm = 10−8–9.0 MeV [2003AD05] are summarized in Table 8.14. In thanalysis,8Be∗(19.07) and8Be∗(19.24) are treated as a single resonance. A differenR-matrix analysis [1988KO03] found aT = 1 impurity of ≈ 24% andΓ = 122 keV for the2− 8Be∗(18.9) state. The approach of [1988KO03] defines the resonance energy andas a pole of theS-matrix on the so-called Riemann sheet, which yields total widthsare smaller than the sum of the partial widths [2003AD05]. At thermal energies theα)cross section is 0.1 mb and the (n,γα) cross section is 155 mb: see [1974AJ01]. Salso references cited in [1988AJ01].

24.8Li(β−)8Be, Qm = 16.0052

8Li decays mainly to the broad 3.0 MeV, 2+ level of 8Be, which decays into twoα-particles. Both theβ-spectrum and the resultingα-spectrum have been extensively studisee [1955AJ61,1966LA04]. See also8B(β+). Studies of the distribution of recoil momenand neutrino recoil correlations indicate that the decay is overwhelmingly GT, axial vect[see reaction 1 in8Li] and that the ground state of8Li has Jπ = 2+: see [1980MC07]Detailed calculations are necessary to obtain the logf t values for decay to8Be∗(3.0);values in the literature are: logf t = 5.37 [1986WA01], logf t = 5.72 [1989BA31].

The data of [1971WI05] for8Li and 8B β-decay have been analyzed extensiv[1986WA01,1989BA31,2002BH03]. In [1986WA01] a many-level one-channel appromation R-matrix analysis of theβ-delayedα particle spectra in the decay of both8Liand 8B [as well as of theL = 2 α–α phase shifts] found that there was no need totroduce “intruder” states belowEx ≈ 26 MeV of 8Be in order to explain the data [see.g., [1969BA43,1974AJ01,1976BA67,1979AJ01]]. Warburton extracted the GT melements, for the decay to8Be∗(3.0) and the doublet near 16 MeV, and pointed outdifficulties in extracting meaningfulEx, Γ and logf t values fromβ± decay to the broad8Be∗(3.0) state. On the other hand, theR-matrix analysis of Barker [1989BA31] requirea broad 2+ intruder state at≈ 9 MeV. See [1998FA05,2000BA89,2001CA50] for furthcomments on intruder states in8Be.

Beta-α angular correlations have been measured for the decays of8Li and 8B for theentire final-state distribution: see Table 8.10 in [1979AJ01]. [1980MC07] have meaβ–α correlations as a function ofEx in the decay of8Li and 8B; by detecting theβ andbothα particles involved in the8Be decay, theβ–ν–α correlations were determined. Thfind that the decay is GT for 2< Ex < 8 MeV. The absence of Fermi decay strengthexpected because the isovectorcontributions from the tails of8Be∗(16.6,16.9) interfere

destructively in this energy region: see [1980MC07]. The measurement of theβ-decayasymmetry as a function ofEβ is reported by [1985BIZZ,1986BI1D]. [1986NAZZ] have
Page 40: Energy levels of light nuclei A = 8,9,10

8Be

dtes

don the

es

low50].era-

e re-also

6 and

194 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

measured theβ-spectrum and compared it withthe spectrum predicted from theα-breakupdata. See also references cited in [1988AJ01].

25.8Li(p, n)8Be, Qm = 15.2228

Angular distributions of8Be from 1H(8Li, 8Be) were measured atEcm = 1.5 MeV[1993CA04]. The8Beg.s. was reconstructed by detecting the coincidentα particles and thedata were transformed to represent the inverse kinematics8Li(p, n) reaction. The observecross section,σtot = 21± 2(stat.)± 4.2(norm.) mb, was 2 times smaller than estimabased on a Hauser–Feshbach calculation and indicates that8Li(p, n) does not contributesignificantly to8Li burning in nucleosynthesis. See also [2003IS12].

26.8Be(γ , p)7Li, Qm = −17.2551

A dynamic semi-microscopic model study of8Be(γ , p) considered dipole–dipole anquadrupole–quadrupole forces on the properties of Giant Dipole Resonances builtground state and first excited state of8Be [1995GO21]. See also reaction 14 here.

27.8B(β+)8Be, Qm = 17.9798

The decay [see reaction 1 in8B] proceeds mainly to8Be∗(3.0). Detailed study of thehigh-energy portion of theα-spectrum reveals a maximum nearEα = 8.3 MeV, corre-sponding to transitions to8Be∗(16.63), for which parametersEx = 16.67 MeV,Γ = 150to 190 keV orEx = 16.62 MeV, Γ = 95 keV are derived: see [1974AJ01]. Analys[1986WA01,1989BA31] of theβ± delayedα-spectra following8B and 8Li decay aredescribed in reaction 24. The analysis of [1989BA31] requires a 2+ intruder state in8Be at Ex ≈ 9 MeV, while the analysis of [1986WA01] excludes intruder states beEx = 26 MeV. See also [1988WA1E] and [1988BA75,1998FA05,2000BA89,2001CA

The determination of logf t values requires detailed calculations; values in the litture are: for decay to8Be∗(3.0) logf t = 5.6 [1974AJ01], logf t = 5.77 [1989BA31]; fordecay to8Be∗(16.63) logf t = 3.3 [1969BA43,1979AJ01].

The β+ spectrum has been measured by [1987NA08] and by [2000OR04]: seaction 1 in 8B. See [1988AJ01] for additional references and discussion. See[2000GR03,2000GR07] for theoretical discussion of the cluster structure of 16.16.9 MeV resonances and their role in8B β-decay. See also [1994DE30].

28. (a) 9Be(γ , n)4He4He, Qm = −1.5736(b) 9Be(γ , n)8Be, Qm = −1.6654(c) 9Be(n, 2n)8Be, Qm = −1.6654(d) 9Be(t, n+ t)8Be, Qm = −1.6654(e) 9Be(α,αn)8Be, Qm = −1.6654

Neutron groups to8Be∗(0,3.0) have been studied forEγ = 18 to 26 MeV: see

[1974AJ01,1979AJ01]. For reactions (a) and (b) bremsstrahlungγ rays from 4–8 MeVelectrons were used to measure theθlab = 90 photo-neutron emission excitation function
Page 41: Energy levels of light nuclei A = 8,9,10

8Be

photons9,19].s

m-tical

ciesr

ardging

y

ering

rs5.9–

tO23,

teronsto

s at

o-

for

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 195

[1989VA18].9Be levels atEx = 1.735± 0.003, 2.43 and 3.077± 0.09 MeV were excitedusing a technique that uses electrons in a storage ring to Compton backscatter laserto produce high-quality nearly mono-energeticγ -rays [2001UT01,2001UT03,2002SU12003UT02];B(E1) andB(M1) values are deduced in [2001UT01,2002IT07,2002SUA measurement from neutron threshold toEγ ≈ 20 MeV indicated that8Be excited stateare strongly populated following neutron emission [1992GO27].

The α(αn,γ ) reaction competes with the 3α reaction to bridge theA = 5 andA = 8mass gaps.γ -rays with Eγ = 1.5 to 6 MeV were used to study theα(αn,γ ) reactionrate in inverse kinematics [2001UT03], and the resulting cross sections favor the copilation by NACRE [1999AN35] rather than the evaluation by [1988CA28]. A theorestudy of photodisintegration in the threshold region around the9Be∗(1.684) J π = 1

2+

reso-nance is presented in [2001ME11]. A multicluster-model study of9Be photodisintegration[1998EF05] and anR-matrix analysis of the situation [2000BA21] address discrepanin the low-energy cross section measurements. See also ([1994KA25]; theor.) fo9BeCoulomb dissociation. Neutrons from9Be(γ , n) were used to estimate the number of hX-rays (withEγ > 1.67 MeV) that are produced in the plasma that results from impina 5× 108 W/cm2 laser on a Ta foil [2001SC12]. See [1974AJ01,1979AJ01] and9Be.

Reaction (c) appears to proceed largely via excited states of9Be with subsequent decamainly to 8Be∗(3.0): see [1966LA04,1974AJ01], and9Be and10Be here. Neutrons from9Be(n, 2n) forEn < 10.3 MeV were analyzed to determine the neutron–neutron scattlengthann = −16.5± 1.0 fm [1990BO43]. Measurements of9Be(n, 2n) forEn < 12 MeVwere made to assess the possibility of using9Be as a neutron multiplier in fusion reacto[1994ME08]. See also [1988BE04] for a theoretical evaluation in the range from14.1 MeV.

For reactions (d) and (e) see [1974AJ01] and9Be. For reaction (e) see [1979AJ01].

29. (a) 9Be(p, d)8Be, Qm = 0.5592(b) 9Be(p, p+ n)8Be, Qm = −1.6654(c) 9Be(p, d)4He4He, Qm = 0.6510

For reaction (a) angular distributions of deuteron groups have been reported aEp =0.11 to 185 MeV [see [1974AJ01,1979AJ01,1984AJ01]] and at 18.6 MeV ([1986G1987GO27]; d0 and d1) and 50 and 72 MeV ([1984ZA07]; to8Be∗(0,3.0,16.9,19.2)).Angular distributions of cross sections and analyzing powers were measured for deufrom 9Be(p, d) at Ep = 60 MeV. Analyzing powers for deuterons corresponding8Be∗(3.04,11.4,16.92,19.24) were presented while peaks corresponding to8Be statesat (0,11.04,17.64,18.25,19.4,22.05) were observed; evidence for very broad statehigher energies was also reported [1987KA25]. The angular distributions to8Be∗(0,3.0,

16.9,17.6,18.2,19.1) are consistent withln = 1: see [1974AJ01]. Neutron spectrscopic factors for n+ 8Beg.s. and n+ 8Be∗(3.04) were extracted from a DWBAanalysis of9Be(p, d) atEp = 18.6 MeV [1987GO27], and spectroscopic factorsn + 8Be∗(0,3.04,16.626,16.922,17.640,18.15,19.07) were extracted from9Be(p, d)

at 33.6 MeV [1991AB04]: see9B. For other spectroscopic factor measurements see[1979AJ01,1984ZA07].
Page 42: Energy levels of light nuclei A = 8,9,10

8Be

being-

essm

eor

ersct-hat the

es

utrons,e

ns

de-

anglesand

196 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

An anomalous group is reported in the deuteron spectra between the d0 and the d1groups. AtEp = 26.2 MeV, Ex = 0.6 ± 0.1 MeV (constant withθ ). Analyses of thespectral shape and transfer cross sections are consistent with this “ghost” featurepart of the Breit–Wigner tail of theJπ = 0+ 8Beg.s.: it contains< 10% of the groundstate transfer strength. An analysis of reportedΓcm widths for 8Be∗(3.0) in this reactionshows that there is noEp dependence. The averageΓcm at Ep = 14.3 and 26.2 MeV is1.47± 0.04 MeV. Γcm = 5.5 ± 1.3 eV for 8Beg.s. and 5.2 ± 0.1 MeV for 8Be∗(11.4).Spectroscopic factors for8Beg.s. (including the “ghost” anomaly) and8Be∗(3.0) are 1.23and 0.22 respectively atEp = 14.3 MeV, and 1.53 and 1.02 respectively atEp = 26.2 MeV.The width of8Be∗(3.0) is not appreciably (< 10%) reaction dependent but the nearnof the decay threshold indicates that care must be taken in comparing decay widths froreaction and from scattering data:Eres= 3130± 25 keV (resonance energy in theα + α

cm system) [Ex = 3038± 25 keV] andΓcm = 1.50± 0.02 MeV for 8Be∗(3.0): the corre-sponding observed and formal reaction widths and channel radii areγ 2

res= 580± 50 keV,γ 2λ = 680± 100 keV andrc = 4.8 fm. A study of the continuum part of the inclusiv

deuteron spectra is reported atEp = 60 MeV [1987KA25]. See [1979AJ01,1984AJ01] fthe earlier work.

The effects of electron screening were studied at aroundEp = 16–390 keV. A direct-plus resonance model fit to the data result in the values ofEres= 336± 3 keV andΓlab =205± 6 keV for 10B∗(6.87) andΓα = 68± 2 keV andΓd = 90± 4 keV [1997ZA06].See also [2002BA77]. AtEp = 77–321 keV, angular distributions and analyzing powof deuterons were measured; anR-matrix evaluation of the data indicated that a direreaction model can adequately account for the observations [1998BR10] indicating tsub-threshold state in10B atEx = 6.57 MeV does not contribute. AnR-matrix analysis of10B levels populated forEp < 700 keV is reported in [2001BA47].

Reaction (b) has been studied atEp = 45 and 47 MeV: the reaction primarily populat8Be∗(0,3.0). At Ep = 70 MeV data were evaluated using a DWTA (T -matrix) approachto decompose the 1s and 1p shell contributions in the quasielastic knockout of ne[2000SH01]. See [1979AJ01], and9Be,9B here. For work atEp = 1 GeV see [1985BE30][1985DO16]. For reaction (c) [FSI through8Be∗(0,3.0)] see [1974AJ01,1984AJ01]. Sealso ([1992KO26]; theor.) and10B.

30. (a) 9Be(d, t)8Be, Qm = 4.5919(b) 9Be(d, t)4He4He, Qm = 4.6834

At astrophysically-relevant energies,Ecm = 57–139 keV,9Be(d, t0) angular distribu-tions and total cross sections were measured and are compared with DWBA calculatio[1997YA02]. At Ed = 8–50 MeV, angular distributions of t0 and t1 are evaluated in aDWBA analysis and vertex constants,|G|2, and neutron spectroscopic factors areduced [1995GU22]. Angular distributions of t0 were measured atEd = 7 MeV and wereevaluated in a DWBA analysis that indicatedtransfer mechanismsdominated at forwardangles while compound nucleus mechanisms were most important at backward[1989SZ02]. Levels of11B were observed in measurements of the excitation function

angular distribution for tritons from9Be(d, t0) at Ed = 0.9–11.2 MeV [1994AB25] andEd = 3–11 MeV [1995AB41,2000GE16]. A review of the9Be(d, t0) excitation function
Page 43: Energy levels of light nuclei A = 8,9,10

8Be

een

sgalso

sm

tgystate

-

:

]],ion

om

n in

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 197

for Ed = 237 keV to 11 MeV is given in [2000GE16]. Angular distributions have bmeasured atEd = 0.3 to 28 MeV [see [1979AJ01]], atEd = 18 MeV ([1988GO02]; t0,t1) and atEd = 2.0 to 2.8 MeV ([1984AN16]; t0). At Ed = 28 MeV angular distributionof triton groups to8Be∗(16.6,16.9,17.6,18.2,19.1,19.2,19.8) have been analyzed usinDWUCK: absoluteC2S are 0.074, 1.56, 0.22, 0.17, 0.41, 0.48, 0.40, respectively. SeeTable 8.11. An isospin amplitude impurity of 0.21± 0.03 is found for8Be∗(17.6,18.2):see [1979AJ01].

At Ed = 7 MeV a complete kinematics measurement of9Be(d, t+ 8Be) observed stateparticipating in the sequential decay of8Be [1991SZ06]. The relative energy spectruwas reconstructed and yielded peaks corresponding to the ground state,Ex ≈ 0.6 MeVand 3.00± 0.01 MeV; the observed width for the 3 MeV state wasΓ = 1.23± 0.02 MeV.Analysis in a single-levelR-matrix formalism, best fit withrc = 4.5±0.1 fm, indicates thathe “ghost anomaly” structure at≈ 0.6 MeV is the result of deformation in the high-enertail of the8Be ground state. While the cross section corresponding to the first excitedpeaks at 3.00 MeV, theR-matrix fit indicates that the resonance energy is 3.12±0.01 MeV(Ex = 3.03± 0.01 MeV) withΓres= 1.43± 0.06 MeV [1991SZ06].

A kinematically complete study of reaction (b) atEd = 26.3 MeV indicates the involvement of8Be∗(0,3.0,11.4,16.9,19.9+ 20.1): see [1974AJ01].

31. (a) 9Be(3He,α)8Be, Qm = 18.9122(b) 9Be(3He,α)4He4He, Qm = 19.0041

Angular distributions have been measured in the rangeE(3He)= 3.0 to 26.7 MeV andatE(3 He)= 33.3 MeV (to 8Be∗(16.9,17.6,19.2)) [S = 1.74,0.72,1.17, assuming mixedisospin for8Be∗(16.9)]. The possibility of a broad state atEx ≈ 25 MeV is also suggestedsee [1979AJ01]. See also [1987VA1I].

Reaction (b) has been studied atE(3He)= 1.0 to 10 MeV [see [1979AJ01,1984AJ01atE(3He)= 3 to 12 MeV [1986LA26] and at 11.9 to 24.0 MeV [1987WA25]. The reactis reported to proceed via8Be∗(0,3.0,11.4,16.6,16.9,19.9,22.5): see [1979AJ01] and[1986LA26,1987WA25]. For a discussion of the width of8Be∗(11.4) see [1987WA25].Angular distributions for9Be(3He,α) were evaluated to determine the contributions frneutron pickup vs. heavy particle stripping;9Be spectroscopic factors forSn andSα werecalculated [1997ZH40]. See also ([1992KO26]; theor.). See also9Be here and12C in[1980AJ01,1988AJ01].

32.9Be(α, α′n)8Be, Qm = −1.6654

A summary of the (α, α′n) cross sections used in the SOURCES code is give

[2003SH22]. The SOURCES code [2002WI1K] is used, for example, to calculate neutronenergies and doses from9Be-actinide radioactive sources.
Page 44: Energy levels of light nuclei A = 8,9,10

8Be

ea-

r

a-

of

ere-

ortant

U14].

198 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

33. (a) 9Be(6Li, 7Li) 8Be, Qm = 5.5849(b) 9Be(7Li, 8Li) 8Be, Qm = 0.3669(c) 9Be(9Be,10Be)8Be, Qm = 5.1468

Angular distributions have been studied atE(6Li) = 32 MeV involving 8Be∗(0,3.0)

and 7Li ∗(0,0.48) [1985CO09]. For reaction (b) see [1984KO25]. For reaction (c) msurements atE(9Be) = 48 MeV were evaluated with a CCBA model;8Be∗(3.04,11.3)

played an important role in the reaction [2003AS04]. Also see10Be and [1985JA09]. Fothe earlier work see [1979AJ01].

34.9Be(12C,13C)8Be, Qm = 3.2809

Optical model parameters for8Be + 13C were deduced from9Be(12C,13C)8Be forE(12C) = 65 MeV. For9Be + 12C and8Be + 13C, energy-dependent optical model prameters are given forEcm = 5–50 MeV [1999RU10].

35.10Be(p, t)8Be, Qm = 0.0042

The angular distribution for the transition to the firstT = 2 state8Be∗(27.49) is verysimilar to the measured10Be(p,3He) angular distribution that is measured for populationthe analog state,8Li ∗(10.82). They are both consistent withL = 0 using a DWBA (LZR)analysis: see [1979AJ01,1984AJ01] and Table 8.5 in [1984AJ01].

36. (a) 10B(π+, 2p)8Be, Qm = 132.1013(b) 11B(π+, 2pn)8Be, Qm = 120.6472

Total proton emission cross sections followingπ+ absorption on10B and 11Bwere measured atEπ+ = 0,100,140 and 180 MeV, corresponding cross sections wσ [10B(π+, 2p)] = 8, 18, 17, 17 mb andσ [11B(π+, 2pn)]= 0.18, 0.80, 2.0, 3.4 mb, respectively [1992RA11].

37.10B(K+, K+ + d)8Be, Qm = −6.0267

Angular distributions were measured for10B(K+,K+d) at EK+ = 130–268 MeV. ADWIA analysis indicated that direct knock-out and 2-step mechanisms are imp[1991BE42].

38.10B(γ , p+ n)8Be, Qm = −8.2513

Bremsstrahlung photons were used to measure the10B(γ , pn) reaction atEγ = 66–103 MeV in a study of two-body photon absorption and final state interactions [1988S

39.10B(n, t)8Be, Qm = 0.2305

The breakup of10B by 14.4 MeV neutrons involves, among others,8Beg.s. [1984TU02].

The cross section of10B(n, t)2α, for thermal neutrons is reported asσthermal= 7 ± 2 mb[1987KA32]. See also [1979AJ01] and11B in [1990AJ01].
Page 45: Energy levels of light nuclei A = 8,9,10

8Be

t-

,

e

en-

,

viola-

V,ete

gyddy

ingd in

e

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 199

40.10B(p,3He)8Be, Qm = −0.5332

Angular distributions of the3He ions to8Be∗(0,3.0,16.6,16.9) have been studied aEp = 39.4 MeV [see [1974AJ01]] and atEp = 51.9 MeV ([1983YA05]; see for a discussion of isospin mixing of the 16.8 MeV states).

41. (a) 10B(d,α)8Be, Qm = 17.8198(b) 10B(d,α)4He4He, Qm = 17.9117

Angular distributions have been reported atEd = 0.5 to 7.5 MeV: see [1974AJ011979AJ01]. AtEd = 67–141 keV, angular distributions ofα0 and α1 were measuredand the10B(d,α0) and10B(d,α1) astrophysicalS-factors were deduced [1997YA02]. Thangular-dependent cross sections forα0, α1 and 3α processes were measured forEd =120–340 keV and in each case theS-factor was observed to increase with decreasingergy [2001HO22]. Yield ratios for10B(d, p)/10B(d,α) were measured atEd = 58–142 keV[1993CE02]. AtEd = 7.5 MeV the population of8Be∗(16.63,16.92) is closely the sameconsistent with their mixed isospin character while8Be∗(17.64) is relatively weak con-sistent with its nearly pureT = 1 character.8Be∗(16.63,16.92,17.64,18.15) have beenstudied forEd = 4.0 to 12.0 MeV. Interference between the 2+ states8Be∗(16.63,16.92)varies as a function of energy. The cross-section ratios for formation of8Be∗(17.64,18.15)vary in a way consistent with a change in the population of theT = 1 part of the wavefunction over the energy range: at the higher energies, there is very little isospintion. At higherEx the 3+ state atEx = 19.2 MeV is observed, the neighboring 3+ state atEx = 19.07 MeV is not seen.Γ16.6 = 90± 5 keV,Γ16.9 = 70± 5 keV, Q = 290± 7 keV:see Table 8.11 and [1979AJ01]. Relative widths of8Be levels at 19.86 and 20.1 MeΓα/Γp = 2.3 ± 0.5 andΓα/Γp = 4.5 ± 0.6, respectively, were determined by a complkinematics measurement of10B(d, 2α) and10B(d,7Li +p) atEd = 13.6 MeV [1992PU06].At Ed = 48 MeV evidence was observed for an8Be state atEx = 32 MeV withΓ = 1 MeV[1993PA31]; levels were also seen at8Be∗(0,3.0,11.4,16.6[u],16.9[u],17.6,≈ 19,≈20,21.5,22.2,24,25.2).

At Ed = 4.2 to 6.6 MeV measurements were carried out by detectingα coincidences ina kinematical star configuration [1992BO1H].12C was excited into the excitation enerregion near 30 MeV, which was then followed by 3α decay. The analysis, which indicatesequential decay through the8Be∗(11.4) state, was intended to stimulate activity in 3-bointeractions by invoking an alternative approach.

Reaction (b) [Ed < 5 MeV] takes place mainly by a sequential process involv8Be∗(0,2.9,11.4,16.6,16.9): see [1979AJ01]. See also [1983DA11] [The work quote[1984AJ01] has not been published.] AtEd = 13.6 MeV in addition to8Be∗(16.6,16.9),states withEx ≈ 19.9–20.2 MeV withΓ ≈ 0.7–1.1 MeV are involved [1988KA1K]. Sealso [1992KO26].

42.10B(α, 6Li) 8Be, Qm = −4.5529

Angular distributions for the8Be∗(0,3.0) are reported in a measurement of10B(α, 6Li)

at Eα = 27.2 MeV [1995FA21]; it was deduced that direct processes are dominant in thereactions. See reaction 40 in [1984AJ01] and6Li in [2002TI10].
Page 46: Energy levels of light nuclei A = 8,9,10

8Be

,ionections

t

changence of

nsts ofic4] for

da-

].

f

01].

200 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

43. (a) 11B(p,α)8Be, Qm = 8.590(b) 11B(p,α)4He4He, Qm = 8.682(c) 11B(p, 2α)4He, Qm = 8.682

Angular distributions have been measured atEp = 0.04 to 45 MeV [see [1974AJ011979AJ01,1984AJ01]]. Theα0 and α1 excitation functions and astrophysical reactrates have been determined by measuring angular dependent differential cross sand total cross sections atEcm = 0.12–1.10 MeV [1987BE17], atEp = 4.5 to 7.5 MeV[1983BO19], atEp = 40–180 keV [1992CE02], atEcm = 17–134 keV [1993AN06], a1.7–2.7 MeV [1998MA54], and atEp = 0.4–1.6 MeV [2002LI29]. A DWBA evaluationof data at 398, 498 and 780 keV indicated that direct mechanisms dominated over exprocesses at astrophysical energies [1995YA07]. A calculation of the expected influeelectron screening, due to using atomic nuclei, indicates that the astrophysicalS(0)-factordeduced from lab measurements may be 2.5times greater than the rate when bare ioparticipate in the reaction [1993AN06]. See also [2002BA77,2002HA51]. The effechigher order processes including vacuum polarization, relativity, bremsstrahlung, atomscreening and atomic polarization are reviewed in [1997BA95]. See also [1996RA1DWBA analysis of data from 10–1000 keV.

Angular distributions ofα0 andα1 particles were measured around the12C∗(16.1) res-onance atEp = 163 keV;Ecm = 148.3± 0.1 keV andΓ = 5.3 ± 0.2 keV were deduce[1987BE17]. The12C∗(16.57) resonance was evaluated in (p,α) data and resonance parmeters ofEres= 596± 30 keV andΓ = 383± 40 keV were deduced [1993AN06].

Reaction (b) has been studied forEp = 0.15 to 20 MeV: see [1974AJ01,1984AJ01The reaction proceeds predominantly by sequential two-body decay via8Be∗(0,3.0). Seealso12C in [1990AJ01], and [1992KO26].

Reaction (c) was measured atEp = 2–5.5 MeV by [1995BO35]. A reconstruction othe 2α relative energy spectrum was analyzed to evaluate parameters for8Be∗(3.0).

44.11B(3He,6Li) 8Be, Qm = 4.571

At E(3He)= 71.8 MeV angular distributions of the6Li ions to 8Be∗(0,3.0,16.6,16.9,

17.6,18.2) are reported [1986JA14]. For the earlier work at 25.6 MeV see [1979AJSee also [1986JA02].

45.11B(α, 7Li) 8Be, Qm = −8.757

The work reported in [1984AJ01] has not been published. See also7Li in [2002TI10]and references cited in [1988AJ01].

46.11B(9Be,12B)8Be, Qm = 1.705

See [1984DA17] and12B in [1990AJ01].

Page 47: Energy levels of light nuclei A = 8,9,10

8Be

,

-

s

1,)4,10,

or re-

.

eat

-

e

-

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 201

47.12C(γ , p+ t)8Be, Qm = −27.1804

The8Be ground state and excited 0+ and 2+ states are reported to participate in the12Cphotodisintegration reaction12C(γ , pt) at energies up toEγ = 150 MeV; see [1989VO041990DO03].

48.12C(e, e′α)8Be, Qm = −7.3666

A DWIA calculation of12C(e, e′α) at 500–650 MeV qualitatively evaluated the restructuring of excited clusters following knockout reactions [1999SA27].

49.12C(π+, 3p+ n)8Be, Qm = 104.6903

The energy and mass dependence of pion(π+) absorption leading to multiple protonin the final state was measured atEπ+ = 30–135 MeV [2000GI07].

50. (a) 12C(n, nα)8Be, Qm = −7.3666(b) 12C(p, pα)8Be, Qm = −7.3666(c) 12C(p, d+ 3He)8Be, Qm = −25.7196

The first two of these reactions involve8Be∗(0,3.0): see [1974AJ01,1979AJ01984AJ01] and [1985AJ01]. For reaction (a), see [1986AN1M]. For reaction (bα-spectroscopic factors in12C for α + 8Be∗(0,3.0) are deduced in [1995NE11,1997SA01998YO09]. Theα-cluster knockout reaction mechanism is evaluated in [1987ZH1994NE05,1995GA39,1995NE11,1995TC01,1997SA04,1998YO09,1999HA27]. Faction (c) see ([1983LI18]; theor.).

51. (a) 12C(d,6Li) 8Be, Qm = −5.8927(b) 12C(d, dα)8Be, Qm = −7.3666

Measurements of angular distributions and polarization observables [iT11(θ), T20(θ),T21(θ) and T22(θ)] are reported for12C(d,6Li) 8Beg.s. at 18 and 22 MeV [1987TA07]DWBA analysis is used to evaluateα-spectroscopic factors from12C(d,6Li) at Ed =41 MeV [1988RA20] and atEd = 15–55 MeV [1988RA27]. Angular distributions havbeen studied atEd = 12.7 to 54.3 MeV [see [1974AJ01,1979AJ01,1984AJ01]] andEd = 18 and 22 MeV ([1986YA12]; to8Beg.s.) and 51.7 MeV ([1986YA12]; to8Be∗(0,3.0, 11.4) as well as atEd = 50 MeV [1987GO1S], 54.2 MeV ([1984UM04]; FRDWBA) [Sα = 0.48, 0.51 and 0.82 for8Be∗(0,3.0,11.4)] and 78.0 MeV ([1986JA14]; to8Be∗(0,3.0,16.6,16.9)). See also ([1985GO1G];Ed = 50 MeV). For reaction (b) se([1984AJ01]). See also [1984NE1A] and references cited in [1988AJ01].

52. (a) 12C(t,7Li) 8Be, Qm = −4.8997(b) 13C(t,8Li) 8Be, Qm = −7.8137

Angular distributions from12C(t,7Li) and13C(t,8Li) were evaluated in a DWBA analy

sis to deduce spectroscopic factors in12C for α + 8Beg.s. [1989SI02]. See also7Li in[2002TI10].
Page 48: Energy levels of light nuclei A = 8,9,10

8Be

,

1]

factorsV

atth

r

Vee

202 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

53.12C(3He,7Be)8Be, Qm = −5.7805

Angular distributions have been obtained atE(3He)= 25.5 to 70 MeV [see [1979AJ011984AJ01]] and atE(3 He)= 33.4 MeV ([1986CL1B];8Beg.s.; alsoAy). 8Be∗(0,3.0,11.4,

16.6,16.9,17.6) have been populated.

54. (a) 12C(α, 2α)8Be, Qm = −7.3666(b) 12C(α, 8Be)8Be, Qm = −7.4584

These reactions have been studied atEα to 104 MeV [see [1979AJ01,1984AJ0and12C in [1985AJ01]] and at 31.2 MeV ([1986XI1A]; reaction (a)):8Be∗(0,3.0,11.4)

are populated. See also references cited in [1988AJ01]. Alpha spectroscopic8Be∗(0,3.0) were measured by(α, 2α) knockout at 200 MeV [1999ST06] and 580 Me[1999NA05].α-particle angular correlations were measured from the12C∗ → α + 8Bedecay to determine the polarization characteristics of the12C∗(9.64; 3−) state, which wasexcited by12C(α, α′)12C∗(9.64) → α + 8Be [1989KO55].

55. (a) 12C(9Be,13C)8Be, Qm = 3.2809(b) 12C(11B, 15N)8Be, Qm = 3.6248

Angular distributions involving8Beg.s. + 13Cg.s. (reaction (a)) have been reportedE(9Be) = 20 to 22.9 MeV andE(12C) = 10.5 to 13.5 MeV: see [1984AJ01]. For boreactions see also [1983DEZW].

56. (a) 12C(12C,16O)8Be, Qm = −0.2047(b) 12C(16O,20Ne)8Be, Qm = −2.6367(c) 12C(20Ne,24Mg)8Be, Qm = 1.9500(d) 12C(20Ne,α + 20Ne)8Be, Qm = −7.3666(e) 12C(24Mg, 16O+ 12C)8Be, Qm = −14.1382

For reaction (a)12C(12C,16O) was measured in a study of24Mg excited states nea33 MeV at E(12C) = 27–36 MeV [1995AL25,1996AL03,1997SZ01]. See also16O in[1993TI07] and references cited in [1988AJ01]. For reaction (b) see reaction 18 in20Nein [1987AJ02,1985MU14] and ([1988AL07]; location of a 10+ state in20Ne at Ex ≈27.5 MeV). Evidence for 11 states in24Mg with excitation energy between 22 and 30 Meis seen in reaction (c) atE(20Ne)= 110 and 160 MeV [2001FR03]. For reaction (d) s[1987SI06]. States in28Si at Ex = 28.0 MeV [Jπ = 13−], 29.8 MeV [(11)], 33.4 MeV[8+(10+)] and 34.5 MeV [(12, 14)+] are observed in reaction (e) atE(24Mg) = 170 MeV[2001SH08].

57.13C(d,7Li) 8Be, Qm = −3.5888

See7Li in [2002TI10].

Page 49: Energy levels of light nuclei A = 8,9,10

8Be, 8B

tion of

wh

ata/

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 203

58.13C(α, 9Be)8Be, Qm = −10.7393

See ([1984SH1D,1988SH1F];Eα = 27.2 MeV) and9Be in [1979AJ01].

59.13C(9Be,14C)8Be, Qm = 6.5110

See14C in [1986AJ01].

60.14N(n,7Li) 8Be, Qm = −8.9148

See7Li in [2002TI10].

61.16O(γ , 4α), Qm = −14.4367

The16O(γ , 4α) reaction was studied with bremsstrahlungγ rays up toEγ = 300 MeV[1995GO10]. Evidence in the energy reconstruction spectra indicates that participathe8Be∗(0,3.0) states increases with increasingγ -ray energy.

62.16O(p, p+ 2α)8Be, Qm = −14.5285

See ([1986VD04];Ep = 50 MeV).

63.16O(16O,24Mg)8Be, Qm = −0.4821

See [1987CZ02].

64.natAg(14N, 8Be)X

Sequential-decay neutron spectroscopy of7Be + n products fromnatAg + 14N at35 MeV/A indicates the participation of8Be∗(19.24) with 19.234± 0.012 MeV andΓ = 210± 35 keV [1989HE24].

8B(Figs. 4 and 5)

GeneralReferences to articles on general properties of8B published since the previous revie

[1988AJ01] are grouped into categories andlisted, along with brief descriptions of eacitem, in the General Tables for8B located on our website at www.tunl.duke.edu/nucldGeneral_Tables/8b.shtml.

µ = 1.0355± 0.0003µ : see [1996FIZY].

N

Q = 68.3± 2.1 mb [1992MI18,1993MI35].

Page 50: Energy levels of light nuclei A = 8,9,10

8B

in

fas

s-

largelem”.

he6BA28,ns

than

,e

ionsV

-

204 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

1. 8B(β+)8Be, Qm = 17.9798

The β+ decay leads mainly to8Be∗(3.0). The half-life is 770± 3 ms; logf t = 5.6[1974AJ01]. There is also a branch to8Be∗(16.63), and evidence for population of an8Beintruder state atEx ≈ 9 MeV. See reactions 24 and 27 in8Be. See also references cited[1988AJ01].

A newβ-NMR technique (NNQR) was used to measure the quadrupole moment o8B,|Q(8B, 2+)| = 68.3± 2.1 mb [1992MI18,1993MI35]. The large quadrupole moment wreported as the first evidence of a proton halo in8B.

The tilted foil technique was used to polarize atomic8B nuclei. The polarization watransferred to the nucleus via the hyperfine interaction and the resultingβ-decay asymmetry indicated that the polarization was saturated at 3.71± 0.28% [1993MO34].

The β-decay of8B provides the high-energy neutrinos that are measured byvolume neutrino detectors that are attempting to resolve the “solar neutrino probThe neutrino energy spectrum from8B β-decay, which is essential to interpret tdata from these detectors, has been measured and evaluated in [1987NA08,1991999DE33,2000OR04,2003RE26,2003WI16]. The8B neutrino absorption cross sectio(±3σ) for Cl and Ga areσCl = 1.14± 0.11× 10−42 cm2 andσGa= 2.46+2.1

−1.1 × 10−42 cm2

[1996BA28]. However, the results of [2000OR04] suggest a harder neutrino spectrumthat used by [1996BA28].

For comments about the weak neutral current interaction in8B β-decay see [1989TE041992DE07,2003SM02]. For theoretical discussion of8Be levels that are involved in thdecay see [1989BA31,1993CH06,2000GR07,2002BH03] and reaction 27 in8Be.

2. 6Li(d, π−)8B, Qm = −135.2692

At Ed = 300 and 600 MeV8B∗(0,0.77,2.32) are populated: see [1984AJ01].

3. 6Li( 3He, n)8B, Qm = −1.9748

Angular distributions for the n0 group have been reported atE(3He)= 4.8 to 5.7 MeV:L = 0. Two measurements for theEx of 8B∗(0.77) are 767± 12 and 783± 10 keV [Γ =40± 10 keV]: see [1974AJ01] and9B.

4. 7Li(p, π−)8B, Qm = −140.2949

Angular distributions and analyzing powers have been measured for the transitto 8B∗(0,0.77,2.32) at Ep = 199.2 MeV [1987CA06] and at 280, 345 and 489 Me[1988HU11]: theAy to 8B∗(2.32) is characteristic of that to a stretched high-spin, twoparticle one-hole final state [Jπ of 8B∗(2.32) is 3+] [1987CA06].

5. 7Li( 7Li, 6H)8B, Qm = −34.966

See6H.

Page 51: Energy levels of light nuclei A = 8,9,10

8B

].

o

ingr-

come

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 205

Table 8.15Energy levels of8Ba

Ex (MeV ± keV) Jπ ; T τ1/2 or Γcm (keV) Decay Reactions

g.s. 2+; 1 τ1/2 = 770± 3 ms β+ 1, 2, 3, 4, 5, 6, 8, 9, 10, 120.7695± 2.5b,c, 1+; 1c,d Γ = 35.6± 0.6b,c γ , p 2, 3, 4, 6, 7, 9, 10, 122.32± 20c 3+; 1 350± 30 c 4, 6, 7, 9, 10, 123.5± 500c 2− 8± 4 MeVc 6, 7

10.619± 9 0+; 2 < 60 12

a See reactions 6 and 7 for evidence of additional states.b Average of values from reactions 3, 6 and 7.c From data reviewed in this evaluation.d See [2004TA17].

Table 8.16Electromagnetic transition strengths in8B

Ei → Ef (MeV) Jπi ; Ti → Jπ

f ; Tf Γγ (eV) Mult. Γγ /ΓW

0.7695→ 0 (1+; 1) → 2+; 1 (2.52± 0.11) × 10−2a M1 2.63± 0.122.32→ 0 3+; 1→ 2+; 1 0.10± 0.05b M1 0.38± 0.19

a Γγ is an average of 24.8± 2.9 meV [2003BA51] and 25.3± 1.2 meV [2003JU04].b From a reanalysis of the data in [2003JU04] [K.A. Snover, private communication].

Table 8.17Resonances observed in7Be(p,γ )8B

Ecm (keV) Γp (keV) σ (nb) Γγ (meV) Reference

632± 10 37± 5 1180± 120 24.7± 4.2 [1983FI13]633 35± 3 1250± 100 24.8± 2.9 [2003BA51]630± 3 35.7± 0.6 25.3± 1.2 [2003JU04]

630 ± 3 35.7 ± 0.6 1221 ± 77 25.2 ± 1.1 “mean” valuea

2183 350 100 ± 50b [2003JU04]

a ExcludesσR = 2200± 220 nb,Γγ = 50± 25 meV from [1966PA16], which had been cited in [1988AJ01b Private communication from K.A. Snover; revised fromΓγ = 150± 30 meV [2003JU04].

6. 7Be(p,γ )8B, Qm = 0.1375

Absolute cross sections have been measured forEp = 112 keV to 10.0 MeV. See als[1984AJ01] and references cited in [1988AJ01]. Resonances are observed atEp = 720 and2497 keV: see Table 8.17. AnR-matrix evaluation of (p,γ ) and (p, p′) [reaction 7] datasupports the existence of a 2− level atEx = 3–4 MeV [2000BA46], and a 1+ resonance ispredicted atEx ≈ 1.4 MeV [2000CS01]. See however [2001RO32] and reaction 9.

Direct measurements of7Be(p,γ ) at low energies are typically carried out by measurβ-delayed alpha particles from decay of the residual8B nucleus. However, systematic erors associated with8B backscattering losses from the target prior to counting have be

a concern, based on new measurements and Monte Carlo calculations (see [1998ST20] andreaction 9 in8Li).
Page 52: Energy levels of light nuclei A = 8,9,10

8B

ts ofntsct andO23,

206 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Fig. 4. Energy levels of8B. For notation see Fig. 2.

A review of astrophysical reaction rates [1998AD12] favored the measuremen1982FI03 and deduced a value ofS(0) = 19+4

−2 eV b, however, several measureme[see Table 8.18] have been reported since this review. See other overviews of direindirect measurements in [2001MO32,2001MU20,2002MO11,2003DA30,2003M

2003MO28]: for cluster model calculations see [1988DE38,1988KO29,1993DE30,1993RO04,1994DE03,1995CS01,1997CS07,1998CS03,1998MO13,2000CS03]; for di-
Page 53: Energy levels of light nuclei A = 8,9,10

8B

]

-

18,also

eening07,suched

s0JE10,

p-o zero

s

nte-

,,the

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 207

Table 8.18Summary of recent direct measurements of7Be(p, γ )8Ba

Energy S(0) factor (eV b) Refs.

Ecm = 117–1230 keV 21.7± 2.5 [1983FI13]Ep = 0.35–1.4 MeV 18.5± 1.0b [1997SC46,1998HA05]Ecm = 1.09 and 1.29 MeV 20.3c [1999HA51]Ep = 0.32–2.61 MeV 18.4± 0.6 [2001ST27]Ep = 111.7, 134.7 and 185.8 keV 18.8± 1.7d [2001HA26,2001HA36]Ecm = 116–2460 keV 22.1± 0.6(expt.)±0.6(theory)e [2003JU04]Ecm = 992 keVf 16± 4 [2000GL04]

15.3± 4.5 [2001TE03]Ecm = 302–1078 keV 21.2± 0.7g [2003BA04,2003BA51,2003BA84

a See [1983FI13], [1998AD12] for discussion of prior measurements.b Depending on the extrapolation theory, values ofS(0) ranging from 16.6 to 20.0 eV b were deduced;S(0) =

18.5± 1.0 eV b was recommended.c MeasuredS(1.09 MeV)= 22.7 ± 1.2 eV b andS(1.29) = 23.8 ± 1.5 eV b using a7Be target that was im

planted on a Cu backing [to minimize backscattering losses]; these values are extrapolated toS(0) = 20.3 eV b.d Weighted mean including data from [1998HA05], data below 0.43 MeV yieldS(0) = 19.2± 1.2 eV b.e Based onEcm = 116–362 keV. This value is revised fromS = 22.3 ± 0.6(expt.)± 0.6(theory) which was

given in [2001JUZZ,2001JU01].f Measurement with7Be particles on a windowless hydrogen target:σ (992 keV)= 0.41± 0.11 p-barns.g Cu substrate with implanted7Be. The low-energy part of the data extrapolate toS(0) = 20.8± 1.3 eV b.

rect-plus-resonances andR-matrix calculations see [1987KI01,1988BA29,1993KR1995BA36]; and for shell model calculations see [1996BR04,1998BE44]. See[1992SC22,1993TR06,1994SC14,2003CH79,2003PA33]. The role of electron scrand other effects, for example,7Be deformation, are discussed in [1994KA02,1997CS1997NU01,1998BE1Q,2000LI13]. The correlation of the capture rate with propertiesas the8B quadrupole-moment and the8B valence proton spatial distribution is discussin [1993RI04,1996BR04,1998CS03,2000CS03,2000JE10,2001CS03].

The nature of the shape of theS-factor as the proton capture energy approachezero is discussed in [1998JE04,1998JE10,1998JE11,2000BA09,2000BB09,2002002MU16]. The authors of [1998JE10], [2000VE01] suggest thatS(20 keV) is morerelevant thanS(0) since the Gamow energy is≈ 20 keV, and they suggest that the extraolation of the reaction rate to 20 keV has less uncertainty than the extrapolation tenergy proton capture.

The time reversed reaction8B + γ → 7Be+ p has been measured by exciting8B nu-clei in the Coulomb field of high-Z target nuclei and detecting the7Be and proton product[1994MO33,1998KI19,1999IW03,2001DA03,2001DA11,2002DA15,2002DA26,2003HA30,2003SC14]. The7Be(p,γ )8B cross sections are related to the photodisigration cross sections by the Detailed Balance Theorem. Resulting values ofS(0) are18.9± 1.8 eV b ([1998KI19]; RIKEN), 18.6± 1.2(expt.)± 1.0(theor.) eV b ([1999IW032003HA30,2003SC14]; GSI), and 17.8+1.4

−1.2 eV b ([2001DA03,2001DA11,2002DA152002DA26]; MSU). The field of virtual photons that induce breakup can excite

8B mainly via E1 and E2 multipolarities; however, the proton capture reaction isdominated by E1 strength. Since the numbers of E1 and E2 virtual photons cre-
Page 54: Energy levels of light nuclei A = 8,9,10

8B

nergyri-istribu-y

also-H08,uclearA88].

JE10,

of

erse

-there

.32

fit to

-lfluee op-annels

208 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

ated in the Coulomb field of the target are calculable, depending on projectile eand impact parameter, the ratio ofσ (E2)/σ (E1) in the Coulomb dissociation expements was deduced from asymmetries in, for example, the measured angular dtions. Values for the ratio, which depends on the relative p+ 7Be energy and theorthat is used to determine the E2 strength, range from (0.5 to 5)× 10−4 at Ecm =0.6 MeV [1997KI01,1999IW03,2001DA03,2001DA11,2002DA15,2003SC14]. See[1996KE16,1996VO09]. Calculated estimates of theσ (E2)/σ (E1) ratio in Coulomb dissociation are given in [1994LA08,1995GA25,1995LA17,1996BE83,1996ES02,1996S1997TY01,1999BB07,1999DE23,2002BE76,2003FO07]. Interference between nand Coulomb mechanisms is discussed in [1997TY01,1998DA15,1998NU01,2003MSee also [1993TI01,1994TY03,1996RE16,1997CS02].

Calculations showing the relationship between the low-energy astrophysicalS-factorfor 7Be(p,γ ) and the asymptotic normalization coefficient (ANC) for (7Be, 8B) reactionsare presented in [1990MU13,1994XU08,1995MU10,1997TI03,1998GR07,20002003TI13]. See also reactions 8 and 11.

7. 7Be(p, p)7Be, Eb = 0.1375

The 7Be(p, p) scattering was measured atEcm = 0.3–0.75 MeV using a7Be beam[2003AN29]. The data were analyzed in anR-matrix analysis and indicateEres =634± 5 keV andΓres = 31± 4 keV for the 1+ first excited state. Scattering lengtha01 = 25± 9 fm (channel spinI = 1) anda02 = −7± 3 fm (channel spinI = 2) were alsodeduced from the data.

At E(7Be) = 32 MeV [1998GO16], two resonances were prominent in the invkinematics scattering excitation function,Ex = 2.32 ± 0.02 MeV, Γ = 350± 30 keV,Jπ = 3+ andEx = 2.83± 0.15 MeV, Γ = 780± 200 keV,Jπ = 1+, though poor statistics in the measurement prevent a firm acceptance of the 2.83 MeV level. In additionwas evidence for a broad 2− or 1− level at≈ 3 MeV. At E(7Be)= 25.5 MeV theEx =2.32 MeV Jπ = 3+ level was observed with an additional level atEx = 3.5 ± 0.5 MeV,Γ = 8 ± 4 MeV [2001RO32]. AnR-matrix analysis of the interference between the 2and 3.5 MeV levels indicatesJπ = 2− for the higher state. In the later work, the 1+ stateat Ex = 2.8 MeV, suggested by [1998GO16], was not necessary to obtain a goodthe data. In addition there was no evidence for a level atEx = 1.4 MeV that had beensuggested by [2000CS01]: see reaction 6.

8. 7Be(d, n)8B, Qm = −2.0871

The total2H(7Be, n) cross section was measured atE(7Be) = 26 MeV (σtot = 58±8 mb) and was evaluated to determine the8B → 7Be+ p asymptotic normalization coefficient (ANC)C2

p3/2= 0.711±0.092 fm−1. This can be related to the7Be(p,γ ) astrophysica

capture rate and indicatesS17(0) = 27.4± 4.4 eV b [1996LI12,1997LI05]. Reanalysis othe data using better optical model parameters indicates a smaller ANC and a reduced vaof S17(0) = 23.5±3.7 eV b [1998GA02,1999FE04]. To remove the dependence on thtical model parameters, [2003OG02] performed a continuum-discretized coupled ch

calculation using the spectroscopic factorsS = 0.849 [1987KI01], from this they deduceS17(0) = 20.96 eV b.
Page 55: Energy levels of light nuclei A = 8,9,10

8B

eV

ns

1].

,

tos

in

ndepickup

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 209

9. 9Be(7Li, 8He)8B, Qm = −28.264

Angular dependent differential cross sections were measured for9Be(7Li, 8He)8B from0 to ≈ 12 at E(7Li) = 350 MeV. States in8B were observed at 0, 0.770 and 2.32 M[2001CA37].

10.10B(p, t)8B, Qm = −18.5316

At Ep = 49.5 MeV [see [1974AJ01]] and 51.9 MeV [1983YA05] angular distributiohave been measured for the tritons to8B∗(0,2.32): L = 2 andL = 0+ 2 leading toJπ =2+ and 3+, respectively. Measurements ofEx for 8B∗(2.32) yield 2.29± 0.05 MeV and2.34± 0.04 MeV [Γlab = 0.39± 0.04 MeV]. 8B∗(0.77) is also observed: see [1974AJ0

11. (a) 10B(7Be,8B)9Be, Qm = −6.4484(b) 14N(7Be,8B)13N, Qm = −9.6335

In reaction (a) the asymptotic normalization coefficient (ANC),C23/2, for 8B → 7Be+p

was determined by measuring differential cross sections for10B(7Be,8B) from 0 to ≈35 at E(7Be)= 84 MeV. The value ofC2

p3/2= 0.398± 0.062 fm−1 was deduced which

together withC21/2/C2

3/2 = 0.157, corresponds toS17(0) = 17.8 ± 2.8 eV b [1999AZ02].

For reaction (b)C2p3/2

= 0.371± 0.043 fm−1 was measured in14N(7Be,8B) at E(7Be)=85 MeV, andS17(0) = 16.6± 1.9 eV b was deduced [1999AZ04].

A re-evaluation of the data from (a) and (b)using improved model parameters leadsrevised values and a weighted average ofC2

p3/2= 0.388± 0.039 fm−1 which correspond

to S(0) = 17.3± 1.8 eV b [2001AZ01,2001GA19,2002GA11]. In addition, theC2p3/2

gives

Rr.m.s. = 4.20± 0.22 fm for the valence proton [2001CA21]. See also13C(7Li, 8Li) 12C[reaction 27 in8Li] for a determination of the ANC from charge symmetry.

12.11B(3He,6He)8B, Qm = −16.9175

At E(3He)= 72 MeV the firstT = 2 state is observed atEx = 10.619± 0.009 MeV,Γ < 60 keV: dσ/dΩ (lab)= 190 nb/sr atθlab = 9. No other states are observed with2.4 MeV of this state.8B∗(0,0.77,2.32) have also been populated: see [1979AJ01].

13.12C(π+, dd)8B, Qm = 90.3772

The pion absorption mechanism, which has a characteristic of high energy transfer asmall momentum transfer, was studied atE(π+) = 100 and 165 MeV [2002HU06]. Throle of 2-step processes, such as pion scattering prior to absorption and nucleon

after absorption, is discussed, and simple models for neutron-pickup final state interactionsare presented and shown to reasonably represent the data.
Page 56: Energy levels of light nuclei A = 8,9,10

8B

6]

thalo

lts-served

a-

-ence

210 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 8.19Inclusive measurements of8B breakup

8B energy (MeV/A) Target Refs.

10–40 natSi [1996NE06,1997SK03]20–60 natSi [1995WA19]40 12C [1995PE09,1996SK04]40, 60 9Be,12C, 27Al [1999FU08]41 9Be,197Au [1996KE16]44, 81 208Pb [1998DA14]76 12C [2003EN05]142, 285 natC, 27Al, natSn,208Pb [1997BL08]790 9Be,12C, 27Al [1988TA10,1996OB01]936 natC, natPb [2002CO04,2002CO06,2003ME11440 12C [1999SM04]1440 12C, 208Pb [2001CO06]1470 12C, 27Al, 208Pb [1995SC10]

14.12C(8B, 8B)12C

Angular distributions from quasielastic scattering of8B on 12C were measured a40 MeV/A [1995PE09]. Analysis of the data appears consistent with a proton[1995FA17,1996KN05,1997PE03].

15.14C(8B, 8B)14C

Elastic scattering of8B on 14C was calculated in a folding potential model. Resusuggest that scattering of exotic nuclei from non-(N = Z) nuclei could reveal new information about the nuclear potentials, particularly in cases where rainbow effects are ob[1998KN02].

16.natC(µ, 8B)X

A measurement to determine muon induced background rates in large-volume scintilltion solar neutrino detectors foundσ = 4.16± 0.81 µb and 7.13± 1.46 µb fornatC(µ, 8B)atEµ = 100 and 190 GeV, respectively [2000HA33].

17.58Ni(8B, 7Be)59Cu, Qm = 3.2810

Angular distributions of7Be following the breakup of8B on a58Ni target were measured atE(8B) = 25–75 MeV to evaluate the importance of Coulomb-nuclear interfereffects [2000GU05].

18.9Be to208Pb(8B, X)

Inclusive measurements of8B breakup have been reported: see Table 8.19.

The measured total reaction cross sectionsfor nuclear processes are related to the8B

r.m.s. radius and valence proton r.m.s. radius in simple Glauber-type models. The cross sec-

Page 57: Energy levels of light nuclei A = 8,9,10

8B, 8C

.

nts

f nu-

3,ecting

up ofn

pup

mod-reakup

sug-

oci-E16].Pb at

na-NC)

alue

-indicate

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 211

tions range fromσtot ≈ 800 mb andσ (proton removal)≈ 95 mb atE(8B) = 1471 MeV/Aon a 12C target toσtot ≈ 1.95 b atE(8B) ≈ 15 MeV/A on Si [1995WA19,1996NE06]These cross sections correspond to8B r.m.s. radii around 2.43± 0.01 fm [1996OB01]; thevalence proton r.m.s. radius deduced from theproton removal cross-section measuremeis model dependent and values in the range of 3.97± 0.12 fm [1996NE06] to 6.83 fm[1995SC10] are deduced. See also [1997KN07,1998SH09,1999KN04]. A review oclear sizes deduced from interaction cross sections is in [2001OZ04].

Measurements of the parallel momentum distribution of7Be fragments following thebreakup of8B projectiles are reported in [1995SC10,1996KE16,1996NE06,1997SC01998DA14,1999SM04,2000CO31] and are interpreted in Serber-type models as refldetailed information about the8B valence proton wave function. AtE(8B) = 1.47 GeV/Athe momentum distribution widths from breakup on C, Al and Pb areΓFWHM ≈ 81 ±6 MeV/c [1995SC10]. This width is much narrower than that expected from the breaknuclei with “normal” densities and was interpreted as an indication of a proton halo i8B.However, at energies near 40 MeV/A the momentum distribution of7Be fragments from8B breakup range fromΓ = 62± 3 MeV/c on an Au target (mainly Coulomb breakuprocesses) [1996KE16] toΓ = 95± 7 MeV/c on a Si target (mainly nuclear breakprocesses) [1996NE06]; this is an indication that at this energy, simple Serber-typeels are not adequate to explain the observed momentum distributions since the bmechanisms play a role in determining the observed distributions.

By evaluating fragment momentum distributions in more complex models, it wasgested that the asymmetric7Be fragment momentum distribution from8B breakup on Auat 41 MeV/A reflects the interference of E1 and E2 contributions in Coulomb Dissation and gives information about the relative E2/E1 strength [1996ES02], [1996KA high-resolution measurement of the asymmetric distribution from breakup onE(8B) = 44 and 81 MeV/A deduced thatσ (E2)/σ (E1)≈ 6.7 × 10−4(+2.8

−1.9) at Erel.(p +7Be) = 0.6 MeV [1998DA14]. A more precise value ofσ(E2)/σ (E1)≈ 4.9 × 10−4+1.5

−1.3at Erel. = 0.6 MeV was deduced by including measurements atE(8B) = 83 MeV/A

[2002DA15].Breakup cross sections and7Be core-like fragment momentum distributions are a

lyzed in a modified Glauber model to obtain asymptotic normalization coefficients (Afor the 8B → 7Be + p reaction [2004TR06]. In this analysis of breakup data, the vS17(0) = 18.7± 1.9 eV b is deduced.

At E(8B) = 936 MeV/A, the ratio of (7Be∗(0.429)+ γ )/7Be production was measured on C and Pb targets [2002CO04,2003CO06,2003ME16].The measurementsa 13.3 ± 2.2% component of7Be∗(0.429) in the ground state of8B [2003ME16]. Spec-troscopic factors for7Be∗(0,0.43) were deduced from measurements of12C(8B, 7Be) atE(8B) = 76 MeV/A; C2S = 1.036 and 0.220, respectively [2003EN05].

8C(Fig. 5)

Mass of 8C The atomic mass excess of8C is 35094± 23 keV [2003AU03];Γcm =230± 50 keV [Jπ = 0+; T = 2]: see [1979AJ01].8C is stable with respect to7B + p

Page 58: Energy levels of light nuclei A = 8,9,10

212

8C

D.R

.Tilleyetal./N

uclearP

hysicsA

745(2004)

155–362

neutron–proton mass difference and the Coulomb energy,y,EN = M(Z, A) − ZM(H) − NM(n) − EC, minus theto be isospin multiplets are connected by dashed lines.

Fig. 5. Isobar diagram,A = 8. The diagrams for individual isobars have been shifted vertically toeliminate thetaken asEC = 0.60Z(Z − 1)/A1/3. Energies in square brackets representthe (approximate) nuclear energcorresponding quantity for8Be: hereM represents the atomic mass excess in MeV. Levels which are presumed

Page 59: Energy levels of light nuclei A = 8,9,10

8C, A = 9, 9He

e

d

yn

7 and

n

GR21,

e-f de-t

wh

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 213

Table 8.20Isospin triplet states(T = 1) in A = 8 nucleia

8Li 8Be 8B

Ex (MeV) Jπ Ex (MeV) Jπ Ex (MeV)b Ex (MeV) Jπ Ex (MeV)c

0 2+ 16.626+ 16.922d 2+ 0 2+0.9808 1+ 17.640e 1+ −0.143 0.7695 1+ −0.2112.255 3+ 19.07f 3+ 0.013 2.32 3+ 0.065

a As taken from Tables 8.2, 8.9 and 8.15. The analogs of the broad 1+ levels near 3.2 and 5.4 MeV and thnarrow 4+ level at 6.53 MeV in8Li (see Table 8.2) are unknown in8Be and8B.

b Defined asEx(8Be)− Ex(8Li) − 16.802.c Defined asEx(8B) − Ex(8Li).d TheT = 1 centroid of the 16.626 and 16.922 MeV levels is 16.802 MeV in8Be, assuming an isospin-mixe

doublet withT = 0 intensities proportional to the observedα widths in Table 8.9.e PredominantlyT = 1. A small amount of isospin mixing improves theγ -ray branching ratios for the deca

of the 17.64 and 18.15 MeV levels, and also the channel spin ratio for the formation of the 17.64 MeV level ithe7Li(p, γ ) reaction.

f PredominantlyT = 1. Isospin mixing at the few % level is needed to reproduce the widths of the 19.019.24 MeV levels.

(Q = −0.07 MeV) and unstable with respect to6Be + 2p (Q = 2.14), 5Li + 3p (Q =1.55) and4He + 4p (Q = 3.51). At E(3He) = 76 MeV the differential cross sectiofor formation of 8Cg.s. in the 14N(3He,9Li) reaction is ≈ 5 nb/sr at θlab = 10. The12C(α, 8He)8C reaction has been studied atEα = 156 MeV: dσ/dΩ ≈ 20 nb/sr atθlab =20: see [1979AJ01]. See also [1985AN28,1987BL18,1987SA15,1988CO15,19961996KA14,1996SU24,1997BA54,1997PO12,1998WI10,1999HA61,2000WI09,2001CO21,2003BA99].

A = 9

GeneralReferences to articles on general properties ofA = 9 nuclei published since the pr

vious review [1988AJ01] are grouped into categories and listed, along with briescriptions of each item, in the General Tables forA = 9 located on our website awww.tunl.duke.edu/nucldata/General_Tables/9.shtml.

9He(Fig. 10)

GeneralReferences to articles on general properties of9He published since the previous revie

[1988AJ01] are grouped into categories andlisted, along with brief descriptions of eac

item, in the General Tables for9He located on our website at www.tunl.duke.edu/nucldata/General_Tables/9he.shtml.
Page 60: Energy levels of light nuclei A = 8,9,10

9He, 9Li

tionts

einen]n

onalcu-]

he

].

nts

-

undu-

en ofO26]p-ic

lculated

wh

214 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Mass of 9He Although the value adopted in the 2003 Atomic Mass Evalua[2003AU02] for the 9He ground state is 40.939± 0.029 MeV based on the resulof [1999BO26], an experiment [2000CH31] suggests that the ground-state of9He hasJπ = 1

2+

and lies within 0.2 MeV of the8He + n threshold. In light of this result, thAtomic Mass Evaluation center [private communication from Audi, Wapstra, and Jokhas adopted an atomic mass excess of 39.770± 0.060 MeV for 9He. See the discussiobelow.

The experimental data on states of9He, all from double-charge exchange reactions9Be, was reviewed in [1999KA67] and compared with results from shell-model clations. From the9Be(π−, π+)9He reaction atEπ− = 180 and 194 MeV [1987SE05an atomic mass excess of 40.80 ± 0.10 MeV was obtained, implying that9He is un-stable with respect to decay into8He + n by 1.13 MeV. [1987SE05] also reported tpopulation of excited states of9He at 1.2, 3.8 and 7.0 MeV. In the9Be(14C,14O)9He re-action atElab = 337 MeV, [1999BO26] find a state of9He at 1.27± 0.10 MeV above the8He+n threshold withΓ = 0.10±0.06 MeV. Assuming this to be the ground-state of9He,the measurements of [1999BO26] indicate9He excited states atEx = 1.15± 0.10 MeV(Γ = 0.7 ± 0.2 MeV), 3.03± 0.10 MeV, and 3.98± 0.12 MeV. See also [2001PE27Analogs of the lowest three states have been observed in9Li via 8He+ p elastic scattering[2003RO07].

Evidence has been obtained from neutron-fragment velocity difference measuremein the two-proton knockout reaction9Be(11Be,8He+ n)X that the ground-state of9He isa virtual s-wave state within 0.2 MeV of the8He+ n threshold [2001CH31]. Most structure calculations predict that the two lowest states of9He haveJπ = 1

2+

or Jπ = 12−

[1999KA67]. [2001CH31] obtain theJπ = 12+

state lowest but both states are underboby several MeV with respect to the experimental candidates. Quantum Monte Carlo calclations have a similar problem for theJπ = 1

2−

state [2002PI19], if it is identified with thstate atSn = −1.27 MeV. Both [2001CH31] and [2002PI19] suggest that the promotioneutrons to the sd shell could play an important role. The narrow width from [1999Balso argues against the simple p-shell structure because the single-particle width for awave resonance at the observed energy is≈ 2 MeV and a typical p-shell spectroscopfactor is 0.74± 0.10. Similar conclusions were reached in [2003RO07].

Attempts have also been made to assign spins to excited states by comparing catwo-step transfer angular distributions with those measured for the9Be(13C,13O)9He and9Be(14C,14O)9He reactions [1999BO26,1999KA67].

9Li(Figs. 6 and 10)

GeneralReferences to articles on general properties of9Li published since the previous revie

[1988AJ01] are grouped into categories andlisted, along with brief descriptions of eac

item, in the General Tables for9Li located on our website at www.tunl.duke.edu/nucldata/General_Tables/9li.shtml.
Page 61: Energy levels of light nuclei A = 8,9,10

9Li

).

ions inectedlowestcould

04,.

t

y

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 215

Table 9.1Energy levels of9Lia

Ex (MeV ± keV) Jπ ; T τ1/2 or Γc.m. (keV) Decay Reactions

g.s. 32

−; 3

2 τ1/2 = 178.3± 0.4 ms β− 1, 3, 4, 5, 6, 7, 8, 9, 10

2.691± 5 12

−(γ ) 4, 6, 7, 10

4.296± 15 ( 52

−) Γ = 100± 30b 4, 10, 11

5.38± 60 600± 100 46.43± 15 40± 20 4, 10

a The first evidence forT = 52 states of9Li has been obtained from8He+ p elastic scattering (see reaction 2

b From reaction 4. See also reaction 11.

Ground state properties

µ = 3.4391± 0.0006µN [1983CO11]. See also [1987AR22,2001STZZ];Q = −27.4± 1.0 mb [1992AR07,2001STZZ]. See also [1988AR17],

and see [1992LI24,1993NE08].

The isospin quartets which contain the ground and first-excited states of9Li are wellestablished [1974BE66,1974KA15]. The energies, widths, and relative cross sectthe 7Li(t, p)9Li reaction for the states listed in Table 9.1 are consistent with the expproperties of the first five p-shell states (see the discussion of reaction 4). Thepositive-parity states are expected between 4 and 5 MeV in excitation energy butbe very broad on account of s-wave parentage to8Li. The lowest 2hω state is predictedjust above 5 MeV [B.A. Brown, private communication].

1. 9Li (β−)9Be, Qm = 13.6067

The half-life of9Li is 178.3±0.4 ms: see [1979AJ01]. See also [1986CU01,1988SA1991RE02].9Li decays to a number of states in9Be: see reaction 12 in9Be and Table 9.8The nature of the decay to9Be∗(0, 2.43) withJπ = 3

2−

, 52−

is evidence forJπ = 32−

for 9Li g.s.. The probability for delayed neutron decay,Pn, is (50.8 ± 0.9)%, obtained byaveraging(50.0± 1.8)% from [1991RE02] and(51.0± 1.0)% from [1992TE03]. A recenstudy has concentrated on the decays to the highest accessible states in9Be [2003PR11].See also [1990NY01,1993CH06] and references cited in [1984AJ01,1988AJ01].

2. 1H(8He,8He)1H, Eb = 13.933

From an analysis of the excitation function for8He+ p elastic scattering obtained bthe thick target inverse kinematics method, threeT = 5

2 states of9Li were identified atEx = 16.0 ± 0.1, 17.1± 0.2, and 18.9± 0.1 MeV. The corresponding widths are< 100,

800±300, and 240±100 keV, respectively. The properties of the three levels are comparedwith the apparent analog states in9He [2003RO07].
Page 62: Energy levels of light nuclei A = 8,9,10

9Li

or

ld areied

;five

-

el has

c-

an

d a

216 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

3. 1H(9Li, 9Li) 1H

The elastic scattering angular distribution was measured atE(9Li) = 703 MeV/A andanalyzed using Glauber multiple-scattering theory to obtain an r.m.s. matter radius f9Liof 2.43± 0.07 fm [2002EG02].

4. 7Li(t, p)9Li, Qm = −2.3857

Protons are observed to excited states atEx = 2.691± 0.005, 4.31± 0.02, 5.38± 0.06and 6.430± 0.015 MeV. The widths of the three states above the neutron thresho100±30, 600±100 and 40±20 keV, respectively. Angular distributions have been studat Et = 11.3 ([1964MI04]; p0), 15 ([1971YO04]; p0, p2, p4) and 23 MeV ([1978AJ02]p0, p1, p2, p4). It is plausible that the observed levels can be identified with the firstpredicted p-shell levels withJπ = 3

2−

, 12−

, 52−, and 7

2−

[1971YO04]. The largest two

neutron spectroscopic factors are for the ground state(L = 0) and the52−

state(L = 2),consistent with the observed angular distributions and the fact that the 4.3 MeV levthe largest cross section. The excited3

2−

state is predicted to decay via n0, n1 and the72−

state mainly via n2. See also10Be [1987AB15,1990GU36].

5. 9Be(γ ,π+)9Li, Qm = −153.1769

The angular distribution of theπ+ to 9Li g.s. has been measured atEe = 200 MeV[1983SH19]. For the earlier work see [1984AJ01].

6. 9Be(π−, γ )9Li, Qm = 125.9635

Capture branching ratios to9Li ∗(0,2.69) are reported by [1986PE05].

7. 9Be(n, p)9Li, Qm = −12.8244

Double differential cross sections were measured atEn = 96 MeV [2000DA22]. Crosssections for reactions to the9Li ground state and to the first excited state (Ex = 2.69 MeV)were analyzed and compared with DWBA calculations. A Gamow–Teller unit cross setion was determined for the (weak) ground state transition. AtEn = 198 MeV, the groundand first excited states are clearly seen, as is a strong spin-dipole peak centered nearexcitation energy of 7 MeV [1988JA1K].

8. 9Be(t,3He)9Li, Qm = −13.5881

The 0 cross section forEt = 381 MeV shows a weak ground-state transition anstrong spin-dipole peak atEx ≈ 6.5 MeV [1998DA05].

9. 9Be(7Li, 7Be)9Li, Qm = −14.4689

See [1984GL06]:E(7Li = 78 MeV).

Page 63: Energy levels of light nuclei A = 8,9,10

9Li

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 217

Fig. 6. Energy levels of9Li. For notation see Fig. 2.

Page 64: Energy levels of light nuclei A = 8,9,10

9Li, 9Be

at3].

byr-d with

whata/

red

radii].

218 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

10.11B(6Li, 8B)9Li, Qm = −25.121

At E(6Li) = 80 MeV the angular distribution to9Li g.s. has been measured. StatesEx = 2.59± 0.10, 4.36± 0.10 and 6.38± 0.12 MeV are also populated: see [1977WE0

11.natAg(14N, 8Li + n)X

Neutron unbound states in light fragments from14N–Ag reactions at 35 MeV/A werestudied by [1989HE24]. They report a measurement of a9Li level at Ex = 4.296±0.015 MeV,Γ = 60± 45 keV.

12.natPb(9Li, 8Li + n)X

Coulomb dissociation of 28.53 MeV/A 9Li on targets of Pb and U was studied[1998ZE01] to determine an upper limit for the8Li(n, γ ) reaction at astrophysical enegies. Cross sections calculated in a potential model by [1999BE46] were comparethe data of [1998ZE01]. See also the reaction cross section measurements at 80 MeV/A

discussed in [1991BL10,1992BL10], and see the shell model calculation for8Li(n, γ ) in[1991MA04].

13.natU(9Li, 8Li + n)X

See reaction 12.

9Be(Figs. 6, 7 and 10)

GeneralReferences to articles on general properties of9Be published since the previous revie

[1988AJ01] are grouped into categories andlisted, along with brief descriptions of eacitem, in the General Tables for9Be located on our website at www.tunl.duke.edu/nucldGeneral_Tables/9be.shtml.

µ = −1.1778± 0.0009µN see [1978LEZA];Q = 52.88± 0.38 mb see [1967BL09,1991SU05,2001STZZ].

Interaction cross sections of9Be with Be, C, and Al targets have been measuat E = 790 MeV/A yielding an interaction nuclear radius of9Be is 2.45 ± 0.01 fm[1985TA18] [see also for derived nuclear matter, charge and neutron matter r.m.s.See [2001OZ04] for references to derivations of radii for9Be.

The decay9Li → π− + 9Be∗ → π− + p+ 8Li appears to take place via aT = 32 state

of 9Be atEx = 18.6±0.1 MeV (Γ 300 keV) that appears to be an analog of the 4.3 MeVlevel of 9Li [1985PN01].

Page 65: Energy levels of light nuclei A = 8,9,10

9Be

17,9,1,

3,

2,1,

2,

4,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 219

Table 9.2Energy levels of9Be

Ex (MeV ± keV) Jπ ; T Γcm (keV) Decay Reactions

g.s. 32

−; 1

2 stable 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16,18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 230, 31, 32, 33, 34, 35, 36, 37, 38, 39, 442, 44, 45, 47, 48, 50, 51, 52, 54

1.684± 7 12

+217± 10 γ , n 4, 9, 10, 13, 16, 18, 19, 21, 23, 24, 3

39, 42, 44

2.4294± 1.3 52

−0.78± 0.13 γ , n,α 4, 9, 10, 11, 12, 16, 17, 18, 19, 21, 2

23, 24, 26, 27, 33, 34, 35, 36, 38, 39, 442, 44, 50

2.78± 120 12

−1080± 110 n 4, 9, 12, 19, 42, 50

3.049± 9 52

+282± 11 γ , n 4, 9, 16, 18, 19, 21, 23, 24, 33, 39, 4

44

4.704± 25 ( 32)+ 743± 55 γ , n 4, 9, 16, 19, 21, 23, 24, 42, 50

5.59± 100a ( 32

−) 1330± 360 γ , n 19, 35

6.38± 60a,b 72

−1210± 230 γ , n 9, 11, 16, 17, 18, 19, 21, 23, 24, 26, 3

35, 38, 44

6.76± 60a,b 92

+1330± 90 γ , n 16, 19

7.94± 80c ( 52

−) ≈ 1000 12, 19, 35

11.283± 24 ( 72

−) 575± 50 n 9, 12, 16, 19, 24, 34, 35, 38, 39

11.81± 20 52

−400± 30 γ , n 9, 12, 13, 41, 50

13.79± 30 π = − 590± 60 γ , n 9, 16, 19, 41

14.3922± 1.8d 32

−; 3

2 0.381± 0.033 γ , n,α 9, 16, 19, 23, 39, 41

14.48± 90 ( 52

−); 1

2 ≈ 800 19, 34, 35, 39

15.10± 50a 350± 180 γ 16, 19, 41

15.97± 30 T = 12 ≈ 300 γ 16, 19, 41

16.671± 8 (52

+); 1

2 41± 4 γ 9, 16, 19, 39

16.9752± 0.8e 12

−; 3

2 0.389± 0.010 γ , n, p, d 4, 5, 6, 15, 16, 19

17.298± 7 ( 52)− 200 γ , n, p, d,α 5, 6, 7, 13, 16, 19

17.493± 7 ( 72)+; 1

2 47 γ , n, p, d,α 5, 6, 7, 16, 19

18.02± 50 γ 1618.58± 40 γ , n, p, d,α 6, 16

18.650± 50a,f ( 52

−; 3

2) 300± 100 p 1919.20± 50 310± 80 n, p, d, t 6, 1919.420± 50a 600± 300 γ 13, 16, 19

(19.9± 200) γ , n 1320.51± 30a 600± 100 γ , p, d 13, 1920.75± 30a 680± 90 γ , n, p, t 13, 16, 19

(21.4± 200) γ , n 13(22.4± 200) broad γ , n 13, 19(23.8± 200) γ , n 13

(continued on next page)

Page 66: Energy levels of light nuclei A = 8,9,10

9Be

l

een

a-and

d

t

ter

220 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 9.2 (continued)

Ex (MeV ± keV) Jπ ; T Γcm (keV) Decay Reactions

(27.0± 500) broad γ , n 13

a See reaction 19 and Table 9.11.b [1991DI03]. See reaction 19; see also [1991GL02]. See, however, reaction 35 and Table 9.12.b See reactions 12 and 35.d See Table 9.4.e See Table 9.5.f Spin assignment from [1985PN01].

For a discussion of the structure and widths of levels in9Be and9B, see the generadiscussion of9B.

1. (a) 6Li(t, n)8Be, Qm = 16.0236, Eb = 17.6890(b) 6Li(t, p)8Li, Qm = 0.80079(c) 6Li(t, n)4He4He, Qm = 16.115451

The 0 differential cross section for reaction (a) increases monotonically betwEt = 0.10 and 2.4 MeV. A resonance has been reported atEt = 1.875 MeV (9Be∗(18.94)).The excitation function for8Li (reaction (b)) increases monotonically forEt = 0.275 to1.000 MeV. See [1974AJ01] for references. In the rangeEt = 2 to 10 MeV the totalcross section for reaction (b) shows a broad structure [Γcm = 1.5 MeV] at Et = 4.2 MeV(9Be∗(20.5)) [1986AB04]. Yields and angular distributions for reaction (c) have been mesured atEt = 2 to 4.5 MeV [1984LIZY]. See also [1984AJ01] for other channels[1984KR1B].

2. 6Li( 3He,π+)9Be, Qm = −121.8998

The energy dependence of the cross section for population of9Beg.s. has been measureatE(3He)= 235 to 283 MeV [1984WI06].

3. 6Li(α, p)9Be, Qm = −2.1249

Angular distributions of p0 have been measured atEα = 10.2 to 14.7 MeV and a30 MeV: see [1974AJ01]. Differential cross sections were measured atEα = 26.7 MeV[1990LI37] in a study of exchange processes. See also [1987BI1C,1983BE51].

4. 7Li(d, γ )9Be, Qm = 16.6959

For Ed = 0.1 to 1.1 MeV, a resonance in the yield of captureγ -rays is observed aEd = 360.8 ± 0.3 keV [1987ZI01], 360.7 ± 1.8 keV [1986BE33], corresponding to thexcitation of9Be∗(16.97), the secondT = 3

2 state [Jπ = 12−

]: see Table 9.5. Anothe

measurement of the total width of this state determinedΓ = 389±10 eV; see [1992KI05].The reduced width for the isospin “forbidden” deuteron breakup is 3.9 × 10−4 relative
Page 67: Energy levels of light nuclei A = 8,9,10

9Be

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 221

Fig. 7. Energy levels of9Be. For notation see Fig. 2.

to the Wigner limit [1992KI05]. See also [1984AJ01]. The differential cross section andvector analyzing power were measured by [1993SC19] atEd = 6 MeV.

Page 68: Energy levels of light nuclei A = 8,9,10

9Be

dents

.40eV:ents at

t-E1F];

222 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 9.3Electromagnetic transitions in9Be

Exi → Exf (MeV) Jπi → Jπ

fa Γγ (eV) Mult. Γγ /ΓW

1.68→ 0 12

+ → 32

−0.30± 0.12b E1 0.22± 0.09

2.43→ 0 52

− → 32

−(8.9± 1.0) × 10−2b M1 0.30± 0.03

(1.89± 0.14) × 10−3b E2 24.4± 1.8

3.05→ 0 52

+ → 32

−0.30± 0.25 E1 (3.6± 3.0) × 10−2

6.38→ 0 72

− → 32

−(8.2± 3.5) × 10−2b E2 8.5± 3.7

14.39→ 0 32

−; 3

2 → 32

−; 1

2 6.60± 0.40c M1 0.106± 0.007

→ 2.43 → 52

−; 1

2 7.46± 0.56c M1 0.208± 0.016

→ 3.04 → 52

+; 1

2 1.20± 0.28c E1 (2.8± 0.7) × 10−3

→ 4.70 → ( 32 )+; 1

2 0.84± 0.20c E1 (3.2± 0.8) × 10−3

16.98→ 0 12

−; 3

2 → 32

−; 1

2 16.9± 1.0d M1 0.165± 0.010

→ 1.68 → 12

+; 1

2 1.99± 0.15d E1 (1.90± 0.15) × 10−3

→ 2.43 → 52

−; 1

2 0.56± 0.12d E2 0.94± 0.20

→ 2.78 → 12

−; 1

2 2.2± 0.7d M1 (3.7± 1.2) × 10−2

→ 4.70 → ( 32)+; 1

2 2.2± 0.3d E1 (4.1± 0.6) × 10−3

a T shown in usual convention [Jπ ; T ] only if transitions from the initial state involve a change inT .b See Table 9.8 of [1988AJ01].c See Table 9.4.d See Table 9.5

5. (a) 7Li(d, n)8Be, Qm = 15.0306, Eb = 16.6959(b) 7Li(d, α)5He, Qm = 14.229(c) 7Li(d, n)4He4He, Qm = 15.12239

The yield of neutrons has been measured forEd = 0.2 to 23 MeV [see [1979AJ01]] anatEd = 0.19 to 0.55 MeV [1987DA25]. See also [1983SZZY]. Polarization measuremhave been carried out atEd = 0.64 MeV and 2.5 to 3.7 MeV [see [1974AJ01]] and at 0and 0.46 MeV ([1984GA07]; n0). Resonances are reported at 0.36, 0.68 and 0.98 Msee Table 9.3 in [1974AJ01]. See also ([1985CA41]; astrophys.) and the measuremEd = 195–550 keV of [1987DA25]. Neutron yields for 40 MeV deuterons on7Li thicktargets were measured by [1987SC11]. See also the measurements atEcm = 0.7–2.3 MeV[1996BO27] and the fusion calculations of [2000HA50].

The yields of α-particles have been measured forEd = 0.25 to 3.0 MeV: see[1974AJ01], [1979AJ01]. Resonances are reported atEd = 0.75, 1.00 and 2.5 MeV; the later is broad: see Table 9.3 in [1979AJ01]. See also [1983SZZY], ([1986DI1B,1987Lapplied) and [1984KR1B]. In recent work, measurements of astrophysicalS factors at

Ecm = 57–141 keV have been reported by [1997YA08]. See also the calculations describedin [2000HA50].
Page 69: Energy levels of light nuclei A = 8,9,10

9Be

le

also

9.20,ectionn for

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 223

Table 9.4Parametersa of the firstT = 3

2 states in9Be and9B, Jπ = 32

9Be 9B

Ex (keV) 14392.2 ± 1.8 14655.0± 2.5Γγ0 (eV) 6.60± 0.40b (6.97± 0.42)c

Γ (eV) 365± 29 377± 38

Γγ0 (to 32

−)/Γ (%) 1.81± 0.09 1.85± 0.15

Γγ1 (to 12

+)/Γ (%) < 0.07 < 0.08

Γγ2 (to 52

−)/Γ (%) 2.05± 0.11 1.93± 0.22

Γγ3(to 12

−)/Γ (%) < 0.2 0.31± 0.18

Γγ4(to 52

+)/Γ (%) 0.33± 0.07

Γγ5 (to 32

+)/Γ (%) 0.23± 0.05

Γγ2/Γγ0 1.13± 0.05 1.03± 0.11

Γn0/Γ 0.028± 0.021 Γp0/Γ 0.11± 0.04

Γn1/Γ 0.50± 0.11 Γp1/Γ 0.33± 0.09

Γn1/Γn0 18± 14 Γp1/Γp0 3.2± 1.9

Γγ (eV) 16.1± 1.4 15.4± 1.5

Γn0 (eV) 10± 9 Γp0 (eV) 41± 16

Γn1 (eV) 182± 43 Γp1 (eV) 124± 36

Γα (eV)d 156± 43e 196± 42f

a γ -ray branching ratios from [1978DI08]. Branching ratios for nucleondecays from [1976MC10]. See Tab9.6 in [1979AJ01] for additional references. See Table 9.3 for radiative widths and transitions strengths.

b Average of 8.1 ± 0.8 eV [1968CL08], 6.2 ± 0.6 eV [1973BE19], 5.9 ± 0.8 eV [1992KI05]. Unpublishedvalues of 6.7± 1.4 eV and 7.2± 0.3 eV are quoted in [1973BE19,1992KI05].

c Assuming the same reduced transition strength as for9Be.d By subtraction.e Γα0/Γγ0 = 31.2± 9.8 [1972AD04] givesΓα0 = 206± 65 eV.f Γα0/Γp1 ≈ 1.4 [2001BE51] givesΓα0 ≈ 174 eV.

6. 7Li(d, p)8Li, Qm = −0.19228, Eb = 16.69594

Excitation functions and cross sections have been measured forEd = 0.29 to 7 MeV[see [1974AJ01,1979AJ01,1984AJ01]] and 0.60 to 0.95 MeV [1983FI13]. See[1983SZZY,1986AB04]. Deuteron energies (in MeV) and widths [Γlab in brackets inkeV] of resonances reported are:Ed = 0.360± 0.003 [< 0.5], 0.776± 0.007 [250],1.027±0.007 [60], 2.0 [broad], 2.375±0.050, 3.220±0.050 [400±100] and≈ 4.8 MeVcorresponding to9Be∗(16.975) [see also Table 9.5], 17.298, 17.493, (18.5), 18.54, 120.4): for references see Tables 9.3 in [1979AJ01,1984AJ01]. The total cross sat theEd = 0.78 MeV resonance is important because it serves as a normalizatiothe 7Be(p,γ )8B reaction: the “best” value suggested by [1983FI13] is 157± 10 mb.See also [1986BA38] and [1974AJ01,1984AJ01] for the earlier values. AtE (7Li) =

12.2 ± 1.3 MeV [corresponding toEd = 3.5 MeV] the cross section is reported to be155± 20 mb [1985HA40].
Page 70: Energy levels of light nuclei A = 8,9,10

9Be

ctshe

tions

tionly

lsoat

ns

224 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 9.5Parametersa of the secondT = 3

2 state in9Be,Jπ = 12

Ex (keV) 16975.2± 0.8Γc.m. (eV) 389± 10Γγ (eV) 23.8± 1.6Γγ0 (eV) 16.9± 1.0c

Γγ1 (eV) 1.99± 0.15Γγ2 (eV) 0.56± 0.12Γγ3 (eV) 2.2± 0.7Γγ4 (eV)b < 0.8Γγ5 (eV)b 2.2± 0.3Γn (eV) < 290d

Γn0 (eV) 36+36−18

Γp (eV) 12+12−6

Γd (eV) 62± 10Γα0 (eV) < 290

a [1992KI05]. These are revisedvalues of the partial widthsgiven in Table 9.4 of [1988AJ01]. They are based on the reso-nant absorption measurements of [1992KI05].

b See Table 9.4 of [1988AJ01].c See also Table 9.8 of [1988AJ01].d Γα + Γn = 290± 20 eV.

At the peak of theEd = 0.78 MeV resonance,σ = 143.6 ± 8.9 mb from the protonyield andσ = 151± 20 mb from theβ-delayedα activity of the residual8Li nucleus[1996ST18]. In [1998WE05], a valueσ = 155±8 mb was obtained, backscattering effewere examined, and the consequences for the7Be(p,γ ) cross sections were discussed. T7Li(d, p) yield for Ed = 0.4–1.8 MeV was measured by [1998ST20] to deduce correcdue to recoil loss. See also the compilation and analysis of astrophysicalS-factor data andcalculations in [1998AD12].

7. 7Li(d, d)7Li, Eb = 16.69594

The elastic scattering [Ed = 0.4 to 1.8 MeV] shows a marked increase in cross secfor Ed = 0.8 to 1.0 MeV (perhaps related to9Be∗(17.30)) and a conspicuous anomaat Ed = 1.0 MeV, due to p-wave deuterons [9Be∗(17.50)]. The elastic scattering has abeen studied forEd = 1.0 to 2.6 MeV and 10.0 to 12.0 MeV: see [1979AJ01], andEd = 9.05 MeV [1980YE02].

8. 7Li(d, t)6Li, Qm = −0.99306, Eb = 16.69594

The cross section rises steeply from threshold to 95 mb atEd = 2.4 MeV and thenmore slowly to≈ 165 mb atEd = 4.1 MeV. The t0 yield curve (θlab = 155) decreasesmonotonically forEd = 10.0 to 12.0 MeV: see [1974AJ01]. Differential cross sectio

measured atEd = 30.7 MeV were reported in [1987BO39]. An analysis of data from thisreaction atEd = 8–50 MeV is discussed in [1995GU22].
Page 71: Energy levels of light nuclei A = 8,9,10

9Be

cle andveat

ere1]earlier

at;

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 225

Table 9.6Excited states of9Be from7Li(3He, p)9Bea

Ex (MeV ± keV) Γc.m. (keV)

1.642.4292± 1.7 < 82.9± 250 1000± 2503.076± 15 289± 224.704± 25 743± 556.7± 100 2000± 200

11.29± 30 620± 7011.81± 20 400± 3013.78± 30 590± 6014.396± 5b 0.38± 0.0316.671± 8 41± 4

a See also Tables 9.4 in [1974AJ01,1979AJ01] for references.b See also Table 9.4.

9. 7Li( 3He, p)9Be, Qm = 11.2025

Observed proton groups are displayed in Table 9.6. The parameters for the partiγ -decay of observed states are displayed in Tables 9.4 and 9.7. Angular distributions habeen reported in the rangeE(3He)= 0.9 to 14 MeV [see [1974AJ01,1979AJ01]] andE( 3He) = 14 and 33 MeV ([1983LE17,1983RO22]; p0). See also10B, [1984ME11] and([1986SC35]; applications).

In more recent work cross sectionsσ(Ep, θ) were measured atEcm = 0.5–2 MeV,and the astrophysicalS-factor was deduced [1990RA16]. Polarization observables wmeasured atE(3He)= 4.6 MeV and analyzed by DWBA [1995BA24]. See [1993YA0for S-factor calculations and discussions of astrophysical implications. See also thetheoretical work of [1988KH11] on time-reversal violating amplitude features.

10.7Li(α, d)9Be, Qm = −7.1506

Angular distributions of d0, d1 and d2 have been reported atEα = 30 MeV: see[1974AJ01]. See also [1983BE51].

11.7Li( 6Li, α)9Be, Qm = 15.2221

Angular distributions of theα-groups to9Be∗(0,2.43,6.76) have been measuredE(7Li) = 78 MeV [1989GL03]. For the excitation of4He∗ see ([1987GLZX,1987GLZY]E(6Li) = 93 MeV). For the earlier work see [1974AJ01].

12.9Li(β−)9Be, Qm = 13.6067

9Li decays byβ− emission withτ1/2 = 178.3 ± 0.4 ms andPn = 50.8 ± 0.9% to

several9Be states: see reaction 1 in9Li and Table 9.8. A series of studies at ISOLDE[1981LA11,1990NY01,2003PR11] have measuredβ–α coincidences and established the
Page 72: Energy levels of light nuclei A = 8,9,10

9Be

n

alysisys are

randly.-

beenI02].

.

226 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 9.7Neutron decay of9Be statesa

9Be state (MeV) Γcmb (keV) ln

c Decay (in %) to Sd

8Beg.s.8Be∗(3.0)

2.43 0.77 3 7.0± 1.0 0.0472.78 1080 1 mainly 0.673.05 282 2 87± 13 1.244.70 743 2 13± 4 0.0806.67e 1210 3 2 < 0.044

1 55± 14 0.4711.28 575 3 2 < 0.003

1 14± 4 0.01411.81 400 3 3 < 0.003

1 12± 4 0.008

a For references to the experimental decay branches see Table 9.5 in [1979AJ01]. For the two lowestT = 32

states see Tables 9.4 and 9.5.b See Table 9.2.c The ln values for the 11.28 and 11.81 MeV levels reflect the probable assignments of7

2−

and 52

−, respec-

tively.d For decays to8Beg.s., the spectroscopic factor is computed using the single-particle width for a Woods–Saxo

well with r0 = 1.25 fm anda = 0.65 fm. For decays to8∗Be(3.0), an integration is performed over anR-matrixprofile function for the broad8Be∗(3.0) level. In addition, for large decay energies anR-matrix single-particlewidth is matched to the Woods–Saxon width at an energy below the centrifugal barrier.

e Excitation energy taken to be that from the proton knockout reaction on10B; see reaction 35.

existence of transitions with largeB(GT) values to9Be∗(11.28) and/or9Be∗(11.81). Theinformation in Table 9.8 is based largely on the results of [1990NY01] and an anby [1993CH06]. The most recent study [2003PR11] finds that the low-energy decamostly to9Be∗(11.81) with aB(GT) value of 8.5 ± 1.5, that a spin assignment of5

2−

isfavored, and note that theB(GT) value is a factor of 4.4± 1.0 larger than that of the mirrotransition in9C (see reaction 10 in9B). Such a large asymmetry for a strong transitionthe magnitude of theB(GT) value for9Li decay are difficult to understand theoreticalThe latter difficulty is highlighted by the factthat, in the limit of good supermultiplet symmetry only 1

3 of the GT sum-rule strength 9(gA/gV)2eff [see footnotec in Table 9.8] goes to

52−

states.

13. (a) 9Be(γ , n)8Be, Qm = −1.6654(b) 9Be(γ ,α)5He, Qm = −2.467(c) 9Be(γ , n)4He4He, Qm = −1.5736

As noted in the previous review [1988AJ01], “the photoneutron cross section hasmeasured from threshold to 320 MeV: see Table 9.6 in [1966LA04,1979AJ01,1988DA pronounced peak occurs≈ 29 keV above threshold withσmax = 1.33± 0.24 mb. Theshape of the resonance has been measured very accurately forEγ = 1675 to 2168 keV

The FWHM of the peak is estimated to be 100 keV [1982FU11]. See also [1983BA52,1987KU05]. The cross section then decreases slowly to 1.2 mb at 40 keV above threshold.
Page 73: Energy levels of light nuclei A = 8,9,10

9Be

dure is

ing

gies ofner-onding

laser-re

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 227

Table 9.8Branching ratios in9Li(β−) decay from measurements ofβ-delayed particle decaya

Ex in 9Be (MeV) Jπ Branching ratio (%)b B(GT)c

0 32

−49.2± 0.9d 0.0292± 0.0009

2.43 52

−29.7± 3.0e 0.046± 0.005

2.78 12

−15.8± 3.0e 0.011± 0.005g

7.94 ( 52

−)b 1.5± 0.5f 0.048± 0.018g

11.28 h 1.1± 0.2e 1.4± 0.5g

11.81 52

− i 2.7± 0.2e 8.9± 1.9g

a See also Table 9.7 of [1988AJ01].b Based on Tables II and III of [1993CH06] taking into account the different value forPn.c B(GT) includes the factor(gA/gV)2. The empirical quenching found by [1993CH06] gives(gA/gV)2eff =

1.14 and permits a comparison with p-shell calculations.d Obtained usingPn = 50.8 ± 0.9%, which is the average of 50.0 ± 1.8% [1991RE02] and 51.0 ± 1.0%

[1992TE03].e [1990NY01].f [1981LA11]. [1990NY01] give a branch of< 2%.g For decay to an unbound levelB(GT) is not well defined. [1990NY01] deduceB(GT) taking into account the

variation of the statistical factor over the width of the final states and the considerable error in this procereflected in the errors tabulated.

h A 72

−level is known at this energy. A strongβ transition impliesJπ = 1

2−

, 32

−, or 5

2−

, with 52

−unlikely

on theoretical grounds given that the 11.8 MeV state has been assigned52

−.

i [2003PR11] find that the decay mainly populates the 11.8 MeV state, determine a spin of52

−, and extract a

B(GT) value of 8.5± 1.5.

Table 9.9Resonance parameters for9Be(γ , n)8Bea

Jπ Mult. ER (MeV) Γγ (eV) Γ ≈ Γn (keV)

12

+E1 1.735± 0.003 0.568± 0.011 225± 12

52

−M1 2.43 0.049± 0.012

52

+E1 3.077± 0.009 1.24± 0.02 549± 12

a From Table 1 of [2002SU19]; see also Table I of [2001UT01], and reaction 13 here.

From bremsstrahlung studies, peaks in the (γ , n) cross section are observed correspondto Ex = 1.80 and 3.03 MeV”.

Subsequently [1992GO27] measured the photoneutron yield and mean enerphotoneutron spectra from bremsstrahlung photons. The reaction cross section for egies from threshold to 20 MeV was extracted. Resonances were observed correspto Ex = 1.68 MeV (1

2+), 2.43 MeV (5

2−), and 3.05 MeV(5

2+) in 9Be. See Table 1

in [1992GO27] for resonance parameters. In other work [2001UT01,2002SU19],induced Compton backscattering photons withEγ = 1.78–6.11 MeV were used to measu

+ − +

the photoneutron cross section resonance parameters for the9Be 1

2 , 52 and 5

2 states;see Table 9.9. The radiative widths in Table 9.9 are not in good agreement with those

Page 74: Energy levels of light nuclei A = 8,9,10

9Be

-

ion-

ts buter-tical07].ron

(

d

nd

isliumgies

d.fer-

ied byns us-

228 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

from low-energy electron scattering listed in Table 9.3. Also, the width given for the52+

state is roughly twice the accepted width of 282± 11 keV in Table 9.2; using the accepted width while maintaining a fit to the peak (γ , n) cross section would reduceΓγ byalmost a factor of two and into the range of the values from (e, e′) listed in Table 9.3.Shell-model calculations give a stableB(M1)↓≈ 1 W.u. (Γγ ≈ 0.45 eV) for the broad12

state at 2.78 MeV implying significant (γ , n) cross section underlying the energy regof interest. A one-levelR-matrix analysis of theEγ = 1.6–2.2 MeV cross section is de

scribed in [2000BA21]. The energy at which the cross section due to the12+

state peaksand the FWHM of the peak vary somewhat for different fits to a number of data seare relatively stable. However, the extractedB(E1)↓ values vary considerably and genally correspond to largerΓγ ’s than those listed in Table 9.3 and Table 9.9. For theorecalculations of the low-energy (γ , n) cross section see [1998EF05,1999EF01,2002ITSee also the calculation of9Be Coulomb dissociation [1994KA25] and polarized neutproduction by magnetic Bremsstrahlung gamma rays [1997ER03].

[1988AJ01] notes that “at higher energies, using monoenergetic photons, theγ , n)cross section is found to be relatively smooth fromEγ = 17 to 37 MeV with weakstructures which correspond toEx = 17.1, 18.8, 19.9, 21.4, 22.4, 23.8 [±0.2] MeV and27± 0.5 MeV (broad). In the rangeEγ = 18 to 26 MeV the integrated (γ , n0) cross sec-tion is < 0.1 MeV mb, that for (γ , n1) = 2.4 ± 0.4 MeV mb and the combined integratecross section for (γ , n) to 8Be∗(16.6) and (γ , α0) to 5Heg.s. is 13.1± 2 MeV mb”.

“The total absorption cross section has been measured forEγ = 10 to 210 MeV: it risesto ≈ 5 mb at≈ 21 MeV, decreases to about 0 at 160 MeV and then increases to≈ 1.5 mbat 210 MeV. An integrated cross section of 156± 15 MeV mb is reported forEγ = 10 to29 MeV as is resonant structure atEγ = 11.8, (13.5), 14.8, (17.3), (19.5), 21.0, (23.0), a(25.0) MeV. Fine structure is also reported atEγ = 20.47± 0.04 and 20.73± 0.04 MeV.See [1979AJ01] for references. AtEγ = 1.58 MeV, the cross section for reaction (c)0.40± 0.18 µb [1983FU13]. For the electroproduction and photoproduction of henuclei forEe = 100 to 225 MeV see [1986LI22]. For hadron production at high enersee [1983AR24].” See also the earlier work cited in [1988AJ01].

14. (a) 9Be(γ , p)8Li, Qm = −16.8882(b) 9Be(γ , n+ p)7Li, Qm = −18.9205(c) 9Be(γ , d)7Li, Qm = −16.6959(d) 9Be(γ , t)6Li, Qm = −17.6890

The yield shows structure in the energy region corresponding to the9Be levels at 17–19 MeV followed by the giant resonance atEγ ≈ 23 MeV (σ = 2.64±0.30 mb). Structureattributed to eleven states of9Be with 18.2 < Ex < 32.2 MeV has also been reporteIntegrated cross sections have been obtained for each of these resonances, and over difent energy intervals for protons leading to8Li ∗(0+ 0.98,2.26+ 3.21,9.0,17.0). Angularand energy distributions of photoprotons in various energy intervals have been studmany groups: see [1974AJ01] for early references. For momentum spectra of proto

ing tagged photons withEγ = 360–600 MeV, see [1984BA09]. See also [1984AJ01] and[1984HO24], and see the analysis forEγ = 200–420 MeV by [1988TE04].
Page 75: Energy levels of light nuclei A = 8,9,10

9Be

)

].

sure-

SeeO11,

at up-

With

s hasothle 9.8e,a

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 229

The integrated cross sections are reported to be 1.0± 0.5 MeV mb(Eγ = 21–33 MeV)for reaction (c) to7Li ∗(0+0.4), and 0.6±0.3 MeV mb (Eγ = 25–33 MeV) for reaction (dto 6Li g.s.. The total integrated cross section for[(γ , p)+ (γ , pn)+ (γ , d)+ (γ , t)] is 33±3 MeV mb. Calculations for reaction (b) atEγ = 247 MeV are presented in [1993BO35Resonances in the (γ , d) and (γ , t) cross sections corresponding to9Be∗(26.0± 0.2) and9Be∗(32.2 ± 0.3), respectively, have been reported: see [1974AJ01]. A recent meament and cluster-model analyses for reactions (a), (c), (d) forEγ = 21–39 MeV aredescribed in [1999SH05]. For momentum spectra of deuterons and tritons atEγ = 360–600 MeV see [1986BA07]. Cross sections have been measured in the region of the (1232)resonance by [1984HO09] [(γ , n), (γ , 2p)], [1987KA13] [(γ , p), (γ , pn), (γ , 2p)] and[1986AR06] [(γ,π0)]. For a high energy study of hadron production see [1983AR24].also [1986MC1G,1985HO27,1985MA1G] and the calculations of [1983TR04,1986H1987LU1B,1988DU04].

15.9Be(γ, γ )9Be

The ground state radiative widths of theEx = 14.393 and 16.975 MeVT = 32 levels

of 9Be have been measured in a resonant absorption experiment [1992KI05] thdates the results of [1986ZI01,1987ZI01]. The results areΓγ0 = 5.9 ± 0.8 eV andΓγ0 =16.9±1.0 eV forEx = 14.393 and 16.975 MeV, respectively. See Tables 9.4 and 9.5.Ebrem= 31 MeV eight resonances in (γ , γ ′) were reported for 17.4 < Ex < 29.4 MeV[1984AL22].

16. (a) 9Be(e, e)9Be(b) 9Be(e, en)8Be, Qm = −1.6654(c) 9Be(e, ep)8Li, Qm = −16.8882(d) 9Be(e, eα)5Li, Qm = −2.757

⟨r2⟩1/2 = 2.519± 0.012 fm [1973BE19,1979AJ01];Q = 5.86± 0.06 fm2 [1991GL02];b = 1.5+0.3

−0.2 fm [1973BE19,1979AJ01][b = oscillator parameter];⟨r2⟩1/2

M = 3.2± 0.3 fm, Ω = 6± 2 µN fm2 [this value of the magnetic

octupole moment implies a deformation of the average nuclear potential]

[1975LA23,1979AJ01].

The previous review [1988AJ01] observed that: “The elastic scattering of electronbeen studied forEe up to 700 MeV. Magnetic elastic scattering gives indications of bM1 and M3 contributions. Inelastic scattering populates a number of levels: see Tabin [1988AJ01]. AtEe = 45 and 49 MeV9Be∗(1.68) has a strongly asymmetric line shapas expected from its closeness to the8Be+ n threshold. The form factor is dominated by0p3/2 →1s1/2 particle–hole transition.9Be∗(2.43) is strongly excited [1987KU05]. Form

factors have also been measured for9Be∗(0,14.39,16.67,16.98,17.49) by ([1983LO11];Ee = 100.0 to 270.2 MeV). See also [1985HY1A,1986MA48,1987HY01]. [1984WO09]
Page 76: Energy levels of light nuclei A = 8,9,10

9Be

eVtates atm

stateceMeV

nd,

el.on

E40].

in

-por-r en-tpion–

raction

eens1]],

] by a

230 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

suggests that theT = 12 states [9Be∗(16.67, 17.49)] haveJπ = 5

2+

and 72+

, respectively,and that they have large parentage amplitudes with8Be∗(16.6 + 16.9) [Jπ = 2+], ratherthan with8Beg.s.. See [1974AJ01,1979AJ01,1984AJ01].”

In a more recent study [1991GL02], electrons at energies between 110 and 360 Mwere used along with detailed line-shape analysis to extract cross sections for sEx = 0, 1.68, 2.43, 3.05, 4.70, 6.38, 6.76, 11.28, and 13.79 MeV, and for momentutransfers between 1.0 and 2.5 fm−1. See Table 9.10.

A previously unknown state at 6.38 MeV was isolated from the known 6.76 MeVin both the (e, e′) data of [1991GL02] and the (p, p′) data [1991DI03] using the dependenof the peak position upon momentum transfer. On the basis of the form factor the 6.38state replaces the 6.76 MeV state as the7

2−

member of the ground state rotational ba

and the 6.76 MeV state is identified with the lowest92+

state predicted by the shell modResults of these measurements are tabulated and compared with the shell model predictiin Table V in [1991GL02] and in Table 9.10 here.

An analysis of form factors to deduce vertex constants is described in [1991BHarmonic scattering calculations are presented in [1992DE42].

For early work in the quasifree and -resonance regions see references cited[1988AJ01].

17.9Be(π±,π±)9Be

The elastic scattering, and inelastic scattering to9Be∗(2.43,6.76) have been studied at Eπ± = 162 and 291 MeV. Quadrupole contributions appear to be quite imtant for the elastic scattering at 162 MeV, but are much less so at the higheergy: see [1984AJ01] and see the General Table for9Be located on our website awww.tunl.duke.edu/nucldata/General_Tables/9be.shtml. Calculations of thresholdnucleus amplitude by current algebra are discussed in [1989GE10]. See also the difftheory calculations of the scattering process by [2000ZH50].

18. (a) 9Be(n, n)9Be(b) 9Be(n, 2n)8Be, Qm = −1.6654

The population of9Be∗(0,1.7,2.4,3.1, (6.8)) has been reported in this reaction: s[1974AJ01]. For the neutron decay of these states see Table 9.7. Angular distributiohave been measured atEn = 3.5 to 14.93 MeV [see [1974AJ01,1979AJ01,1984AJ0at En = 7 to 15 MeV ([1983DA22]; n0), 11 to 17 MeV ([1985TE01]; n0, n2), 14.6 MeV([1985HA02,1986HAYU]; n0) and 14.7 MeV ([1984SH01]; n0, n2) as well as atEn = 9to 17 MeV ([1984BY03]; n0, n2; see also for transition to9Be*(6.76)). See also10Be, andother early work cited in [1988AJ01].

Spin-dependent scattering lengths were measured at low energies [1987GL06pseudomagnetic precession method, and cross sections were measured atEn = 1–10 MeV[1989SU13] andEn = 21.6 MeV [1990OL01]. Calculations and analysis for9Be(n, n) arereported in [1988FE06,1991IO01,1996CH33,2001BO10].

For reaction (b) the n–n scattering length was measured atEn = 10.3 MeV [1990BO43].A thick target neutron spectrum was used in a measurement of the reaction cross section by

Page 77: Energy levels of light nuclei A = 8,9,10

9Be

ng

e re-many

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 231

Table 9.10Electromagnetic matrix elements for9Be(e, e′)a

Eexpt.(MeV)

Etheor.b

(MeV)Jπ Matrix

elementc(e, e′)d Other Theorye

0 0 32

−Q(fm2) 5.86± 0.06 5.3± 0.3f 4.35µ (µN) −1.16± 0.02 −1.1778± 0.0009f −1.27B(M3) 4.4± 0.3 9.72B(C2) 17.1± 0.3 9.43

1.68 1.68 12

+B(C1) 0.034± 0.003 0.027± 0.002g 0.0045B(M2) 0.023± 0.008 0.097± 0.017g 0.022

2.43 2.64 52

−B(C2) 46.0± 0.5 41.6± 2.9h 32.2B(M1) 0.0090± 0.0003 0.0089± 0.0010h 0.0068B(M3) 0.5± 0.3 2.22

3.05 2.87 52

+B(C1) 0.029± 0.005 0.015± 0.013h 0.0039B(M2) 0.16± 0.02 0.018B(C3) 0.9± 0.6 12.5B(M4) 58± 3 127.6

6.38 6.19 72

−B(C2) 33± 1 25.6± 1.4i 12.7

6.76 6.39 ( 92

+)j B(C3) 216± 5 17.6

B(M4) 174± 16 223.8

7.52 52

+B(C3) 25.7

8.17 32

+B(C3) 19.3

11.28 8.46 ( 72

+)j B(C3) 57± 6 26.5

B(M4) 35.9

a Adapted from Table V of [1991GL02].a Normalized to the ground-state for negative-parity levels and to the1

2+

state for positive-parity levels.c The units ofB(CJ) andB(MJ) are bothe2 fm2J .d Polynomial-Gaussian expansion (PGE) fits [1991GL02]. The error is from the statistical error on the leadi

polynomial coefficient and is dependent onthe number of terms in the polynomial.e Harmonic oscillator (HO) wave functions withb = 1.765 fm,ep +δ ep +δ en = 1.6e, ep +δ ep −δ en = 0.7e,

and bare nucleong factors [1991GL02].f From [1988AJ01].g Low q (e, e′) from [1987KU05].h Low q (e, e′) from [1968CL08]. Data from [1968CL08] is included in the fits of [1991GL02].i Low q (e, e′) from [1963NG1A].j Suggested identifications [1991GL02].

[1994ME08]. See also the analysis and model calculations for9Be(n, 2n) atEn = 5.9 MeV[1988BE04].

19. (a) 9Be(p, p)9Be(b) 9Be(p, p′)9Be*

The previous review [1988AJ01] summarized the information available from thaction as follows: “Elastic and inelastic angular distributions have been studied at

energies in the rangeEp = 2.3 to 1000 MeV [see [1974AJ01,1979AJ01,1984AJ01]],at Ep = 2.31 to 2.73 MeV ([1983AL10]; p0), 11 to 17 MeV ([1988AJ01]; p0) and
Page 78: Energy levels of light nuclei A = 8,9,10

9Be

ion

ked

. Ap

n

16e

232 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 9.11Energy levels(Ex) and widths(Γ ) for 9Be states observed in9Be(p, p′)a

Ex (MeV) Γ (MeV) Jπ ; T Comments

0 32

−; 1

2

1.680± 0.015 0.217± 0.010 12

+; 1

2

2.4294± 0.0013 52

−; 1

2

2.78± 0.12 1.08± 0.11 12

−; 1

2

3.049± 0.009 0.282± 0.011 52

+; 1

2

4.704± 0.025 0.743± 0.055 32

+; 1

2

5.59± 0.10∗ 1.33± 0.36∗ ( 32

−; 1

2)

6.38± 0.06∗ 1.21± 0.23∗ ( 72

−; 1

2) clearly member ofK = 32

−band

6.76± 0.06 1.33± 0.09∗ ( 92

+; 1

2) assignment based on C3 angular distribut

11.28± 0.05∗ 1.10± 0.23∗ ( 72

+; 1

2) weak assignment based on C3 shape

13.79± 0.03 0.59± 0.06 ( 52

−; 1

2) also consistent withJπ ; T = 72

−; 1

2

14.3926± 0.0018 32

−; 3

214.4± 0.3 ≈ 0.8

15.10± 0.05 0.35± 0.18∗

15.97± 0.05 ≈ 0.310 ( 52

−; 1

2) also consistent withJπ ; T = 72

−; 1

2

16.671± 0.008 0.041± 0.004 52

+; 1

2

16.976± 0.002 12

−; 3

2

17.297± 0.010 ≈ 0.2 ( 52

−; 3

2)

17.490± 0.009 0.047 72

+; 1

2

18.65± 0.05∗ 0.3± 0.1∗ ( 32

+; 3

2) assignment based on M2 shape

19.20± 0.05 0.31± 0.08

19.42± 0.05∗ 0.6± 0.3∗ ( 92

+, 3

2) assignment based on M4 shape

20.53± 0.03∗ 0.6± 0.1∗20.8± 0.1∗ 0.68± 0.09∗

a As presented in Table I of [1991DI03]. New values for positions or widths are marked with asterisks(∗).Widths smaller than 40 keV were neglected. Proposed assignments are given within parentheses. Unmarparameters are taken from [1988AJ01].

1 GeV ([1985AL16]; p0) as well as atEp = 200 MeV ([1985GLZZ]; p0) and 220 MeV([1985RO15]; p0, p2). The elastic distributions show pronounced diffraction maximaquadrupole-deformed optical-model potential is necessary to obtain a good fit to the0and p2 angular distributions: see [1974AJ01]. The spin-flip probability atEp = 31 MeV is≈ 0 for the p2 group, which is expected in view of the collective nature of the transitio[1981CO08].”

“The structure corresponding to9Be∗(1.7) is asymmetric, as expected: see reactionand Table 9.8 in [1988AJ01] for its parameters. [AtEp = 13 MeV the spectra ar

dominated by9Be∗(2.43) [1987KU05].] The weighted mean of the values ofEx for9Be∗(2.4) listed in [1974AJ01] is 2432± 3 keV. 9Be∗(3.1) hasEx = 3.03± 0.03 MeV,
Page 79: Energy levels of light nuclei A = 8,9,10

9Be

ng

,

ndstates

states.levels

eths ared

ns and

othernel

tionalandre-

tions

udesfrom

-onfor

,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 233

Γ = 250± 50 keV, Jπ = (32+

, 52+). Higher states are observed at (Ex andΓ in MeV)

Ex = 4.8 ± 0.2, 6.76 ± 0.06 [Jπ = (12+

, 52+

, 72+) (but see below),Γ = 1.2 ± 0.2],

7.94± 0.08 (Γ ≈ 1), 11.3 ± 0.2 (Γ ≈ 1), 14.4 ± 0.3 (Γ ≈ 1), 16.7 ± 0.3, 17.4 ± 0.3,19.0 ± 0.4, 21.1 ± 0.5 and 22.4 ± 0.7 [the five highest states are all broad]. The stropopulation of9Be∗(2.4,6.8) is consistent with the assumption that they haveJπ = 5

2−

and72−

, respectively, and are members of the ground stateK = 32−

band. See [1966LA04][1974AJ01] for references.”

In an experimental and theoretical study of9Be structure [1991DI03], cross section aanalyzing power measurements made with 180 MeV protons provided data for 24belowEx = 21 MeV. Detailed line shape analysis was used to isolate several broadIn particular the strong resonance at 6.76 MeV [1988AJ01] was separated into twoidentified as the7

2−

member of the ground state rotational band at 6.38 MeV and th92+

weak-coupling state at 6.76 MeV. Level energies, suggested assignments and widsummarized in Table 9.11. Transition densities were fitted to (p, p′) data and comparewith results from (e, e′) data [1991GL02]. Shell model calculations in 0hω and 1hω modelspace were performed and used in making suggested assignments [1991DI03].

In other experimental work, measurements have been reported for cross sectiopolarization observables atEp = 135 MeV [1988KE04,1989KE03], and atEp = 54.7and 74.7 MeV [1994DE23]. The data from these experiments were analyzed withdata for 30< Ep < 220 MeV in terms of a variety of optical model and coupled-chananalyses to calculate final-state interaction effects for proton knockout reactions on10B[1994DE23]. Microscopic coupled-channel calculations for the ground-state rotaband of9Be and 100< Ep < 500 MeV have been made using the folding modeldensity-dependent interactions [1992KE05]. Elastic scattering cross sections have beenported atEp 2.66 MeV [1994WR01], and application-related scattering cross secatEp = 2.3–2.7 keV [1988LA07] andEp = 2.4–2.7 MeV [1994LE18].

Other theoretical work published since the previous review [1988AJ01] inclgeometric model calculations [1990HU09]; construction of interaction potentialsphase shifts [1996KU14]; Glauber–Sitenko theory calculations forEp = 0.22, 1 GeV[1996ZH31]; microscopic-model analysis forEp = 200 MeV [1997DO01]; Glaubermodel calculations forEp = 0.22, 1.0 GeV [1997ZH39]; calculations of polarizatifeatures forEp = 0.22, 1.0 GeV [1998ZH02]; and diffraction theory calculationsEp = 0.16–1.04 GeV [2000ZH50].

20. (a) 9Be(p, 2p)8Li, Qm = −16.8882(b) 9Be(p, pd)7Li, Qm = −16.6959(c) 9Be(p, p+ n)8Be, Qm = −1.6654(d) 9Be(p, p+ t)6Li, Qm = −17.6890(e) 9Be(p, p+ 3He)6He, Qm = −21.1787(f ) 9Be(p, pα)5He, Qm = −2.467

The reactions (p, 2p)X and (p, pd)X have been studied atEp = 300 MeV [1983GR21

1984HE03]. For reactions (a) and (c) see also8Li, 8Be ([1985BE30,1985DO16]; 1 GeV)and [1984AJ01]. Reaction (c) atEp = 10–24 MeV involves 9Be∗(3.0,4.7): see
Page 80: Energy levels of light nuclei A = 8,9,10

9Be

1C];

terds see

and].

AJ01,

ts

ticlen

lysis

],

iththe

234 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1984AJ01]. See also [1984WA21]. For reactions (b) and (d) atEp = 58 MeV see7Li and6Li in [2002TI10], and [1984DE1F,1985DE17].For reactions (e) and (f ) see ([1985PAEp = 70 MeV). The (p, pα) process (reaction (f )) has been studied atEp = 150.5 MeV[1985WA13], at 200 MeV [1989NA10], and at 296 MeV [1998YO09]. Alpha clusknockout spectroscopic factors were deduced. For inclusive proton spectra yiel[1985SE15]. Inclusive differential cross sections for4,6,8He and6,7,8Li formation by1 GeV protons on9Be were measured by [1994AM09]. Cross section and protonneutron spectra for reactions (a) and (c) atEp = 70 MeV were studied by [2000SH01See also the earlier work cited in [1988AJ01].

21.9Be(d, d)9Be

Angular distributions have been measured in the range 1.0 to 410 MeV [see [19741979AJ01,1984AJ01]] and atEd = 2.0 to 2.8 MeV [1983DE50,1984AN16]. See also11Bin [1990AJ01].

Inelastic groups have been reported to9Be∗(1.7,4.7,6.8) and to states withEx =2431.9±7.0 keV and 3040±15 keV (Γ = 294±20 keV): see [1974AJ01]. Measuremenat Ed = 6.7–7.5 MeV of differential cross sections for inelastic groups to9Be∗(2.43) andDWBA analysis were reported by [1989SZ02]. An analysis by [1989VA17] of (d, d′) dataat Ed = 13.6 MeV found evidence for kinematic focusing of the products of 3-pardecay of9Be∗(2.43). An optical-model description forEd = 4–11 MeV is discussed i[1993AB10].

22. (a) 9Be(t, t)9Be(b) 9Be(t, n+ t)8Be, Qm = −1.6654

Angular distributions of elastically scattered tritons have been measured atEt =2.10 MeV and atEt = 15 and 17 MeV: see [1974AJ01,1984AJ01]. A more recent anaby a strong absorption model of cross sections measured atEt = 17 MeV is reported in[1994SO26]. Reaction (b) at 4.2 and 4.6 MeV proceeds via9Be∗(2.4): see [1974AJ01].

23. (a) 9Be(3He,3He)9Be(b) 9Be(3He, 2α)4He, Qm = 19.0041

Angular distributions have been studied forE(3He)= 1.6 to 46.1 MeV and at 217 MeV[see [1974AJ01,1979AJ01,1984AJ01]]. AtE(3He) = 39.8 MeV, 9Be∗(1.7,2.4,3.1,4.7,

6.8,14.4) are populated. Data forE(3He)= 50, 60 MeV were analyzed by [1992AD06and rainbow effects were observed. Differential cross sections forE(3He) = 60 MeVwere measured by [1993MA48,1996RU13]. Measurements and analysis of theα-particlespectra from the decay of9Be∗(2.43) populated in the inelastic scattering reaction wE(3He) = 40.5 MeV are reported in [1990BO51]. An optical model description ofelastic scattering is discussed in [1987TR01].

Reaction (b) has been studied in a kinematically complete experiment forE(3He)= 3

to 12 MeV [1986LA26] and 11.9 to 24.0 MeV [1987WA25]. See also [1990BO51]. Forthe earlier work see [1984AJ01].
Page 81: Energy levels of light nuclei A = 8,9,10

9Be

ly

-an-

lso

v-ed,d re-

y-out,

t

-

mea--

were

-

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 235

24. (a) 9Be(α, α)9Be(b) 9Be(α,2α)5He, Qm = −2.467

Angular distributions have been studied at many energies in the rangeEα = 5.0 to104 MeV [see [1974AJ01,1984AJ01]]andEα = 23.1 MeV ([1984HU1D,1985HU1B];α0,α2). At Eα = 35.5 MeV, states belonging to theK = 3

2−

ground-state band are strong

excited [9Be∗(0,2.43,6.76,11.28); it is suggested that the latter hasJπ = (92−

); see,

however, reaction 12]. The first three states belonging to theK = 12+

band are also excited [9Be∗(1.68,3.05,4.70)] ([1982PE03]; coupled channels analysis). A coupled chnel folding model analysis for data atEα = 65 MeV is described in [1995RO21]. See a[2000ZH38].

See also the multicluster model calculation of [1993KU21] and the calculations of leels and rotational bands using (α, α′) data reported in [1997VO06]. In application-relatwork backscattering cross sections were measured forEα = 6.00–6.52 MeV [1996QI03]0–5.3 MeV [1994LE18], 0.15–3.0 MeV [1994LI51]. Related data were compiled anviewed in [1991LE33,1996ZH36]. For reaction (b) see ([1983ZH09]; 18 MeV);Sα = 0.96[see [1984AJ01]] and ([1987WA25];E(3He) = 12 to 24 MeV). A measurement of energsharing distributions atEα = 197 MeV was reported in [1994CO16]. Cluster knockat Eα = 580 MeV was studied by [1999NA05]. See also8Be [1987BU27,1987KO1K1984LI1D,1985SR01].

25.9Be(6He,6He)9Be

The cross section atE(6He)= 8.8–9.3 MeV was measured by [1991BE49].

26. (a) 9Be(6Li, 6Li) 9Be(b) 9Be(7Li, 7Li) 9Be

Elastic angular distributions have been measured atE(6Li) = 4, 6 and 24 MeV and aE(7Li) = 24 and 34 MeV [see [1979AJ01]] as well as atE(6Li) = 32 MeV ([1985CO09];also to 9Be∗(2.43)) and 50 MeV [1988TRZY] andE(7Li) = 78 MeV ([1986GL1C,1986GL1D]; also to9Be∗(2.43,6.76)). More recently, measurements and analysis of complete angular distributions for elastic scattering and inelastic scattering to9Be∗(2.43) atEcm = 7, 10, 12 MeV were reported by [1995MU01]. See also the cross sectionsurements and optical model analysis forE(6Li) = 50 MeV [1990TR02] and the analyzing power measurements for elastic and inelastic scattering atE(6Li) = 32 MeV[1993RE08]. Thresholds of non-Rutherford cross sections for ion-beam analysisstudied by [1991BO48]. For the interaction cross section atE(6Li) = 790 MeV/A see[1985TA18].

For reaction (b), cross section measurements atE(7Li) = 63, 130 MeV and optical

model analyses are reported in [2000TR01]. Theα–5He decay of9Be excited statespopulated byE(7Li) = 52 MeV was studied by [1998SO05].
Page 82: Energy levels of light nuclei A = 8,9,10

9Be

]. See

must

4DA17,were

and

eVr1]. An-ring tolingfor

e also

236 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

27.9Be(9Be,9Be)9Be

Elastic angular distributions have been obtained atE(9Be) = 5 to 26 MeV [see[1979AJ01,1984AJ01]] and at 35 to 50 MeV ([1984OM02]; also to9Be∗(2.43)). See also[1985JA09]. For yields and cross sections see [1984OM03,1986CU02,1988LA25also the application-related measurement atE(9Be) = 5.5 MeV [1988DA05]. In morerecent work, elastic scattering measurements atE(9Be) = 40 MeV were reported by[1992CO05]. It was determined that the angular distribution data of [1984OM02]be shifted forward by 5 cm. For the interaction cross section atE(9Be)= 790 MeV/A

see [1985TA18].

28. (a) 9Be(10B, 10B)9Be(b) 9Be(11B, 11B)9Be

Elastic angular distributions have been reported atE(10B) = 20.1 and 30.0 MeV[1983SR01]. For yields and cross section measurements see [1983SR01,1981986CU02]. See also [1983DU13,1984IN03,1986RO12]. Differential cross sectionsmeasured atE(10B) = 100 MeV [1997MU19,2000TR01]. Optical model parametersvalues of the asymptotic normalization coefficients (ANC) for10B → 9Be+ p were de-duced.

29. (a) 9Be(12C,12C)9Be(b) 9Be(13C,13C)9Be

Elastic angular distributions have been measured for reaction (a) atE(12C) = 12, 15, 18and 21 MeV andE(9Be)= 14 to 76.6 MeV [see [1979AJ01,1984AJ01]] and 158.3 M[1984FU10] as well as atE(12C) = 65 MeV ([1985GO1H]; various12C states). Foyield and fusion cross-section measurements see [1983JA09,1985DE22,1984AJ0gular distributions and excitations functions for elastic scattering and inelastic scatte9Be∗(2.43) for Ecm = 10.9 MeV are reported in [1995CA26]. Reorientation and coupeffects in the9Be+ 12C system were studied. See also the measurements and analysisEcm = 5.14–90.46 MeV of [2000RU02].

Elastic angular distributions for reaction (b) are reported forE(9Be)= 14 to 26 MeV:see [1984AJ01]. Measurements and optical-model analysis forE(13C) = 130 MeV arereported in [2000TR01]. For yield measurements see [1984DA17,1986CU02]. Sethe earlier work cited in [1988AJ01].

30.9Be(14N, 14N)9Be

Elastic angular distributions have been measured atE(14N) = 25 and 27.3 MeV: see[1974AJ01]. For a fusion study see [1984MA28].

Page 83: Energy levels of light nuclei A = 8,9,10

9Be

]],

see

nter-].

ther

xcited-

ck-

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 237

31. (a) 9Be(16O,16O)9Be(b) 9Be(18O,18O)9Be

Elastic angular distributions have been reported in the rangeE(16O) = 15 to 30 MeV[see [1979AJ01]] and [1988WE17], atE(9Be) = 14, 20 and 26 MeV [see [1984AJ0143 MeV [1985WI18] and 157.7 MeV [1984FU10], as well as atE(18O) = 12.1, 16 and20 MeV [see [1974AJ01]]. See also the other references cited in [1988AJ01].

32. (a) 9Be(20Ne,20Ne)9Be(b) 9Be(24Mg, 24Mg)9Be(c) 9Be(26Mg, 26Mg)9Be(d) 9Be(27Al, 27Al) 9Be(e) 9Be(28Si,28Si)9Be(f ) 9Be(39K, 39K)9Be(g) 9Be(40Ca,40Ca)9Be(h) 9Be(44Ca,44Ca)9Be

Elastic angular distributions have been measured for many of these reactions:[1979AJ01], [1984AJ01]. They have been studied on26Mg and 40Ca atE(9Be) = 43and 45 MeV, respectively [1985WI18] and on26Mg, 27Al and 40Ca atE(9Be)= 158.1–158.3 MeV [1984FU10]. For pion production in reaction (a) see [1985FR13]. The iaction cross section for 790 MeV/A 9Be on 27Al has been measured by [1985TA18Breakup measurements involving40Ca are reported by [1984GR20]. See also the oreferences cited in [1988AJ01].

33.10Be(d, t)9Be, Qm = −0.5550

Forward angular distributions have been obtained atEd = 15.0 MeV for the tritons to9Be∗(0,1.7,2.4,3.1). The ground-state transition is well fitted byl = 1. The transition to9Be∗(1.7) [≈ 165± 25 keV] is consistent withJπ = 1

2+

, that to9Be∗(2.4) is quite well

fitted with l = 3 [Jπ = 52−

], and that to9Be∗(3.1) [Γ = 280± 25 keV] is consistent withl = 2. No other narrow states are seen up toEx = 5.5 MeV [1970AU02].

34.10B(γ , p)9Be, Qm = −6.5859

Angular distributions have been measured for protons leading to a number of estates of9Be using tagged photons of mean energiesEγ = 57.6 and 72.9 MeV. The spectrum of states excited is very similar to that from the10B(e, e′p)9Be and proton pickupreactions from10B. However, the spectroscopic information is limited in that direct kno

out calculations account for only part of the cross sections and meson-exchange currentcontributions are found to be large [1998DE34].
Page 84: Energy levels of light nuclei A = 8,9,10

9Be

tes at).

tion,

f 407.3m

e char-elative

p to

ell and

-

edsis for

238 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 9.12Levels of9Be from10B(e, e′p)9Be

Ex (MeV)a C2Sexpt.a,b C2Stheor.

b,c Jπ d

0.00± 0.02 1.000± 0.025 1.000 32

2.41± 0.02 0.958± 0.025 0.964 52

6.67± 0.14 0.668± 0.028 0.994 72

11.17± 0.03 1.299± 0.036 1.352 ( 72 )−

14.48± 0.09 0.260± 0.025 0.412 ( 52 )−

a [1993DE1A]. There is evidence forl = 1 strength at≈ 17.5 MeV, for a state at 7.81± 0.18 MeV (identified

with, and suggesting a52−

assignment for the 7.94 MeV level in Table 9.2), and for weakly populated sta5.72± 0.26 MeV (identified with the 5.59 MeV level in Table 9.2) and 10.56± 0.23 MeV (existence uncertain

b Normalized to unity for the ground-state transition.c (6–16)2BME interaction of [1965CO25]. Therelative spectroscopic factors for the72

−levels are sensitive to

the details of the effective interaction. For calculations of spectroscopic factors using the (8–16)POT interacsee [1967CO32].

d J suggested by comparison with theory.

35.10B(e, e′p)9Be, Qm = −6.5859

Measurements have been performed in parallel kinematics at incident energies oand 498.1 MeV such thatEcm = 70 or 120 MeV for the outgoing proton. The momentudistributions for energy bins centered around the strong peaks in the spectrum aracteristic of p-shell knockout [1998DE23]. The measured excitation energies and rspectroscopic factors are shown in Table 9.12 [1993DE2A]. In absolute terms, 54± 2%of the individual-particle shell-model sum rule for 0p strength is accounted for uEx = 19 MeV.

36.10B(n, d)9Be, Qm = −4.3613

See [1974AJ01].

37.10B(p, 2p)9Be, Qm = −6.5859

This reaction shows several peaks corresponding to proton removal from the p shthe inner s shell. See [1974AJ01,1985BE30,1985DO16].

38.10B(d,3He)9Be, Qm = −1.0924

Angular distributions of the3He groups corresponding to9Be∗(0,2.4) have been studied atEd = 11.8, 28 and 52 MeV [the latter also to9Be∗(6.7)], and atEd = 15 MeV withS = 0.72 and 0.82 for9Be∗(0,2.4): see [1979AJ01]. AtEd = 52 MeV, S = 1.20, 1.23,and 0.70 for the 0, 2.43, and 6.66 MeV levels;9Be∗(11.3) appears to be strongly populatbut is masked by strong transitions from target contaminants [1975SC41]. An analy

Ed = 11.8 MeV and a study of the uniqueness of the asymptotic normalization coefficientmethod is discussed in [2000FE08].
Page 85: Energy levels of light nuclei A = 8,9,10

9Be

e

2,ormal-teand

o

o

atuan-

l-

:

d

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 239

39.10B(t, α)9Be, Qm = 13.2280

At Et = 12.9 MeV α-groups are observed to the ground state of9Be and to excitedstates atEx = 1.75± 0.03, 2.43, 3.02± 0.04 (Γ = 320± 60 keV), 11.27± 0.04 (Γ =530±70 keV), (14.4) [Γ ≈ 800 keV], 14.39 and 16.67 MeV. TheT = 3

2 state9Be∗(14.39)is very weakly populated [≈ 5% of intensity ofα2]. The angular distribution of theα2group shows sharp forward and backward peaking. Theα0 group is not peaked in thbackward direction: see [1979AJ01]. See also [1984AJ01,1982CI1A].

40.10B(7Be,8B)9Be, Qm = −6.4484

This reaction was studied with an 84 MeV7Be radioactive beam [1999AZ02001GA19,2001TR04]. The measured cross section determined the asymptotic nization coefficients for the virtual transition8B → 7Be+ p which may be used to calculathe astrophysicalS factor for7Be(p,γ )8B at solar energies. See also the calculationsanalysis of [1995GA20].

41.11B(p,3He)9Be, Qm = −10.322

At Ep = 45 MeV angular distributions are reported for the3He ions corresponding t9Be∗(0,2.4,11.8,13.8,14.39 [T = 3

2], 15.96± 0.04 [T = 12]). In addition one or more

states may be located at9Be∗(15.13). It is suggested that9Be∗(11.8,13.8,15.96) aretheJπ = 3

2−

; T = 12 analogs to9B∗(12.06,14.01,16.02). Angular distributions are als

reported atEp = 40 MeV. The intensity of the group to9Be∗(3.1) is ≈ 1% of the ground-state group at that energy: see [1974AJ01]. The excitation energy of the firstT = 3

2 stateis Ex = 14392.2 ± 1.8 keV [1974KA15], usingQm. Cross sections for this reactionEp = 4–11 MeV were calculated by [1994SH21] with Feshbach–Kerman–Koonin qtum multi-step direct reaction theory.

42. (a) 11B(d,α)9Be, Qm = 8.031(b) 11B(d, nα)4He4He, Qm = 6.458

Alpha groups are reported corresponding to9Be∗(0,1.7,2.4,3.1). The width of9Be∗(1.7) [Ex = 1.70±0.01 MeV] isΓcm = 220±20 keV. The weighted mean of the vaues ofEx of 9Be∗(2.4), reported in [1974AJ01], is 2425± 3 keV. The5

2+

state is atEx =3.035±0.025 MeV:Γcm = 257±25 keV. The ratioΓγ /Γ of 9Be∗(1.7) 2.4×10−5, thatfor 9Be∗(2.4) is reported to be(1.16± 0.14) × 10−4. SinceΓγ is known [see Table 9.30.091± 0.010 eV],Γ = 0.78± 0.13 keV. See [1974AJ01,1979AJ01] for references.

Angular distributions forα0 andα2 are reported atEd = 0.39 to 3.9 MeV and at 12 MeV[see [1974AJ01,1979AJ01]]. Recent measurements forEcm = 57–141 keV were reporteby [1997YA02,1997YA08]. AstrophysicalS-factors were deduced. Reaction (b), atEd =10.4 and 12.0 MeV, proceeds via9Be∗(2.4) and to some extent via9Be∗(3.1,4.7) and

possibly some higher excited states. The dominant decay of9Be∗(2.4) state is to5Heg.s.+α

while 9Be∗(3.1,4.7) states decay to8Beg.s. +n. It should be noted, however, that the peaks

Page 86: Energy levels of light nuclei A = 8,9,10

9Be

was

-nt haveVns of

-

in

d at

240 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

corresponding to9Be∗(3.0) have a FWHM of≈ 1 MeV, which may imply that9Be∗(2.8)

is involved.

43.12C(γ , pd)9Be, Qm = −31.7723

See [1986BU22,1987BU1A,1987VO08,1988BU06]. More recently, the reactionstudied atEγ = 150–400 MeV with tagged photons [1999MC06].

44. (a) 12C(n,α)9Be, Qm = −5.7012(b) 12C(n, nα)4He4He, Qm = −7.274747

Angular distributions of theα0 group have been measured atEn = 13.9 to 18.8 MeV[see [1974AJ01]] and at 14.1 MeV [1984HA48].9Be∗(1.7,2.4,3.1,6.8) are also populated. Cross sections and particle-spectra related to neutron detector developmebeen measured atEn = 4–11 MeV [1991BR09], 14.1 MeV [2000SA06], 14.6 Me[1994KO53] and 40, 56 MeV [1994MO41]. See also the calculated cross sectio[1989BR05]. Reaction (b) atEn = 13 to 18 MeV involves9Be∗(2.4). See [1984HA48]for differential cross sections at 14.1 MeV and for partial and total cross sections.

45.12C(p, p3He)9Be, Qm = −26.2788

See ([1985DE17];Ep = 58 MeV), and the calculations of ([1987ZH10];Ep ≈0.7 GeV).

46.12C(t,6Li) 9Be, Qm = −10.4846

Differential cross sections were measured atEt = 33 MeV to9Beg.s. [1989SI02]. Spectroscopic factors for3He-cluster pickup were deduced.

47.12C(α, 7Be)9Be, Qm = −24.6927

Cross section measurements atEα = 90 MeV and DWBA analysis are reported[1991GL03]. See also7Be in [2002TI10].

48. (a) 12C(7Li, 10B)9Be, Qm = −8.4905(b) 12C(12C,15O)9Be, Qm = −14.203(c) 12C(13C,16O)9Be, Qm = −3.4856(d) 12C(14N, 17F)9Be, Qm = −10.4359

For reaction (a) see10B. Differential cross sections for reaction (b) were measure

E(12C) = 480 MeV [1988KR11]. For reaction (c) see [1988KR11,1985OS06]. For reac-tion (d) see ([1986GO1B];E(14N) = 150 MeV).
Page 87: Energy levels of light nuclei A = 8,9,10

9Be, 9B

wh

ata/

pli-elopherhe fit.

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 241

49.13C(t,7Li) 9Be, Qm = −8.1806

Differential cross sections were measured atEt = 33 MeV to9Be∗(0,2.43) [1989SI02].Spectroscopic factors forα-cluster pickup were deduced.

50.13C(3He,7Be)9Be, Qm = −9.0614

Angular distributions have been obtained atE(3He) = 70 MeV for the transitions to9Be∗(0,2.4) and7Be∗(0,0.43). Broad states at 2.9, 4.8±0.2, 7.3±0.2 and 11.9±0.4 MeVare also populated: see [1979AJ01].

51.13C(α, 8Be)9Be, Qm = −10.7393

See8Be here and9Be in [1979AJ01].

52.14N(7Li, 12C)9Be, Qm = 6.4236

See [1986GO1B];E(14N = 150 MeV).

53.16O(α, 11C)9Be, Qm = −24.3100

See [1987KW1B,1987KW01].

54.16O(13C,20Ne)9Be, Qm = −5.9177

See20Ne in [1987AJ02]. See also [1985KA1J].

9B(Figs. 8 and 10)

GeneralReferences to articles on general properties of9B published since the previous revie

[1988AJ01] are grouped into categories andlisted, along with brief descriptions of eacitem, in the General Tables for9B located on our website at www.tunl.duke.edu/nucldGeneral_Tables/9b.shtml.

The low-lying levels of9B have mainly [441] spatial symmetry and thus large amtudes for breakup intoα + α + p. With increasing excitation energy, these states devlarge widths making it difficult to identify specific states and the analyses of often ratfeatureless spectra depend very much on which “known” levels are included in tThe relatively narrow states starting, as far as is known, with the7

2−

level at 11.65 MeV,and including theT = 3

2 states, have mainly [432] spatial symmetry with theT = 12 states

acquiring their widths through small admixtures of [441] symmetry. States with [432] sym-metry andL = 1, e.g., the 12.19 MeV level, can have large Gamow–Teller matrix elements

Page 88: Energy levels of light nuclei A = 8,9,10

9B

for

sesom, and

-

-at

nd-].

ion-ns:

ted)) has01,rted ations

242 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

for 9C(β+) decay. The analogs of two very narrow positive-parity states of9Be appear tohave been identified near 16.7 and 17.5 MeV in9B. See reaction 7(a).

1. (a) 6Li( 3He,γ )9B, Qm = 16.6023(b) 6Li(3He, n)8B, Qm = −1.9748, Eb = 16.6023(c) 6Li(3He, p)8Be, Qm = 16.7874(d) 6Li(3He, d)7Be, Qm = 0.11226(e) 6Li(3He, t)6Be, Qm = −4.307(f ) 6Li( 3He,3He)6Li(g) 6Li( 3He,α)5Li, Qm = 14.913

The 90 yields of γ0 and of γ to 9B∗(2.36) (reaction (a)) have been measuredE(3He)= 0.6 to 1.2 MeV [as have the 2α-particles from the decay of8Be∗(16.6) (reac-tion (c))]: they are reported to show a resonance atE(3He)= 765± 5 keV [9B∗(17.111)],attributed to9B∗(17.076) [T = 3

2]. The total cross section for reaction (b) increamonotonically from threshold to≈ 7 mb at 3.8 MeV. It then decreases monotonically frE(3He)= 5.5 to 7.6 MeV and also from 8.9 to 26.5 MeV: see [1979AJ01,1984AJ01]8B.

Absolute cross sections for protons (reaction (c)) to8Be∗(0,2.9,16.6,16.9) as wellas for the continuum protons have been measured forE(3He)= 0.5 to 1.85 MeV. Reaction rate parameters,〈σv〉, have been calculated forkT = 0.01 to 10.0 MeV. Excitationfunctions for p0 and p1 have been measured forE(3He) = 0.9 to 17 MeV, and polarization measurements are reported atE(3He) = 14 MeV. Resonances are observedE(3He) = 1.6 and 3.0 MeV [Γ = 0.25 and 1.5 MeV]: see [1974AJ01,1979AJ01], a8Be. Polarization measurements are also reported atE(6 Li) = 21 MeV, and vector analyzing powers for the transition to the ground state of8Be were measured [1983KO04Differential cross sections and analyzing powers were measured forE(3He)= 4.6 MeV[1995BA24]. In the rangeE(3He)= 0.7 to 2.0 MeV, a resonance in the excitation functfor deuterons (reaction (d)) is reported corresponding to9B∗(17.6). Polarization measurements atE(3 He) = 33.3 MeV for the d0 and d1 groups are reported. Excitation functiofor t0 (reaction (e)) have been measured forE(3He)= 10 to 16, and 23.3 to 25.4 MeVsee [1974AJ01]. Polarization measurements are reported atE(3 He) = 33.3 MeV for the t0group as well as for the3He ions to6Li ∗(0,2.19) (reaction (f )). The decay of6Be levelspopulated by reaction (e) forE(3He)= 30.7–40 MeV was studied in experiments reporin [1987BO39,1988BO38,1989BO42,1992BO25]. The elastic scattering (reaction (falso been studied forE(3He) = 0.7 to 2.0 MeV [see references cited in [1974AJ1979AJ01,1984AJ01]]. Differential cross section measurements have been repoE(3He)= 93 MeV [1994DO32], and 50–72 MeV [1995BU20]. See also the calculatin [1992KA06,1993SI06] and the analyses in [1995MA57,1995MI16]. Theα–α coinci-dences (5Li g.s. decay) (reaction (g)) have been measured forE(3He)= 1.4 to 1.8 MeV:a resonance is observed at 1.57± 0.02 MeV [9B∗(17.63)], Γ = 70± 20 keV. Polariza-tion measurements of theα-particles to5Li ∗(0,16.7) are reported atE(3 He) = 33.3 MeV.

See also the measurements atE(3He)= 1.5–3.5 MeV [1988BU04] and atE(3He)= 8–14 MeV [1990AR17]. Reaction amplitudes for resonance scattering were calculated for
Page 89: Energy levels of light nuclei A = 8,9,10

9B

5,

5,

68 MeV

4

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 243

Table 9.13Energy levels of9B

Exa (MeV ± keV) Jπ ; T Γc.m. (keV) Decay Reactions

g.s. 32

−; 1

2 0.54± 0.21 p 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 116, 17

≈ 1.6b p, (α) 3, 4, 8, 13

2.361± 5 52

−; 1

2 81± 5 p,α 1, 2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 116, 17

2.75± 300c 12

−; 1

2 3130± 200 p 3, 7, 10

2.788± 30 52

+; 1

2 550± 40 p,α 4, 7, 10, 11, 13, 15, 16

4.3± 200d 1600± 200 7

6.97± 60 72

−; 1

2 2000± 200 p 4, 7, 11, 14, 15, 16

11.65± 60e ( 72 )−; 1

2 800± 50 p 11, 13, 15, 16

12.19± 40f 52

−; 1

2 450± 20 p,α 4, 7, 10, 14

14.01± 70 π = −; 12 390± 110 p,α 4, 7, 10, 14

14.6550± 2.5 32

−; 3

2 0.395± 0.042 γ , p 4, 7, 8, 10, 14

14.7± 200g ( 52 )−; 1

2 1350± 200 11

15.29± 40 T = 12 14

15.58± 40 T = 12 14

16.024± 25 T = ( 12 ) 180± 16 4, 14

16.71± 100h ( 52

+); ( 1

2 ) 7

17.076± 4 12

−; 3

2 22± 5 (γ , 3He) 1, 14

17.190± 25 120± 40 p, d,3He 4, 5, 14

17.54± 100h,i ( 72

+); ( 1

2 ) 7

17.637± 10i 71± 8 p, d,3He,α 1, 4, 5, 14

a See reactions 7 and 8 for additional states and other values.b A wide range of excitation energies and widths have been given from searches for the analog of the 1.

12

+state of9Be. See [1987BA54,1992CA31,1995TI06,1996BA22,1999EF01].

c Analog to9Be∗(2.78). See [1985PU1A,1995TI06,2000GE09].d See [1985PU1A]. A level listed atEx = 4.8 MeV in [1988AJ01] was based on [1986AR14,1987KA36].e See [1974AJ01,1985PU1A]. Width from [1968KU04].f See [1985PU1A,2000GE09,2001BE51].g From [1968KU04].h From [1985PU1A]. See [1991DI03].i These two levels may not be distinct.

E(3He)= 8–14 MeV by [1996FA05]. For a study of the (3He, pα)4He reaction at 3.5, 4.and 5.5 MeV see [1987ZA07]. See [1979AJ01,1984AJ01] for references.

2. 6Li(α, n)9B, Qm = −3.9753

See [1974AJ01].

Page 90: Energy levels of light nuclei A = 8,9,10

9B

m fortehementer

gysr

withve

mon

244 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

3. 6Li( 6Li, t)9B, Qm = 0.8081

Angular distributions of the t0 group have been measured forE(6Li) = 4.0 to 5.5 MeVand at 7.35 and 9.0 MeV. No evidence was observed for a group corresponding to9B∗(1.6):see [1974AJ01]. In an experiment reported in [1995TI06], the relative energy spectru9B → 8Be+ p was measured usingE(6Li) = 56 MeV. The 2.36 MeV5

2−

state is absenfrom the spectrum because it decays into5Li + α. The spectrum can be fitted with th2.79 MeV 5

2+

state and a broad12−

state at an excitation energy of 2.3–3.2 MeV. Tbest fit occurs for an energy of 2.91 MeV and a width of 3.05 MeV, in good agreewith values deduced from an analysis of9Be(p, n)9B: see reaction 7. The fit can be furthimproved below 1.5 MeV by adding a small contribution from a1

2+

level. The reactionmechanism forE(6Li) = 2–16 MeV was studied by [1990LE05].

4. 7Li( 3He, n)9B, Qm = 9.3520

For 3He incident energies up to 12.5 MeV the only clear peaks at low excitation enercorrespond to the9B ground state and the unresolved9B∗(2.4,2.8) states. A peak habeen reported atEx = 4.8± 0.1 MeV [Γ = 1.0± 0.2 MeV] in one experiment. At higheexcitation, there is evidence for levels with energies (in MeV) and widths [Γ (in MeV)in brackets] at 12.06± 0.06 [0.8 ± 0.2], 14.01± 0.07 [0.39± 0.11], 14.67± 0.016 [<0.045], 16.024± 0.025 [0.180± 0.016], 17.19 and 17.63 [1965DI03].9B∗(14.66) is thefirst T = 3

2 state in9B. Its decay properties are displayed in Table 9.4 and comparedthose of9Be∗(14.40): see reaction 9 in9Be and [1974AJ01]. Angular distributions habeen measured atE(3He)= 1.56 to 5.27 MeV: see [1974AJ01].

5. (a) 7Be(d, n)8B, Qm = −2.0871, Eb = 16.4901(b) 7Be(d, p)8Be, Qm = 16.6751

The cross section for reaction (a) forE(7Be)= 16.9 MeV is 58± 11 mb [1983HA17,1985HA40]. The differential cross section was measured atEcm = 5.8 MeV [1997LI05]in order to obtain the8B → 7Be + p asymptotic normalization coefficient (ANC), frowhich the astrophysicalS factor for the7Be(p,γ )8B reaction was deduced. The reacticross section was calculated forEcm = 5.8, 15.6, 38.9 MeV [1999FE04]. ForEd = 0.75 to1.70 MeV, resonances in the yields of protons are observed atEd = 0.900±0.025 MeV (p0,p1) and 1.475± 0.010 MeV (p1 only) with Γcm = 120± 40 and 71± 8 keV, respectively[9B∗ = 17.19 and 17.64 MeV]: see [1974AJ01]. See also ([1985CA41]; astrophys.).

6. 9Be(π+, π0)9B, Qm = 3.5255

Experiments on isospin splitting in analog giant resonances excited by single pioncharge exchange reactions are reviewed in [1994HA41].

Page 91: Energy levels of light nuclei A = 8,9,10

9B

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 245

Fig. 8. Transitions accounting for 96% of the9C(β)9B decay are shown. The remaining 4% is spread over severaluncertain levels (see Table 9.14). For notation see Fig. 2.

Page 92: Energy levels of light nuclei A = 8,9,10

9B

in theeV

been

V

ron

nts

d

].kd

ndat

RA23,

2,k of

].

246 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

7. (a) 9Be(p, n)9B, Qm = −1.8504(b) 9Be(p, p+ n)8Be, Qm = −1.6654

For reaction (a), angular distributions have been reported at many energiesrangeEp = 3.5 to 49.3 MeV [see [1979AJ01,1984AJ01]] and at 16.44 and 17.57 M([1986MU07]; n0). The width of the ground state is 0.54± 0.21 keV: see [1974AJ01].

At Ep = 135 MeV, excitation energies, widths, and angular distributions havemeasured for states up toEx = 17.54 MeV [1985PU1A]. BelowEx = 5 MeV, the domi-nant excitations are to the ground state and a broad1

2−

state atEx = 2.75± 0.30 MeV

[Γ = 3.13 ± 0.20 MeV]. The 2.36 MeV 52−

state, the 2.788 MeV52+

state, takenat 2.71 ± 0.1 MeV [Γ = 0.7 ± 0.1 MeV], and a new level at 4.3 ± 0.2 MeV [Γ =1.6 ± 0.2 MeV] are also populated. The 0 cross sections for the 0 and 2.75 Mestates are comparable and the extractedB(GT) values for these states and the5

2−

levelagree well with p-shell predictions [1987RA32,1988MI03]. States atEx = 7.0± 0.1 MeV[Γ = 2.0 MeV] and 11.63± 0.2 MeV [not broad] are not seen at 0 and have anguladistributions consistent with the72

−assignments from single-neutron pickup reaction

10B. The angular distributions for states atEx = 12.23± 0.1 MeV [Γ = 0.5± 0.1 MeV],13.96± 0.1 MeV [not broad] and 14.60± 0.1 MeV [narrow state plus a broad componewith Γ = 0.6 ± 0.1 MeV] are forward peaked with modestB(GT) values. Cross sectionfor the 0, 2.36, 12.2, 14.0, 14.6 MeV states and two narrow states atEx = 16.71± 0.1 and17.54± 0.1 MeV are compared with shell-model predictions in [1991DI03]. The 16.7 an17.5 MeV states appear to be the analogs of the 16.67 MeV (5

2+

) and 17.49 MeV (72+

)states of9Be. There is also evidence at some angles for narrow states at 15.15± 0.1 MeV,15.44± 0.1 MeV, and 15.86± 0.1 MeV [1985PU1A].

Measurements of neutron polarization forEp = 54 MeV were reported in [1988HE08See also the cross section measurements atEp = 35 MeV of [1987OR02]. For earlier worsee [1974AJ01,1984AJ01]. Quasielastic scattering atEp = 300–400 MeV was studieby [1994SA43], and differential cross sections for isobaric analog Jπ = 0+ (Fermi-type) transitions were measured atEp = 35 MeV [2000JO17]. See also the analysis acalculations of [1994GA49] forEp = 1 GeV, and [1998IO03] for pion productionEp = 800 MeV. A summary of monoenergetic neutron sources forEn > 14 MeV is pre-sented in [1990BR24]. Application-related measurements are discussed in [19871996SH29].

Reaction (b) does not seem to involve states of9B. See also [1982GU1A,1983BY01984BA1R,1987RA32,1988BO47,1988HE08] and the application-related wor[1984AL1C,1987VO1F]. For yield and polarization measurements see10B.

8. 9Be(3He, t)9B, Qm = −1.0867

Angular distributions have been measured forE(3He) = 3.0 to 25 MeV and at217 MeV: see [1974AJ01,1979AJ01].AtE(3He)= 39.8 MeV, 9Bg.s. is strongly populatedand 9B∗(2.33,2.83,11.62,12.06,14.67, (17.19),17.63) are also observed [1969BA06

At E(3He) = 90 MeV triton groups are reported to states atEx = 1.16 ± 0.05 MeV[Γ = 1.3 ± 0.05 MeV], 2.32± 0.03, 2.72± 0.04 and 4.8 ± 0.03 MeV [1.5± 0.3 MeV],
Page 93: Energy levels of light nuclei A = 8,9,10

9B

and

s of

to

] with

3]

-

nsrveof thisllerns.bynd its

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 247

16.7 ± 0.1 MeV [< 0.1 MeV], 18.6 ± 0.3 and 20.7 ± 0.5 MeV [1.6 ± 0.3 MeV] [Γ inbrackets], in addition to known and possibly unresolved9B∗(7.0,11.7,12.1,14.7,17.64)states [1987KA36]. See also [1983DJZV]. [2001AK09] have fitted 0, 2, and 3.5 spectraat E(3He)= 450 MeV with levels fixed at excitation energies of 0, 2.361, 2.788, 4.8,6.97 MeV together with two levels at 1.80+0.22

−0.16 and 3.82+0.23−0.22 MeV with widths of 600+300

−270

and 1330+620−360 keV; see also [1994AK02] for the excitation of states aboveEx = 10 MeV

at 0. Neither [1987KA36] nor [2001AK09] include in their fits the broad12−

level that isstrongly excited in the9Be(p, n)9B reaction.

The9Be(3He, tα)9B reaction withE(3He)= 40.5 MeV has been used to obtainα-decayspectra from the52

−level at 2.36 MeV [1990BO51]. The data were analyzed in term

series expansions of the decay amplitudes in hyperspherical harmonics.

9. (a) 9Be(6Li, 6He)9B, Qm = −4.5764(b) 9Be(7Li, 7Be)9B, Qm = −1.9303

At E(6Li) = 32 MeV angular distributions are reported to9B∗(0,2.36) [1985CO09].Measurements withE(6Li) = 32 MeV are also reported by [1988BU18]. In addition9B∗(0,2.36) they report weak levels atEx = 1.32± 0.08 MeV,Γ = 0.86± 0.26 MeV andEx = 4.60± 0.16 MeV,Γ = 0.68± 0.43 MeV. See also ([1984GL06];E(6Li) = 93 MeV,E(7Li) = 78 MeV).

The status of evidence for the mirror state of the12+

1.68 MeV state in9Be was re-viewed [1992CA31], and reinvestigated by9Be(6Li, 6He)9B measurements withE(6Li) =32 MeV. They find no evidence for the level. A measurement reported in [1993RE04polarized6Li ions at 32 MeV determined polarization observables for9B∗(0,2.36). Theresults were compared to coupled-channels calculations.

10.9C(β+)9B, Qm = 16.4948

The previous review [1988AJ01] notes that9C β+ decay was observed by [1988MI0to 9B∗(0,2.36,2.8) [Jπ = 3

2−

, 52−

, 12−

] with branching ratios of(60± 10), (17± 6) and(11±5)%, respectively. A state atEx = 12.1±0.6 MeV,Γ = 0.4±0.1 MeV was also ob-served with the remaining strength going to it. In [2000GE09,2001BE51], theβ-delayedparticle decay of9C has been studied and secondary decays into8B + p and5Li + α

have been observed. In [2001BE51], a value of 54.1 ± 1.5% is reported for the groundstate branch and no asymmetry is found with the corresponding transition in9Li(β−)9Be.They determineJπ = 5

2−

for the 12.2 MeV level from a study of angular correlatioand measure a largeB(GT) value for the transition to the 12.2 MeV level. They obsea transition to the isobaric analog state and obtain new information on the decaystate. In [2000GE09] a number of9B level energies, branching ratios, and Gamow–Testrengths were deduced using anR-matrix analysis with simplified one-level expressioLevel energies, branching ratios,B(GT) values, and other decay information obtainedcombining the results of [2000GE09] and [2001BE51] are presented in Table 9.14 a

footnotes. The data of [2000GE09] have also been analyzed using a multichannel, mul-tilevel R-matrix approach and the results are described in [2001BU05]. See reaction 12
Page 94: Energy levels of light nuclei A = 8,9,10

9B

re taken09]

e

arecteris-

5BE30,

,

248 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 9.14Branching ratios in9C(β+) decay from measurements ofβ-delayed particle decaya

Ex in 9B (MeV) Jπ Branching ratio (%) B(GT)

0 32

−54.1± 1.5b 0.0295± 0.0008

2.34± 0.03 52

−30.4± 5.8c 0.053± 0.012

2.8± 0.2 12

−5.8± 0.6d 0.013± 0.002

12.16± 0.10 52

−e 5.9± 0.6f 2.16± 0.2214.0± 0.2 0.16± 0.02g 0.36± 0.05

14.663h 32

−0.010 3.1h

a Except for the transition to the isobaric analog state at 14.66 MeV, the energies and branching ratios afrom Table VII of [2000GE09] after normalization to the ground-state branch from [2001BE51]. [2000GEalso list a very weak branch to a narrow, and previously unknown, state at 13.3 MeV and a≈ 4% backgroundcontribution attributed to the tailsof higher states. See also [2001BU05].

b From [2001BE51].c From [2000GE09]. The p0 decay branch is 0.5%.d From [2000GE09]. The p0 decay branch is 90%.Γ = 2.5 MeV from the fit to this branch.e [2001BE51].Jπ = 5

2−

from theα-p angular distribution for theα0 branch;Ex = 12.19± 0.04 MeV, Γ =450± 20 keV; p0 9.0± 1.0%, p1 25± 7%,α0 60± 7%,α1 6± 4%;B(GT) = 1.92± 0.24.

f [2000GE09].Jπ assumed to be32−

; p0 8.5± 1.0%, p1 18± 3%,α 74± 8%.Γ = 0.45 MeV from the fit tothe p0 branch.

g From [2000GE09]. Only p0 observed.h From [2001BE51]. The summed energy for the decay is measured to be 14940 keV.α0 (4.8± 0.7)×10−3%;

Γα0/Γ = 0.46; B(F) + B(GT) is listed whereB(F) = 3.0.

in 9Be and Table 9.8 for the mirror decay9Li(β−)9Be; note the large asymmetry for thdecays to the 11.81 MeV level of9Be and 12.16 MeV level of9B.

11. (a) 10B(p, d)9B, Qm = −6.2118(b) 10B(p, p+ n)9B, Qm = −8.4363

At Ep = 33.6 MeV [1968KU04] and 155.6 MeV [1969BA05] deuteron groupsobserved to the states shown in Table 9.15. All have angular distributions charatic of ln = 1. Angular distributions are also reported for9B∗(0,2.36) at Ep = 18.6 MeV[1985BE13].

In reaction (b), separation energy spectra and the relative probabilities of knockoutof protons and neutrons from the 0s and 0p shells have been measured ([1981985DO16];Ep = 1 GeV).

12.10B(d, t)9B, Qm = −2.1791

Angular distributions have been measured atEd = 11.8 to 28 MeV [see [1974AJ01]

[1979AJ01]] and 18 MeV ([1988GO02,1988GU20]; to9B∗(0,2.36)). See also the analysisof cross section data forEd = 8–50 MeV [1995GU22].
Page 95: Energy levels of light nuclei A = 8,9,10

9B

2].also

er

at

dn-

x-

e is

s toof

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 249

Table 9.15Levels of9B from 10B(p, d)9B

Exa (MeV) Ex

b (MeV) Γcmb (MeV) C2Sexpt.

a C2Stheor.c Jπ d

0 0 0.44 0.59 32

2.4± 0.1 2.35± 0.02 0.60 0.58 52

7.1± 0.2 7.1± 0.2 2.15± 0.15 0.52 0.56 72

11.5± 0.2 11.75± 0.1 0.80± 0.05 1.12 0.78 ( 72 )−

14.9± 0.3 14.6± 0.2 1.35± 0.2 0.32 0.24 ( 52 )−

a [1969BA05]:Ep = 155.6 MeV.b [1968KU04]:Ep = 33.6 MeV.c (6–16)2BME interaction of [1965CO25]. Therelative spectroscopic factors for the72

−levels are sensitive

to the details of the effective interaction [coauthorD.J.M.]. For the (8–16)POT interaction, see [1967CO3[1968KU04] make a graphical comparison of relative experimental and theoretical spectroscopic factors; see[1991AB04].

d J suggested by comparison with theory.

13. (a) 10B(3He,α)9B, Qm = 12.1413(b) 10B(3He,αp)8Be, Qm = 12.3264(c) 10B(3He, 2α)5Li, Qm = 10.452

Alpha-particle spectra show the excitation of9B∗(0,2.4,2.8,11.8): see [1966LA04].Measurements by [1968KR02] determineEx = 2.361± 0.005 and 2.788± 0.030 MeV[Γ = 81± 5 and 548± 40 keV, respectively]: see Table 9.11 in [1966LA04] for othvalues. There is some evidence for a state withEx ≈ 1.6 MeV, Γ ≈ 0.7 MeV, but it isnot conclusive. No evidence is found for any narrow levels in9B with Γ 100 keV and4 < Ex < 7 MeV: the upper limit to the intensity of the correspondingα-group is 1%of the intensity of the group to9B∗(2.4). Angular distributions have been determinedE(3He)= 5.5 and 33.7 MeV [see [1974AJ01]].

In reaction (b), a study of the decays of9B∗(2.4,2.8) shows that9B∗(2.4) decays< 0.5% by proton emission to8Beg.s. [it decays to5Li g.s. by α-emission] while the seconstate,Ex = 2.71± 0.03 MeV [Γ = 0.71± 0.06 MeV], decays almost 100% by that chanel [1966WI08]. No evidence is found for excited states of9B with 3.5 < Ex < 9.5 MeVwhich decay by proton emission to8Beg.s. [1968KR02]. In a kinematically complete eperiment (reaction (c)) atE(3He)= 2.3 and 5.0 MeV, a state is reported at 4.9± 0.2 MeVwith a width of 1.5± 0.3 MeV [1986AR14]. Likewise, from reactions (b) and (c) a statreported at 1.8± 0.2 MeV with a width of 0.9± 0.3 MeV [1988AR05].

14.11B(p, t)9B, Qm = −11.409

At Ep = 45 MeV angular distributions have been obtained for the triton group9B∗(0,2.36,12.06,14.01,14.66,16.02). In addition the spectra show some indication

9 ∗ 1

the groups corresponding toB (7.0,17.19,17.64). T = 2 states are reported atEx =15.29±0.04 and 15.58±0.04 MeV [1971HA10]. The first twoT = 3

2 states have been ob-

Page 96: Energy levels of light nuclei A = 8,9,10

9B, 9C

].

r

upSpec-er

picalso

].

wh

250 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

served atEx = 14.6550±0.0025 [1974KA15] and 17.076±0.004 MeV [Γ = 22±5 keV][1974BE66].

15. (a) 12C(p,α)9B, Qm = −7.5516(b) 12C(p, p)4He4He4He, Qm = −7.274747(c) 12C(p, pt)9B, Qm = −27.3655

Angular distributions have been measured atEp = 14.0 to 54.1 MeV [see [1974AJ01]At Ep = 54.1 MeV peaks are observed at 0, 2.32± 0.04, 6.97± 0.06, and 11.46± 0.25MeV [1971MA2C]. The angular distribution for the 6.97 MeV state is similar to otherJ =72 transitions [1972MA21]. AtEp = 42.8 MeV angular distributions for9B∗(0,2.36,6.98)involve l = 1, 3 and 3, respectively [1983PE07]. A broad state at 2.9 ± 0.2 MeV hasalso been reported: see [1974AJ01]. Angular distributions involving theα0 andα∗ groups[to 4He∗(20.1), 0+] to 9Bg.s. have been studied atEp = 42 MeV: see [1984AJ01]. Foreaction (c) see ([1985DE17];Ep = 58 MeV). See also [1984AJ01,1988AJ01].

16. (a) 12C(t,6He)9B, Qm = −15.0610(b) 12C(3He,6Li)9B, Qm = −11.5713

Differential cross sections were measured for reaction (a) atEt = 38 MeV and for re-action (b) atE(3He)= 33 MeV by [1989SI02]. Spectroscopic factors for cluster pickwere extracted. A reanalysis of the data for reaction (a) is presented in [1992CL04].troscopic factors are compared with shell model and microscopic calculations. In othwork on reaction (b) angular distributions were studied atE(3He)= 30.0 and 40.7 MeV[see [1974AJ01]] and atE(3He) = 33.4 MeV ([1986CL1B]; to9B∗(0,2.36), and crosssections for9B∗(0,2.36,2.78,6.97,11.7) were measured by [1993MA48]. Spectroscofactors for3H pickup were extracted and compared with shell-model predictions. Seethe analysis in [1995MA57].

17.12C(α, 7Li) 9B, Qm = −24.8986

Angular distributions have been measured atEα = 49.0 and 80.1 MeV [1984GO03See also [1984AJ01]. Differential cross sections were measured atEα = 90 MeV[1991GL03].

9C(Figs. 9 and 10)

GeneralReferences to articles on general properties of9C published since the previous revie

[1988AJ01] are grouped into categories andlisted, along with brief descriptions of eac

item, in the General Tables for9C located on our website at www.tunl.duke.edu/nucldata/General_Tables/9c.shtml.
Page 97: Energy levels of light nuclei A = 8,9,10

9C

y

ossn

een

e-en thein

e

n

o

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 251

Table 9.16Energy levels of9C a,b

Ex (MeV ± keV) Jπ ; T τ1/2 or Γ Decay Reactions

g.s. 32

−; 3

2 τ1/2 = 126.5± 0.9 ms β+ 1, 4, 6a

2.218± 11 12

−Γ = 100± 20 keV 6

a See also [1974AJ01,1979AJ01].b Evidence for additional levels in9C is presented in reaction 6.

Ground state properties

µ = −3.3914± 0.0005µN [1996MA38]. See also [1988HU08].

The sum of the magnetic moments of9Li and 9C leads to〈σ 〉 = 1.44, an anomalouslhigh value that remains unexplained [1988HU08,1996MA38].

The r.m.s. matter radius of9C is 2.42±0.03 fm has been deduced from interaction crsections on Be, C, and Al atE ≈ 730 MeV/A [1996OZ01] [see also for derived protomatter, charge and neutron matter r.m.s. radii]. Interaction cross sections have also bmeasured on C, Al, Sn, and Pb atE ≈ 285 MeV/A [1997BL08]. See also reaction 7.

1. 9C(β+)9B, Qm = 16.4948

The half-life of 9C is 126.5 ± 0.9 ms: see [1974AJ01]. New information on the dcay scheme is given in [2000GE09,2001BE51] and the data of [2000GE09] has besubject of a separateR-matrix fit [2001BU05]. The decay is complex; see reaction 109B.

2. 2H(8B, 9C)n, Qm = −0.9246

The cross section has been determined atE ≈ 14.4 MeV/A and used to determine thasymptotic normalization coefficient for9C → 8B + p andS18 = 45± 13 eV b (Ecm = 1–100 keV) for the8B(p,γ )9C reaction [2001BE45].

3. 8B(p,γ )9C, Qm = 1.3000

Cross section data from one-proton removal reactions with9C [see reaction 7] have beeused to determine the asymptotic normalization coefficient for9C → 8B + p andS18(0)

for the8B(p,γ )9C reaction;S18(0) = 46± 6 eV b [2002TR14] andS18(0) = 49± 4 eV b[2003EN05] [see reaction 2 and [2003MO12]; theor.]. The8B(p,γ )9C reaction has alsbeen studied by Coulomb dissociation in inverse kinematics [2003MO23].

4. 9Be(π+,π−)9C, Qm = −17.5629

See [1984AJ01,1986SE04]. The total reaction cross section forEπ+ = 180 and240 MeV is measured and analyzed in [1989GR06].

5. 10B(7Li, 8He)9C, Qm = −33.550

The ground state of9C has been observed in the angular range 0 to 12 at E(7Li) =350 MeV [2001CA37].

Page 98: Energy levels of light nuclei A = 8,9,10

9C

252 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Fig. 9. Energy levels of9C. For notation see Fig. 2.

6. 12C(3He,6He)9C, Qm = −31.5744

At E(3He)= 74.1 MeV 6He groups are observed to the ground state and to a state atEx = 2218± 11 keV,Γ = 100± 20 keV: see [1984AJ01].

Page 99: Energy levels of light nuclei A = 8,9,10

9C, 9N, A = 10, 10n

Al, Sn,

emoval

en esti-doccu-

ybroad

ef de-t

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 253

At E(3He)= 76.6 MeV a new9C level atEx = 3.3± 0.05 MeV is claimed in additionto 9C∗(0,2.2). There is evidence for a broad level atEx ≈ 4.3 MeV that could be theanalog of the 4.3 MeV level of9Li and is expected to have a width of≈ 2.6 MeV: see[1991GO13].

7. (a) C, Al, Si, Sn, Pb(9C,8B + p)(b) C, Al, Si, Sn, Pb(9C,7Be+ 2p)

One-proton and two-proton removal cross sections have been measured on C,and Pb targets atE ≈ 285 MeV/A [1997BL08], on a C target atE ≈ 78.3 MeV/A

[2003EN05], and on a Si target atE = 20–70 MeV/A [2004WA06]. Eikonal theory isused in [2003EN05,2004WA06] to extract quenching factors (≈ 0.82) which renormalizetheoretical p-shell spectroscopic factors to reproduce the measured one-nucleon rcross sections. See also reaction 3.

9N(not illustrated)

Not observed: see [1988AJ01]. Mass excesses of 46.56 and 46.40 MeV have bemated from two different mass formulae [2000PO32].9N would then be proton unbounby ≈ 4 MeV. However, mass formulae neither take into account the fact that the lastpied orbit(s) may change near the drip lines nor the fact that an extended low-l orbit leadsto a lowered Coulomb energy. The suggested s-wave ground-state of9He and a Coulombenergy estimated from the11N ground state imply that9N should be proton unbound b≈ 1.8 MeV, high enough above the Coulomb barrier that the “state” should be tooto observe. The analog of one of the narrow excited states of9He could remain relativelynarrow in9N.

A = 10

GeneralReferences to articles on general properties ofA = 10 nuclei published since th

previous review [1988AJ01] are grouped into categories and listed, along with briescriptions of each item, in the General Tables forA = 10 located on our website awww.tunl.duke.edu/nucldata/General_Tables/10.shtml.

10n(not illustrated)

10n has not been observed: see [1979AJ01]. See also ([1986AB10]; theor.).

Page 100: Energy levels of light nuclei A = 8,9,10

254

10n

D.R

.Tilleyetal./N

uclearP

hysicsA

745(2004)

155–362

neutron–proton mass difference and the Coulomb energy,y,EN = M(Z, A) − ZM(H) − NM(n) − EC, minus theto be isospin multiplets are connected by dashed lines.

Fig. 10. Isobar diagram,A = 9. The diagrams for individual isobars have been shifted vertically toeliminate thetaken asEC = 0.60Z(Z − 1)/A1/3. Energies in square brackets representthe (approximate) nuclear energcorresponding quantity for9Be: hereM represents the atomic mass excess in MeV. Levels which are presumed

Page 101: Energy levels of light nuclei A = 8,9,10

10n, 10He

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 255

Table 9.17Mirror states(T = 1

2) in A = 9 nucleia

9Be 9B

Ex (MeV) Jπ Ex (MeV) Jπ Ex (MeV) b

0 32

−0 3

2−

1.684 12

+ c

2.429 52

−2.361 5

2− −0.068

2.78 12

−2.75 1

2− −0.03

3.049 52

+2.788 5

2+ −0.261

4.704 ( 32)+ 4.3 −0.4

5.59 ( 32

−)

6.38d 72

−6.97 7

2− +0.59

6.76 92

+

7.94 ( 52

−)

11.283 ( 72

−) 11.65 ( 7

2−

) +0.37

11.81 52

−12.19 5

2− +0.25

13.79 π = − 14.01 π = − +0.2215.97 16.02 +0.05

16.671 ( 52

+) 16.71 ( 5

2+

) +0.04

17.493 ( 72

+) 17.54 ( 7

2+

) +0.05

a As taken from Tables 9.2 and 9.13.b Defined asEx(9B) − Ex(9Be).c See footnote b to Table 9.13.d See footnote b to Table 9.2.

Table 9.18Isospin quadruplet states(T = 3

2) in A = 9 nucleia

9Li 9Be 9B 9C

Ex (MeV) Jπ Ex (MeV) Jπ Ex (MeV) Jπ Ex (MeV) Jπ

0 32

−14.392 3

2−

14.655 32

−0 3

2−

2.691 12

−16.975 1

2−

17.076 12

−2.218 1

2−

4.296 ( 52

−) 18.65 ( 5

2−

)

5.386.43

a As taken from Tables 9.1, 9.2, 9.13 and 9.16.

10He(Figs. 11 and 17)

General

References to articles on general properties of10He published since the previ-

ous review [1988AJ01] are grouped into categories and listed, along with brief de-

Page 102: Energy levels of light nuclei A = 8,9,10

10He

t

cay

-

-e

O05,is

256 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 10.1Energy levels of10Hea

Ex (MeV) Jπ ; T Γcm (MeV) Decay Reactions

g.s. (0+); 3 0.3± 0.2 n 1, 2, 33.24± 0.20 (2+); 3 1.0± 0.3 n 36.80± 0.07 (3−); 3 0.6± 0.3 n 3

a Based on data reviewed in this evaluation.

Table 10.210He level parameters from10Be(14C, 14O)10Hea

Jπ ; T

(0+); 3 (2+); 3 (3−); 3

ER (MeV)b 1.07± 0.07 4.31± 0.20 7.87± 0.06Ex (MeV) 0 3.24± 0.20 6.80± 0.07Γ (MeV) 0.3± 0.2 1.0± 0.3 0.6± 0.3

a From Table I of [1994OS04].b 8He+ 2n decay energy.

scriptions of each item, in the General Tables for10He located on our website awww.tunl.duke.edu/nucldata/General_Tables/10he.shtml.

1. 1H(11Li, 2p)10He, Qm = −15.302

10He has been observed in quasifree proton-knockout reaction with 83 MeV/A 11Liincident on targets of CH2 [1997KO07]. The preliminary value determined for the deenergy for10He→ 8He+ 2n is 1.7± 0.3(stat.)± 0.3(syst.) MeV.

2. 2H(11Li, 3He)10He, Qm = −9.808

Reaction products from 61 MeV/A 11Li incident on targets of CD2 and C were studied in experiments described in [1994KO16,1995KO27]. The transfer reaction2H(11Li,3He)10He as well as the final state interaction of particles8He+ n+ n emitted in fragmentation were considered. Invariant-mass measurements for8He+ n + n coincidences werused. Evidence was obtained for a10He resonance at 1.2±0.3 MeV above the8He+n+nthreshold with a widthΓ 1.2 MeV.

3. 10Be(14C,14O)10He, Qm = −41.191

The double charge-exchange reaction10Be(14C,14O)10He was studied atElab =334.4 MeV [1994OS04,1995BO10,1999BO26]. See also [1995OSZX,1995V1996OS1A,1998BO1M]. The measuredQ-value for the10He ground state resonance−41.19± 0.07 MeV which corresponds to a mass excess of 48.81± 0.07 MeV. This is

also the value adopted in [2003AU03].10He is then particle unstable against 2n emis-sion by 1.07± 0.07 MeV. The measured width of the ground state resonance isΓ =
Page 103: Energy levels of light nuclei A = 8,9,10

10He

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 257

Fig. 11. Energy levels of10He. For notation see Fig. 2.

0.3± 0.2 MeV. Excited states are reported atEx = 3.24± 0.20 MeV,Γ = 1.0± 0.3 MeV

andEx = 6.80±0.07 MeV,Γ = 0.6±0.3 MeV. Widths of the two excited-state resonancesare described usingR-matrix calculations by [1994OS04]. See Table 10.2.
Page 104: Energy levels of light nuclei A = 8,9,10

10Li

whta/

to asg

old en-es nearar-26])s

n

-he]

ing

of

258 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

10Li(Figs. 12 and 17)

GeneralReferences to articles on general properties of10Li published since the previous revie

[1988AJ01] are grouped into categories andlisted, along with brief descriptions of eacitem, in the General Tables for10Li located on our website at www.tunl.duke.edu/nucldaGeneral_Tables/10li.shtml.

10Li ground-state mass The mass excess of10Li adopted by [2003AU03] is 33051±15 keV. This indicates that this nucleus is neutron unbound by 25± 15 keV. The width ofthis state is 230± 60 keV [2003AU03]. The general consensus for the10Li ground stateconfiguration is that a broad s-wave neutron resonance couples with the3

2− 9Li ground

state to give either 1− or 2− resonance; see reaction 7. This state has been referreda virtual resonance in the n+ 9Li system with an energy< 50 keV, based on scatterinlength considerations [2002GA12].

Although most experimental effort has focused on resonances near the threshergy, the situation at higher excitation energies is better understood. Two resonancEres= 250 keV and 500 keV (above the9Li + n threshold) have been observed under vious experimental conditions. In addition, the work of Bohlen et al. (e.g., [1999BOhas resulted in the observation of several higher-lying10Li resonances. Table 10.3 showa summary of observed resonances reported for10Li. Energies in Table 10.3 are giverelative to the9Li + n threshold energy.

1. (a) 1H(11Li, p + n)8LiX(b) 1H(11Li, p + n)9LiX

The separation-energy distribution for 83 MeV/A 11Li incident on a CH2 target wasmeasured by [1997KO07]. Two states in10Li at Eres= 5.2 MeV and 0.4 MeV were observed in reactions (a) and (b), respectively. (Eres is the resonance energy relative to t9Li + n threshold). s-wave properties of the9Li + n potential were studied [2002MA77by calculation of the break-up reactions of a11Li beam.

2. 2H(9Li, p)10Li, Qm = −2.250

The structure of10Li was investigated in a kinematically complete experiment usthe9Li(d, p)10Li reaction in inverse kinematics atE(9Li) = 20 MeV/A [2003SA07]. TheresultingQ-value spectrum was best fit with a single resonance atEres= 0.35±0.11 MeVor two resonances located atEres= 0.77± 0.24 MeV andEres 0.2 MeV.

3. 9Be(9Be,8B)10Li, Qm = −33.277

In an experiment atE(9Be) = 40.1 ± 0.1 MeV/A the measured energy spectrum

8B particles was best fit with a single p-wave resonance atEres= 0.50± 0.06 MeV,Γ =400± 60 keV [1999CA48]. An excess strength at threshold was observed but that strength
Page 105: Energy levels of light nuclei A = 8,9,10

10Li

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 259

Table 10.3Summary of observed resonances reported for10Li. Resonances are grouped to reflect different levels in10Li

Eresa (MeV) Γres (MeV) Reaction Reference Jπ

0.05 natC(11Be,9Li + n)X [1995ZI03]

0.05 9Be(18O,9Li + n)X [1999TH01]

0.05 9Be(11Be, X)10Li [2001CH31]

0.05 9Be(11Be, X)10Li [2001CH46]

< 0.1 < 0.23 11B(7Li, 8B)10Li [1994YO01]

0.1± 0.1 0.4± 0.1 11B(π−, p)10Li [1998GO30] (1−)

0.15± 0.15 < 0.4 11B(π−, p)10Li [1990AM05]

0.15 natC(18O,9Li)X [1993KR09]

seeb,c

0.24± 0.04 0.10± 0.07 10Be(12C,12N)10Li [1999BO26] 1+(0.35± 0.11)d < 0.32 2H(9Li, p)10Li [2003SA07]

seee

(0.35± 0.11)d < 0.32 2H(9Li, p)10Li [2003SA07]

0.4 1H(11Li, p + n)9LiX [1997KO07]

0.40± 0.07 ≈ 0.3 14C(π−, dd)10Li [1998GO30]

(0.42± 0.05)f 0.15± 0.07 9Be(13C,12N)10Li [1993BO03] (1+)f

0.50± 0.06 0.4± 0.06 9Be(9Be,8B)10Li [1999CA48]

0.53± 0.06 0.35± 0.08 9Be(13C,12N)10Li [1999BO26] (2+)

9Be(15N, 14O)10Li [1998BO38]

0.538± 0.062 0.358± 0.023 11B(7Li, 8B)10Li [1994YO01]

0.62± 0.10 0.6± 0.1 natC(11Li, 9Li + n)X [1997ZI04]

0.7± 0.2 0.1± 0.1 11B(π−, p)10Li [1998GO30] (2−)

(0.8± 0.25)g 1.2± 0.3 9Be(9Be,8B)10Li [1975WI26]

(0.8± 0.06)f 0.3± 0.1 9Be(13C,12N)10Li [1993BO03] (2+)

1.40± 0.08 0.20± 0.07 10Be(12C,12N)10Li [1999BO26] (2− + 1−)

9Be(13C,12N)10Li

≈ 1.6 natPb(11Li, 9Li + n) [1997ZI04]

2.35± 0.10 1.2± 0.4 h [1999BO26] (1+, 3+)

2.5 natC(18O,9Li)X [1993KR09]

2.85± 0.07 0.3± 0.2 9Be(13C,12N)10Li [1999BO26] (1−, 2+)

4.19± 0.10 0.12± 0.08 10Be(12C,12N)10Li [1999BO26]

4.64± 0.10 0.2± 0.1 10Be(12C,12N)10Li [1999BO26] (3−, 2+)

9Be(13C,12N)10Li

5.2 1H(11Li, p + n)8LiX [1997KO07]

5.2± 0.2 ≈ 0.4 14C(π−, d+ d)10Li [1998GO30]

(continued on next page)

Page 106: Energy levels of light nuclei A = 8,9,10

10Li

rk

s

ons

eutron

ee also

26]

he

260 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 10.3 (continued)

Eresa (MeV) Γres (MeV) Reaction Reference Jπ

5.7± 0.1 0.2± 0.1 9Be(13C,12N)10Li [1999BO26]

a Relative to9Li + n threshold.b An s-wave resonance atEres= 0.21± 0.05 MeV,Γlab = 0.12± 0.1 MeV is reported in [1997ZI04].c Audi and Wapstra deduce m = 33050± 15 keV which corresponds to a10Lig.s. at Eres= 25± 15 keV

[Jπ = (1−, 2−)] [2003AU03].d It is unclear with which level the observed 0.35 MeV resonance should be grouped.e A weighted average of [1994YO01,1998GO30,1999BO26,1999CA48] yieldsEres= 0.50± 0.03 MeV and

Γlab = 0.36± 0.02 MeV.f Not reported in the9Be(13C, 12N)10Li work of [1999BO26].g Not reported in the9Be(9Be, 8Be)10Li work of [1999CA48].h Not shown in any spectra in [1997BO10] or [1999BO26].

could not be definitely attributed to a10Li level. No higher states were observed. This woreported in [1999CA48] also included a review of previous measurements of10Li.

In early work [1975WI26] cited in [1988AJ01]10Li was observed forE(9Be) =121 MeV with a differential cross section (cm)≈ 30 mb/sr atθ = 14 (lab). The observedgroup corresponds toEres= 0.80± 0.25 MeV,Γ = 1.2± 0.3 MeV. However, these levelwere not observed in [1999CA48].

4. 9Be(11Be, X)10Li

An experimental study [2001CH46]of the reaction products of 46 MeV/A 11Be on9Be found that only 7± 3% of the9Li residues are in coincidence with the 2.7 MeVγrays corresponding to the9Li first excited state. This implies that the low-energy neutrfrom the decay of10Li represent a directl = 0 transition to the9Li ground state. Theauthors of [2001CH46] present arguments that this result indicates that the valence ncorresponding to10Li g.s. is in a 1

2+

intruder state from the sd shell rather than the12−

state that might be expected to correspond to a single neutron hole in the p-shell. S[2001CH31].

5. 9Be(13C,12N)10Li, Qm = −35.916

This reaction atElab = 336 MeV was used in a study of10Li [1993BO03] in which lev-els atEres= 0.4, 0.8, and 4.5 MeV were reported. Later work by [1998BO38,1999BOdid not report these levels. This reaction was also used atElab = 336.4 MeV along with10Be(12C,12N)10Li (reaction 8:Elab = 357.0 MeV) and9Be(15N, 14O)10Li (reaction 6:Elab = 240 MeV) to study10Li [1998BO38,1999BO26]. The (12C,12N) reaction showsa distinct selectivity for unnatural parity states, whereas natural parity states in10Li aremore strongly populated by9Be(13C,12N)10Li. A summary discussion and analysis of t

results of these experiments is given in [1999BO26], and the parameters for eight levelsare presented. See Table 10.4 here. See also [1997BO10].
Page 107: Energy levels of light nuclei A = 8,9,10

10Li

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 261

Fig. 12. Energy levels of10Li. For notation see Fig. 2.

Page 108: Energy levels of light nuclei A = 8,9,10

10Li

ypyments

,c-re

sum-

pions

262 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 10.410Li level parameters from9Be(13C,12N)10Li and 10Be(12C,12N)10Lia

Eres (MeV)a Γlab (MeV) Jπ c

0.24± 0.04 0.10± 0.07 (1+)

0.53± 0.06 0.35± 0.08 (2+)

1.40± 0.08 0.20± 0.07 (2− + 1−)

2.35± 0.10 1.2± 0.4 (1+, 3+)

2.85± 0.07 0.3± 0.2 (1−, 2+)

4.19± 0.10 0.12± 0.084.64± 0.10 0.2± 0.1 (3−, 2+)

5.7± 0.1 0.2± 0.1

a From Table 1 of [1999BO26]. See also [1997BO10,1998BO38].b Resonance energy relative to9Li + n threshold.c Probable spin/parity based on natural orunnatural parity selectivity [1999BO26].

6. 9Be(15N, 14O)10Li, Qm = −29.609

This reaction was used [1998BO38] atElab = 240 MeV along with9Be(13C,12N)10Li(reaction 5:Elab = 336.4 MeV) and10Be(12C,12N)10Li (reaction 8:Elab = 357 MeV) ina study of10Li. See also [1999BO26] and Table 10.4 here.

7. 9Be(18O,9Li + n)X,

In an experiment performed with 80 MeV/A 18O on 9Be [1999TH01], the decastructure of10Li was studied using the method of sequential neutron decay spectrosco(SNDS). Evidence for low-lying s-wave strength was observed which supports arguthat10Li should have a ground state in which the p3/2 proton is coupled to the s1/2 neutronto form a 1− or 2− state.

8. 10Be(12C,12N)10Li, Qm = −37.782

This reaction was studied atElab = 357 MeV along with9Be(13C,12N)10Li (reac-tion 5: Elab = 336.4 MeV) to determine the structure of10Li [1997BO10,1998BO381999BO26]. See also reaction 6. The10Be(12C,12N)10Li reaction shows a distinct seletivity for unnatural-parity states.10Li states atEres= 0.24, 1.40, 4.19, and 4.64 MeV aidentified in reaction 8. Parameters for these states and four others are presented in amary table in [1999BO26] and in Table 10.4 here.

9. 11Be(d,3He)10Li, Qm = −14.672

This reaction was studied in inverse kinematics with11Be at 35 MeV/A incident on adeuterium target [2000FO17].

10.11B(π−, p)10Li, Qm = 107.898

Inclusive spectra of protons, deuterons and tritons from the absorption of stopped

in 11B were measured by [1990AM05]. They reported observation of the10Li ground stateat a9Li + n resonance energy,Eres= 0.15± 0.15 MeV with a widthΓres< 0.4 MeV.
Page 109: Energy levels of light nuclei A = 8,9,10

10Li

sis of

of

te

thanrum. Innbound

.

ti-

epro-that

indi-trsion

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 263

In more recent work [1998GO30], stopped pions were used for11B(π−, p)10Li alongwith 14C(π−, dd) (reaction 15). Missing-mass spectra were measured. An analy11B(π−, p) in terms of a one-peak description gave a resonance energy and widthEres=0.48± 0.10 MeV,Γres= 0.50± 0.10 MeV. An appreciably better description in termstwo peaks gaveEres= 0.1 ± 0.1 MeV, Γres= 0.4 ± 0.1 MeV andEres= 0.7 ± 0.2 MeV,Γres= 0.1± 0.1 MeV. It is suggested that the lower of these two states is the10Li g.s. withunnatural parity. These results are compared with other available data in10Li. For resultsof their analysis of14C(π−, dd) see reaction 15.

11.11B(7Li, 8B)10Li, Qm = −32.397

An experiment atE(7Li) = 18.8 MeV/A was reported by [1994YO01]. A broad stain the 5 reaction products was best fit by a single p1/2 resonance atEres= 538± 62 keVwith a widthΓlab = 358± 23 keV. However, two p-wave states separated by no more160 keV could not be ruled out as the components of the dominant peak in the spectaddition the data show weak evidence for a narrow s- or p-wave resonance that is uto neutron decay by less than 100 keV (Γ ≈ 230 keV).

12. (a) natC(11Li, 9Li + n)X(b) natC(11Be,9Li + n)X

Reaction (a) and (b) were studied at 280 and 460 MeV/A, respectively, by [1995ZI03]Analysis of the momentum distributions led to the conclusion that10Li g.s. is a virtualstate in n+ 9Li with a scattering lengthas < −20 fm and excitation energy 50 keV.A study [1997ZI1F,1997ZI04] of11Li on carbon (reaction (a)) and Pb (reaction 16) ulized invariant-mass spectroscopy. Resonance-like structures were observed withEres =0.21± 0.05 MeV,Γres= 0.12+0.10

−0.05 MeV; Eres= 0.62± 0.10 MeV,Γres= 0.6± 0.1 MeV;Eres ≈ 1.6 MeV. The relative intensities of the first two structures are 0.26± 0.10 and0.74± 0.10, respectively. The low-energy behavior of the lowest resonance is only rduced forl = 0, indicating a low-lying s-wave scattering state, but the authors cautionthe parameterization of theapparent peak that leads toEres= 0.21 MeV is not ideal forfitting a low-lying s-wave scattering state.

13.natC(18O,9Li + n)X

A study of the neutron decay of10Li produced by 80 MeV/A 18O incident on acarbon target was reported by [1993KR09]. Neutrons and9Li nuclei were detected incoincidence in a collinear geometry. Analysis of the relative velocity spectrumcated a10Li state which the authors conclude is consistent with the10Li ground state aEres= 0.15±0.15 MeV above the9Li +n threshold reported by [1990AM05]. The authoexplored the possibility that if9Li ∗(2.7) plays a role in the breakup, then their observat

would be consistent with a10Li state atEx = 2.5 MeV. However the work of [2001CH46]indicates that9Li ∗(2.7) plays a minor role in the reaction (see reaction 4).
Page 110: Energy levels of light nuclei A = 8,9,10

10Li, 10Be

up-,

ich

ns

)a

i-f de-t:

-

264 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

14.13C(14C,17F)10Li, Qm = −28.858

This reaction was studied atElab = 337 MeV along with9Be(13C,12N)10Li (reaction 5:Elab = 336 MeV) by [1993BO03]. Only one broad peak was observed in the (14C,17F)spectrum at 3.8–7.0. Analysis of the peak failed to give a unique solution, but it sported the identification of levels reported in the (13C,12N) spectrum in [1993BO03]. Seehowever, the later work reported by the sameauthors (discussed under reaction 5) whdid not confirm these levels.

15.14C(π−, d+ d)10Li, Qm = 83.268

The reaction, along with11B(π−, p) (reaction 10), was studied with stopped pio[1998GO30]. The (π−, d+ d) reaction indicated a10Li state withEres= 0.40±0.10 MeV,Γres= 0.30± 0.07 MeV and conformed with the results of11B(π−, p) (see reaction 10and the results of [1993BO03] and [1994YO01]. The (π−, d+ d) reaction also indicatesstate withEres= 5.2± 0.2 MeV, Γres≈ 0.4 MeV [1998GO30].

16.natPb(11Li, 9Li + n)X

See reaction 12 and [1997ZI1F,1997ZI04].

10Be(Figs. 13 and 16)

GeneralReferences to articles on general properties of10Be published since the prev

ous review [1988AJ01] are grouped into categories and listed, along with briescriptions of each item, in the General Tables for10Be located on our website awww.tunl.duke.edu/nucldata/General_Tables/10be.shtml.

The interaction nuclear radius of10Be is 2.46±0.03 fm [[1985TA18],E = 790 MeV/A;see also for derived nuclear matter, charge and neutron matter r.m.s. radii].

B(E2)↑ for 10Be∗(3.37) = 52± 6 e2 fm4 [1987RA01];B(E2)↓ for 10Be∗(3.37) = 10.5± 1.0 e2 fm4.

10Be atomic excitations Isotope shifts for various1S and1D Rydberg series atomic excitations in9Be and10Be were measured in [1988WE09].

1. 10Be(β−)10B, Qm = 0.5560

The half-life of 10Be is (1.51± 0.04) × 106 years; this is the weighted average of1.51± 0.06 Ma [1987HO1P], 1.53± 5% Ma [1993MI26] and 1.48± 5% Ma [1993MI26].

Page 111: Energy levels of light nuclei A = 8,9,10

10Be

,,,,,

,,,,,

,,,

,,

,

,

,

,,

,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 265

Table 10.5Energy levels of10Bea

Ex (MeV ± keV)b Jπ ; T τ or Γcm (keV) Decay Reactions

g.s. 0+; 1 τ1/2 = (1.51± 0.04) × 106 y β− 1, 3, 4, 6, 7, 9, 13, 14, 1516, 17, 18, 19, 20, 21, 2223, 24, 26, 27, 28, 29, 3031, 32, 33, 34, 35, 36, 3738, 41, 42, 43, 44, 46, 4750, 52, 53, 55

3.36803± 0.03 2+; 1 τm = 180± 17 fs γ 3, 4, 5, 6, 7, 9, 13, 14, 1517, 18, 19, 20, 21, 22, 2425, 26, 27, 28, 29, 30, 3132, 33, 34, 35, 36, 41, 4243, 44, 46, 47, 50, 51, 5255

5.95839± 0.05 2+; 1 τm < 80 fs γ (3), 6, 9, 14, 15, 17, 18(21), 22, 25, (26), 27, 2830, (31), 34, 42, 44, 46, 4750

5.9599± 0.6 1−; 1 γ (3), 6, 14, 15, 17, 18, 1921, (26), 27, (30), (31), 3442

6.1793± 0.7 0+; 1 τm = 1.1+0.4−0.3 ps π , γ (3), 6, 14, 30

6.2633± 5.0 2−; 1 γ (3), 6, 14, 15, 19, 217.371± 1 3−; 1 Γ = 15.7± 0.5 keV n,γ (3), 6, 7, 9, 10, 13, 14, 15

17, 18, 27, 477.542± 1 2+; 1 6.3± 0.8 n,α (3), 6, 7, 10, 14, 15, 17, 26

27, 42, 46, (47)9.27 (4−); 1 150± 20 n 6, 7, 10, (13), 14, 15, 18

21, 27, (47)seec

9.56± 20d 2+; 1 141± 10e,f n, α 6, 7, 10, (13), 14, 15, 1718, 26, 27, 28, (30), 34, 4244, 46, 47, 54

10.15± 20 3− 296± 15f α 3, 7, 17, 5410.57± 30 1; 1 n,α 6, 7, 10, 14, 4711.23± 50 200± 80f α (3), 711.76± 20 (4+) 121± 10 α 6, 7, 13, 14, 15, 17, 18, 42

47(11.93± 100) (5−)g 200± 80f α 7, (21), 4513.05± 100 290± 130f α 7, (45)13.80± 50 330± 150f α 7, 1814.68± 100 310± 140f α 7, 4515.3± 200 (6−)g 800± 200h (18), (21), 4717.12± 200 (2−) ≈ 150 (4), 6, 4517.79 112± 35 γ , n, t,α 4, 6, 7, (11)18.15± 50 (0−) 90± 30f t 718.55 310f n, t 4, 6, 7, 11

(19.8) p 720.8± 100 α 7

21.216± 23 (2−; 2) sharp n, p, t 4, 11

(continued on next page)

Page 112: Energy levels of light nuclei A = 8,9,10

10Be

02,

utronconsis-

asure-onn

-atand

266 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 10.5 (continued)

Ex (MeV ± keV)b Jπ ; T τ or Γcm (keV) Decay Reactions

21.8± 100 ≈ 200f p, (d) 722.4± 100 ≈ 250f (n), p, t 7, (11)23.0± 100 p (4), 723.35± 50 (n), p, d, (t),α 7, (11)23.65± 50 p, (t),α 724.0± 100 ≈ 150f d, (t),α 7, 3324.25± 50 ≈ 200f (p), d, t,α 724.6± 100 ≈ 150f p, d 724.8± 100 ≈ 100f p, d 725.05± 100 ≈ 150f d, α 725.6± 100 (p), d,α 725.95± 50 ≈ 300f d 726.3± 100 ≈ 100f d, (t) 726.8± 100 p, d,α 727.2± 200 p, d, t,α 7

a See also Table 10.12.b See reactions 4, 45 and 47 for evidence of other levels.c A Jπ = 3+ state is predicted near 9 MeV, however, evidence is ambiguous: see reaction 28.d Previously reported at 9.4 MeV.e 141± 10 keV from7Li(7Li, α); other value 291± 20 keV from9Be(d, p).f Not corrected for experimental systemresolution and therefore upper limits.g From systematics in reaction 21.h From [2001BO35]:12C(15N, 17F).

The logf t = 13.396± 0.012. For the earlier work see [1974AJ01]. See also [1992WA1990HO28,1998MA36].

2. 4He(6He,6He)4He, Eb = 7.4133

At E(6He)= 151 MeV, angular distributions were measured to investigate two-neexchange and the cluster configurations that dominate in the reaction. The data aretent with a significant spatial correlation for the exchanged neutrons [1998TE03]. Mements at lower energies,Ecm = 11.6 MeV and 15.9 MeV, indicate that a simple dineutrexchange is not dominant and give evidence that the structure of6He is more complex thaan alpha-plus-dineutron model [1999RA15]. See also [2000BB06].

3. (a) 6Li( 6He,10Be+ d)(b) 6Li(6He,6He+ α)2H, Qm = −1.4738

Molecular cluster states in10Be were studied by bombarding6Li targets withE(6He)= 17 MeV projectiles and detecting the10Be+ d and6He+ 4He reaction products [1999MI39]. In reaction (a) reconstruction of the missing energy indicates th10Be∗(0,3.37) participate in the reaction as well as unresolved states at 6 MeV

7.5 MeV. In reaction (b) the 10.2 MeV level is observed, and due to its apparent cluster na-ture it is suggested that this state could be the 4+ member in the rotational band (6.18 [0+],
Page 113: Energy levels of light nuclei A = 8,9,10

10Be

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 267

Fig. 13. Energy levels of10Be. For notation see Fig. 2.

Page 114: Energy levels of light nuclei A = 8,9,10

10Be

orkr, thosek of

re at

),

-

268 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 10.6Electromagnetic transition strengths in10Bea

Ei → Ef (MeV) Jπi → Jπ

f Branch (%) Γγ (eV) Mult. Γγ /ΓW

3.368→ 0 2+ → 0+ 100 (3.66± 0.35) × 10−3 E2 8.00± 0.766.179→ 3.368 0+ → 2+ 76± 2 (4.5± 1.7) × 10−4b E2 2.5± 0.9

→ 5.960 → 1− 24± 2 (1.44± 0.53) × 10−4b E1 (4.3± 1.6) × 10−2

7.371→ 3.368 3− → 2+ 85± 8 0.62± 0.06c E1 (3.1± 0.3) × 10−2

→ 5.958 3− → 2+ 15± 11 0.11± 0.08c E1 (1.2± 0.9) × 10−1

a Γγ from lifetimes and branching ratios. See also9Be(d, pγ )10Be [reaction 14] and Table 10.12.b Assumed maximum of asymmetrical uncertainty.c From9Be(n,γ )10Be [1994KI09].

Table 10.7Neutron-captureγ -rays in10Bea

Eγ (keV)b Transition Ex (keV)b

6809.585± 0.033 capt.→ g.s. 6812.038± 0.0295955.9± 0.5a 5.96c → g.s. 5958.387± 0.0513443.374± 0.030 capt.→ 3.373367.415± 0.030 3.37→ g.s. 3368.029± 0.0292589.999± 0.060 5.96c → 3.37853.605± 0.060 capt.→ 5.96c

a See also Table 10.2 in [1974AJ01,1979AJ01].b [1983KE11]. 12 eV has been added in quadrature to the uncertainties. See [1988AJ01]. Some of the w

displayed in Table 10.2 of [1984AJ01] is not shown here because it has not been published. Howeveparticular transitions are shown in Fig. 13 here since it is clear that they have been observed although the lacpublished uncertainties make their inclusion in this table inadvisable.

c This is the 2+ member of the doublet atEx = 5.96 MeV.

7.54 [2+], 10.2 [4+]) [Jπ in brackets]. However, see reaction 7 which indicatesJπ = 3−for Ex = 10.2 MeV.

4. (a) 7Li(t, γ )10Be, Qm = 17.2509(b) 7Li(t, n)9Be, Qm = 10.4387, Eb = 17.2509(c) 7Li(t, p)9Li, Qm = −2.3857(d) 7Li(t, t)7Li(e) 7Li(t, α)6He, Qm = 9.8376

The yield of γ0 and γ1 has been studied forEt = 0.4 to 1.1 MeV [10Be∗(17.79) issaid to be involved]: see [1984AJ01]. The neutron yield exhibits a weak structuEt = 0.24 MeV and broad resonances atEt ≈ 0.77 MeV [Γlab = 160± 50 keV] and1.74 MeV: see [1966LA04] [10Be∗(17.79,18.47)]. The total cross section for reaction (cthe yield of neutrons (reaction (b) to9Be∗(14.39)), and the yield ofγ -rays from7Li ∗(0.48)(reaction (d)) all show a sharp anomaly atEt = 5.685 MeV:Jπ = 2−; T = 2 is suggestedfor a state atEx = 21.22 MeV. The total cross section forα0 (reaction (e)) and the all

neutrons yield do not show this structure: see [1984AJ01,1988AJ01]. An additional anom-aly in the proton yield is reported atEt = 8.5 MeV [10Be∗(23.2)] [see [1987AB15]]. For
Page 115: Energy levels of light nuclei A = 8,9,10

10Be

].

s

ri-

re

e 4

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 269

Table 10.8Levels of10Be from7Li(α, p)10Bea

Ex (MeV) Jπ Γcm (keV) L c Srel

0 0+ 1 1.003.37 2+ 3 0.0675.96 2+, 1− doublet6.18 0+ 1 0.866.26 2− 2 0.537.37 3− 2 0.677.54 2+ 3 0.109.27 (4−) 2 0.849.64± 0.10 (2+) 3 0.13

10.57 1 0, 1 0.08,0.03511.76 (4+) 3 0.04917.12± 0.20 (2−) ≈ 150 0 0.317.79 (2−)b 170 2 1.018.55 (2−)b 380 2 1.0

a See Table II in [1994HA16].b By analogy with10B states.c In some cases, the shell model calculations of Kurath and Millener [1975KU01] suggest differentL-values

and/or different 2N + L values from those used in the DWBA calculations of [1994HA16].

reaction (c) a reanalysis of the proton yields indicate two states atEx = 21.216±0.023 and23.138± 0.140 MeV withΓcm = 80± 30 and 440± 178 keV, respectively [1990GU36For reaction (e) the angular distributions ofα0 andα1 products were measured atEt = 151and 272 keV, and the analysis suggests possible evidence for a 2+ resonance,10Be∗(17.3),at Eres= 117± 3 keV with Γlab = 253± 1 keV [1987AB09]. Differential cross sectionandS-factors are reported by [1983CE1A] forEt = 70 to 110 keV for6He∗(0,1.80). Thezero-energyS-factor for6He∗(1.80) is 14± 2.5 MeV b. The relevance to a Li-seeded ttium plasma is discussed by [1983CE1A]. See also ([1985CA41]; astrophys.).

5. 7Li( 3He,π+)10Be, Qm = −122.3379

Cross sections have been measured to10Be∗(3.37,6.2[u],7.4[u] [u = unresolved]) atE(3He)= 235 MeV. The ground-state group is not seen: its intensity atθlab = 20 is 0.1of that to10Be∗(3.37) [1984BI08].

6. 7Li(α, p)10Be, Qm = −2.5629

Angular distributions were measured atEα = 65 MeV [1994HA16]. Observed states ashown in Table 10.8. For10Be∗(11.76) the angular distribution is consistent withL = 3which supports aJπ = 4+ assignment. It is suggested that the 11.76 MeV state is th+

member of the ground-stateKπ = 0+ rotational band (g.s. [0+], 3.37 [2+], 11.76 [4+] [Jπ

in brackets]).

Page 116: Energy levels of light nuclei A = 8,9,10

10Be

r reac-ions.hat

y

V cor-LI15].

in

ed

MeV.

d in

e

270 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

7. (a) 7Li( 7Li, p + 9Li)4He, Qm = −4.8526(b) 7Li(7Li, d + 8Li)4He, Qm = −6.69185(c) 7Li(7Li, t + 7Li)4He, Qm = −2.46691(d) 7Li(7Li, α)10Be, Qm = 14.7840(e) 7Li(7Li, α + 6He)4He, Qm = 7.3707(f ) 7Li( 7Li, α + 9Be)n, Qm = 7.9718

Resonant particle decay spectroscopy measurements have been reported fotions (a), (b), (c), (e), (f ): see Table 10.9 for an overview of experimental conditThese measurements are particularly well-suited for spectroscopic studies of levels tdecay to excited states of the component isotopes, i.e.,α1 + 6He∗(1.8). Values ofΓα/Γ =(3.5± 1.2)× 10−3 and 0.16± 0.04 for 10Be∗(7.542,9.6), respectively, are determined b[2002LI15]. See also [2004AR01] for a cluster model analysis.

New evidence suggests that the previously accepted level energy at 9.4 Meresponds to the level presently observed at 9.6 MeV [1996SO17,2001MI39,2002[1997CU03,2001CU06] measuredEx = 9.56± 0.02 MeV and determinedΓcm = 141±10 keV andJπ = 2+. Assuming that the10Be∗(9.56) state is 2+ suggests that it isprobably a member of theKπ = 1+ band and the 3− 10.15 MeV level is probably inthe Kπ = (1−, 2−) band [2001CU06,2002LI15]. See also [2004MI07] and Fig. 8[2002LI15].

The work of [1996SO17] reported a new level that decays byα-emission atEx =10.2 MeV with Γ < 400 keV. The level energy is identified asEx = 10.15± 0.02 MeV by[2001CU06] who also determinedΓcm = 296± 15 keV and, based onα + 6He decay an-gular correlations,Jπ = 3−. This is in contrast with aJ = 4 spin value that was suggestby [1996SO17]. The 10.2 MeV level appears to have a smallΓn; it is neither observed infast neutron capture nor in the9Be+ n decay channel.

A natural parity state at 11.23± 0.05 MeV with Γcm = 200± 80 keV is identifiedby [2001CU06] along with inconclusive evidence for states at 13.1, 13.9 and 14.7[2002LI15] observed a new state at 18.15± 0.05 MeV with Γ = 100± 30 keV; based onreaction systematics they deduceJπ = 0−. See Table 10.10 for other states observe[2003FL02].

For reaction (d), angular distributions ofα1 and α2+3+4+5 were reported in[1969CA1A]. Groups corresponding to10Be∗(0,3.4,6.0,7.4,9.4,10.7,11.9,17.9) andpossibly10Be∗(18.8) were reported in [1971GL1A]. See [1974AJ01].

8. 9Li(p, α)6He, Qm = 12.2233, Eb = 19.6366

A calculation estimating the impact of9Li(p, α)6Heβ→ 6Li and other reactions on th

production of primordial6Li in Big Bang nucleosynthesis is given in [1997NO04].

9. 9Be(n,γ )10Be, Qm = 6.8122

The thermal capture cross section is 8.49 ± 0.34 mb [1986CO14]. Reportedγ -ray

transitions are displayed in Table 10.7 [1983KE11]. Partial cross sections involving10Be∗(0,3.37,5.96) are listed in [1987LY01]. See also the references cited in [1988AJ01].
Page 117: Energy levels of light nuclei A = 8,9,10

10Be

]

state

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 271

Table 10.910Be levels observed in7Li + 7Li

E(7Li) (MeV) Observed levels in10Be∗ (MeV) Reactions Refs.

8 9.27, 9.64, 10.2, 10.57 (7Li, α + 6He), (7Li, α + 9Be) [1996SO17]

34, 50.9 9.56, 10.15, 10.6, 11.23, 11.8, (7Li, α + 6He) [1997CU03,2001CU06

(13.1), (13.9), (14.7), 17.8

34 7.542,≈ 9, 17.76, 18.15, 18.5 (7Li, α + 6He), (7Li, t + 7Li) [2002LI15]

8, 30, 52 7.5, 9.6, 10.2, 10.6, 11.8 (7Li, α), (7Li, 2α), (7Li, α + 6He) [2001MI39]

34, 50.9 see Table 10.10 (7Li, α + 6He), (7Li, t + 7Li), [2003FL02]

(7Li, p + 9Li), (7Li, d + 8Li)

Table 10.10Levels of10Be from7Li(7Li, p + 9Li), (7Li, t + 7Li) and (7Li, α + 6He) atE(7Li) = 34 and 51 MeVa

Ex (MeV) Γcm (keV) Decay Ex (MeV) Γcm (keV) Decay

7.542b α 21.8± 0.1 ≈ 200f p, (d)9.56± 0.02c 141± 10 α 22.4± 0.1 ≈ 250f p, t, (t1)

10.15± 0.02d 296± 15 α 23.0± 0.1 p10.57 α 23.35± 0.05 p, d, (t),α111.23± 0.05 200± 80f α 23.65± 0.05 p1, (t), α, α111.76 α 24.0± 0.1 ≈ 150f d, (t),α1

(11.93± 0.1) 200± 80f α 24.25± 0.05 ≈ 200f (p), d, (d1), t, α, α113.05± 0.1 290± 130f α 24.6± 0.1 ≈ 150f p1, d13.85± 0.1 330± 150f α 24.8± 0.1 ≈ 100f p, d, d114.68± 0.1 310± 140f α 25.05± 0.1 ≈ 150f d, d1, α117.79 ≈ 130 t,α 25.6± 0.1 (p), d1, α118.15± 0.05e ≈ 90± 30 t1 25.95± 0.05 ≈ 300f d, d118.55 ≈ 310 t1 26.3± 0.1 ≈ 100f d, d1, (t1), (t2)

(19.8) p 26.8± 0.1 p, d, d1, d2, α120.8± 0.1 α 27.2± 0.2 p, d, d1, d2, t, t1, α, α1

a [2001CU06,2002LI15,2003FL02].b Γα = 22± 8 eV [2002LI15].c Jπ = 2+, Γα = 23± 6 keV [2002LI15].d Jπ = 3− [2001CU06].e Jπ = (0−) [2002LI15].f Not corrected for experimental system resolution and thereforeupper limits [2003FL02].

Retardation of E1 strength was found in a measurement of the captureγ -raysfrom 9Be + n using En = 622 keV neutrons to populate theJπ = 3− D-wave reso-nance at10Be∗(7.372) [1994KI09]; Γn = 17.5 keV. Capture to theJπ = 2+ states at10Be∗(3.368,5.958) was observed, andΓγ = 0.62± 0.06 and 0.11± 0.08 eV were de-duced, respectively. Simple capture models indicate that capture to the 3368 keV

is appreciably hindered, which is explained by assuming a strong coupling between thed-state single particle neutron motion and the E1 giant resonance.
Page 118: Energy levels of light nuclei A = 8,9,10

10Be

beenV

9 and

d dif-

undr-t

of

ved,

wer

t

272 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 10.11Resonances in9Be(n, n)9Bem

Eres (MeV ± keV) 10Be∗ (MeV) Γcm (keV) Jπ l θ2b

0.6220± 0.8 7.371 15.7± 0.5 3− 2 0.0750.8118± 0.7 7.542 6.3± 0.8 2+ 1 0.00282.73 9.27 ≈ 100 (4−) (2)

(2.85) 9.4 ≈ 400 (2+) (1)4.3 10.7 1

a For references see Table 10.3 in [1979AJ01].b R = 5.6 fm.

10. (a) 9Be(n, n)9Be, Eb = 6.8122(b) 9Be(n, 2n)8Be, Qm = −1.6654

The scattering amplitude (bound)a = 7.778± 0.003 fm, σfree = 6.151± 0.005 b[1981MUZQ]. The difference in the spin-dependent scattering lengths,b+−b− is +0.24±0.07 [1987GL06]. See also [1987LY01]. Total cross section measurements havereported forEn = 0.002 eV to 2.6 GeV/c [see [1979AJ01,1984AJ01]] and at 24 ke[1983AI01], 7 to 15 MeV ([1983DA22]; also reaction cross sections) and 10.96, 13.816.89 MeV ([1985TE01]; for n0 and n2).

Observed resonances are displayed in Table 10.11. Analysis of polarization anferential cross section data leads to theJπ = 3−, 2+ assignments for10Be∗(7.37,7.55),respectively. BelowEn = 0.5 MeV the scattering cross section reflects the effect of bo1− and 2− states, presumably10Be∗(5.960,6.26). There is also indication of interfeence with s-wave background and with a broadl = 1, Jπ = 3+ state. The structure aEn = 2.73 MeV is ascribed to two levels: a broad state at about 2.85 MeV withJπ = (2+),and a narrow one atEn = 2.73 MeV, Γcm ≈ 100 keV, with a probable assignmentJπ = 4−. The 4− assignment results from a study of the polarization of the n0 group atEn = 2.60 to 2.77 MeV. A rapid variation of the polarization over this interval is obserand the data are consistent with 4− (l = 2) for 10Be∗(9.27). A weak dip atEn ≈ 4.3 MeVis ascribed to a level withJ 1. See [1974AJ01] for references. The analyzing pohas been measured forEn = 1.6 to 15 MeV [see [1984AJ01]] and atEn = 9 to 17 MeV([1984BY03]; n0, n2).

The non-elastic and the (n, 2n) cross sections rise rapidly to≈ 0.6 b (≈ 0.5 b for(n, 2n)) atEn ≈ 3.5 MeV and then stay approximately constant toEn = 15 MeV: see[1979AJ01,1984AJ01]. For totalγ -ray production cross sections forEn = 2 to 25 MeV,see [1986GO1L]. See also references cited in [1988AJ01].

11. (a) 9Be(n, p)9Li, Qm = −12.8244, Eb = 6.8122(b) 9Be(n, d)8Li, Qm = −14.6636(c) 9Be(n, t)7Li, Qm = −10.4387

Cross sections have been measured atEn = 14.1–14.9 MeV for reaction (a), and a

16.3–18.8 MeV for reaction (b): see [1979AJ01]. For reaction (c), measurements havebeen reported atEn = 13.3–15.0 (t1), at 22.5 MeV (see [1979AJ01]), and at 14.6 MeV
Page 119: Energy levels of light nuclei A = 8,9,10

10Be

-

erved

of

itation]

]]

in the] and

atVtate

LE27,

ct

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 273

[1987ZA01]. A measurement of the9Be(n, tγ1)7Li inclusive cross sections that encompassedEn = 12–200 MeV observed peaks corresponding to10Be∗((17.79),18.55,21.22,22.26, (24.0)) [2002NE02]. For the 18.55 and 24.0 MeV states, the peaks were obsat 18.76 and 23.4 MeV, respectively.

12.9Be(n,α)6He, Qm = −0.6011, Eb = 6.8122

The cross section for production of6He shows a smooth rise to a broad maximum104± 7 mb at 3.0 MeV, followed by a gradual decrease to 70 mb at 4.4 MeV. FromEn =3.9 to 8.6 MeV, the cross section decreases smoothly from 100 mb to 32 mb. Excfunctions have been measured forα0 andα1 for En = 12.2 to 18.0 MeV: see [1979AJ01for references.

13. (a) 9Be(p,π+)10Be, Qm = −133.5403(b) 9Be(p,K+)

Angular distributions for reaction (a) have been studied atEp = 185 to 800 MeV [see[1984AJ01]] and atEp = 650 MeV ([1986HO23]; to10Be∗(0,3.37)). States atEx =6.07± 0.13, 7.39± 0.13, 9.31± 0.24, 11.76 MeV have also been populated.Ay measure-ments involving10Be∗(0,3.37) are reported atEp = 200 to 250 MeV [see [1984AJ01and at 650 MeV [1986HO23].

For reaction (b), theK+ production cross sections were measured forEp = 835–990 MeV [1988KO36]. Calculations for one- and two-stepK+ production forEp = 0.8–3 GeV are given in [2000PA15].

14.9Be(d, p)10Be, Qm = 4.5877

Angular distributions of proton groups have been studied at many energiesrangeEd = 0.06 to 17.3 MeV and at 698 MeV [see [1979AJ01,1984AJ01,1988AJ01[1997YA02]], as well as atEd = 2.0 to 2.8 MeV ([1984AN16,1984DE46]; p0, p1; alsoVAP) andEd = 12.5 MeV ([1987VA13]; p0, p1). The angular distributions showln = 1transfer for 10Be∗(0,3.37,5.958,7.54), ln = 0 transfer for10Be∗(5.960,6.26), ln = 2transfer for10Be∗(7.37). 10Be∗(6.18,9.27,9.6) are also populated, as are two statesEx = 10.57± 0.03 and 11.76± 0.02 MeV. The state reported by [1974AN27] at 9.4 Meis most likely the 9.6 MeV 2+ state based on its separation from the 9.27 MeV s[2001CU06].10Be∗(9.27,9.6,11.76) haveΓc.m. = 150± 20, 291± 20 and 121± 10 keV,respectively. See [1979AJ01] for references. See also [1989SZ02,1995LY03,19982000GE16].

Angular distributions and excitation functions for9Be(d, p0) and (d, p1) were measuredfor the energy rangeEcm = 57–139 keV [1997YA02,1997YA08]. AstrophysicalS(E)-factors were deduced and the spectroscopic factorS = 0.92 was deduced for9Be(d, p0).[2000GE16] analyzedσ(E) andS(E) for E = 0.085–11 MeV and evaluated the impaof this reaction for forming heavier B, C and N nuclei in nucleosynthesis.

At Ed = 1.0 MeV, p + γ coincidences were measured. In this experimentEx =

3368.4± 0.43 keV was measured, which confirmsEx = 3368.03± 0.03 keV [Table 10.5]for 10Be∗(3.3) [1999BU26]: see reaction 55.
Page 120: Energy levels of light nuclei A = 8,9,10

10Be

the

redses

ction

torsee

in thetes

274 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 10.12Radiative transitions in9Be(d, p)10Bea

Ex (keV) Transition Jπ Mult. Branch (%) τm (ps) Γγ (meV)

3368.0± 0.2 3.37→ g.s. 2+ → 0+ E2 100 0.189± 0.020 3.48± 0.370.160± 0.030 4.11± 0.78

5958.3± 0.3 5.96→ 3.37 2+ → 2+ M1 > 90 < 0.085.96→ g.s. 2+ → 0+ E2 < 10

5959.9± 0.6 5.96→ g.s. 1− → 0+ E1 83+10−6

5.96→ 3.37 1− → 2+ E1 17+6−10

6179.3± 0.7 6.18→ 5.96 0+ → 1− E1 24± 2 1.1+0.4−0.3 0.14± 0.05

6.18→ 3.37 0+ → 2+ E2 76± 2 0.46± 0.286.18→ g.s. 0+ → 0+ E0

6263.3± 5 6.26→ 5.96 2− → 1− M1 1→ 2+ E1 1

6.26→ 3.37 2− → 2+ E1 99+1−2

6.26→ g.s. 2− → 0+ M2 1± 1

a See Table 10.4 in [1979AJ01] for references. However, note that there are several typographical errors in10Be∗(6.18) decay.

At Ed = 15.3 MeV the p0 and p1 + γ1 double-differential cross sections were measuand evaluated with coupled-channel calculations which suggest that multistep procesare important in the reaction mechanism [2001ZE09].

Attempts to understand theγ -decay of10Be∗(5.96) and its population in9Be(n,γ )10Beled to the discovery that it consisted of two states separated by 1.6 ± 0.5 keV. The lowerof the two hasJπ = 2+ and decays primarily by a cascade transition via10Be∗(3.37) [itis the state fed directly in the9Be(n,γ ) decay]; the higher state hasJπ = 1− and decaysmainly to the10Beg.s.. Angular distributions measured with theγ -ray detector locatednormal to the reaction plane lead toln values consistent with the assignments of 2+ and1− for 10Be∗(5.9584,5.9599) obtained from the character of theγ -decay.10Be∗(6.18)decays primarily to10Be∗(3.37):Eγ = 219.4±0.3 keV for the 6.18→ 5.96 transition. SeeTable 10.12 for a listing of the information on radiative transitions obtained in this reaand lifetime measurements. For (p,γ ) correlations through10Be∗(3.37) see [1987VA13]and references in [1974AJ01]. For polarization measurements see11B in [1990AJ01].

15.9Be(α, 3He)10Be, Qm = −13.7654

Angular distributions have been studied atEα = 65 MeV to10Be∗(0,3.37,5.96,6.26,7.37,7.54,9.33[u],11.88). DWBA analyses of these lead to spectroscopic fac[1980HA33] which are in poor agreement withthose reported in other reactions: s[1984AJ01].

Cluster model analyses of the reaction [1996VO03,1997VO06,1997VO17] explalevels between 5.95 and 6.26 MeV as 2α–2n-cluster states, by analogy with cluster sta

in 9Be. The analysis further suggests that states at 5.960, 6.263, 7.371, 9.27 and 11.76 MeV(with Jπ = 1−, 2−, 3−, 4− and 5−, respectively) comprise theKπ = 1− rotational band.
Page 121: Energy levels of light nuclei A = 8,9,10

10Be

d in aby

)t

8,ly-

sis to

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 275

Table 10.1310Be states populated in9Be(9Be,8Be)10Be [2003AS04]

Ex (MeV) Jπ

0.00± 0.06 0+3.31± 0.06 2+5.91± 0.06 2+, 1−7.31± 0.07 3−9.20± 0.06 4−a

9.58± 0.0611.79± 0.0613.78± 0.06

(15.25± 0.06)

a W.N. Catford, private communication.

16.9Be(6He,5He)10Be, Qm = 4.946

At E(6He)= 25 MeV/A, 1- and 2-neutron transfer cross sections were measurestudy of n–n correlations for neutrons in6He [2003GE05]. The reaction was dominated1-neutron transfer.

17. (a) 9Be(7Li, 6Li) 10Be, Qm = −0.4381(b) 9Be(7Li, α + 6He)6Li, Qm = −7.8514(c) 9Be(8Li, 7Li) 10Be, Qm = 4.7799

Angular distributions have been measured atE(7Li) = 34 MeV (reactions (a) and (b)to 10Beg.s., S = 2.07, and10Be∗(3.4), S = 0.42 (p1/2), 0.38 (p3/2): see [1979AJ01]. AE(7Li) = 52 MeV, states are reported at10Be∗(0,3.37,≈ 6 (multiplet),7.5 (doublet),9.6,

10.2,11.8) [2001MI39]. At E(8Li) = 11 MeV [1998KO17] and 14.3 MeV [1989BE21993BE22] angular distributions for10Be∗(0,3.37) have been measured. A DWBA anasis of theE(8Li) = 14.3 MeV data yields spectroscopic factors ofSg.s. = 4.0 andS3.37 =0.2 (p1/2). At E(9Be)= 20 MeV an angular distribution involving8Beg.s. + 10Beg.s. hasbeen measured: transitions to excited states of10Be are very weak [1985JA09].

18.9Be(9Be,8Be)10Be, Qm = 5.1468

At E(9Be)= 20 MeV an angular distribution involving8Beg.s. and10Beg.s. was mea-sured: transitions to excited states are weak [1985JA09]. AtE(9Be) = 48 MeV, excitedstates of10Be were populated [2003AS04]: see Table 10.13. The excitation energy of10Bestates was deduced from the measured energy of the8Be recoil, which was detected atwo α particles. Theα-particle energy spectra were analyzed in a CCBA model analysjustify their interpretation of spin values.

19.9Be(11Be,10Be)10Be, Qm = 6.308

The10Be core excitations in the11Be ground state were determined by measuring10Befragments in coincidence withγ -rays in9Be(11Be,10Be+ γ )X at 60 MeV/A. Theγ -rays

Page 122: Energy levels of light nuclei A = 8,9,10

10Be

the

ment

lved inscopic

n--2-

on-

,

alysis,

e-r

ationd

thesitions

276 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

corresponding to10Be∗(3.37,5.96,6.26) were observed in 6.1%, 6.6% and 9.1% ofevents, respectively. This indicates a small 0d admixture to the11Be ground state whichis dominated by a 1s single-particle component [2000AU02]. In a different experiatE(11Be)= 46 MeV/A, γ -ray plus10Be coincidences were observed. Theγ -rays corre-sponding to transitions between 6.263→ 3.368 MeV, 5.96→ 0 MeV and 3.368→ 0 MeVwere observed [2001CH46], though in this case excitation energies were not resothe charged particle spectra. See [1992WA22,2000PA53] for calculations of spectrofactors. Also see [1995KE02,1996ES01,1999TO07].

20.9Be(11B, 10B)10Be, Qm = −4.642

Differential cross sections for9Be(11B, 10B)10Be were measured atE(11B) = 45 MeVfor the angular rangeθlab = 10–165 [2003KY01]. The quasisymmetric distributions ivolving 10Be∗(0,3.368) and10B∗(0.0.78,1.74,2.154,3.587) were analyzed in a coupledreaction-channels method. Spectroscopic amplitudes are discussed for all possible 1- andstep processes. Analysis indicates that the reaction proceeds primarily by one-step protor neutron transfer.

21.9Be(14N, 13N)10Be, Qm = −3.7412

At E(14N) = 217.9 MeV, 10Be∗(0,3.37,5.960,6.25,7.37,9.27,11.8,15.34) states arereported withJπ = 0+, 2+, 1−(+2+), 2−, 3−, 4−, (5−), (6−), respectively [2003BO242003BO38]. The data are interpreted by assuming that the levels areα-cluster molec-ular states with the binding energy provided by the excess neutrons. In this anthe members of theKπ = 1− rotational band are described by the formula,Ex ≈ 0.25[J (J + 1) − 1× 2] + 5.96 MeV. See also [2003HO30].

22. (a) 10Be(p, p′)10Be(b) 10Be(d, d)10Be

Angular distributions of the p0 and p1 groups have been measured atEp = 12.0 to16.0 MeV. The reaction was measured in inverse kinematics by scattering 59.2 MeV10Beprojectiles from protons [2000IW02] and measuring the10Be recoils and associated dexcitationγ -rays. Scattering reactions involving10Be∗(0,3.77,5.96) were observed. Fothe first excited state, a deformation length ofδ = 1.80± 0.25 fm,β2 = 0.635± 0.042 and(Mn/Mp)/(N/Z) = 0.51± 0.12 are deduced. For the 5.96 MeV level, the branching rfor decay via the 3.368 MeV state is 14±6% of the branch for decay directly to the groustate. For reaction (b), elastically scattered deuterons have been studied atEd = 12.0 and15.0 MeV: see [1974AJ01].

23.10Be(11Be,11Be)10Be

Theoretical analysis of elastic and inelastic11Be scattering suggest enhancement offusion process due to strong multi-step processes in the inelastic and transfer tran

of the active neutron. In some cases, a neck formation is suggested that is analogous to a“covalent bond” for10Be–n–10Be [1995IM01].
Page 123: Energy levels of light nuclei A = 8,9,10

10Be

].],e ac-ations

eion of

ing to

ped

].ul-

lerspec-

dn-6

ength

isTeller

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 277

24. (a) 10B(γ ,π+)10Be, Qm = −140.1262(b) 10B(e, e′π+)10Be, Qm = −140.1262

Differential cross sections have been measured to10Be∗(0,3.37) at Eγ = 230 to340 MeV [see [1984AJ01]] and atEe = 185 MeV [1986YA07] and 200 MeV [1984BL1BA theoretical study ofγ +N → π +N dynamics, forEγ = 183 and 320 MeV [1994SA02indicates that core polarization non-local effects due to off-shell dynamics must bcounted for rigorously to obtain agreement with data. See also [1990BE49] for calculatEγ ≈ 200 MeV and [1990ER03] forEγ = 180–320 MeV.

25.10B(µ−, ν)10Be, Qm = 105.1024

Partial capture rates leading to the 2+ states10Be∗(3.37,5.96) have been reported: se[1984AJ01]. A review of muon capture rates [1998MU17], discusses a renormalizatthe nuclear vector and axial vector strengths.

26.10B(π−,γ )10Be, Qm = 139.0142

The photon spectrum from stopped pions is dominated by peaks correspond10Be∗(0,3.4,6.0,7.5,9.4). Branching ratios have been obtained: those to10Be∗(0,3.4)

are(2.02±0.17)% and(4.65±0.30)%, respectively [absolute branching ratio per stoppion] [1986PE05]. See [1979AJ01] for the earlier work. Also see [1998NA01].

27. (a) 10B(n, p)10Be, Qm = 0.2264(b) 10B(d, 2p)10Be, Qm = −1.9982

The cross section for reaction (a)at thermal neutron energies isσ = 6.4 ± 0.5 mb,which is one order of magnitude lower than that of the (n, t) channel [1987LA16At En = 96 MeV, the 10Be excitation spectra was evaluated by carrying out a mtipole decomposition up toEx = 35 MeV [2001RI02] to deduce the Gamow–Telstrength distribution; while low-lying states were unresolved, the high excitationtra was dominated by a broadL = 1 peak that was centered atEx = 22 MeV. Also see[1974AJ01] and11B in [1990AJ01]. For reaction (b) atEd = 55 MeV, states are reporteat 10Be∗(0,3.37,5.96,7.37,7.54,9.27[u],9.4[u]) [u = unresolved] [1979ST15], and agular distributions are given for theJπ = 0+ 10Beg.s. and theJπ = 2+ states at 3.37, 5.9and 9.4 MeV.

28.10B(t, 3He)10Be, Qm = −0.5374

At Et = 381 MeV, states were observed at 0, 3.37, 5.96 and 9.4 MeV with some strat 12–13.25 MeV [1997DA28,1998DA05].A proportionality between the 0-degree (t,3He)cross section and the Gamow–Teller strength deduced fromβ-decay measurementsdiscussed. The 3.37, 5.96 and 9.4 MeV states are identified as spin-flip Gamow–

excitations ( S = 1, T = 1). Jπ = 3+ is suggested for the 9.4 MeV state, though 2+ or4+ cannot be ruled out. Shell model predictions indicateJπ = 3+ Isobaric Analog States
Page 124: Energy levels of light nuclei A = 8,9,10

10Be

06,

e

5 and

c-se to

ismecha-

-

e-ilizing

Ta-MO35]leadsO01,

VV]

MeV.

,alevel

sistent

278 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

(IAS) in 10Be, 10B and10C at approximately 9, 11 and 8 MeV, respectively [1993WA2001MI29]. However, the uncertainty inJπ and lack of observation of these states in10Band 10C prevents an acceptance of this suggestedJπ = 3+ state as a new level at thpresent time; we associate this level with the 9.56 MeV,Jπ = 2+ level in Table 10.5. The2+ states at 3.37 and 5.96 MeV are Gamow–Teller excitations and the IAS of the 3.35.3 MeV states in10C. The valuesB(GT−) = 0.68± 0.02 from 10B(p, n)10C∗(5.38) andB(GT+) = 0.95± 0.13 from 10B(t, 3He)10Be∗(5.96) may indicate that the nuclear struture of 10Be and10C differs because of the presence of the Coulomb force, giving riisospin symmetry violation.

29.10B(7Li, 7Be)10Be, Qm = −1.4182

At E(7Li) = 39 MeV, 10Be∗(0,3.37,5.96) states were observed [1988ET02]. At thenergy sequential processes are blocked, due to isospin mixing, and the one-stepnism is most important. Also see [1989ET03].

30.11Li(β−)11Be→ 10Be+ n, Qm = 20.1190

New constraints on the11Li β-decay branch that feeds the11Be ground state indicate that the11Li β-delayed single neutron emission probability isP1n = 87.6 ± 0.8%[1997BO01].

The β-delayed neutrons following11Li decay were measured by [1997MO35]; rsults of their observations are presented in Table 10.14. A different technique, uta β-neutron-γ -ray triple coincidence was employed by [1997AO01,1997AO04]: seeble 10.15. While the overall shape of the neutron energy spectra measured by [1997and [1997AO01,1997AO04] are in excellent agreement, the analysis of their datato different interpretations and conflicting results. The measurements of [1997A1997AO04] reported involvement of a new11Be state atEx = 8.03 MeV; this newstate is implied by both an≈ 1.5 MeV neutron in coincidence with the 2590 ke10Be∗(5.96→ 3.36) γ -ray, and an≈ 3.6 MeV neutron in coincidence with the 3368 ke10Be∗(3.36→ 0) γ -ray. However, the interpretation ofβ–n coincidences by [1997MO35included low-energy neutrons from the unobserved11Be∗(3.87,3.96) → 10Be∗(3.36) + nand11Be∗(6.51,6.70,7.03)→ 10Be∗(≈ 6) + n decay branches into the analysis, and withtheir inferred branching ratios it was not necessary to introduce a new state at 8.03

To address the question of a possible level in11Be atEx = 8.03 MeV, [2003FY01] de-veloped a procedure to evaluate Doppler broadening in isotropicγ -ray decay that occursfor example, followingβ-delayed neutron decay. A model was developed that indicateswell-definedγ -ray spectrum shape that depends on recoil velocity after decay, thelifetime, and recoil energy-losses/stopping powers in the target. The 2590 keVγ -ray from10Be∗(5.958) decay was evaluated, and the observed Doppler broadening was conwith population of this level via neutron-decay from a11Be level aroundEx = 8.6–9.1 MeV. This interpretation favors the analysis of [1997AO01,1997AO04].

For earlier work see [1984AJ01,1988AJ01] where population of complex decaybranches are reported.

Page 125: Energy levels of light nuclei A = 8,9,10

10Be

5]

ys to

t

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 279

Table 10.1410Be levels observed following11Li β-delayed neutron decay in aβ–n coincidence measurement [1997MO3

Decay to11Be∗(MeV)

Branchingratio (%)a

B(GT) 11Be n-decay

to 10Be∗(MeV)

Branchingratio (%)

0 0.5± 6.00.32 7.8± 0.8 0.0084± 0.00092.643 33.3± 2.0 0.064± 0.004 0 33.33.866 (16.4+ x) ± 1.0b 0.045± 0.003 0 16.4

3.368 b

3.955 ≈ 6.4+ yb 0.021± 0.03 0 ≈ 6.43.368 b

5.15 4.9± 0.5 0.020± 0.002 3.368 4.95.849 10± 1 0.050± 0.005 3.368 106.51–7.03 ≈ 9c 0.060± 0.007 5.958,6.179 ≈ 98.816 ≈ 4 0.058± 0.007 2n-decay to9Bed

≈ 10.6 6.3± 0.7 0.199± 0.022 3.368 2.86.179 1.09.403 2.5

18.1 ≈ 0.3 1.6 3n decay to8Bee

a Branching ratios relative to 10011Li decays.b 11Li decays following the branches11Li → 11Be∗(3.866,3.955) → 10Be∗(3.386) produce very low energy

neutrons and lead to an additional≈ 7.5% (= x + y) of unobserved strength that should be shared by deca11Be∗(3.866,3.955).

c 11Li decays following the branches11Li → 11Be∗(6.51–7.03)→ 10Be∗(5.958,6.179) produce very lowenergy neutrons and lead to≈ 9% of unobserved strength that should be shared by decays to11Be∗(6.51–7.03).

d P2n = 4.2± 0.4% [1997BO01].e P3n = 1.9± 0.2% [1997BO01].

Table 10.1510Be levels observed following11Li β-delayed neutron decay in a triple coincidence (β–n–γ ) measuremen[1997AO01,1997AO04]

Decay to11Be∗(MeV)

Jπ Branchingratio (%)

logf t 11Be∗ n-decay to10Be∗ Branchingratio (% )aEx (MeV) Jπ

0.32 12

−7.6± 0.8 5.67± 0.04

2.69 32

−26± 5 4.87± 0.08 0 0+ 26

3.96 32

−a 21± 4 4.81± 0.08 0 0+ 113.368 2+ 10

5.24 52

−8.1± 1.6 5.05± 0.08 3.368 2+ 8.1

8.03± 0.05 ( 12, 3

2)− 13± 3 4.43± 0.08 0 0+ 0.83.368 2+ 2.85.958 2+ 8.06.179 0+ 1.5

a 11

Branching ratios relative to 100 Li decays.b One coauthor (D.J.M.) suggestsJπ = 5

2−

.

Page 126: Energy levels of light nuclei A = 8,9,10

10Be

ved.dcrib-

for

e

-t-rangemech-

280 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

31.11Be(p, d)10Be, Qm = 1.7206

Angular distributions were measured forE(11Be) = 35 MeV/A [2000FO17,2001WI05]. The10Beg.s., 3.4 MeV and unresolved states near 6 MeV were obserThe spectroscopic factors for the10Be∗(3.37) state inferred from standard DWBA ancoupled-channels analysis differ by roughly a factor of 1.7. A “best estimate” for desing the11Be ground-state wave function includes a 16% core excitation of the10Be∗(3.34)state [2+ ⊗ d]. Also see [1999TI04,2000YI02]. For calculations atE(11Be)= 800 MeVsee [1998CA18].

32.11B(γ , p)10Be, Qm = −11.228

See [1984AL22] and11B in [1990AJ01]. See also [1979AJ01].

33.11B(p, 2p)10Be, Qm = −11.228

Structure is observed in the summed proton spectrum corresponding toQ = −10.9 ±0.35,−14.7± 0.4,−21.1± 0.4,−35± 1 MeV: see [1974AJ01]. See also [1994SH21]a quasiquantum multi-step reaction model.

34.11B(d,3He)10Be, Qm = −5.734

Angular distributions have been measured atEd = 11.8 and 22 MeV to10Beg.s. [see[1974AJ01]] and at 52 MeV to10Be∗(0,3.37,5.96,9.6): S = 0.65, 2.03, 0.13, 1.19(normalized to the theoretical value for the ground state);π = + for 10Be∗(9.6): see[1979AJ01].

35.11B(7Li, 10Be+ γ )X

Fusion evaporation products from11B + 7Li were measured atE(7Li) = 5.5–19 MeVby detecting the reaction products and correspondingγ -rays [2000VL04]. Reactions werobserved indicating10Beg.s. and10Be∗ +γ (3368). Results were used to evaluate the7Li +11B fusion barrier and the angular momentum achieved in the compound nucleus.

36.11B(11B, 12C)10Be, Qm = 4.729

See [1985PO02].

37.12C(γ , 2p)10Be, Qm = −27.1846

Photo-breakup reactions on12C have been reported forEγ = 80–700 MeV (see Table 10.16). Two-nucleon photoemission shows promise as a means to study shornucleon–nucleon correlations, however it is necessary to understand the reaction

anism and final state interactions. Between the Giant Dipole Resonance and the -resonance,γ -ray absorption is primarily on clusters or pairs of nucleons which are emitted
Page 127: Energy levels of light nuclei A = 8,9,10

10Be

6]

7]

t

. The-

play adividedonsmaller

en-t

],o studytate

n

-stateas

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 281

Table 10.16Summary of two-proton photo- and electro-breakup measurements on12C

Eγ (MeV) Refs. Ee (MeV) Refs.

80–157 [1995MC02] 100-400 [1996RY04]114–600 [1996LA15] 475 [1992KE02,1995KE0120–400 [1996MA02] 510 [1995ZO01]150–400 [1996HA17] 705 [1998BL06,2000RO1150–700 [2000WA20] 950 [1998RY05]160–350 [2001PO19] 14.5 GeV [1994DE17]200–500 [1995CR04]250–600 [1998HA01]300 [1987KA13]

after photon absorption. Above the resonance (Ex ≈ 300 MeV) γ -rays may interacwith a single nucleon to form a , which then either decays into a nucleonplus pion, orthe may interact with another nucleon leading to emission of a pair of nucleonsmissing-mass spectra show strong peaks corresponding to (1p)2 and (1p1s) proton pair removal, while the (1s)2 peak is weak and broad which makesthat contribution difficult toidentify. Ejectile energy correlations appear to indicate that final state interactionsrole at low missing mass, however at high missing mass the energy appears to bebetween the two protons and hence final state interactions are not relevant. Polarizatiobservables were measured by [2001PO19] and asymmetries were observed to bethan expected. See also [1994RY02,1996RY04,1998RY01,1999IR01].

38.12C(e, e′2p)10Be, Qm = −27.1846

Electro-production of proton pairs on12C targets has been reported for electronergies ranging fromE = 0.1–14.5 GeV: see Table 10.16. The10Beg.s. is observed, bulow-lying resonances are not resolved. AboveEx = 25 MeV, peaks corresponding to (1p)2,(1p1s) and (1s)2 proton pair removal are observed. As in (γ , 2p) reactions [see reaction 37two-nucleon emission induced by virtual photons also shows promise as a means tshort-range nucleon–nucleon correlations; however the reaction mechanism and final sinteractions must be understood. See also [1996RY04,1997RY01,2003AN15].

39.12C(π−, n+ p)10Be, Qm = 111.6032

The reaction mechanism for the absorption of stopped pions onα, np and pp clusters i12C is discussed in [1987GA11].

40.12C(n,3He)10Be, Qm = −19.4666

At En = 40–56 MeV, the pulse shape response for discriminating various finalchannels resulting from n+ 12C interactions in NE213 and BC401a liquid scintillator w

measured by [1994MO41]. See also [1989BR05] for calculated cross sections atEn = 15–60 MeV.
Page 128: Energy levels of light nuclei A = 8,9,10

10Be

nce

09,

d at

at

desultd.

ere

282 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

41.12C(6He,10Be+ 2α)

At E(6He) = 18 MeV, this reaction was studied by detecting the triple coincide(10Be+2α) [2004MI05]. The kinematical reconstruction indicates that10Be∗(0,3.37) andthe multiplet nearEx ≈ 6 MeV participate in this reaction.

42.12C(6Li, 8B)10Be, Qm = −21.4414

At E(6Li) = 80 MeV, 10Be∗(0,3.37,5.96,7.54, (9.4;Jπ probably 2+),11.8) are pop-ulated and the angular distribution to10Beg.s. has been measured: see [1976WE1977WE03].

43.12C(9Be,11C)10Be, Qm = −11.9094

The 10Be∗(0,3.368) states, and higher lying unresolved states were observeE(9Be)= 40.1 MeV [1999CA48].

44.12C(11B, 13N)10Be, Qm = −9.284

At E(11B) = 190 MeV, theJπ = 0+ 10Beg.s. andJπ = 2+ excited states at10Be∗(3.36,5.95,9.4) excited states are observed [1998BE63].

45.12C(12Be,α + 6He)14C, Qm = 2.037

Excited states in10Be were reconstructed from theα + 6He relative energy spectraE(12Be)= 378 MeV [2001FR02]. Tentative evidence was found for states atEx = 13.2,14.8 and 16.1 MeV, while other known levels were observed at 11.9 and 17.2 MeV.

46.12C(12C,14O)10Be, Qm = −20.6141

At E(12C) = 357 MeV, the 10Be∗(0,3.37,5.96,7.54,9.4) levels were populate[1996ST29]. TheJπ = 0+ 10Be ground state is strongly populated and appears to rfrom a two-proton transfer which tends to leave the neutron configuration undisturbe

47.12C(15N, 17F)10Be, Qm = −14.4567

At E(15N) = 318.5 MeV, known10Be levels at 0, 3.37, 5.96, 7.37 and 9.5 MeV wobserved [2001BO35]. Additional measurements by [2001BO35] atE(15N) = 240 MeVobserved known levels at 3.37, 5.96, 7.37 [u]+ 7.54 [u], 9.27 [u]+ 9.55, 10.5, 11.8 MeV[u = unresolved] and new levels at 13.6 ± 0.1, 15.3 ± 0.2, 16.9 ± 0.2 MeV with Γ =200± 50 keV, 0.8± 0.2 MeV and 1.4± 0.3 MeV, respectively.

48.13C(π+, 3p)10Be, Qm = 108.2216

The mechanism forπ+ absorption on 2 and 3 nucleon clusters in targets ranging fromLi to C was studied using pions atEπ+ = 50, 100, 140 and 180 MeV [1992RA11].

Page 129: Energy levels of light nuclei A = 8,9,10

10Be

factors

t

ross

atI29]e lastee

port

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 283

Table 10.1710Be levels from13C(t,6Li) 10Be [1989SI02]

Ex (MeV) Jπ L S

0 0+ 1 0.163.36 2+ 3a 3.15.96 4+b 3a 4.1

a [1975KU01] suggestL = 1 should be dominant.b Levels atEx = 5.96 MeV are known to haveJπ = 2+ and 1−. See Table 10.5.

49.13C(p, d+ 2p)10Be, Qm = −29.9064

See12C in [1990AJ01].

50.13C(t,6Li) 10Be, Qm = −8.6187

Angular distributions were measured atE(3H) = 38 MeV [1989SI02].10Be∗(0,3.36,5.96) levels were observed and a DWBA analysis was used to extract spectroscopicshown in Table 10.17. The results indicate that more strength goes to the10Be excitedstates than shell model calculations predict.

51.14C(14C,18O)10Be, Qm = −5.79

See [1985KO04].

52.14C(18O,22Ne)10Be, Qm = −2.34

At E(18O) = 102 MeV, a study ofα-unbound states in22Ne indicated tha10Be∗(0,3.37) participate in the reaction [2002CU04].

53. (a) 12C, N, O, Mg, Al, Si, Mn, Fe, Ni, Au(p,10Be)X(b) C, 14N, 16O(n,10Be)X

Astrophysical production of10Be has been evaluated by measuring formation csections for protons incident on16O and 28Si at Ep = 30–500 MeV [1997SI29], on12C at Ep = 40–500 MeV [2002KI19] and on O, Mg, Al, Si, Mn, Fe and Ni targetsEp = 100 MeV–2.6 GeV [1990DI13,1990DI06,1993BO41]. The results of [1997Ssuggest “a soft solar proton spectrum with relatively few high energy protons over thfew million years”, when compared with10Be concentrations found in lunar rocks. S[1997BA2M,1997GR1H,1997MU1D,1997ZO1C] for surveys of terrestrial10Be concen-trations, and see [2000NA34] for a model estimating14N, 16O(p,10Be) and (n,10Be) crosssections forEp = 10 MeV–10 GeV and for discussion of various atmospheric transmodels for distributing10Be.

Spallation cross sections forEp = 50–250 MeV protons on16O were measured andwere compared with Monte Carlo predictions from MCNPX [1999CH50]; these data are

Page 130: Energy levels of light nuclei A = 8,9,10

10Be, 10B

treat-

mea-with

n C,].

us

nnels, p)

ane

nenergy

wh

ata/

284 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

relevant, for example, for estimating secondary radiation induced in proton therapyments. The target mass dependence of the cross sections for formation of10Be fromEp = 12 GeV proton induced spallation reactions on Al through Au targets wassured by [1993SH27]. Overall,10Be production cross sections are found to increaseincreasing target mass.

For reaction (b), the10Be production cross sections for neutron induced reactions oN and O targets were measured atEn = 14.6 MeV by [2000SU23]. See also [2000NA34

54. (a) 12C(10Be, X)(b) 28Si(10Be, X)

At E(10Be)≈ 30 MeV/A, the 10Be+ 12C reaction was observed to populate varioexit channels [2004AH02,2004AS02]. States atEx = 9.6± 0.1 and 10.2± 0.1 MeV wereobserved in the6He+ α breakup channel. Cross sections were given for breakup chapopulating8Be∗(0,3.0) and9Be∗(2.43), and other cross section were given for the (ncharge exchange reaction and proton pickup reaction that populate10B and11B, respec-tively.

For reaction (b), fragmentation of10Be was measured on Si targets forE(10Be)= 20–60 MeV/A [1996WA27] andE(10Be)= 30–60 MeV/A [2001WA40]. The total reactioncross section was found to be near 1.55 b in this energy region, andRtotal

r.m.s. (10Be)≈ 2.38 fmis deduced from the cross section data.

55.252Cf ternary cold fission

The de-excitation of10Be∗ nuclei formed in the ternary cold fission of252Cf → 146Ba+96Sr+ 10Be∗(3.37) yieldsγ -rays that are roughly 6 keV lower in energy [1998RA16] thexpected from the accepted excitation energy ofEx = 3368.03± 0.03 keV. The absencof Doppler broadening suggests that the10Be is formed and decays while in the potentialwell of the heavier Ba and Sr nuclei [1998RA16]. A theoretical analysis of the reactioexplains the observation as an anharmonic perturbation, which shifts the excitationlower [2000MI07].

10B(Figs. 14, 15 and 17)

GeneralReferences to articles on general properties of10B published since the previous revie

[1988AJ01] are grouped into categories andlisted, along with brief descriptions of eacitem, in the General Tables for10B located on our website at: www.tunl.duke.edu/nucldGeneral_Tables/10b.shtml.

µ = +1.80064475± 0.00000057µN see [1989RA17];

Q = +84.72± 0.56 mb see [1978LEZA,1989RA17].
Page 131: Energy levels of light nuclei A = 8,9,10

10B

aws onfrom

in-racter.ctro-

nd thatU05].

ber of

etrylyws:

parity-

a-

VV

or un-

with

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 285

Mass of 10B The mass excess adopted by [2003AU03] is 12050.7± 0.4 keV.

Isotopic abundance (19.9± 0.2)% [1984DE1A].

10B∗(0.72): µ = +0.63± 0.12µN see [1978LEZA,1989RA17].

B(E2)↓ for 10B∗(0.72) = 4.18± 0.02 e2 fm4 [1983VE03].

Electromagnetic transitionsDetailed information on electromagnetic transition strengths in10B is displayed in Ta-

bles 10.19 and 10.20. Table 10.19 relates to levels below the proton threshold and drTable 10.21 for the lifetimes of bound levels and on Table 10.22 for radiative widthsthe6Li (α, γ )10B reaction. With the exception of the 5.11 MeV 2− level with one nucleonin the sd shell and the 5.18 MeV 1+ level with two nucleons in the sd shell, the remaing levels in Table 10.19 have been established as being dominantly p-shell in chaFurthermore, analysis of the empirical p-shell wave functions which best fit the elemagnetic data shows that the p-shell states all have mainly [42] spatial symmetry aL andKL (to distinguish the two D states) are rather good quantum numbers [1979KTable 10.20 relates to levels above the proton threshold studied mainly via the9Be(p,γ )10Breaction. The region contains a number of overlapping resonances including a numisospin-mixed s-wave resonances involving the analogs of the 5.96 MeV 1− and 6.26 MeV2− levels of10Be. The lowest negative-parity states also have mainly [42] spatial symmand in addition (51) SU(3) symmetry. Thus, the 1− and 2− T = 1 states above are main1P and1D in character while for theT = 0 states the dominant components are as follo3P for the 5.11 MeV 2− state,3D for the 6.13 MeV 3− state,3F for the 6.56 MeV 4− state,and3P for the 6.88 MeV 1− state.

1. 6Li(α, γ )10B, Qm = 4.4610

Observed resonances are displayed in Table 10.22. For a discussion of isovectormixing between the 5.11 MeV and 5.16 MeV levels of10B see [1984NA07] in whichthick-target yields were measured with a6Li polarized target to obtain a parity-mixing prameter. In later work [1989BA24] strengths and mixing ratios ofγ -transitions from thesetwo levels were measured. However, it is clear that for the transitions to the 1.740 Melevel contributions from the double-escape peaks of stronger transitions to the 0.718 Melevel were not properly accounted for. For the 2+; 1 → 0+; 1 transition, the published 4%branch disagrees with the limit of< 0.5% in Table 10.19 and would correspond to aB(E2)of 140 W.u. Similarly, the branch of 10.9% for the 2−; 0 → 0+; 1 transition corresponds taB(M2) of 130 W.u. The mixing ratios from 3-point angular distributions also appeareliable. Total transition strengths ofωγcm = 0.046±0.004 eV and 0.385±0.020 eV weredetermined for the 2− and 2+ resonances, respectively, which are in good agreement

the values in Table 10.22. For a preliminary report involving a target of laser-polarized6Liatoms see [1987MU13]. See also the astrophysics-related work in [1996RE16,1997NO04].
Page 132: Energy levels of light nuclei A = 8,9,10

10B

ce

the

10.23.

se-

teringRGMtionsg

statesre-r,s)

orkents

n

286 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

2. (a) 6Li(α, n)9B, Qm = −3.9753, Eb = 4.4610(b) 6Li(α, p)9Be, Qm = −2.1249(c) 6Li(α, d)8Be, Qm = −1.5657

The excitation functions for neutrons [from threshold toEα = 15.5 MeV] and fordeuterons [Eα = 9.5 to 25 MeV; d0, d1 over most of range] do not show resonanstructure: see [1974AJ01,1979AJ01]. Reaction-mechanism studies of (α, p) and (α, d) atEα = 26.7 MeV are reported in [1990LI37,1989LI24], respectively. A calculation of(α, d) cross section atEα 24 MeV is described in [1994FU07].

3. (a) 6Li(α, α)6Li, Eb = 4.461008(b) 6Li(α, 2α)2H, Qm = −1.473844

Excitation functions ofα0 andα1 have been reported forEα 18.0 MeV and 9.5 to12.5 MeV, respectively: see [1974AJ01]. Reported anomalies are displayed in TableElastic scattering and VAP measurements are reported forE(6 Li) = 15.1 to 22.7 MeV[see [1984AJ01]] and atE(6 Li) = 19.8 MeV ([1986CA1F]; also TAP). Differential crossection measurements atEα = 50 MeV are reported by [1992SA01,1996BU06]. Thoretical work reported since the previous review include: studies of target-clusinfluence on exchange effects [1988LE06]; knock-out exchange contributions in[1989LE07]; a description of a double-folding model potential [1993SI09]; calculawith a multi-configuration RGM [1995FU11]; a study of continuum-continuum couplinfor 6Li → α + d breakup data [1995KA07]; a folding-potential analysis forEα = 3–50.5 MeV [1995SA12]; and a study of coupling effects of resonant and continuumfor 6Li (α,α) at Eα = 40 MeV [1996SI13]. Small anomalies have been reported inaction (b) corresponding to10B∗(8.67,9.65,10.32,11.65): see [1984AJ01]. See, howeveTable 10.18. See also6Li in [1988AJ01,2002TI10,1987BU27], ([1986ST1E]; applicationand ([1986YA15,1988LE06]; theor.).

4. 6Li( 6Li, d)10B, Qm = 2.9872

Angular distributions of deuteron groups have been determined atE(6Li) = 2.4 to9.0 MeV (d0, d1, d3) and 7.35 and 9.0 MeV (d4, d5). The d2 groups corresponding tthe isospin-forbidden reaction6Li( 6Li, d2)10B (0+; 1) were observed weakly in early wo(see [1974AJ01]) and12C in [1980AJ01]. More recent angular distribution measurem[1993WI13] atE(6Li) = 3–8 MeV deduced the isospin-breaking matrix element.

A reaction-mechanism study of6Li( 6Li, d)10B for Ecm = 7.2–13.3 MeV is described i[1987AR13].

5. 7Li( 3He,γ )10B, Qm = 17.7883

Captureγ -rays have been observed forE(3He) = 0.8 to 6.0 MeV. Theγ0 and γ5yields [to 10B∗(0,4.77)] show resonances atE(3He) = 1.1 and 2.2 MeV [Eres = 0.92

and 2.1 MeV], theγ1 andγ4 yields [to 10B∗(0.72,3.59)] at 1.4 MeV and theγ4 yieldat 3.4 MeV: see Table 10.10 in [1979AJ01]. Both the 1.1 and 2.2 MeV resonances
Page 133: Energy levels of light nuclei A = 8,9,10

10B

,,,,,,

,,,,

,,,

,,,

,,,

,,

,

,

,

,,

,,

,,

,,

,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 287

Table 10.18Energy levels of10Ba

Ex (MeV ± keV) Jπ ; T τm or Γcm (keV) Decay Reactions

g.s. 3+; 0 stableb 1, 4, 5, 10, 12, 17, 1819, 20, 21, 23, 24, 2526, 27, 28, 29, 30, 3132, 33, 34, 35, 36, 3738, 39, 40, 41, 42, 4445, 46, 47, 51, 52, 5354, 55, 56, 58, 59

0.71835± 0.04 1+; 0 τm = 1.020± 0.005 nsc γ 1, 4, 5, 10, 12, 17, 1819, 20, 22, 24, 25, 2627, 28, 30, 31, 36, 4244, 45, 46, 47, 50, 5152, 53, 55, 58

1.74015± 0.17 0+; 1 7± 3 fs γ 1, 4, 10, 12, 17, 18, 1920, 24, 25, 26, 27, 3042, 43, 44, 45, 46, 4751, 52, 56

2.1543± 0.5 1+; 0 2.13± 0.20 ps γ 1, 4, 12, 17, 18, 19, 2024, 25, 26, 27, 28, 3031, 36, 44, 45, 46, 4750, 51, 52, 53, 54, 55

3.5871± 0.5 2+; 0 153± 12 fs γ 1, 4, 5, 12, 17, 18, 1924, 25, 26, 27, 28, 3031, 43, 44, 46, 51, 5253, 55, 58

4.7740± 0.5 3+; 0 Γ = 7.8± 1.2 eVd γ , α 1, 4, 5, 11, 17, 18, 1924, 25, 26, 27, 28, 3146, 51, 52, 53, 58, 60

5.1103± 0.6 2−; 0 0.98± 0.07 keV γ , α 1, 11, 12, 17, 18, 2425, 27, 31, 46, 52

5.1639± 0.6 2+; 1 1.8± 0.4 eVd γ , α 1, 12, 17, 18, 24, 2527, 28, 43, 46, 51

5.180± 10 1+; 0 110± 10 keV γ , α 1, 3, 11, 12, 17, 18, 2831, 46

5.9195± 0.6 2+; 0 5.82± 0.06e γ , α 1, 3, 11, 12, 17, 18, 1924, 27, 28, 30, 31, 4651, 52, 53

6.0250± 0.6 4+; 0 0.054± 0.024e γ , α 1, 3, 11, 17, 18, 19, 2425, 26, 27, 28, 30, 3144, 46, 52, 53, 56, 58

6.1272± 0.7 3−; 0 1.52± 0.08e α 3, 11, 17, 18, 19, 2425, 27, 28, 30, 44, 4652

6.560± 1.9f 4−; 0 25.1± 1.1 α 3, 11, 17, 18, 19, 2425, 27, 28, 30, 31, 4446, 51, 52, 60

6.873± 5 1−; 0+ 1 120± 5 γ , p, d,α 1, 11, 12, 14, 16, 177.002± 6 (3+); 0g 100± 10 p, d,α 3, 11, 16, 17, 19, 25

27, 28, 30, 46, 52, 58(continued on next page)

Page 134: Energy levels of light nuclei A = 8,9,10

10B

,

,

,

,

.24.

16, the

o two

s

288 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 10.18 (continued)

Ex (MeV ± keV) Jπ ; T τm or Γcm (keV) Decay Reactions

7.430± 10 1−; 1+ 0h 100± 10 γ , p, d,α 1, 12, 14, 167.469± 6h,i 2+; 1i 65± 10i γ , p 12, 14, 17, 19, 24, 46

51, 567.480± 4h,i 2−; 0+ 1i 80± 8i γ , p, d,α 12, 14, 16, 19, 287.5599± 0.6 0+; 1 2.65± 0.18 γ , p 12, 14, 17, 46

(7.67± 30) (1+; 0) 250± 20 p, (d),α 14, 16, 257.75± 30h 2−; 0+ 1i 210± 60h γ , p, d,α 12, 14, 16, 17, 19, 25

467.96± 70j T = 0 285± 91 α, 6Li(3+) 118.07 2+; (0) 800± 200 p, d,α 14, 16, 17, 24, 258.68k (3+); 0k p 16, 588.889± 6 3−; 1 84± 7 n, p,α 13, 14, 16, 17, 19, 24

25, 518.894± 2 2+; 1 40± 1 p,α 14, 16, 19, 24, 25, 519.58± 60j T = 0 257± 64 α, 6Li(3+) 11

10.84± 10 (2+, 3+, 4+) 300± 100 γ , n, p 12, 13, 14, 16, 24, 2546

11.52± 35 500± 100 (γ ), α 16, 24, 25, 44, 4612.56± 30 (0+, 1+, 2+) 100± 30 γ , p 12, 24, 4613.49± 5 (0+, 1+, 2+) 300± 50 γ , p 12, 24, 4614.4± 100 800± 200 γ , p,α 3, 12, 44, 46

(18.2± 200) (1500± 300) 4618.43 2−; 1 340 γ , 3He 5, 718.80 2+ < 600 γ , 3He,α 5, 919.29 2−; 1 190± 20 γ , n, p,3He,α 5, 6, 7, 920.1± 100 1−; 1 broad γ , n, p, t,3He,α 5, 6, 7, 8, 9, 23

(21.1) γ , 3He 523.1± 100 broad γ , n 23

a See footnotes on level parameters changed since [1988AJ01]. See also Tables 10.19, 10.20, 10.21 and 10b µ = 1.80064475± 0.00000057µN, Q = 84.72± 0.56 mb.c µ = +0.63± 0.12µN.d See Table 10.22.e See Table 10.23.f See [1971YO05].g See [1971YO05,1979OE01].h See Table 10.24 and reaction 12.i From [1969MO29]; see reaction 14 and Table 10.25.j New levels since [1988AJ01].k Energy and tentative spin assignment from [1979OE01]. If this is the same level as seen in reaction

width is ≈ 220 keV (see Table 10.26) and decay modes of p, d,α are likely.

[10B∗(18.4,19.3)] appear to result from s-wave capture; the subsequent decay is t3+ states [10B∗(0,4.77)]. Therefore the most likely assignment isJπ = 2−; T = 1 forboth [there appears to be no decay of these states viaα2 to 6Li ∗(3.56) which hasJπ = 0+;T = 1: see reaction 9]. The assignment for10B∗(18.8) [1.4 MeV resonance] is 1+ or 2+ butthere appears to beα2 decay and thereforeJπ = 2+. 10B∗(20.1) [3.4 MeV resonance] ha

an isotropic angular distribution ofγ4 and thereforeJπ = 1−, 2−. Theγ2 group resonatesat this energy which eliminates 2−. See [1974AJ01] for references.
Page 135: Energy levels of light nuclei A = 8,9,10

10B

ig. 2.

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 289

Fig. 14. Energy levels of10B. Forγ transitions see Fig. 15, and Tables 10.19 and 10.20. For notation see F

Page 136: Energy levels of light nuclei A = 8,9,10

10B

290 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Fig. 15.γ transitions for10B. See Tables 10.19 and 10.20. For notation see Fig. 2.

Page 137: Energy levels of light nuclei A = 8,9,10

D.R

.Tilleyetal./N

uclearP

hysicsA

745(2004)

155–362

10B

291

Mult. Γγ /ΓW

032) × 10−7 E2 3.240± 0.016040 M1 4.2± 1.89) × 10−5 E2 1.33± 0.16× 10−6 M1 (9.1± 2.7) × 10−5

× 10−5 E2 12.2± 1.36) × 10−4 M1 0.107± 0.011× 10−4 M1 (2.6± 1.5) × 10−4

× 10−4 E2 0.90± 0.284 M1 < 5× 10−4

7) × 10−3 E2 13.9± 1.4× 10−4 M1 (8.5± 1.5) × 10−3

× 10−5 E2 11.9± 5.4

× 10−5

M1E2

< 4.8× 10−5

< 4.2× 10−2

5) × 10−2 E2 15.4± 1.3× 10−2 E1 (5.0± 1.0) × 10−4

× 10−2 E1 (3.7± 1.1) × 10−4

× 10−3 M2 < 120× 10−2 M1 (2.3± 0.6) × 10−2

× 10−4 E2 < 0.79 M1 0.18± 0.053 E2 < 156 M1 1.71± 0.463 M1 1.41± 0.38

(continued on next page)

Table 10.19Electromagnetic transition strengths for levels below the proton threshold in10B

Ei → Ef (MeV) Jπi ; Ti → Jπ

f ; Tf Branch (%) Mixing ratio (δ)(E2/M1)

Γγ (eV)

0.718→ 0a 1+; 0→ 3+; 0 100 (6.453± 0.

1.740→ 0.718a 0+; 1→ 1+; 0 100 0.094± 0.

2.154→ 0a,b,c 1+; 0→ 3+; 0 21.1± 1.6 (6.52± 0.7→ 0.718 → 1+; 0 27.3± 0.9 −(3.75± 0.55)±1 (5.6± 1.6)

(7.9± 0.8)

→ 1.740 → 0+; 1 51.6± 1.6 (1.59± 0.13.587→ 0a,b,c,d 2+; 0→ 3+; 0 19± 3 1.5± 0.6 (2.5± 1.5)

(5.7± 1.7)

→ 0.718 → 1+;0 67± 3 (0.11± 0.10)−1 < 2.5× 10−(2.85± 0.2

→ 2.154 → 1+; 0 14± 2 −(0.38± 0.09) (5.3± 0.9)

(7.6± 3.4)

4.774→ 0e,f, j 3+; 0→ 3+; 0 0.5± 0.1 (9.0± 2.0)

→ 0.718 → 1+; 0 99.5± 0.1 (1.79± 0.15.110→ 0e,g,h 2−; 0→ 3+; 0 64± 7 (2.1± 0.4)

→ 0.718 → 1+; 0 31± 7 (1.0± 0.3)

→ 1.740 → 0+; 1 5± 5 (1.8± 1.8)

5.164→ 0e,i 2+; 1→ 3+; 0 4.4± 0.4 0.12± 0.05 (6.6± 1.8)

(9.4± 8.2)

→ 0.718 → 1+; 0 22.6± 0.6 0.03± 0.03 0.34± 0.0→ 1.740 → 0+; 1 < 0.5 < 7.5× 10−→ 2.154 → 1+; 0 65.3± 0.9 0.02± 0.03 0.98± 0.2→ 3.587 → 2+; 0 7.8± 0.3 0.00± 0.02 0.12± 0.0

Page 138: Energy levels of light nuclei A = 8,9,10

292

10B

D.R

.Tilleyetal./N

uclearP

hysicsA

745(2004)

155–362

Mult. Γγ /ΓW

2 M1 (7.0± 3.5) × 10−2

022 M1 (2.6± 0.5) × 10−2

007 M1 (8.6± 2.4) × 10−3

6) × 10−2 M1 (2.3± 0.4) × 10−3

015 E2 12.4± 1.8

on and that there is an ambiguity for the 2.154→ 0.718andKurath wave functions [1968WA15] and is used here to

WA15,1982RI04].Γγ is a sensitive function ofΓα/Γ (see

ransition.

Table 10.19 (continued)

Ei → Ef (MeV) Jπi ; Ti → Jπ

f ; Tf Branch (%) Mixing ratio (δ)(E2/M1)

Γγ (eV)

5.180→ 1.740e 1+; 0→ 0+; 1 ≈ 100 0.06± 0.05.920→ 0e,g 2+; 0→ 3+; 0 82± 5 0.112± 0.

→ 0.718 → 1+; 0 18± 5 0.025± 0.

6.025→ 0c,e 4+; 0→ 3+; 0 100 −(3.16± 0.12) (1.04± 0.10.104± 0.

a Γγ from lifetime in Table 10.21.b Branches are averages from [1969YO01].c Mixing ratios from [1968WA15]. Note that the inverse ofδ was determined for the 3.587→ 0.718 transiti

transition. The solution with the larger E2 value is more consistent withthe value from the perturbed Cohenobtain the M1 and E2 strengths.

c Branches from [1969YO01] and [1969GA06] are in agreement.e Γγ from Table 10.22.f Branches from [1966AL06].g Branches from [1966FO05].h M2 < 120 W.u. for all branches.i Branches and mixing ratios from [1979KE08]. Limit on branch to 1.74 MeV level from [1967PA01,1968

footnotee of Table 10.22).j Without a mixing ratio, only upper limits can be given on the M1 and E2 strengths for the ground-state t

Page 139: Energy levels of light nuclei A = 8,9,10

D.R

.Tilleyetal./N

uclearP

hysicsA

745(2004)

155–362

10B

293

) Mult. Γγ /ΓW

M2 < 84± 0.08 E1 (4.2± 1.1) × 10−3

± 0.20 E1 (1.9± 0.5) × 10−2

± 0.5 E1 (6.0± 1.5) × 10−3

2± 0.022 M1 0.54± 0.196± 0.019 E1 (2.9± 1.2) × 10−2

4± 0.021 E1 0.20± 0.08± 0.50 E1 (2.3± 0.5) × 10−2

E1 < 4.0× 10−3

± 0.30 E1 (2.2± 0.7) × 10−2

± 0.38 M1 5.8± 1.50.7 M1 1.34± 0.082.5 E1 (3.8± 1.9) × 10−2

± 0.11 M1 0.10± 0.030.6 M1 0.72± 0.09

± 0.14 M1 0.17± 0.05± 0.15 M1 3.1± 0.6± 1.12 E1 (2.9± 0.8) × 10−2

± 0.29 E1 (5.8± 2.6) × 10−3

± 0.11 E1 (3.8± 2.0) × 10−3

± 0.11 E1 (8.3± 4.8) × 10−3

(continued on next page)

Table 10.20Electromagnetic transition strengths for levels above the proton threshold in10Ba

Ei → Ef (MeV) Jπi ; Ti → Jπ

f ; Tf Branch (%) ωγcm (eV) Γγ (eV

6.87b → 0 1−; 0c→ 3+; 0 < 4.6 < 0.09→ 0.718 → 1+; 0 20± 2 0.31→ 1.740 → 0+; 1 53± 2 0.82→ 2.154 → 1+; 0 13± 1 0.20→ 5.110 → 2−; 0 4± 1 0.06→ 5.164 → 2+; 1 3± 1 0.04→ 5.920 → 2+; 0 3.5± 1.0 0.05

7.43d → 0.718 1−; 1c → 1+; 0 46 0.58± 0.13 2.21→ 1.740 → 0+; 1 < 5 < 0.06 < 0.23→ 2.154 → 1+; 0 22 0.27± 0.08 1.03→ 5.110 → 2−; 0 32 0.4± 0.1e 1.52

7.47f → 0 2+; 1→ 3+; 0 f 7.3± 0.5 11.7±7.48f → 0 2−; 1i → 3+; 0 f 2.8± 1.4 5.0±

→ 2.154 → 1+; 0 1.9 0.20± 0.07 0.327.56g → 0.718 0+; 1→ 1+; 0 77± 5 4.8±

→ 2.154 → 1+; 0 9± 2 0.57→ 5.180 → 1+; 0 14± 2 0.87

7.75h → 0 2−; 1i → 3+; 0 77 2.7± 0.7 4.32→ 0.718 → 1+; 0 11 0.40± 0.18 0.64→ 2.154 → 1+; 0 3.7 0.13± 0.07 0.21→ 3.587 → 2+; 0 3.4 0.12± 0.07 0.19

Page 140: Energy levels of light nuclei A = 8,9,10

294

10B

D.R

.Tilleyetal./N

uclearP

hysicsA

745(2004)

155–362

Mult. Γγ /ΓW

.14 M1 0.70± 0.35

ondingγ -ray branches are given without errors. Otherwise

0.23± 0.04, Γα/Γ = 0.33 ± 0.02 from [1997ZA06].e non-observation of a ground-state branch are in agreement

hγcm = 10.1 ± 1.3 eV [1964HO02]. Small branches witheither or both members of the doublet. Analysis of elastic0 MeV,Γcm = 80± 8 keV,Γp/Γ = 0.90± 0.05) levels

e 2+; 1 level.20± 84 µb [1964HO02] givesωγcm = 0.82± 0.10 eV.

1964HO02]. Analysis of elastic proton scattering gives

ng ground-state E1 transitions and only one 2−; T = 1 level,

Table 10.20 (continued)

Ei → Ef (MeV) Jπi ; Ti → Jπ

f ; Tf Branch (%) ωγcm (eV) Γγ (eV)

→ 5.110 → 2−; 0 4.8 0.17± 0.09 0.27± 0

a Theωγcm values for individual transitions are for the9Be(p,γ )10B reaction [1964HO02] and the correspthe totalωγcm or Γγ value is given in a footnote and the branches are given with errors.

b Γcm = 120± 5 keV, ΓpΓγ /Γ = 0.38± 0.10 eV, ΓαΓγ /Γ = 0.48± 0.11 eV from [1975AU02].Γp/Γ =Γγ = 1.54± 0.40 eV is an equally weighted average from (p,γ ) and(α, γ ). The three major branches and thwith earlier work [1979AJ01].

c ≈ 20% isospin mixed [1956WI16]. See discussion of reaction 12.d Γcm = 140± 30 keV,Γp/Γ = 0.7 [1964HO02]. Note, however,Γp/Γ = 0.38± 0.06 in Table 10.25.e Some of this strength could be due to the 7.48 MeV doublet [1964HO02].f The doublet analyzed as a single state givesΓcm = 72± 4 keV and a ground-state branch of 96.8% witω

ωγcm = 0.13± 0.04 eV andωγcm = 0.20± 0.07 eV to the 0.718 and 2.154 MeV 1+ states could be due toproton scattering shows a doublet of 2+ (Ex = 7.469 MeV,Γcm = 65± 10 keV,Γp/Γ = 1) and 2− (Ex = 7.48[1969MO29].Γγ0 = 11.7± 0.7 eV for M1 excitation in (e, e′) andΓp/Γ = 1 givesωγcm = 7.3± 0.5 eV for th

g Branches are averages of [1961SP04,1964HO02].Γcm = 2.65± 0.18 keV [1972HA63]. Usingσ (p,γ ) = 9This is averaged withωγcm = 0.73± 0.11 eV [1995ZA04] to giveωγcm = 0.78± 0.08 eV.

h Γcm = 210± 60 keV [1964HO02]. The transition strengths are forΓp/Γ = 1.0 instead ofΓp/Γ = 0.7 [Ex = 7.79 MeV,Γcm = 265± 30 keV,Γp/Γ = 0.90± 0.05 [1969MO29].

i The 7.48 MeV and 7.75 MeV 2− levels may form an isospin mixed pair because both possess strocorresponding to the analog of the 6.26 MeV level of10Be, is expected.

Page 141: Energy levels of light nuclei A = 8,9,10

10B

-

],

e

veere re-

ac-fa-

ac-ationsn am-]. See

ts are

.eross

An-

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 295

6. 7Li( 3He, n)9B, Qm = 9.3520, Eb = 17.7883

The excitation curve is smooth up toE(3He)= 1.8 MeV and the n0 yield shows resonance behavior atE(3He)= 2.2 and 3.25 MeV,Γlab = 270± 30 and 500± 100 keV. Noother resonances are observed up toE(3He)= 5.5 MeV. See Table 10.10 in [1979AJ01([1986AB10]; theor.) and [1974AJ01].

7. 7Li( 3He, p)9Be, Qm = 11.2025, Eb = 17.7883

The yield of protons has been measured forE(3He)= 0.60 to 4.8 MeV: there is somindication of weak maxima at 1.1, 2.3 and 3.3 MeV. Measurements ofAy for the ground-state group atE(3 He)= 14 MeV [1983LE17,1983RO22] and 33 MeV [1983LE17] habeen reported. Measurements of differential cross sections and analyzing powers wported atE(3He) = 4.6 MeV [1995BA24]. The polarization atE(3He) = 14 MeV wasmeasured by [1984ME11,1984TR03].P = A in this and in the inverse reaction [see retion 4 in 12C in [1985AJ01] for some additional comments]. Proton yields as a function oangle were measured forE(3He)= 93 MeV by [1994DO32]. Astrophysics-related mesurements atEcm = 0.5–2 MeV [1990RA16] andE(3He) = 160, 170 keV [2002YA06]have been reported. AstrophysicalS-factors were deduced. A theoretical study of the retion mechanism and astrophysical implications are described in [1993YA01]. Calculfor the reaction and the inverse reaction to deduce time-reversal-invariance violatioplitude features were reported in [1988KH11]. For earlier references see [1984AJ01also ([1986AB10]; theor.).

8. (a) 7Li( 3He, d)8Be, Qm = 11.2025, Eb = 17.7883(b) 7Li(3He, t)7Be, Qm = −0.88081(c) 7Li(3He,3He)7Li

Yields of deuterons have been measured forE(3He)= 1.0 to 2.5 MeV (d0) and yieldsof tritons are reported for 2.0 to 4.2 MeV (t0): a broad peak is reported atE(3He) ≈3.5 MeV in the t0 yield. See [1979AJ01] for references. Polarization measuremenreported atE(3 He)= 33.3 MeV for the deuteron groups to8Be∗(16.63,17.64,18.15) andfor the triton and3He groups to7Be∗(0,0.43) and 7Li ∗(0,0.48,4.63): see [1984AJ01]Measurements of the yields for deuterons, alphas, tritons and3He as a function of anglat E(3He)= 93 MeV are described in [1994DO32]. A compilation and analysis of csection data for studying evidence for clusters in7Li is presented in [1995MI16].

9. 7Li( 3He,α)6Li, Qm = 13.32732, Eb = 17.78833

Excitation functions have been measured forE(3He) = 1.3 to 18.0 MeV: see[1974AJ01]. Theα0 group (at 8) shows a broad maximum at≈ 2 MeV, a minimumat 3 MeV, followed by a steep rise which flattens off betweenE(3He)= 4.5 and 5.5 MeV.Integratedα0 andα1 yields rise monotonically to 4 MeV and then tend to decrease.

gular distributions give evidence of the resonances atE(3He)= 1.4 and 2.1 MeV seen in7Li( 3He,γ )10B: Jπ = 2+ or 1−; T = (1) for both [see, however, reaction 5]:Γα is small.
Page 142: Energy levels of light nuclei A = 8,9,10

10B

hing

3%.

he decay

296 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 10.21Lifetimes of bound states of10B

10B∗ (MeV) τm Reactions Refs.

0.72 1.020± 0.005 ns 10B(p, p′) [1983VE03]a

1.74 7± 3 fs 6Li(α, γ ) [1979KE08]2.15 2.30± 0.26 ps mean [1979AJ01]b

1.9± 0.3 ps 6Li(α,γ ) [1979KE08]2.13± 0.20 ps mean all values

3.59 153± 13 fs mean [1979AJ01]150± 30 fs 6Li(α,γ ) [1979KE08]153± 12 fs mean all values

a See also Table 10.20 of [1966LA04].b Table 10.9 in [1979AJ01].

Table 10.22Levels of10B from 6Li(α,γ )10Ba

Ex (MeV) Jπ ; T Γcm ωγcm (eV)b Γγ (eV)b

4.774c 3+; 0 7.8± 1.2 eV (4.20± 0.36) × 10−2 (1.80± 0.15) × 10−2

5.112d 2−; 0 0.98± 0.07 keV 0.055± 0.010 0.033± 0.0065.164e 2+; 1 1.8± 0.4 eV 0.40± 0.04 1.50± 0.405.180f 1+; 0 200± 30 keV 0.06± 0.03 0.06± 0.035.920g 2+; 0 6± 1 keV 0.228± 0.038 0.135± 0.0236.024h 4+; 0 0.342± 0.048 0.114± 0.0166.873i 1−; 0+ 1 120± 5 keV 0.48± 0.11 1.44± 0.347.440j 2−; 0 90± 10 keV 0.29± 0.13

a Ex from adopted level energies: see Table 10.8 in [1988AJ01]for resonance energies and measured brancratios. The measured branching ratios also appear in Table 10.19. Values ofωγ from [1966AL06,1966FO05] havebeen multiplied by 0.6 to convert them to the cm system [1979SP01].

b ωγcm andΓγ represent the sum for all transitions from a given level.c Average ofωγcm = 0.041± 0.004 [1985NE05] andωγcm = 0.046± 0.008 [1966AL06];Γcm = Γα = 7.8±

1.2 eV [1981HE05].Γγ /Γ = (2.3± 0.3) × 10−3 [1966AL06].d Γα = Γcm = 0.98± 0.07 keV [1984NA07];ωγcm [1966FO05].e ωγcm [1979SP01] andΓα/Γ = 0.16± 0.04 from averagingΓα/Γ = 0.13± 0.04 [1966AL06] andΓα/Γ =

0.27± 0.15 [1966SE03]. ThenΓα = 0.29± 0.03 eV,Γγ = 1.50± 0.40 eV andΓcm = 1.79± 0.40 eV. Using justthe more precise valueΓα/Γ = 0.13± 0.04, itself an average of two measurements, givesΓα = 0.28± 0.03 eV,Γγ = 1.85± 0.60 eV andΓcm = 2.13± 0.60 eV. This would raise the transition strengths in Table 10.19 by 2

f [1961SP02]. The accepted width isΓcm = 110± 10 keV: see Table 10.18.g [1966FO05].Γα = 5.82± 0.06 keV: see Table 10.23.h [1966FO05].Γα = 0.054± 0.024 keV: see Table 10.23.i [1975AU02].ωγcm from σ(α, γ ) = 1.8± 0.4 µb andΓcm. Relative intensities at 0 are 13± 3% (→ 0.72),

66± 4% (→ 1.74), and 8± 3% (→ 2.15).Γα/Γ = 0.33± 0.02 [1997ZA06] is used to getΓγ .j [1975AU02]. Ex = 7.440± 0.020 MeV. Relative intensities at 0 are 50± 12% (→ 0), and 50± 12%

(→ 0.72). ωγcm from σ(α, γ ) = 0.07 ± 0.03 µb/sr at 0, angular correlations forJπ = 2− (assumed), andΓcm. This level may not exist because the cross section to the first excited state can be accounted for by t

of the 7.43 MeV 1− level and that to the ground state by the tail of the 7.48 MeV 2− level: see Tables 10.20 and10.24.
Page 143: Energy levels of light nuclei A = 8,9,10

10B

ea-e

ra andy

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 297

Table 10.2310B levels from6Li (α,α)6Lia

Eα (MeV ± keV) Ex (MeV) Γcm (keV) Jπ ; T

1.210± 30 5.19 105 1+; 02.440b 5.920 5.82± 0.06 2+; 02.6060± 1.5 6.024 0.054± 0.024 4+; 02.7855± 1.5c 6.132 1.52± 0.08 3−; 03.4985± 1.6 6.560 25.1± 1.1 (4−, 2)−; 04.250± 15 7.011 110± 15 (2)+; 0

a For references see Table 10.8 in [1979AJ01] and Table 10.9 in [1974AJ01].b [1981HE05].c [1981HE05]:Γα = 1.47± 0.07 keV,Γd = 0.048± 0.030.

Table 10.24Resonances in9Be(p,γ )10Ba

Ep (MeV ± keV) Ex (MeV ± keV) Γcm (keV) Jπ ; T ωγcm (eV)

0.319b 6.873± 5 120± 5 1−; 0+ 1 0.14± 0.040.938± 10c 7.430 140± 30 1−; 1+ 0 1.25± 0.18

0.992± 2c 7.478 82± 4

2+; 12−; 1

10.4± 1.3

1.0832± 0.4d 7.5599 2.65± 0.18e 0+; 1 0.78± 0.08e

1.290± 30c 7.75 210± 60 2−; 1+ 0 3.52± 0.74

a See Table 10.20 for decay schemes.b [1975AU02].c [1964HO02].d [1964BO13].e See Table 10.20.

Theα2 yield [to 6Li ∗(3.56), Jπ = 0+; T = 1] shows some structure atE(3He)= 1.4 MeVand a broad maximum at≈ 3.3 MeV: see Table 10.10 in [1979AJ01]. Polarization msurements are reported atE(3 He)= 33.3 MeV to6Li ∗(0,2.19,3.56): see [1984AJ01]. Sealso [1983AN1D,1984PA1E,1994DO32].

10.7Li(α, n)10B, Qm = −2.7893

Angular distributions are reported atEα = 28 and 32 MeV for the n0, n1 and n2groups [1985GU1E]. See [1979AJ01,1984AJ01] for the earlier work. Neutron spectphoton yields from7Li(α, n) neutron sources forEα = 5.5–5.8 MeV were measured b[1993VL02].

11. (a) 7Li( 12C α + 6Li)9Be, Qm = −12.9515(b) 7Li(12C, d+ 8Be)9Be, Qm = −14.5172(c) 7Li(12C, p+ 9Be)9Be, Qm = −15.0764

The breakup of10B was studied [2001LE05] in an experiment with 76 MeV12C in-

cident on Li2O. Breakup of10B into α + 6Li, α + 6Li ∗(3+), 8Be + d and 9Be + pwas observed. Evidence was obtained for two new10B states atEx = 7.96± 0.07 MeV,
Page 144: Energy levels of light nuclei A = 8,9,10

10B

is

egrated

n-Tablenarrow

necitation

n-

in the

usehe0

alpha

tionses

spin-washs forfrto-

How-7.43eltheervednunt

298 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Γ = 285± 91 keV andEx = 9.58± 60 MeV,Γ = 257± 64 keV. The energy spectrumdominated byT = 0 states that decay into6Li g.s. + α.

12.9Be(p,γ )10B, Qm = 6.5859

Parameters of the observed resonances are listed in Table 10.24. An angle-intexcitation function has been measured over the energy rangeEp = 75 to 1800 keV[1995ZA04]. This establishes the absolute (p,γ ) cross sections for this region with cosiderably more certainty than existed at the time of the previous review [1988AJ01].10.24 lists six resonances in this energy region with 5 rather broad resonances and aJπ = 0+; T = 1 resonance (Γcm = 2.65 keV) atEp = 1038 keV. The excitation functiois dominated by three broad unresolved resonances atEp = 938, 980, and 992 keV. Thexistence of the 938 keV resonance has been established from analyses of the exfunctions forγ -ray transitions to specific final states. However, the 2+ and 2− levels near990 keV have similar widths and dominant ground-state radiative transitions and thus canot be distinguished from consideration of the (p,γ ) data alone. Theγ transitions fromthis reaction are given in Table 10.20 and the information obtained is summarizedfollowing discussion.

TheEp = 330 keV resonance (Ex = 6.87 MeV) is ascribed to s-wave protons becaof its comparatively large proton width [see9Be(p, p)] and because of the isotropy of tγ radiation. The strong E1 transitions to bothT = 0 andT = 1 final states in Table 10.2indicate considerable isospin mixing [1956WI16] because onlyT = 0 ↔ T = 1 isovectorE1 transitions are possible in10B. The transition to the 1.74 MeV level impliesJπ =1− and its relative strength, together with the existence of substantial deuteron andwidths, indicates a dominance ofT = 0 for the 6.87 MeV state.

Most of the data in Table 10.20 comes from an analysis of the excitation funcfor γ -ray transitions to specific final states [1964HO02]. TheEp = 938 keV resonancwas originally given a tentativeJπ = 2−; T = 0 assignment. The 1− assignment wamade for a resonance in elastic proton scattering atEp = 945± 10 keV with a widthΓcm = 130± 10 keV and the suggestion was made that this level is the missing isomixed partner of the 6.87 MeV level [1969MO29]. An estimate of the isospin mixingmade in [1969RO12]. See also the appendix in [2001BA47]. The relative E1 strengtthe transitions to the 1+; 0 levels at 0.72 and 2.15 MeV implyT = 1 isospin admixtures o15% and 21%, respectively, and the strength of the 7.43→ 1.74 E1 transition expected fothis level of admixture is just below the observed upper limit. The strong M1 transitionthe 2−; 0 level at 5.11 MeV, expected to be mainly1P → 3P , implies an isospin admixture of≈ 8.5% but this should be treated as a lower limit because some of the 7.43→ 5.11strength may be due to one or both of the two levels near 7.48 MeV [1964HO02].ever, it does appear from Fig. 6 of [1975AU02] that the transition is mainly from theMeV level. TheT = 1 component of the 1− doublet corresponds to the 5.96 MeV levof 10Be shifted downwards by≈ 400 keV with respect to p-shell levels on account ofsmaller Coulomb energy shift for (sd) orbits. The 0.93 MeV resonance is also obsin the 9Be(p, d) and9Be(p,α) reactions via theT = 0 component in the wave functio[1956WE37]. Theα width which results from the isospin mixing is sufficient to acco

for the strength of the 7.43→ 0.72 transition observed via the6Li (α, γ ) reaction and callsinto question the existence of a 2−; 0 level at 7.43 MeV proposed by [1975AU02].
Page 145: Energy levels of light nuclei A = 8,9,10

10B

onnce of

ee

r 70%

garge-

d-es as-d 2

d

ve beento

ngleumith the

U05]for

ed in anons atroundpower

houghste.

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 299

The prominentEp = 992 keV resonance was originally assigned as 2−; 1 largely onaccount of the apparent s-wave formation andthe strength of the ground-state transiti[1964HO02]. However, earlier elastic proton scattering data had indicated the existea p-wave 2+ state near 980 keV and an s-wave 2− state near 998 keV [1956MO90]. Salso [1969MO29]. Then, low-energy electron scattering [see10B(e, e′)] revealed a verystrong M1 transition to a state at this energy [1965SP04] which can account for oveof the (p,γ ) cross section. This state was identified with the second 2+; 1 level predicted byshell model calculations with similar spatial structure to the10B ground state. The analoin 10Be is at 5.96 MeV and is populated as a strong Gamow–Teller transition in chexchange reactions on10B [see reaction 28 in10Be].

Subtraction of the M1 strength associated with the 2+; 1 level leaves substantial grounstate transition strength for the 2− level, indicating aT = 1 component. The s-wavresonance atEp = 1290± 30 keV also has a strong ground-state transition and wasigned as 2−; 1 [1964HO02]. Thus, there appears to be a doublet of isospin-mixe−levels with theT = 1 component corresponding to the 6.26 MeV level of10Be.

The narrowEp = 1083 keV level is formed by p-wave protons and hasJπ = 0+ (seereaction 14 [9Be(p, p)] and reaction 16 [9Be(p,α)]). The isotropy of theγ rays supportsthis assignment. The strong M1 transitions to theJπ = 1+; T = 0 levels at 0.72, 2.15, an5.18 MeV [Table 10.22] indicateT = 1. The analog is at 6.18 MeV in10Be. The width ofthe 5.18 MeV level of10B observed in the decay is 100± 10 keV [1975AU02]. The 7.56MeV 0+; 1 and 5.18 MeV 1+; 0 levels are the lowest (sd)2, or 2hω, levels in10B. Thestrong M1 transition between them is consistent with these assignments.

Since the previous review [1988AJ01] several measurements and analyses hadone for low proton energies. Branching ratios and angular distributions for capture10Bstates atEx = 0, 0.718, 1.740 and 2.154 MeV were measured for proton energiesEp = 40–180 keV [1992CE02]. AstrophysicalS-factors were deduced. Measurements of an aintegratedS-factor forEp = 75–1800 keV were reported by [1995ZA04]. The spectris dominated by three broad peaks and the analysis included interference effects wdirect-capture process. The best fit was obtained forJπ values of 1−, 2−, and 2− and theresulting resonance energies wereEp(lab)= 380± 30, 989± 2 and 1405± 20 keV. Thewidths wereΓlab = 330± 30, 90± 3 and 430± 30 keV, respectively. The low-energyS-factor is about one third of that obtained by [1992CE02]. A measurement by [1998Wwith 100 keV polarized protons on a thick9Be target determined analyzing powerscapture to the10B ground state and the first three excited states. AstrophysicalS-factorswere deduced using a direct-capture-plus-resonance model. These data were usevaluation of thermonuclear proton-capture rates by [2000NE09]. Polarized protEp = 280–0 keV were used [1999GA21] to measure the analyzing power for the gstate transition. Comparison of the results to calculations showed that the analyzingcould be reproduced only by the interference of direct capture with the tail of a 2+ reso-nance that was taken to be at 7.478 MeV (the 7.469 MeV state in Table 10.18). Altthese results indicate that the resonance strength in the (p,γ ) channel near 7.48 MeV ipredominantly 2+, the data do not rule out a small contribution from an additional sta

Existing data on9Be(p,γ )10B were reanalyzed within the framework of anR-matrix

method by [1999SA39]. Parameters of resonances atEp(cm) = 296, 890, 972 and1196 keV were determined and compared (see Table II of [1999SA39]) with parame-
Page 146: Energy levels of light nuclei A = 8,9,10

10B

om-lated

heraline

usedee

].byey

sameThefor with

E08]

].

2]r.ical

300 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

ters given in [1988AJ01,1995ZA04,1998WU05]. Data for proton energies up toEp =1800 keV andγ -transitions to the four lowest10B states were fitted usingR-matrix for-mulae by [2002BA09]. A good fit was obtained with two 1− levels, two 2− levels, one0+ level and one 2+ level. Level parameters derived from these fits using different cbinations of input data are presented in Tables 5, 6, and 8 of [2002BA09]. In rework since [1988AJ01], asymptotic normalization coefficients obtained from periptransfer reactions such as10B(7Be,8B)9Be at low energies have been used to determ9Be(p,γ )10B S-factors [1999SA39]. Extracted asymptotic normalization coefficientsfor determining stellar reaction rates for9Be(p,γ )10B are discussed in [2003KR14]. Salso the astrophysics-related work [1996RE16,1997NO04,2000IC01].

For further information concerning9Be(p,γ )10B experiments forEp > 1330 keV, referto [1988AJ01].

13.9Be(p, n)9B, Qm = −1.8504, Eb = 6.5859

As noted in [1988AJ01], “Resonances in the neutron yield occur atEp = 2562± 6,4720± 10 and, possibly, at 3500 keV withΓcm = 84± 7, ≈500 and ≈700 keV. Thesethree resonances correspond to10B∗(8.890,10.83,9.7): see Table 10.13 in [1974AJ01Cross section measurements for the (p, n) and (p, n0) reactions have been obtained([1983BY01]; Ep = 8.15 to 15.68 MeV) [see also for a review of earlier work]. Thindicate possible structure in10B near 13–14 MeV [1983BY01].”

“The Ep = 2.56 MeV resonance is considerably broader than that observed at theenergy in9Be(p,α) and9Be(p, γ ) and the two resonances are believed to be distinct.shape of the resonance and the magnitude of the cross section can be accountedJπ = 3− or 3+; the former assignment is in better accord with10Be∗(7.37). ForJπ = 3−,θ2

n = 0.135,θ2p = 0.115 (R = 4.47 fm): see [1974AJ01].”

“The analyzing power for n0 has been measured forEp = 2.7 to 17 MeV [1980MA33,1983BY02,1986MU07] as has the polarization in the rangeEp = 2.7 to 10 MeV[1983BY02]. See [1983BY02,1986MU07] for discussions of theσ(θ), Ay(θ) andP(θ)

measurements. Polarization measurements have also been reported atEp = 3.9 to15.1 MeV and 800 MeV: [see [1984AJ01]] and at 53.5, 53.9 and 71.0 MeV [1988H[Ky′

y , Kz′z ].”

A summary of monoenergetic neutron beam sources forEn > 14 MeV is presented in[1990BR24]. See also the measurements atEp = 300, 400 MeV reported in [1994SA43Neutron spectra were measured forEp = 20–40 MeV [1996SH29] and forEp = 3–5 MeV[2001HO13]. See also the measurements ofσ(En) for Ep = 35 MeV [1987OR02] and thethick-target yield measurements of [1987RA23]. This reaction was used by [1987RA3at Ep = 135 MeV to deduce Gamow–Teller transitionsB(GT) and the quenching factoMeasurements ofσ(θ) at Ep = 35 MeV were used to study the isovector part of optpotentials through analog transitions. Calculations ofσ(θ , En) for Ep = 1 GeV are de-

scribed in [1994GA49]. See also the analysis forEp = 800 MeV to study pion-productionmedium effects [1998IO03]. See also9B and references cited in [1988AJ01].
Page 147: Energy levels of light nuclei A = 8,9,10

10B

eit-t

for-] andotons

well].

5 andlain thexplain

givenring.

icbere dataTheave

15].

dial

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 301

14. (a) 9Be(p, p)9Be, Eb = 6.5859(b) 9Be(p, p+ n)8Be, Qm = −1.6654(c) 9Be(p, p+ α)5He, Qm = −2.467

The elastic scattering resonances up toEx = 8 MeV shown in Table 10.25 comfrom [1956MO90,1969MO29]. BelowEp = 0.7 MeV only s-waves are present exhibing a resonance atEp = 330 keV withJπ = 1−. Apart from the tentative 1+ assignmenat Ep = 1200 keV, which was introduced to satisfy a need for resonant p-wavemation [1969MO29], there is good agreement between the results of [1956MO90[1969MO29]. The analysis requires a large d-wave admixture with the s-wave prforming theEp = 1340 keV resonance [1969MO29].

BetweenEp = 0.8 and 1.6 MeV polarization and cross section measurements arefitted by a phase-shift analysis using only3S1, 5S2, 5P1, and 5P2 phases [1973RO24However, the spin assignments of 1+ for a state atEx = 7.48 MeV and 1− for a state atEx = 7.82 MeV to fit this data are in disagreement with the assignments in Table 10.2with other data. In particular, these assignments leave no state near 7.48 MeV to expstrong M1 transition observed in electron scattering and no state near 7.8 MeV to ethe strong radiative transition to the ground state [2001BA47].

The 2+ state at 8.07 MeV has been observed via inelastic electron scattering andthe same spin-parity assignment. It has also been observed via inelastic pion scatte

The next prominent elastic scattering resonance occurs atEp = 2.56 MeV (Ex =8.89 MeV) and has a width of≈ 100 keV. The analogs of the 7.37 MeV 3− and 7.54MeV 2+ levels of10Be are known to be nearly degenerate at 8.89 MeV in10B. The 3−level (Γ ≈ 85 keV) dominates in the9Be(p, p) and9Be(p, n) reactions while the 2+ level(Γ ≈ 40 keV) dominates the9Be(p,α2γ )6Li cross section [1977KI04]. In fits to elastscattering in this region [1983AL10], including polarization data [1976MA58], a numof other relatively narrow states have been introduced between 8.4 and 9.1 MeV. Thof [1983AL10] extends toEp = 5 MeV and three more levels have been proposed.highest atEp = 4.72 MeV (Ex = 10.83 MeV) occurs at an energy where resonances hbeen observed in a number of other reaction channels. The assignment ofJπ = 2+; T = 1is consistent with that obtained for a resonance observed in the9Be(p, p0), 9Be(p, p2), and9Be(p,α2) reactions [1974YA1C].

15. (a) 9Be(p, t)7Be, Qm = −12.0833, Eb = 6.5859(b) 9Be(p,3He)7Li, Qm = −11.2025

Polarization measurements (reaction (b)) are reported atEp = 23.06 MeV: see[1984AJ01]. For a study atEp = 190 and 300 MeV see [1987GR11]. See also [1985SE

16. (a) 9Be(p, d)8Be, Qm = 0.5592, Eb = 6.5859(b) 9Be(p,α)6Li, Qm = 2.1249

Proton-induced reactions on9Be are of considerable interest in regard to primor

and stellar nucleosynthesis. Subsequent to the previous compilation [1988AJ01], therehave been two studies of the reactions (a) and (b) at low proton energies [1997ZA06,
Page 148: Energy levels of light nuclei A = 8,9,10

10B

e

n used

he

fthe

here-fntly

and (b)

nctionsi-so

ese

302 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 10.25Resonances in9Be(p, p)9Be

Ep (keV) Ex (MeV) Γcm (keV) Jπ Γp/Γ

330a 6.88 1− 0.30945± 10b 7.437 130± 10 1− 0.38± 0.06980± 6b 7.469 65± 10 2+ 1.0992± 4b 7.480 80± 8 2− 0.90± 0.05

1084± 2b 7.564 3.3 0+ 1.0(1200± 30)b (7.67) 250± 20 (1+) 0.30± 0.101340± 30b 7.795 265± 30 2− 0.90± 0.051650± 200b 8.07 ≈ 800 2+ 0.06–0.22550± 5c 8.880 105± 5 3− 0.852563± 5c 8.892 36± 4 2+ 0.354720± 100d 10.83 400± 100 2+ 0.4

a From [1956MO90] where it is noted thatΓcm cannot be determined accurately from the9Be(p, p) data aloneand thatΓp/Γ is accurate only to within a factor of two. In [1969MO29], the following values for widths artaken from other reactions:Γcm = 145 keV,Γp = 40 keV,Γd = 50 keV, andΓα = 55 keV.

b [1969MO29].c [1983AL10]. See also [1956MA55,1977KI04].d [1983AL10]. See [1974YA1C].

1998BR10]. Excitation functions and angular distributions forEp = 16 to 390 keV havebeen measured by [1997ZA06]. Both polarized and unpolarized protons have beeby [1998BR10] to measure angular distributions and analyzing powers forEp = 77 to321 keV. Earlier measurements [1973SI1B] provided excitation functions forEp = 30 to700 keV and angular distributions forEp = 110 to 600 keV. The prominent feature in texcitation functions for both reactions, expressed as values of the astrophysicalS factors,is a peak atEp ≈ 310 keV attributed to the 6.87 MeV 1− level of 10B. The analyses oboth [1997ZA06] and [1998BR10] indicate substantial direct reaction contributions to9Be(p, d)8Be cross section at energies below theEp ≈ 310 keV resonance.

The low-energy data and attempts to fit it are summarized by [2001BA47] wan R-matrix fit of almost all the data is performed forEp 700 keV. The discussion in [2001BA47] includes arguments questioning some of the10B Jπ assignments o[1988AJ01]. In particular, it is argued in Appendix A of [2001BA47] that the dominaT = 1 isospin-mixed partner of the 6.87 MeV 1−; 0 + 1 level exists nearEx = 7.44 MeV(see reaction 12 and Table 10.20) where a resonance is seen in reactions (a)[1956WE37].

Table 10.26 shows resonances observed in early measurements of excitation fufor deuterons andα-particles. Up toEp = 2.3 MeV, the information is taken from a multlevel R-matrix analysis of the p, d0, α0, α1, andγ channels by [1969CO1J] [see al[1964HO02,1969MO29]] omitting only the nearly pureT = 1 states at 7.47 MeV (2+)and 7.56 MeV (0+). [1969CO1J] give reduced widths and radiative widths for all thstates. The separation of the 3−/2+; T = 1 doublet atEp = 2.56 MeV comes from anR-

matrix analysis of the(α2γ ) and p0 yields by [1977KI04]. The higher resonances appearon a background of direct reaction contributions and, given the assignment of bothα2 and
Page 149: Energy levels of light nuclei A = 8,9,10

10B

4 in

-

ever,the

ee

GO27,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 303

Table 10.26Resonances in9Be(p, d)8Be and9Be(p,α)6Lia

Ep (MeV) Ex (MeV) Γcm (keV) Jπ ; T Decay channels Γp/Γ

0.330 6.880 135 1−; 0+ 1 d0, α0 0.270.375b 6.924 110 1+; 0 d0, α0 ≈ 0.0150.450c 6.992 90 3+; 0 d0, α0 ≈ 0.0170.650 7.171 430 2−; 0 d0, α0 ≈ 0.100.955 7.447 130 1−; 1+ 0 d0, α0 0.380.992 7.480 80 2−; 0+ 1 d0, α0 0.901.20 7.66 250 1+; 0 (d1), α0 0.301.30 7.76 245 2−; 0 d0, α0 0.901.65–1.80 8.07–8.21 ≈ 1000 2+; 0 d0, α0, α12.30d 8.66 ≈ 300 (2−,3−) small2.561e 8.89 100± 20 3−; 1 α2 0.06–0.32.566e 8.89 40± 1 2+; 1 α24.5f,g 10.6 200g α0

g, α2f

4.7g 10.8 300 2+; 1 p2, α2, (α1)5.5g 11.5 500 α1, α2

a For references and for a listing of other reported resonances and additional information see Table 10.1[1979AJ01]. The information up toEp = 2.3 MeV is taken from a multi-level R-matrix analysis of the p, d0, α0,α1, andγ channels by [1969CO1J]. See also [1964HO02,1969MO29].

b Level appears only in the analysis of [1969CO1J].c Other analyses have given 1+, 2+ , or 3+ [1979AJ01]. See also [2001BA47].d See also [1956WE37] for (p, d) and [1965MO1C] for (p,α).e From anR-matrix analysis of the (α2γ ) and p0 yields [1977KI04].f [1969MO29].g [1974YA1C].

α0 or α1 decays in the same or different experiments [1959MA20,1974YA1C], it is notclear whether the resonances are due to isospin-mixed or unresolved states.

The existence of a 3.5 MeV resonance (Ex = 9.7 MeV) included in the previous compilation [1988AJ01] and assignedT = 1 was based on a small bump in the9Be(p,αγ )6Licross section between the 2.56 MeV and 4.5 MeV resonances [1959MA20]. Howthere is no known analog state in10Be and no resonance structure is observed in9Be(n,α)6He spectrum [1957ST95].

Other measurements at higher energies include those atEp = 50 MeV [1989GU08],Ep = 25, 30 MeV [1992PE12],Ep = 2.475 MeV ([1994LE08]; applications),Ep =40 MeV [1997FA17], andEp = 60 MeV [1987KA25]. For earlier measurements s[1988AJ01]. Polarization measurements have been made in the rangeEp = 0.30 to 15 MeVand at 185 MeV [see [1974AJ01,1979AJ01]] and atEp = 60 MeV ([1987KA25];Ay; in-clusive deuteron spectra).

Theoretical work and other analyses of these reactions are discussed in [1987

1991AB04,1992KO26,1992KW01,1996YA09,1997NO04,1999TI07,2000GA49,2000GA59].
Page 150: Energy levels of light nuclei A = 8,9,10

10B

.,t

Vta anded10.21

n-rkctionsents at

reer-and

ons

r

ross

c fac-see also

]],ri-

e-rhe

304 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

17.9Be(d, n)10B, Qm = 4.3613

Neutron groups are observed corresponding to the10B states listed in Table 10.27Angular distributions have been measured forEd = 0.5 to 16 MeV [see [1974AJ011979AJ01]], at 8 MeV ([1986BA40]; n0 → n5, n6+7+8; also at 4 MeV to the latter) and a18 MeV ([1987KAZL]; n0, n1) and at 0.5, 1.0, 1.5 and 2.0 MeV ([1995VU01]; n0, n6). At25 MeV differential cross sections were measured and analyzed for levels below 6.57 Me[1992MI03]. Spectroscopic factors were deduced and compared with previous dawith coupled-reaction-channel calculations. See Tables 2 and 3 of [1992MI03]. Observγ -transitions are listed in Table 10.16 of [1979AJ01]. See Tables 10.19, 10.20 andhere for the parameters of radiative transitions and forτm. Measurements of neutron agular distributions forEd = 15, 18 MeV were analyzed [1988KA30] in the framewoof the peripheral model of direct reactions. Neutron yields and differential cross seat Ed = 40 MeV were measured by [1987SC11]. See also the neutron measuremEd = 2.6–7 MeV [1993ME10],Ed = 21 MeV [1994CO26],Ed = 20.2 MeV [1998BE31],Ed = 5–10 MeV [1998OL04],Ed = 0.5–1.54 MeV [1999AB38], andEd = 9.8 MeV[1999JO03]. Application-related yields and spectra were measured atEd = 1.5, 1.95, 2.5and 5 MeV by [2002COZZ]. At low energies (Ed = 24–111 keV), cross sections wemeasured and astrophysicalS factors were deduced by [2001HO23]. An analysis of diffential cross sections forEd = 7–15 MeV was used to deduce optical model parametersasymptotic normalization coefficients [2000FE08].10B level information resulting from9Be(d, n) experiments prior to [1988AJ01] was summarized in [1988AJ01].

See also11B in [1985AJ01] and references cited in [1988AJ01]. Angular distributiof neutrons from9Be(d, n) atE(9Be)= 3–7 MeV were measured by [2002MA20].

18.9Be(3He, d)10B, Qm = 1.0924

Deuteron groups have been observed to a number of states of10B: see Table 10.27. Prioto the previous review [1988AJ01] angular distributions had been reported atE(3He)=10–33.3 MeV [see [1974AJ01,1979AJ01,1984AJ01]]. More recently, differential csections were measured and analyzed atE(3He)= 32.5 MeV [1993AR14], 22.3–34 MeV[1996AR07], and 42 MeV [1998AR15]. Nuclear vertex constants and spectroscopitors were deduced for the population of10B levels atEx = 0.0, 0.72, 1.74, 2.15 MeV. Anoted in [1988AJ01], spectroscopic factors obtained in the (d, n) and (3He, d) reactions arnot in good agreement: see the discussions in [1974KE06,1980BL02,1992MI03]. Sethe theoretical discussions in [1986AV1C,1989BO26,1990KA17,1997VO06].

19.9Be(α, t)10B, Qm = −13.2280

Angular distributions have been studied atEα = 27, 28.3 and 43 MeV [see [1979AJ01at 30.2 MeV ([1984VA07]; t0, t1, t3, t4) and at 65 MeV [1980HA33]. In the latter expement DWBA analyses have been made of the angular distributions to10B∗(0,0.72,1.74,2.15,3.59,5.2,5.92,6.13,6.56,7.00,7.5,7.82,8.9) and spectroscopic factors were drived. The angular distributions to10B∗(4.77,6.03) could not be fitted by either DWBA ocoupled channel analyses. In general coupled-channels calculations give a better fit to t

65 MeV data than does DWBA [1980HA33]. Comparisons with other one-proton strippingreactions [(d, n) and (3He, d)] are discussed in [1980HA33] as well as in [1997VO06].
Page 151: Energy levels of light nuclei A = 8,9,10

10B

ble

el

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 305

Table 10.27Levels of10B from 9Be(d, n) and9Be(3He, d)a

Ex (MeV ± keV)a 9Be(d, n)b 9Be(3He, d)c Jπ ; T a

lp Srel lp (2J + 1)C2S

0 1 1.0 1 3.30 3+; 00.72 1 1.97 1 2.76 1+; 01.74 1 1.36 1 1.20 0+; 12.15 1 0.41 1 0.82 1+; 03.59 1 0.10 1 0.29 2+; 04.77 ( 2) 1+ (3)d 0.10 3+; 0

0.825.11 0 0.14 0+ 2 0.34,0.14 2−; 05.165.18

1 0.43 1 0.86

2+;11+;0

5.92 1 0.49 1 2.05 2+; 06.03 (3)d 0.20 4+6.13 (2) (2)e 3.04 3−6.56 (3) (2)e 2.01 (4)−6.89± 15 (1) 1−; 0+ 17.00± 15 (1) (1, 2)+; (0)7.48± 15 f g

7.56± 25 f 0+; 1(7.85± 50) f 1−(8.07± 50) f (2−; 0)(8.12± 50) f

a Values without uncertainties are from Table 10.18; others are from Table 10.15 in [1979AJ01]. See that tafor additional information and for references. See also [1984AJ01], and see the discussions under9Be(d, n) and9Be(3He, d) in this review.

b Srel from experiment atEd = 12.0–16.0 MeV.c E(3He) = 18 MeV; DWBA analysis; values shown are those obtained with one of the two optical-mod

potentials used in the analysis. For earlier (3He, d) results see Table 10.17 in [1979AJ01].d Angular distribution poorly fitted by DWBA.e See [1980BL02] for a discussion of these two states, including a comparison with the (d, n) data:lp = 2 is

slightly preferred tolp = 1 on the basis of the observed strengths. Neitherlp = 2 nor 1 gives a good DWBA fit.f State observed in (d, n) reaction;lp not determined.g Group shown corresponds to unresolved states in10B.

20. (a) 9Be(7Li, 6He)10B, Qm = −3.3904(b) 9Be(10B, 10B)9Be(c) 9Be(11B, 10B)10Be, Qm = −4.642(d) 9Be(12C,11B)10B, Qm = −9.371

At E(7Li) = 34 MeV angular distributions have been obtained for the6He ions to thefirst four states of10B. Absolute values of the spectroscopic factors areS = 0.88, 1.38(p1/2 or p3/2), 1.40, and 0.46 (p1/2), 0.54 (p3/2) for 10B∗(0,0.74,1.74,2.15) (FRDWBA

analysis): see [1979AJ01]. See also [1988AL1G]. AtE(7Li) = 14.13 MeV a measurementof secondary beam production yields was reported by [1991BE49].
Page 152: Energy levels of light nuclei A = 8,9,10

10B

As-8]study

yzedes

fs was

ldnits of

o,nce

and

reSee

306 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Cross sections have been measured for reaction (b) atE(10B) = 100 MeV to obtainasymptotic normalization coefficients (ANC’s) [1997MU19,1998MU09,2001KR12].trophysicalS-factors for9Be(p,γ )10B were deduced. In work described in [2000FE0ANC’s were deduced from a set of proton transfer reactions at different energies tothe uniqueness of the ANC method.

For reaction (c), angular distributions were measured atElab(11B) = 45 MeV[2003KY01] optical parameters for the10B + 10Be interaction.

For reaction (d) angular distributions were measured atE(12C) = 65 MeV for tran-sitions to10B levels at 0.0, 0.72, 1.74 and 2.15 MeV [2000RU05]. Data were analwithin the coupled reaction channel (CRC) method. It was found that two-step processare important for all transitions.

21.10Be(β−)10B, Qm = 0.5560

See10Be.

22.10Be(p, n)10B, Qm = −0.2264

The yield of the n1 group has been studied forEp = 0.9 to 2.0 MeV: see11B in[1990AJ01,1986TE1A]. An analysis of data forE = 0.95–1.9 MeV and application odispersion theory of reaction excitation functions at two-particle channel thresholdreported in [1988DU06].

23. (a) 10B(γ , n)9B, Qm = −8.4363(b) 10B(γ , p)9Be, Qm = −6.5859(c) 10B(γ , p+ n)8Be, Qm = −8.2513(d) 10B(γ ,π+)10Be, Qm = −140.1262

Absolute measurements have been made of the10B(γ , n) cross section from threshoto 35 MeV with quasimonoenergetic photons; the integrated cross section is 0.54 in uthe classical dipole sum (60NZ/A MeV mb). The (γ , 2n)+ (γ , 2np) cross section is zerwithin statistics, forEγ = 16 to 35 MeV: see [1979AJ01,1988DI02]. The giant resonais broad with the major structure contained in two peaks atEx = 20.1 ± 0.1 and 23.1 ±0.1 MeV (σmax≈ 5.5 mb for each of the two maxima): see [1979AJ01]. [1987AH02] [H. H. Thies, private communication] [using bs] report two broad [Γ ≈ 2 MeV] maxima at20.2 and 23.0 MeV [±0.05 MeV] (σ = 5.0 and 6.0 mb, respectively;±10%) and a minorstructure atEx = 17.0 MeV. For reaction (b), differential cross section measurements wereported atEγ = 66–103 MeV [1988SU14] and at 57.6 and 72.9 MeV [1998DE13].also the knock-out mechanism analysis described in [1997JO07].

For reaction (c) see [1988SU14]. For a DWIA study of reaction (d) forEγ = 164 MeV,

see the analysis reported in [1994SA44]. See also9Be, and the earlier references cited in[1988AJ01].
Page 153: Energy levels of light nuclei A = 8,9,10

10B

ailablerangestu-

etionsin

chargethe

n forled by.J.M.;tates

cts ofd in

fromortedeenE01].

nce for

also

angu-l thatn for-tates,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 307

24. (a) 10B(e, e)10B(b) 10B(e, eπ+)10Be, Qm = −140.1262(c) 10B(e, en)9B, Qm = −8.4363(d) 10B(e, ep)9Be, Qm = −6.5859

Inelastic electron groups for which extensive form-factor measurements are avare displayed in Table 10.28. Transverse form factors in the momentum-transferq = 2.0–3.8 fm−1 were measured for10B∗(0,1.74,5.16) by [1988HI02]. Measurementspanning the rangeq = 0.48–2.58 fm−1 were made by [1995CI02] to determine longidinal and transverse form factors for10B levels up toEx = 6.7 MeV with the exceptionof the broadEx = 5.18 MeV level. The experimental form factors are compared with thresults of extensive shell-model calculations [1995CI02]. Similar shell-model calculaof transverse scattering form factors for the 0, 1.74, and 5.16 MeV levels are reported[1994BO04].

In [1995CI02], analyses that determined the r.m.s. radius of the ground-statedistribution to be 2.58± 0.05± 0.05 fm are described. This value is consistent withtabulated value of 2.45±0.12 fm [1987DE43]. In an appendix,B(E2) values derived fromthe longitudinal form factors [1995CI02,1966SP02,1976FA13,1979AN08] are givethe 0.72, 2.15, 3.59, 5.92, and 6.03 MeV levels. TheB(E2) value for the 4.77 MeV leveis known to be very small and the longitudinal form factor appears to be dominatthe C0 multipole. The results of an analysis by the same method [by coauthor Dsee [2004MIZX]] are listed in Table 10.28, together with similar analyses for other sfor which the form factors appear to be dominated by a single multipole. The effeincluding electron distortion,not taken into account in the transition strengths reportethe previous tabulation [1988AJ01], are significant.

The previous tabulation also included information on states at 8.07 and 8.9 MeV[1979AN08] and at 10.79 and 11.56 MeV from [1976FA13]. The C2 strength repfor the 8.07 MeV level, analyzed as a 2+ level, was such that the level should have bvery strongly populated by inelastic pion scattering and this is not the case [1988ZFor the 8.9 MeV excitation, the contributions from the 2+; 1 and 3−; 1 members of thedoublet near this energy cannot be separated. In the 11 MeV region, there is evideconsiderable M1 strength [1976FA13].

For reaction (b) see10Be. For reactions (c) and (d) see [1984AJ01,1997JO07]. Seethe earlier references cited in [1988AJ01].

25.10B(π , π ′)10B

The inelastic scattering of 162 MeV pions has been studied [1988ZE01] over thelar range 35 to 100 in the laboratory system and the data were analyzed with a modeincorporates shell-model wave functions into a distorted-wave impulse approximatiomalism. Reduced transition probabilities were obtained for low-lying states. Higher s

or groups of unresolved states, at 7.0, 7.8, 8.07, 8.9, 9.7, 10.7, 11.5, and 12.8 MeV werestudied.
Page 154: Energy levels of light nuclei A = 8,9,10

10B

13,

,

eudy

1D];

eV

are re-.re used

308 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 10.28Transition strengths and radiative widths from10B(e, e′)a

Ex (MeV) Jπ ; T Mult. B(λ)↑ e2 fm2λ B(λ)↓ (W.u.) Γγ0 (eV)

0.72 1+; 0 C2 1.71± 0.14 3.12± 0.26 (6.1± 0.5) × 10−7

1.74 0+; 1 M3 7.00± 0.20b 125± 4 (8.90± 0.26) × 10−10

2.15 1+; 0 C2 0.41± 0.05 0.75± 0.08 (3.6± 0.4) × 10−5

3.59 2+; 0 C2 0.62± 0.05 0.67± 0.05 (4.1± 0.3) × 10−4

5.16c 2+; 1 M3 19.4± 1.3 69.2± 4.6 (1.00± 0.07) × 10−6

5.92 2+; 0 C2 0.15± 0.05 0.16± 0.06 (1.2± 0.4) × 10−3

6.03 4+; 0 C2 18.7± 0.7 11.4± 0.4 (9.3± 0.4) × 10−2

6.13 3−; 0 C3d 33.0± 3.8 5.6± 0.7 (4.0± 0.5) × 10−6

6.56 4−; 0 C3e 21.7± 3.1 2.8± 0.4 (3.3± 0.5) × 10−6

7.48f 2+; 1 M1 0.018± 0.002 1.27± 0.14 11.0± 1.2

a From [2004MIZX], analysis using polynomial times Gaussian fits to data from [1966SP02,1976FA1979AN08,1995CI02]. Distortion effects are taken into account by usingqeff = q(1 + 2.75/E0) whereE0 isthe incident electron energy in MeV [1995CI02].

b From a full DWBA analysis (R.S. Hicks, private communication).c Assumed to correspond to 2+ state at 5.164 MeV. F2T at qeff = 1.32 fm−1 for the transition to the 2− state

at 5.110 MeV is an order of magnitude smaller than F2T

for the 5.164 MeV level [1995CI02]. A small M1contribution at lowq has been subtracted.

d Shell-model calculations predict a dominant C3 contribution and a smaller C1 contribution [1995CI02].e Shell-model calculations predict adominant C3 contribution [1995CI02].f Using the low-q data from [1966SP02,1976FA13]. In this evaluation, we have adopted a 2− assignment for

the 7.48 MeV state. However, see Tables 10.18 and 10.20 for a nearby 2+ level.

26.10B(n, n)10B

Angular distributions have been studied forEn = 1.5 to 14.1 MeV [see [1974AJ011979AJ01]] and at 3.02 to 12.01 MeV ([1986SA1U,1987SA1H]; n1 → n5), 8 to 14 MeV([1983DA22]; n0) and 9.96 to 16.94 MeV ([1986MU1D]; n0). Measurements were madby [1990SA24] forEn from 3.02 MeV up to 12.01 MeV. See also the experimental stof [1988RE09] and the optical model analysis of [1996CH33]. See also11B in [1985AJ01,1990AJ01] and [1984TO02].

27. (a) 10B(p, p)10B(b) 10B(p, 2p)9Be, Qm = −6.5859

Angular distributions have been measured for a number of energies betweenEp = 3.0and 800 MeV [see [1974AJ01,1979AJ01,1984AJ01]] and at 10 to 17 MeV ([1986MUp0). Differential cross sections have been measured [2001CH78] fromEp = 0.5–3.3 MeVin 5 steps from 100–170. Cross sections and polarization observables for 200 Mpolarized protons were measured by ([1992BA76]; p0, p1). See also theEp = 200 MeVmeasurements and analyses reported in [1991LE22]. Microscopic model analysesported forEp = 25, 30, 40 MeV by [2000DE61] and forEp = 200 MeV by [1997DO01]Table 10.29 displays the states observed in this reaction. Inelastic scattering data we

to deduce the deformation parameters,βL. Theγ -ray results are shown in Tables 10.19 and10.20. See also [1979AJ01]. Forτm see Table 10.21 [1983VE03].
Page 155: Energy levels of light nuclei A = 8,9,10

10B

1

to ob-,ied)

],w in-

asure-

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 309

Table 10.2910B levels from10B(p, p),10B(d, d) and10B(3He,3He)a

Ex (MeV ± keV)b Γcm (keV) L βLb,c

0d

0.7183± 0.4d,e,f 2 0.67± 0.051.7402f,g (3)2.1541± 0.5 d 2 0.49± 0.043.5870± 0.5d 2 0.45± 0.044.7740± 0.5h

5.1103± 0.6 3 0.45± 0.045.1639± 0.65.18± 10h,i 110± 105.9195± 0.6d < 5 0.28± 0.036.0250± 0.6d < 5 2 0.95± 0.046.1272± 0.7d < 5 3 0.58± 0.036.55± 10d 25± 5 3 0.46± 0.04j

7.00± 10d 95± 107.48± 10 90± 15

a For references and a more complete presentation see Table 10.19 in [1979AJ01].b From (p, p) and (p, p′).c See results obtained from (3He,3He′) in Table 10.19 of [1979AJ01].d Also observed in (d, d) and (3He,3He).e Ex = 718.35± 0.04 (fromEγ ).f Ex = 718.5± 0.2 and 1740.0± 0.6 keV (fromEγ ).g Also observed in (3He,3He).h Also observed in (d, d).i Not reported in (p, p) atEp = 10 MeV.j AssumesJπ = 4−; βL = 0.59± 0.03 if Jπ = 2−.

Axions may cause e+e− pairs in competition withγ -ray emission in an isoscalar Mtransition: a search for axions was undertaken in the case of the 3.59→ g.s. [2+ → 3+]transition. It was negative [1986DE25]. A beam dump experiment and other attemptsserve axions are discussed in [1987HA1O]. For reaction (b) atEp = 1 GeV see [1985BE301985DO16] and [1974AJ01]. See also [1988KRZY], ([1985KI1B,1988KOZL]; appland11C in [1985AJ01,1990AJ01].

28.10B(d, d)10B

Angular distributions have been reported atEd = 4 to 28 MeV: see [1974AJ01[1979AJ01]. Observed deuteron groups are displayed in Table 10.29. The very lotensity of the group to10B∗(1.74) and the absence of the group to10B∗(5.16) is goodevidence of theirT = 1 character: see [1974AJ01]. See also the cross section mements atEd = 13.6 MeV reported in [1991BE42].

29.10B(t, t)10B

Angular distributions of elastically scattered tritons have been measured atEt = 1.5 to3.3 MeV: see [1974AJ01].

Page 156: Energy levels of light nuclei A = 8,9,10

10B

,

.

,c-ying

g forgularon

alongran-s

SR01,

310 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

30.10B(3He,3He)10B

Angular distributions have been measured atE(3He)= 4 to 46.1 MeV [see [1974AJ011979AJ01,1984AJ01]] and at 2.10 and 2.98 MeV ([1987BA34]; elastic).L = 2 gives agood fit of the distributions of3He ions to10B∗(0.72,2.15,3.59,6.03): derivedβL areshown in Table 10.19 of [1979AJ01]. See also Table 10.29 here,13N in [1986AJ01] andsee the Strong-Absorption Model analysis forE(3He)= 41 MeV reported in [1987RA36]

31. (a) 10B(α,α)10B(b) 10B(α, 2α)6Li, Qm = −4.4610

Angular distributions have been measured forEα = 5 to 56 MeV [see [1974AJ011979AJ01,1984AJ01]] and at 91.8 MeV ([1985JA12];α0). Measurements of cross setions relative to Rutherford scattering at large angles forEα = 1–3.3 MeV were reported b[1992MC03]. Data forEα = 1.5–10 MeV were compiled and reviewed for depth-profilapplications in [1991LE33]. Reaction (b) has been studied atEα = 24 and 700 MeV: see[1979AJ01,1984AJ01]. See also ([1983GO27,1985SH1D]; theor.).

32. (a) 10B(6Li, 6Li) 10B(b) 10B(7Li, 7Li) 10B

Elastic-scattering angular distributions have been studied atE(6Li) = 5.8 and 30 MeV:see [1979AJ01]. A model for calculating departures from Rutherford backscatterinLithium targets is described in [1991BO48]. For reaction (b), elastic scattering andistributions were studied atE(7Li) = 24 MeV: see [1979AJ01]. Differential cross sectimeasurements atE(7Li) = 39 MeV were reported in [1988ET02].

33. (a) 10B(7Be,7Be)10B(b) 10B(9Be,9Be)10B

Elastic scattering differential cross section measurements atE(7Be) = 84 MeV havebeen reported [1999AZ02,2001AZ01,2001GA19,2001TR04]. The results were usedwith 10B(7Be,8B) data to deduce asymptotic normalization coefficients for the virtual tsitions8B → 7Be+ p and to calculate the astrophysicalS factor and direct-capture ratefor 7Be(p,γ )8B. See also the analysis in [2002GA11].

For reaction (b), the elastic angular distributions have been measured atE(10B) = 20.1and 30.0 MeV [1983SR01]. For yield and cross section measurements see [19831986CU02]. See also the calculations of [1984IN03,1986RO12].

34. (a) 10B(10B, 10B)10B(b) 10B(11B, 11B)10B

Elastic angular distributions (reaction (a)) have been studied atE(10B) = 8, 13 and21 MeV (see the references cited in [1979AJ01]) and atE(10B) = 4–15 MeV [1975DI08].

These data were used by [2000RU05] to study the energy dependence of optical modelparameters. For reaction (b) see the references cited in [1988AJ01]. See also [2000RU05].
Page 157: Energy levels of light nuclei A = 8,9,10

10B

3 andentss on

sion9AJ01,

,

sionrences

)

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 311

35. (a) 10B(12C,12C)10B(b) 10B(13C,13C)10B

Elastic angular distributions have been measured atE(10B) = 18 and 100 MeV forreaction (a) [see [1979AJ01]] and at 18–46 MeV [see [1984AJ01]] and 42.5, 62.80.9 MeV for reaction (b) [1985MA10]. For yield, cross section and fusion experimsee [1983DA20,1983MA53,1985MA10,1988MA07,1984AJ01]. For other referencethese reactions, see [1988AJ01].

36.10B(14N, 14N)10B

Angular distributions have been reported atE(10B) = 100 MeV andE(14N) = 73.9 and93.6 MeV [1979AJ01,1984AJ01], and at 38.1, 42.0 and 50 MeV [1988TA13]. For fucross section studies see [1983DE26,2001DI12] and the references cited in [1971984AJ01,1988AJ01].

37. (a) 10B(16O,16O)10B(b) 10B(17O,17O)10B(c) 10B(18O,18O)10B

Elastic angular distributions (for reaction (a)) have been studied atE(10B) = 33.7 to100 MeV and atE(16O) = 15–32.5 MeV [1979AJ01,1984AJ01], atEcm = 14.77, 16.15and 18.65 MeV [1988KO10], and for reactions (a), (b) and (c) atE(16O) = 16–64 MeV[1994AN05]. For elastic cross sections for reaction (c) atE(18O) = 20, 24 and 30.5 MeVsee [1974AJ01]. For a study of the time scales for binary processes for the16O + 10Bsystem atEcm = 17–25 MeV see [2002SU17]. See also [2001DE50]. For yield and fucross section measurements see [1993AN08,1993AN15,1994AN05] and earlier refecited in [1988AJ01].

38. (a) 10B(19F,19F)10B(b) 10B(20Ne,20Ne)10B

The elastic scattering has been investigated forE(19F) = 20 and 24 MeV for reaction (aandE(10B) = 65.9 MeV for reaction (b): see [1974AJ01,1984AJ01].

39. (a) 10B(24Mg, 24Mg)10B(b) 10B(25Mg, 25Mg)10B

The elastic scattering for both reactions has been studied atE(10B) = 87.4 MeV: see

[1984AJ01]. The elastic scattering for reaction (b) has been measured atE(10B) = 34 MeVby [1985WI18].
Page 158: Energy levels of light nuclei A = 8,9,10

10B

1A].

]

ments

e

o–

rCH06,

rix.i-,

-s

312 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

40. (a) 10B(27Al, 27Al) 10B(b) 10B(28Si,28Si)10B(c) 10B(30Si,30Si)10B

The elastic scattering for all three reactions has been studied atE(10B) = 41.6 and≈ 50 MeV [and also at 33.7 MeV for reaction (b)]: see [1984AJ01]. See also [1984TE

41. (a) 10B(39K, 39K)10B(b) 10B(40Ca,40Ca)10B

The elastic scattering has been studied atE(10B) = 44 MeV for reaction (a) [1985WI18and at 46.6 MeV for reaction (b): see [1984AJ01].

42.10C(β+)10B, Qm = 3.6480

The half-life of10C is 19.290±0.012 sec [1990BA02]: the decay is to10B∗(0.72,1.74)with branching ratios of(98.53± 0.02)% [1979AJ01] and(1.4645± 0.0019)% [world av-erage [1999FU04]], see [1991KR19,1991NA01,1995SA16,1999FU04] for measuresince [1988AJ01]: an upper limit for decay to10B∗(2.15), 8 × 10−4%, is given in[1979AJ01]. The excitation energies of10B∗(0.72,1.74) are 718.380± 0.011 keV and1740.05± 0.04 keV, respectively, which were determined from de-excitationγ -rays withEγ = 718.353± 0.010 keV and 1021.646± 0.014 keV [1988BA55,1989BA28]. Se[2003SU04] for discussion ofB(GT) values.

The 0+ → 0+ super-allowedβ-decay branch for10C decay to10B∗(1.74) is importantfor determining theVud matrix element and for testing the unitarity of the CabibbKobayashi–Maskawa matrix. TheVud matrix element is determined byf t-values; for10C,this depends on the10C∗(0, [0+]) → 10B∗(1.74, [0+]) branching ratio, 1.4645± 0.0019[Jπ in brackets], the10C half-life [1990BA02], and the decay energy to the10B∗(1.74)state, 1907.86± 0.12 keV [1998BA83]. The experimentalf t value is 3037± 8, whichyields logf t = 3.4825± 0.0014. Various corrections to thef t-values, to account fonuclear structure and isospin effects, are discussed in [1991RA09,1992BA22,19931994BA65,1996SA09,1998TOZQ,2000BA52,2000HAZU]. After correction, thef t valueis ≈ 3068.9± 8.5 (99FU04), which by itself satisfies the unitarity test of the CKM matHowever, higher precision measurements are desirable since the satisfaction of CKM untarity, based on all 0+ → 0+ decays, continues to be debated in the literature [2002HA472002TO19,2002WI09,2003WI01].

43.11B(γ , n)10B, Qm = −11.454

The intensities of the transitions to10B∗(3.59,5.16) [T = 0 and 1, respectively] depend on the region of the giant dipole resonance in11B from which the decay takeplace: it is suggested that the lower-energy region consists mainly ofT = 1

2 states and the

higher-energy region ofT = 3

2 states: see11B in [1980AJ01]. See also11B in [1985AJ01,1990AJ01,1984AL22].

Page 159: Energy levels of light nuclei A = 8,9,10

10B

gies ind

ofBE30,tedlso

andx con-

asuredat

and

ia

ce

s. See

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 313

44. (a) 11B(p, d)10B, Qm = −9.230(b) 11B(p, p+ n)10B, Qm = −11.454

Angular distributions of deuteron groups have been measured at several enerthe rangeEp = 17.7 to 154.8 MeV [see [1979AJ01]] and at 18.6 MeV ([1985BE13];0,d1). The population of the first five states of10B and of 10B∗(5.2,6.0,6.56,7.5,11.4±0.2,14.1 ± 0.2) is reported. Data atEp = 33 MeV was used [1991AB04] in a testCohen-Kurath wave functions and intermediate coupling. For reaction (b) see ([19851985BO1B]; 1 GeV). Cross sectionsσ(E) for both reactions (a) and (b) are calculain a “quasiquantum multistep direct reaction”theory described in [1994SH21]. See areferences cited in [1988AJ01].

45.11B(d, t)10B, Qm = −5.197

Angular distributions have been measured atEd = 11.8 MeV (t0 → t3; l = 1)[see [1974AJ01]] and at 18 MeV [1987GU1F,1988GU1D]. A combined DWBAdispersion-theory analysis of cross section data is described in [1995GU22]. Vertestants and spectroscopic factors were deduced.

46. (a) 11B(3He,α)10B, Qm = 9.124(b) 11B(3He, 2α)6Li, Qm = 4.663

Reported levels are displayed in Table 10.30. Angular distributions have been meat a number of energies betweenE(3He) = 1.0 and 33 MeV [see [1974AJ01]] and23.4 MeV ([1987VA1I];α0, α1). For the decay of observed states see Tables 10.1910.20.

Theα–α angular correlations (reaction (b)) have been measured for the transitions v10B∗(5.92,6.03,6.13,6.56,7.00). The results are consistent withJπ = 2+ and 4+ for10B∗(5.92,6.03) and requireJπ = 3− for 10B∗(6.13). There is substantial interferenbetween levels of opposite parity for theα-particles due to10B∗(6.56,7.00): the data arefitted by Jπ = 3+ for 10B∗(7.00) and (3, 4)− for 10B∗(6.56) [the 6Li (α,α) results thenrequireJπ = 4−]. See, however, reaction 16, and see [1974AJ01] for the referencealso ([1988GO1E]; theor.).

47.11B(7Li, 8Li) 10B, Qm = −9.422

Angular distributions have been measured atE(7Li) = 34 MeV involving10B∗(0,0.72,1.74,2.15) and 8Li g.s. (as well as8Li ∗(0.98) in the case of the10Bg.s. transition)[1987CO16].

48. (a) 12C(γ , d)10B, Qm = −25.1864(b) 12C(γ , p+ n)10B, Qm = −27.4110

For reaction (a) see [1986SH1M] and12C in [1990AJ01]. Reaction (b) was studied atEγ = 189–427 MeV [1987KA13], 83–133 MeV [1988DA16], 80–159 MeV [1993HA12],

Page 160: Energy levels of light nuclei A = 8,9,10

10B

4–0–a-ybed inrefer-

-ted in

.

e

314 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Table 10.308B levels from11B(3He,α)10Ba

Ex (MeV ± keV) Γcm (keV) l Srel

0 1 1.00.718± 7 1 0.221.744± 7 1 0.732.157± 6 1 0.443.587± 6 1 0.094.777± 5 1 0.095.114± 55.166± 5 1 1.815.923± 56.028± 56.131± 56.570± 7 30± 107.002±10 95± 107.475±107.567±107.87± 40 240± 50

10.85±100 300± 10011.52± 35 500± 10012.56± 30 100± 3013.49± 50 300± 5014.4± 100 800± 200

(18.2± 200) (1500± 300)

a See Table 10.21 in [1979AJ01] for references.

300 MeV [1995CR04], 80–157 MeV [1995MC02], 150–400 MeV [1996HA16], 11600 MeV [1996LA15], 250–600 MeV [1998HA01], 120–400 MeV [1998MA02], 12150 MeV [1998YA05], 150 MeV [1999KH06] and 150–700 MeV [2000WA20]. Mesurements with polarized photons at energiesEγ = 160–350 MeV were reported b[1999FR12,2001PO19]. Analyses of data and theoretical calculations are descri[1989VO01,1994RY02,1998RY01,1999IR01,2002GR05]. For earlier work see theences cited in [1988AJ01].

49.12C(n, t)10B, Qm = −18.9292

Cross section measurements atEn = 40–56 keV for determining efficiency of neutron detectors were reported in [1994MO41]. Calculated cross sections are tabula[1989BR05]. See also ([1985FR07,1987FR16];En = 319 to 545 MeV) and [1986DO12]

50.12C(π±,π±d)10B, Qm = −25.1864

At Eπ+ = 180 MeV andEπ− = 220 MeV, 10B∗(0.72,2.15) are populated: se

[1984AJ01]. AtEπ+ = 150 MeV momentum distributions of pions to unresolved statesof 10B are reported by [1987HU13].
Page 161: Energy levels of light nuclei A = 8,9,10

10B

n

in01].

ed fornd

h

t

ments

t

R1A,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 315

51. (a) 12C(p,3He)10B, Qm = −19.6929(b) 12C(p, p+ d)10B, Qm = −25.1864

Angular distributions of3He ions have been measured forEp = 39.8, 51.9 and185 MeV: see [1979AJ01].10B∗(0,0.72,1.74,2.15,3.59,4.77,5.16,5.92,6.56,7.50,8.90) are populated. A calculation of3He andα-particle multiplicities is described i[1987GA08]. For reaction (b) see [1985DE17];Ep = 58 MeV; 10B∗(0.72,1.74)) and[1984AJ01]. Calculations of cross sections forEp = 58 MeV and 0.7 GeV are described[1990LO18] and [1987ZH10], respectively. See also the references cited in [1988AJ

52.12C(d,α)10B, Qm = −1.3400

Alpha groups have been observed to most of the known states of10B below Ex =7.1 MeV: see Table 10.23 in [1974AJ01]. Angular distributions have been measurEd = 5.0 to 40 MeV: see [1979AJ01]. Single-particleS-values are 1.5, 0.5, 0.1, 0.1 a0.3, respectively, for10B∗(0,0.72,2.15,3.59,4.77). A study of thems = 0 yield atEd =14.5 MeV (θ = 0) leads to assignments of 3+, 2− and (3+, 4−) for 10B∗(4.77,5.11,6.56).The population of the isospin-forbidden group to10B∗(1.74) [α2] has been studied witEd up to 30 MeV: see14N in [1986AJ01]. See also [1984LO1A].

53.12C(α, 6Li) 10B, Qm = −23.7126

Angular distributions have been reported atEα = 42 and 46 MeV: see [1979AJ01]. AEα = 65 MeV, an investigation of the6Li breakup shows that10B∗(0,0.72,2.16,3.57,4.77,5.2,5.9,6.0) are involved: see [1984AJ01]. See also the cross section measureatEα = 33.8 MeV [1987GA20] and atEα = 90 MeV [1991GL03].

54.12C(7Li, 9Be)10B, Qm = −8.4905

At E(7Li) = 78 MeV angular distributions have been measured to10B∗(0,2.15)[1986GL1C].

55. (a) 12C(12C,14N)10B, Qm = −14.9141(b) 12C(14N, 16O)10B, Qm = −4.4503

Angular distributions (reaction (a)) involving10B∗(0,0.7) have been studied aE(12C) = 49.0 to 75.5 and 93.8 MeV. Angular distributions (reaction (b)) involving10B∗(0,0.72,2.15,3.59) have been measured atE(14N) = 53 MeV and 78.8 MeV (not to10B∗(3.59)): see [1979AJ01,1984AJ01] for references. See also [1986AR04,1986C1986MO1D].

56.13C(p,α)10B, Qm = −4.0616

Differential cross sections were measured [1988AB11] atEp = 18–45 MeV. Measure-ments atEp = 30.95 MeV were reported by [1988BA30]. Known p-shell levels at 0,

Page 162: Energy levels of light nuclei A = 8,9,10

10B, 10C

],usingcopice

an

s ofand

wh

ata/

e

316 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

0.72, 1.74, 2.15, 3.59, 4.77, 5.16, 5.92, 6.03and 7.47 MeV were excited [1988AB11[1988BA30]. Analyses in both these studies used DWBA direct pickup calculationsa triton cluster form factor and the shell model calculations of [1975KU01]. Spectrosfactors were deduced. For earlier work atEp = 5.8–18 MeV and 43.7 and 50.5 MeV se[1979AJ01]. See also references cited in [1988AJ01].

57.14N(p, p+ α)10B, Qm = −11.6122

See ([1986VD1C];Ep = 50 MeV). See also ([1986GO28]; theor.).

58.14N(d,6Li) 10B, Qm = −10.1384

At Ed = 80 MeV angular distributions are reported to10B∗(0,0.72,2.15,3.59,4.8,

6.04,7.05,8.68): see [1979OE01].

59.16O(9Be,15N)10B, Qm = −5.5415

See [1985WI18].

60. (a) natAg(14N,α + 6Li)X(b) natAg(14N, p+ 9Be)X

The breakup of10B was studied [1989NA03,1992NA01] in an experiment withE/A = 35 MeV 14N beam incident onnatAg. In the breakup of10B into α + 6Li the4.77 MeV 3+ and 6.56 MeV 4− states were observed together with unresolved groupstates near 5.1, 6.0, and 7.0 MeV. In the9Be+ p channel peaks centered near 6.9, 7.5,8.9 MeV were observed. Similar results have been obtained for an36Ar beam incident on197Au [1992ZH08].

10C(Figs. 16 and 17)

GeneralReferences to articles on general properties of10C published since the previous revie

[1988AJ01] are grouped into categories andlisted, along with brief descriptions of eacitem, in the General Tables for10C located on our website at: www.tunl.duke.edu/nucldGeneral_Tables/10c.shtml.

Mass of 10C The threshold energy for the10B(p, n)10C reaction is 4877.03± 0.13 keV:thenQ0 = −4430.30± 0.12 keV [1998BA83]. Using the [2003AU03] masses for10B,p and n, the atomic mass excess is then 15698.8 ± 0.4 keV. However, we adopt th

[2003AU03] value: 15698.6 ± 0.4 keV. See also unpublished work on12C(p, t)10C thatis quoted in [1984AJ01].
Page 163: Energy levels of light nuclei A = 8,9,10

10C

2

eso

],tor

t

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 317

Table 10.31Energy levels of10C

Ex (MeV ± keV) Jπ ; T τ or Γcm (keV) Decay Reactions

g.s. 0+; 1 τ1/2 = 19.290± 0.012 sec β+ 1, 2, 3, 6, 8, 9, 11, 123.3536± 0.7 2+ τm = 155± 25 fs γ 2, 4, 6, 8, 9, 11, 125.22± 40 a Γ = 225± 45 keV 6, 8, 9, 115.38± 70 a 300± 60 6, 8, 9, 116.580± 20 (2+) 190± 35 6, 8, 9, 11

≈ 9 8≈ 10 8≈ 16.5 (2+)b 8

c

a One of these two states is presumably a 2+ state.b Presumed analog of10B∗(18.80) [1993WA06].c See reaction 8 for possible evidence of other states.

Table 10.32Electromagnetic transition strengths in10Ca

Ei → Ef (MeV) Jπi → Jπ

f Branch (%) Γγ (eV)a Mult. Γγ /ΓW

3.354→ 0 2+ → 0+ 100 (4.25± 0.69) × 10−3 E2 9.5± 1.5

a Γγ from lifetime.

B(E2)↑ for10C∗(3.35) = 62± 10e2 fm4;B(E2)↓ for 10C∗(3.35) = 12.4± 2.0 e2 fm4 [1968FI09].

1. 10C(β+)10B, Qm = 3.6480

The half-life of10C is 19.290±0.012 sec [1990BA02], which is the average of 1928±20 ms [1974AZ01], 19270±80 ms [1963BA52], 19300±41 ms [1990BA02] and 19294±16 ms [1990BA02]. The nucleus10C decays to10B∗(0.7,1.7): the branching ratios ar(98.53± 0.02)% [1979AJ01] and(1.4645± 0.0019)% [1999FU04], respectively. See althe discussion of reaction 42 in10B.

By measuring the relative polarization of positrons emitted from10C β-decay (pureGT) and14O (pure Fermi), ratio= 0.9996± 0.0036 [1988GI02,1990CA41,1991CA12constraints on the scalar and tensor admixtures to the dominant vector and axial veccurrents were determined as,| CS

CV− CT

CA| = 0.001± 0.009.

2. 1H(10C,10C+ p)

Elastic and inelastic scattering cross sections for10C∗(0,3.35) were measured aE(10C) = 45.3 MeV/A [2003JO09]. The data is best fit with|Mn|/|Mp| = 0.71 which

2

gives |Mn| = 5.51 ± 1.07 fm when compared with the known value|Mp| = 7.87 ±0.64 fm2, which is derived fromB(E2)= 62± 10 e2 fm4.
Page 164: Energy levels of light nuclei A = 8,9,10

10C

318 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Fig. 16. Energy levels of10C. For notation see Fig. 2.

Page 165: Energy levels of light nuclei A = 8,9,10

10C

s

gt is

tand

o the

An-sneV

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 319

3. 6Li(α, π−)10C, Qm = −138.7572

Theπ− production rates for various projectileand target combinations, including6Li +4He, were measured at 4.5 GeV/c per nucleon in [1993CH35]. In general the observedπ−production cross section falls off exponentially with increasingπ− energy. In some casethe angular distributions show a slight dependence on target and projectile mass.

4. 7Li( 3He,π−)10C, Qm = −125.4299

At E(3He) = 235 MeV 10C∗(3.35) is populated [1984BI08].π− production in thisreaction has also been studied by [1984BR22] atE(3He)= 910 MeV.

5. 7Li( 7Li, 4n)10C, Qm = −18.1683

Tetraneutron (n4) production has been studied in thisand in other reactions involvin10C at E(7Li) = 82 MeV [1987ALZG]: it was not observed. However, evidence thaconsistent with the existence of n4 is observed in the breakup of14Be [2002MA21].

6. 9Be(p,π−)10C, Qm = −136.6323

Angular distributions ofπ− groups have been measured atEp = 185 MeV (to10C∗(0,3.35,5.28,6.63)), at 200 MeV (g.s.), at 800 MeV (to10C∗(0,3.35,5.3,6.6))[see [1984AJ01]] and atEp = 650 MeV ([1986HO23];10C∗(0,3.35); also Ay). Aymeasurements have also been reported atEp = 200 to 250 MeV: see [1984AJ01]. AEp = 800 MeV, the angular distributions of produced pions were measured for BeC targets [1988BA58]; they observedσ(0)/σ (20) ≈ 6.

7. (a) 10B(π+,π0)10C, Qm = 0.9456(b) 10B(π+,η)10C, Qm = −411.3778

In [1987SI18], calculations of polarization observables for10B(π+,π0) at 70 MeV and10B(π+, η) at 460 MeV suggest that new measurements could provide insight intsingle-charge-exchange reaction mechanism.

8. 10B(p, n)10C , Qm = −4.4304Q0 = −4430.30± 0.12 keV [1998BA83].

Level parameters for10C∗(3.35) are Ex = 3352.7 ± 1.5 keV, τm = 155± 25 fs,Γγ = 4.25± 0.69 meV. [See [1969PA09] and other references cited in [1974AJ01].]gular distributions have been measured for the n0 and n1 groups and for the neutronto 10C∗(5.2 ± 0.3) at Ep = 30 and 50 MeV [see [1974AJ01,1979AJ01]] and for the0and n1 groups atEp = 14.0, 14.3 and 14.6 MeV [1985SC08] and 15.8 and 18.6 M[1985GU1C].

At Ep = 186 MeV, angular distributions of neutrons were measured forθ = 0–50[1993WA06]. Levels were observed at 0 [0+], 3.35 [2+], 5.3 [2+], 6.6, ≈ 9, ≈ 10, and

Page 166: Energy levels of light nuclei A = 8,9,10

10C

es atex-

3,as es-le de-

o

ange

lysis0 eV),target

eysis

y

al-s

on ae

te is

320 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

16.5 MeV [(2+)] [Jπ in brackets]. ForEx = 3.35 MeV,B(GT) = 0.03 and for 5.3 MeV,B(GT) = 0.68± 0.02. A multipole decomposition analysis suggests additional stat17.2 and 20.2 withJπ = 2− or 1−, respectively. Higher-lying resonances that werecited with Ep = 186 MeV protons, the Giant-Dipole Resonance ( L = 1, S = 0)and the Giant Spin Dipole Resonance ( L = 1, S = 1), are discussed in [1994RA21994WA22,1995YA12]. In their analysis a broad peak from quasifree scattering, wtimated phenomenologically and subtracted from the excitation spectrum; a multipocomposition analysis of the remaining structure indicated a prominent L = 1 resonancearoundEx = 17–20 MeV with a possible mixture of 2−, 1− and 2+ states (analogous t10B∗(18.43,18.8,19.3,20.1)and a small peak atEx = 24 MeV (possible analog of the10BGDR). Data fromEp = 1 GeV were analyzed to develop a formalism for charge-exchprocesses involving pion and -isobar excitations [1994GA49].

The threshold value for10B(p, n) was measured by [1989BA28]; a subsequent anaof that data, by [1998BA83], rigorously evaluated the proton beam energy spread (74non-uniform energy losses for all protons, and energy losses induced by ionizingatoms prior to capture. The threshold value was determined to beEthresh. = 4877.30±0.13 keV, which yieldsQ0 = 4430.30± 0.12 keV for10B(p, n).

At Ep = 7 and 9 MeV, thick target neutron andγ -ray yields and relative ratios armeasured for a compilation of proton-induced radiations that provide elemental anal[1987RA23]. Neutron production rates were measured forEcm = 5.9 MeV [1988CHZN].The10B(p, n) cross section was measured atEp = 4.8–30 MeV to evaluate the feasibilitof producing isotopically enriched10CO2 for use in PET imaging [2000AL06].

9. 10B(3He, t)10C, Qm = −3.6666

Angular distributions have been measured atE(3He) = 14 MeV and 217 MeV: see[1979AJ01]. The latter [to10C∗(0,3.35,5.6)] have been compared with microscopic cculations using a central+ tensor interaction [Jπ = 0+, 2+, 2+, respectively]. Structurehave been reported atEx = 5.22± 0.04 [Γ = 225± 45 keV], 5.38± 0.07 [300± 60 keV]and 6.580± 0.020 MeV [190± 35 keV].

10.12C(µ+, X)10C

The production of radioactive isotopes from 100 and 190 GeV muons incident12C target was measured by [2000HA33] to estimate theµ-induced backgrounds in largvolume scintillator detector experiments.

11.12C(p, t)10C, Qm = −23.3595

Angular distributions have been reported atEp = 30.0 to 54.1 MeV and at 80 MeV[see [1974AJ01,1979AJ01,1984AJ01]].L = 0, 2 and 2 to10C∗(0,3.35,5.28) thus leadingto 0+, 2+ and 2+, respectively, for these states [but note that the “5.28 MeV” stacertainly unresolved]: see reaction 9 and Table 10.31.10C∗(6.6) is also populated. Two

measurements of the excitation energy of10C∗(3.4) are 3353.5± 1.0 keV and 3354.3±1.1 keV: see [1984AJ01] [based onQm]. See also ([1987KW01]; theor.).
Page 167: Energy levels of light nuclei A = 8,9,10

10N, 10O, 10F, 10Ne

e

rateserapy

d

wh

ata/

r-ee statethe

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 321

12.13C(3He,6He)10C, Qm = −15.2376

At E(3He)= 70.3 MeV the angular distributions of the6He ions corresponding to thpopulation of10C∗(0,3.35) have been measured. The group to10C∗(3.35) is much moreintense than the ground-state group: see [1979AJ01].

13.16O(p, X)10C

Spallation reaction rates for incident protons on16O and12C targets withEp ≈ 50–250 MeV were calculated by [1999CH50] using the GNASH code. These reactionare important for estimating the secondary radiation induced in medical proton thtreatment.

14.9Be,natC, 27Al( 10C, X)

Total interaction cross sections ofE(10C) = 730 MeV/A projectiles were measureon 9Be, natC and27Al targets [1996OZ01]. The deduced cross sections,σ = 752± 13,795± 12 and 1171± 20 mb, respectively, indicateRr.m.s.(10C) = 2.27± 0.03 fm.

10N(not illustrated)

GeneralReferences to articles on general properties of10N published since the previous revie

[1988AJ01] are grouped into categories andlisted, along with brief descriptions of eacitem, in the General Tables for10N located on our website at www.tunl.duke.edu/nucldGeneral_Tables/10n.shtml.

The first evidence for a state in10N has been observed in the10B(14N, 14B)10N reac-tion at E(14N) = 30 MeV/A [2002LE16]. The resonance is 2.64± 0.4 MeV above the9C + p threshold and the width isΓ = 2.3± 1.6 MeV. LargeL = 2 two-nucleon transfeamplitudes calculated for10B + 2p→ 12Ng.s. and12Ng.s. → 10N(1+) suggest that the observed state is the analog of the 0.24 MeV 1+ state of10Li. Furthermore, the energy of thobserved state is consistent with a p-shell Coulomb energy shift. The virtual s-wavnear threshold in9Li + n (see10Li) implies a broad s-wave state about 1.8 MeV above9C + p threshold in10N (see the discussion of9N).

10O, 10F, 10Ne(not illustrated)

Not observed: see [1979AJ01]. See also [1988AJ01].

Page 168: Energy levels of light nuclei A = 8,9,10

10O, 10F, 10Ne

322 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

Fig

.17.

Cap

tion

onne

xtpa

ge.

Page 169: Energy levels of light nuclei A = 8,9,10

10O, 10F, 10Ne

e

umed

rrata/

st-ionalse, TUNLfor

hors’

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 323

Fig. 17. Isobar diagram,A = 10. The diagrams for individual isobars have been shifted vertically to eliminatthe neutron–proton mass difference and the Coulomb energy, taken asEC = 0.60Z(Z − 1)/A1/3. Energies insquare brackets represent the (approximate) nuclear energy,EN = M(Z, A) − ZM(H) − NM(n) − EC, minusthe corresponding quantity for10B: hereM represents the atomic mass excess in MeV. Levels which are presto be isospin multiplets are connected by dashed lines.

Table 10.33Isospin triplet components(T = 1) in A = 10 nucleia

10Be 10B 10C

Ex (MeV) Jπ ; T = 1 Ex (MeV) Jπ ; T Ex (MeV)b Ex (MeV) Jπ ; T = 1 Ex (MeV)c

0 0+ 1.74015 0+; 1 0 0 0+3.36803 2+ 5.1639 2+; 1 0.05572 3.3536 2+ −0.014435.9599d 1− 6.873 1−; 0+ 1 −0.827055.9599d 1− 7.430 1−; 1+ 0 −0.27005

5.95839 2+ 7.469 2+; 1 −0.22954

5.225.38

(2+)e

0(2+)e−0.73839−0.57839

6.2633d 2− 7.480 2−; 0+ 1 −0.523456.1793 0+ 7.5599 0+; 1 −0.359556.2633d 2− 7.75 2−; 0+ 1 −0.253457.371 3− 8.889 3−; 1 −0.222157.542 2+ 8.894 2+; 1 −0.38815 6.58 (2+) −0.962

a As taken from Tables 10.5, 10.18 and 10.31.b Defined asEx(10B)–Ex(10Be)− 1.74015.c Defined asEx(10C)–Ex(10Be).d Two entries for the same10Be level.e See footnotea in Table 10.31 and [1997DA28].

Errata

Errata will be provided online at our website at www.tunl.duke.edu/nucldata/EErrata.shtml.

References2, 3, 4

[1937LI1A] M.S. Livingston, H.A. Bethe, Rev. Mod. Phys. 9 (1937) 245.[1948HO1A] W.F. Hornyak, T. Lauritsen, Rev. Mod. Phys. 20 (1948) 191.[1949LA1A] T. Lauritsen, NRC Preliminary Report No. 5 (1949).

2 Closed 31 March 2004.3 References are arranged and designated by the year of publication followed by the first two letters of the fir

mentioned author’s name and then by two additional characters. Most of the references appear in the NatNuclear Data Center files (Nuclear Science References Database) and have NSR key numbers. Otherwikey numbers were assigned with the last two characters of the form 1A, 1B, etc. In response to many requestsmore informative citations, we have, when possible, included up to ten authors per paper and added the autinitials.

4 The Reference key for conference reports follows the body of the reference citations. For citations markedwith † please refer to the Reference key for a complete citation of the conference proceeding.

Page 170: Energy levels of light nuclei A = 8,9,10

ixley,

8)

324 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1950HO1A] W.F. Hornyak, T. Lauritsen, P. Morrison, W.A. Fowler, Rev. Mod. Phys. 22 (1950) 291.[1952AJ38] F. Ajzenberg, T. Lauritsen, Rev. Mod. Phys. 24 (1952) 321.[1955AJ61] F. Ajzenberg, T. Lauritsen, Rev. Mod. Phys. 27 (1955) 77.[1956MA55] J.B. Marion, Phys. Rev. 103 (1956) 713.[1956MO90] F.S. Mozer, Phys. Rev. 104 (1956) 1386.[1956WE37] G. Weber, L.W. Davis, J.B. Marion, Phys. Rev. 104 (1956) 1307.[1956WI16] D.H. Wilkinson, A.R. Clegg, Philos. Mag. 1 (1956) 291.[1957ST95] P.H. Stelson, E.C. Campbell, Phys. Rev. 106 (1957) 1252.[1959AJ76] F. Ajzenberg, T. Lauritsen, Nucl. Phys. 11 (1959) 1.[1959MA20] J.B. Marion, J.S. Levin, Phys. Rev. 115 (1959) 144.[1961ME10] V. Meyer, H. Muller, H.H. Staub, R. Zurmuhle, Nucl. Phys. 27 (1961) 284.[1961SP02] E.L. Sprenkel, J.W. Olness, R.E. Segel, Phys. Rev. Lett. 7 (1961) 174.[1961SP04] E.K. Sprinkel, J.W. Daughtry, Phys. Rev. 124 (1961) 854.[1963BA52] F.J. Bartis, Phys. Rev. 132 (1963) 1763.[1963NG1A] H. Nguyen Ngoc, M. Hors, J.Perez Y Jorba, Nucl. Phys. 42 (1963) 62.[1964BO13] R.O. Bondelid, J.W. Butler, Nucl. Phys. 53 (1964) 618.[1964HO02] W.F. Hornyak, C.A. Ludemann, M.L. Roush, Nucl. Phys. 50 (1964) 424.[1964MI04] R. Middleton, D.J. Pullen, Nucl. Phys. 51 (1964) 50.[1965CO25] S. Cohen, D. Kurath, Nucl. Phys. 73 (1965) 1;

S. Cohen, D. Kurath, Nucl. Phys. 89 (1966) 707, Erratum.[1965DI03] F.S. Dietrich, Nucl. Phys. 69 (1965) 49.[1965MO1C] Morita, et al., Nucl. Phys. 66 (1965) 17.[1965SP04] E. Spamer, F. Gudden, Phys. Lett. 14 (1965) 210.[1966AL06] D.E. Alburger, P.D. Parker, D.J. Bredin, D.H. Wilkinson, P.F. Donovan, A. Gallmann, R.E. P

L.F. Chase Jr., R.E. McDonald, Phys. Rev. 143 (1966) 692.[1966FO05] P.D. Forsyth, H.T. Tu, W.F. Hornyak, Nucl. Phys. 82 (1966) 33.[1966LA04] T. Lauritsen, F. Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1.[1966PA16] P.D. Parker, Phys. Rev. 150 (1966) 851;

P.D. Parker, Astrophys. J. 145 (1966) 960.[1966SE03] R.E. Segel, P.P. Singh, S.S. Hanna, M.A. Grace, Phys. Rev. 145 (1966) 736.[1966SP02] E. Spamer, Z. Phys. 191 (1966) 24.[1966WI08] D.H. Wilkinson, J.T. Sample, D.E. Alburger, Phys. Rev. 146 (1966) 662.[1967BL09] A.G. Blachman, A. Lurio, Phys. Rev. 153 (1967) 164.[1967CO32] S. Cohen, D. Kurath, Nucl. Phys. 101 (1967) 1.[1967PA01] P. Paul, T.R. Fisher, S.S. Hanna, Phys. Lett. B 24 (1967) 51.[1968AJ02] F. Ajzenberg-Selove, T. Lauritsen, Nucl. Phys. A 114 (1968) 1.[1968BE02] J. Benn, E.B. Dally, H.H. Muller, R.E. Pixley, H.H. Staub, H. Winkler, Nucl. Phys. A 106 (196

296.[1968CL08] H.-G. Clerc, K.J. Wetzel, E. Spamer, Nucl. Phys. A 120 (1968) 441.[1968FI09] T.R. Fisher, S.S. Hanna, D.C. Healey, P. Paul, Phys. Rev. 176 (1968) 1130.[1968KR02] J.J. Kroepfl, C.P. Browne, Nucl. Phys. A 108 (1968) 289.[1968KU04] L.A. Kull, E. Kashy, Phys. Rev. 167 (1968) 963.[1968WA15] E.K. Warburton, J.W. Olness, S.D. Bloom, A.R. Poletti, Phys. Rev. 171 (1968) 1178.[1969BA05] D. Bachelier, M. Bernas, I. Brissaud,C. Detraz, P. Radvanyi, Nucl. Phys. A 126 (1969) 60.[1969BA06] G.C. Ball, J. Cerny, Phys. Rev. 177 (1969) 1466.[1969BA43] F.C. Barker, Aust. J. Phys. 22 (1969) 293.[1969CA1A] R.R. Carlson, H.W. Wyborny, Phys. Rev. 178 (1969) 1529.[1969CO1J] P. Connors, et al., in: [Montreal],† 1969, p. 328.[1969GA06] R.B. Galloway, D.G. Vass, Nucl. Phys. A 127 (1969) 538.[1969MO29] T. Mo, W.F. Hornyak, Phys. Rev. 187 (1969) 1220.

† For references marked with† please refer to the Reference key (below) for a complete citation of the publi-cation.

Page 171: Energy levels of light nuclei A = 8,9,10

104.

13

. Rev.

222

B 59

, Ser.

a,

1330.

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 325

[1969PA09] R.A. Paddock, S.M. Austin, W. Benenson, I.D. Proctor, F.S. Amant, Phys. Rev. 182 (1969) 1[1969RO12] M.L. Roush, F.C. Young, P.D. Forsyth, W.F. Hornyak, Nucl. Phys. A 128 (1969) 401.[1969SW01] W.E. Sweeney Jr., J.B. Marion, Phys. Rev. 182 (1969) 1007.[1969SW02] W.E. Sweeney Jr., Phys. Rev. 182 (1969) 1022.[1969YO01] F.C. Young, W.F. Hornyak, Nucl. Phys. A 124 (1969) 469.[1970AJ04] F. Ajzenberg-Selove, Nucl. Phys. A 152 (1970) 1.[1970AU02] D.L. Auton, Nucl. Phys. A 157 (1970) 305.[1971AJ02] F. Ajzenberg-Selove, Nucl. Phys. A 166 (1971) 1.[1971GL1A] Y.A. Glukhov, B.G. Novatskii, A.A. Ogloblin, S.B. Sakuta, D.N. Stepanov, V.I. Chuev, Yad. Fiz.

(1971) 277, Sov. J. Nucl. Phys. 13 (1971) 154.[1971HA10] J.C. Hardy, J.M. Loiseaux, J. Cerny, G.T. Garvey, Nucl. Phys. A 162 (1971) 552.[1971MA2C] C.C. Maples, PhD thesis, Berkeley, LBL-25 (1971).[1971WI05] D.H. Wilkinson, D.E. Alburger, Phys. Rev. Lett. 26 (1971) 1127.[1971YO04] P.G. Young, R.H. Stokes, Phys. Rev. C 4 (1971) 1597.[1971YO05] F.C. Young, R.A. Lindgren, W. Reichart, Nucl. Phys. A 176 (1971) 289.[1972AD04] J.C. Adloff, W.K. Lin, K.H. Souw, P. Chevallier, Phys. Rev. C 5 (1972) 664.[1972AJ02] F. Ajzenberg-Selove, Nucl. Phys. A 190 (1972) 1.[1972HA63] S.S. Hanna, M. Hass, Z. Shkedi, Y.S. Horowitz, Nucl. Phys. A 195 (1972) 91.[1972MA21] C. Maples, J. Cerny, Phys. Lett. B 38 (1972) 504.[1972PR03] G. Presser, R. Bass, Nucl. Phys. A 182 (1972) 321.[1973BE19] J.C. Bergstrom, I.P. Auer, M. Ahmad, F.J. Kline, J.H. Hough, H.S. Caplan, J.L. Groh, Phys

C 7 (1973) 2228.[1973RO24] U. Rohrer, L. Brown, Nucl. Phys. A 210 (1973) 465.[1973SI1B] A.J. Sierk, T.A. Tombrello, Nucl. Phys. A 210 (1973) 341.[1974AJ01] F. Ajzenberg-Selove, T. Lauritsen, Nucl. Phys. A 227 (1974) 1.[1974AN27] R.E. Anderson, J.J. Kraushaar, M.E. Rickey, W.R. Zimmerman, Nucl. Phys. A 236 (1974) 77.[1974AZ01] G. Azuelos, J.E. Crawford, J.E. Kitching, Phys. Rev. C 9 (1974) 1213.[1974BE66] W. Benenson, E. Kashy, Phys. Rev. C 10 (1974) 2633.[1974KA15] E. Kashy, W. Benenson, J.A. Nolen Jr., Phys. Rev. C 9 (1974) 2102.[1974KE06] K.W. Kemper, S. Cotanch, G.E. Moore, A.W. Obst, R.J. Puigh, R.L. White, Nucl. Phys. A

(1974) 173.[1974YA1C] Yasue, et al., Bull. Inst. Chem. Res. Kyoto Univ. 52 (1974) 177.[1975AJ02] F. Ajzenberg-Selove, Nucl. Phys. A 248 (1975) 1.[1975AU02] W. Auwarter, V. Meyer, Nucl. Phys. A 242 (1975) 129.[1975DI08] G. Dietl, G. Gruber, H. Schmidt-Bocking, K. Bethge, Nucl. Phys. A 250 (1975) 322.[1975KU01] D. Kurath, D.J. Millener, Nucl. Phys. A 238 (1975) 269.[1975LA23] L. Lapikas, G. Box, H. De Vries, Nucl. Phys. A 253 (1975) 324.[1975MC02] C.R. McClenahan, R.E. Segel, Phys. Rev. C 11 (1975) 370.[1975SC41] U. Schwinn, G. Mairle, G.J. Wagner, C. Ramer, Z. Phys. A 275 (1975) 241.[1975WI26] K.H. Wilcox, R.B. Weisenmiller, G.J. Wozniak, N.A. Jelley, D. Ashery, J. Cerny, Phys. Lett.

(1975) 142.[1976AJ04] F. Ajzenberg-Selove, Nucl. Phys. A 268 (1976) 1.[1976BA67] F.C. Barker, G.M. Crawley, P.S. Miller, W.F. Steele, Aust. J. Phys. 29 (1976) 245.[1976FA13] L.W. Fagg, R.A. Lindgren, W.L. Bendel, E.C. Jones Jr., Phys. Rev. C 14 (1976) 1727.[1976FI05] G.A. Fisher, P. Paul, F. Reiss, S.S. Hanna, Phys. Rev. C 14 (1976) 28.[1976MA58] Y.G. Mashkarov, A.S. Deineko, R.P. Slabospitskii, I.I. Zalyubovskii, Izv. Akad. Nauk SSSR

Fiz. 40 (1976) 1218, Bull. Acad. Sci. USSR, Phys. Ser. 40 (1976) 100.[1976MC10] A.B. McDonald, T.K. Alexander, O. Hausser, D. Disdier, E.G. Adelberger, H.B. Mak, A.P. Shukl

A.V. Nero, Nucl. Phys. A 273 (1976) 451.[1976WE09] R.B. Weisenmiller, N.A. Jelley, K.H. Wilcox, G.J. Wozniak, J. Cerny, Phys. Rev. C 13 (1976)[1977AJ02] F. Ajzenberg-Selove, Nucl. Phys. A 281 (1977) 1.[1977KI04] A. Kiss, E. Koltay, G. Szabo, L. Vegh, Nucl. Phys. A 282 (1977) 44.

[1977WE03] R.B. Weisenmiller, N.A. Jelley, D. Ashery, K.H. Wilcox, G.J. Wozniak, M.S. Zisman, J. Cerny,

Nucl. Phys. A 280 (1977) 217.

Page 172: Energy levels of light nuclei A = 8,9,10

ne,

rn,

,

n,

e

t-

) 332.

326 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1978AJ02] F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, Phys. Rev. C 17 (1978) 1283.[1978AJ03] F. Ajzenberg-Selove, Nucl. Phys. A 300 (1978) 1.[1978BO30] T.J. Bowles, G.T. Garvey, Phys. Rev. C 18 (1978) 1447;

T.J. Bowles, G.T. Garvey, Phys. Rev. C 26 (1982) 2336, Erratum.[1978DI08] P.A. Dickey, P.L. Dyer, K.A. Snover, E.G. Adelberger, Phys. Rev. C 18 (1978) 1973.[1978LEZA] C.M. Lederer, V.S. Shirley, E. Browne, J.M. Dairiki, R.E. Doebler, A.A. Shihab-Eldin, L.J. Jardi

J.K. Tuli, A.B. Buyrn, Table of Isotopes, seventh ed., Wiley, New York, 1978.[1979AJ01] F. Ajzenberg-Selove, Nucl. Phys. A 320 (1979) 1.[1979AN08] E.J. Ansaldo, J.C. Bergstrom, R. Yen, H.S. Caplan, Nucl. Phys. A 322 (1979) 237;

E.J. Ansaldo, J.C. Bergstrom, R. Yen, H.S.Caplan, Nucl. Phys. A 342 (1980) 532, Erratum.[1979EN05] P.M. Endt, At. Data Nucl. Data Tables 23 (1979) 3.[1979FR04] S.J. Freedman, C.A. Gagliardi, M.A. Oothoudt, A.V. Nero, R.G.H. Robertson, F.J. Zutave

E.G. Adelberger, A.B. McDonald, Phys. Rev. C 19 (1979) 1907.[1979GL12] H. Glattli, G.L. Bacchella, M. Fourmond,A. Malinovski, P. Meriel, M. Pinot, P. Roubeau

A. Abragam, J. Phys. 40 (1979) 629.[1979KE08] J. Keinonen, A. Anttila, Nucl. Phys. A 330 (1979) 397.[1979KU05] D. Kurath, Nucl. Phys. A 317 (1979) 175.[1979MI1E] Mingay, S. Afr. J. Phys. 2 (1979) 107.[1979OE01] W. Oelert, A. Djaloeis, C. Mayer-Boricke, P. Turek, Phys. Rev. C 19 (1979) 1747.[1979SP01] R.H. Spear, Z.E. Switkowski, D.L. Kennedy, J.C.P. Heggie, Nucl. Phys. A 318 (1979) 21.[1979ST15] D.P. Stahel, R. Jahn, G.J. Wozniak, J. Cerny, Phys. Rev. C 20 (1979) 1680.[1980AJ01] F. Ajzenberg-Selove, C.L. Busch, Nucl. Phys. A 336 (1980) 1.[1980BL02] L. Bland, H.T. Fortune, Phys. Rev. C 21 (1980) 11.[1980HA33] M.N. Harakeh, J. Van Popta, A. Saha, R.H. Siemssen, Nucl. Phys. A 344 (1980) 15.[1980MA33] G. Mack, R.C. Byrd, P.W. Lisowski, R.L. Walter, Nucl. Phys. A 345 (1980) 241.[1980MC07] R.D. McKeown, G.T. Garvey, C.A. Gagliardi, Phys. Rev. C 22 (1980) 738;

R.D. McKeown, G.T. Garvey, C.A. Gagliardi, Phys. Rev. C 26 (1982) 2336, Erratum.[1980YE02] B. Ye, K. Wen, P. Zhang, R. Yuan, B. Huang, Chin. J. Nucl. Phys. 2 (1980) 147.[1981AJ01] F. Ajzenberg-Selove, Nucl. Phys. A 360 (1981) 1.[1981BA36] F.C. Barker, N. Ferdous, J. Phys. (London) G 7 (1981) 1239.[1981BJ03] T. Bjornstad, H.A. Gustafsson, B. Jonson,P.O. Larsson, V. Lindfors, S. Mattsson, G. Nyma

A.M. Poskanzer, H.L. Ravn, D. Schardt, Nucl. Phys. A 366 (1981) 461.[1981CO08] W.D. Cornelius, J.M. Moss, T. Yamaya, Phys. Rev. C 23 (1981) 1364.[1981HE05] P. Heusi, M. Berta, V. Meyer,R.E. Pixley, Nucl. Phys. A 357 (1981) 381.[1981LA11] M. Langevin, C. Detraz, D. Guillemaud, F. Naulin, M. Epherre, R. Klapisch, S.K.T. Mark, M. D

Saint Simon, C. Thibault, F. Touchard, Nucl. Phys. A 366 (1981) 449.[1981MA33] S. Manglos, N.R. Roberson, H.R. Weller, D.R. Tilley, Phys. Rev. C 24 (1981) 2378.[1981MUZQ] S.F. Mughabghab, M. Divadeenam, N.E. Holden, Neutron Cross Sections 1A (1981),Z = 1–60.[1982AJ01] F. Ajzenberg-Selove, Nucl. Phys. A 375 (1982) 1.[1982CI1A] Ciric, Stepanic, Zakula, Zb. Rad. Prirod.-Mat. Fak. Ser. Fiz. 12 (1982) 51.[1982EL03] A.J. Elwyn, R.E. Holland, C.N. Davids, W. Ray Jr., Phys. Rev. C 25 (1982) 2168.[1982FI03] B.W. Filippone, A.J. Elwyn, W. Ray Jr., D.D. Koetke, Phys. Rev. C 25 (1982) 2174.[1982FU11] M. Fujishiro, T. Tabata, K. Okamoto, T. Tsujimoto, Can. J. Phys. 60 (1982) 1672.[1982GL01] B.G. Glagola, V.E. Viola Jr., H. Breuer, N.S. Chant, A. Nadasen, P.G. Roos, S.M. Austin, G.J. Ma

hews, Phys. Rev. C 25 (1982) 34.[1982GU1A] M. Gulyamov, G. Kim, S.M. Bekbaev, Yad. Fiz. 36 (1982) 572, Sov. J. Nucl. Phys. 36 (1982[1982LA19] M. Lattuada, F. Riggi, C. Spitaleri, D. Vinciguerra, C.M. Sutera, Phys. Rev. C 26 (1982) 1330.[1982PE03] R.J. Peterson, Nucl. Phys. A 377 (1982) 41.[1982RI04] L. Ricken, D. Bohle, G. Domogala, K. Glasner, E. Kuhlmann, Z. Phys. A 306 (1982) 67.[1983AI01] O. Aizawa, T. Matsumoto, H. Kadotani, J. Nucl. Sci. Tech. 20 (1983) 354.[1983AJ01] F. Ajzenberg-Selove, Nucl. Phys. A 392 (1983) 1;

F. Ajzenberg-Selove, Nucl.Phys. A 413 (1984) 168, Erratum.

[1983AL10] M. Allab, A. Boucenna, M. Haddad, J. Phys. (Paris) 44 (1983) 579.[1983AN1D] B. Antolkovic, et al., in: [Florence],† 1983, p. 438.
Page 173: Energy levels of light nuclei A = 8,9,10

e-455,

(1983)

(1983)

.

u-

3)

12

83)

cl.

ash,

. Rev.

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 327

[1983AR24] E.A. Arakelyan, G.L. Bayatyan, G.S. Vartanyan, N.K. Grigoryan, S.G. Knyazyan, A.O. Kchechyan, A.T. Margaryan, G.G. Marikyan, S.S. Stepanyan, S.R. Shakhazizyan, Yad. Fiz. 38 (1983) 1Sov. J. Nucl. Phys. 38 (1983) 589.

[1983BA52] F.C. Barker, Can. J. Phys. 61 (1983) 1371.[1983BE1H] T.L. Belyaeva, N.S. Zelenskaya, I.B. Teplov, Yad. Fiz. 38 (1983) 901, Sov. J. Nucl. Phys. 38

540.[1983BE51] T.L. Belyaeva, N.S. Zelenskaya, I.B. Teplov, Yad. Fiz. 38 (1983) 901, Sov. J. Nucl. Phys. 38

540.[1983BO19] F. Borchers, H. De Jong, J. Krug, E. Kuhlmann, Nucl. Phys. A 405 (1983) 141.[1983BY01] R.C. Byrd, C.E. Floyd, P.P. Guss, K. Murphy, R.L. Walter, Nucl. Phys. A 399 (1983) 94.[1983BY02] R.C. Byrd, P.W. Lisowski, W. Tornow, R.L. Walter, Nucl. Phys. A 404 (1983) 29.[1983CE1A] Cereda, de Leo, Micheletti, Pignanelli, in: [Florence],† 1983, p. 234.[1983CO11] F.D. Correll, L. Madansky, R.A. Hardekopf, J.W. Sunier, Phys. Rev. C 28 (1983) 862.[1983DA11] V. D’Amico, G. Fazio, G. Giardina, F. Mezzanares, Can. J. Phys. 61 (1983) 923.[1983DA20] B. Dasmahapatra, B. Cujec, F. Lahlou, Nucl. Phys. A 408 (1983) 192.[1983DA22] J.H. Dave, C.R. Gould, Phys. Rev. C 28 (1983) 2212.[1983DA32] N. Dai, C. Yan, H. Lu, B. Qi, F. Zhuang, H. Sun, Chin. J. Nucl. Phys. 5 (1983) 19.[1983DE26] P.A. De Young, J.J. Kolata, L.J. Satkowiak, M.A. Xapsos, Phys. Rev. C 28 (1983) 692.[1983DE50] A.S. Deineko, I.I. Zalyubovsky, V.D. Sarana, A.I. Tutubalin, N.A. Shlyakhov, C. Hategan, Izv

Akad. Nauk SSSR, Ser. Fiz. 47 (1983) 2271.[1983DEZW] L.C. Dennis, A.D. Frawley, J.F.Mateja, Bull. Am. Phys. Soc. 28 (1983) 669, BF1.[1983DJZV] A. Djaloeis, J. Bojowald, G.Paic, B. Antolkovic, in: [Florence],† 1983, p. 235.[1983DU13] G.G. Dussel, A.O. Gattone, E.E. Maqueda, Phys. Rev. Lett. 51 (1983) 2366.[1983FI13] B.W. Filippone, A.J. Elwyn, C.N. Davids, D.D. Koetke, Phys. Rev. C 28 (1983) 2222.[1983FU13] M. Fujishiro, K. Okamoto, T. Tsujimoto, Can. J. Phys. 61 (1983) 1579.[1983GLZZ] C.W. Glover, C.C. Foster, P. Schwandt, J.R. Comfort, J. Rapaport, T.N. Taddeucci, D. Wong, J. Se

bert, G. Wagner, Bull. Am. Phys. Soc. 28 (1983) 996.[1983GO27] V.G. Gonchar, V.V. Tokarevsky, Izv. Akad. Nauk SSSR, Ser. Fiz. 47 (1983) 2156.[1983GR21] R.E.L. Green, D.H. Boal, R.L. Helmer, K.P. Jackson, R.G. Korteling, Nucl. Phys. A 405 (198

463.[1983HA17] R.C. Haight, G.J. Mathews, R.M. White, L.A. Aviles, S.E. Woodard, Nucl. Instrum. Methods 2

(1983) 245.[1983HA1D] Han, Lu, in: [Florence],† 1983, p. 314.[1983JA09] L. Jarczyk, B. Kamys, Z. Rudy, A. Strzalkowski, H. Witala, M. Hugi, J. Lang, R. Muller, J. Sromicki,

H.H. Wolter, Phys. Rev. C 28 (1983) 700.[1983KE11] T.J. Kennett, W.V. Prestwich, R.J. Tervo, J.S. Tsai, Nucl. Instrum. Methods Phys. Res. 215 (19

159.[1983KO04] H.-G. Korber, R. Beckmann, U. Holm, Nucl. Phys. A 394 (1983) 257.[1983KO17] L. Koester, K. Knopf, W. Waschkowski, Z. Phys. A 312 (1983) 81.[1983LE17] P.M. Lewis, O. Karban, J.M. Barnwell, J.D. Brown, P.V. Drumm, J.M. Nelson, S. Roman, Nu

Phys. A 404 (1983) 205.[1983LI18] X. Liu, X. Chen, Chin. J. Nucl. Phys. 5 (1983) 249.[1983LI1C] Liskien, Wolfle, Qaim, in: [Belgium 82],† 1983, p. 349;

Liskien, Wolfle, Qaim, Phys. Abs. 37591 (1984).[1983LO11] R.W. Lourie, W. Bertozzi, T.N. Buti, J.M. Finn, F.W. Hersman, C. Hyde, J. Kelly, M.A. Kov

S. Kowalski, M.V. Hynes, et al., Phys. Rev. C 28 (1983) 489.[1983MA53] J.F. Mateja, J. Garman, A.D. Frawley, Phys. Rev. C 28 (1983) 1579.[1983MI10] D. Miljanic, E. Kossionides, G. Vourvopoulos, P. Assimakopoulos, Z. Phys. A 312 (1983) 267.[1983PE07] F. Pellegrini, D. Trivisonno, S. Avon, R. Bianchin, R. Rui, Phys. Rev. C 28 (1983) 42.[1983RO22] S. Roman, O. Karban, M. Barnwell, J.D. Brown, P.V. Drumm, P.M. Lewis, J.M. Nelson, Phys

C 28 (1983) 2515.

[1983SH19] K. Shoda, M. Yamazaki, M. Torikoshi, O. Sasaki, H. Tsubota, B.N. Sung, Nucl. Phys. A 403 (1983)

469.

Page 174: Energy levels of light nuclei A = 8,9,10

y,

)

Phys.

, Lett.

ucl.

n,

ra,

. Rev.

ler,

s,

tson,

k

d,

40

.

Mor-

ys.

oshi,

328 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1983SR01] J. Sromicki, M. Hugi, J. Lang, R. Muller, E.Ungricht, L. Jarczyk, B. Kamys, A. Magiera, Z. RudA. Strzalkowski, et al., Nucl. Phys. A 406 (1983) 390.

[1983SZZY] J. Szabo, M. Varnagy, Z.T. Body, J. Csikai, in: [Belgium 82],† 1983, p. 956.[1983TR04] V.A. Tryasuchev, Yad. Fiz. 37 (1983) 305, Sov. J. Nucl. Phys. 37 (1983) 181.[1983VE03] W.J. Vermeer, R.K. Bhalla, A.R. Poletti, Phys. Rev. C 28 (1983) 432.[1983WA09] R.E. Warner, K. Blum, D. Friesel, P. Schwandt, P.P. Singh, A. Galonsky, Nucl. Phys. A 401 (1983

521.[1983YA05] M. Yasue, H. Yokomizo, T. Hasegawa, F. Soga, M.H. Tanaka, K. Koyama, K. Iwatani, Nucl.

A 408 (1983) 205.[1983ZH09] P. Zhang, K. Wen, S. Li, X. Bao, Y. Shi, Z. Sun, Chin. J. Nucl. Phys. 5 (1983) 1.[1984AJ01] F. Ajzenberg-Selove, Nucl. Phys. A 413 (1984) 1.[1984AL03] J.P. Alard, J. Arnold, M.M. Avome Nze, J.P. Costilhes, L. Fraysse, W. Raja, J.C. Tamain

Nuovo Cimento 39 (1984) 139.[1984AL1C] Allab, INDC (NDS)-153/L (1984).[1984AL22] A.S. Alimov, V.I. Mokeev, E.S. Omarov, I.M. Piskarev, Yad. Fiz. 40 (1984) 301, Sov. J. N

Phys. 40 (1984) 190.[1984AN16] Yu.P. Antufyev, A.S. Deineko, I.I. Zalyubovsky, V.D. Sarana, V.E. Storizhko, A.I. Tutubali

C. Hategan, N.A. Schliakhov, Yad. Fiz.40 (1984) 53, Sov. J. Nucl. Phys. 40 (1984) 35.[1984BA09] K. Baba, I. Endo, H. Fukuma, K. Inoue, T. Kawamoto, T. Ohsugi, Y. Sumi, T. Takeshita, S. Ueha

Y. Yano, et al., Nucl. Phys. A 415 (1984) 462.[1984BA1R] V.N. Baturin, A.V. Khanzadeev, V.P. Koptev, E.M. Maev, M.M. Makarov, V.V. Nelyubin,

G.V. Shcherbakov, V.V. Sulimov, in: [Panic 84],† 1984, p. I11.[1984BA1T] Bayukov, et al., [Panic 84],† 1984, p. i16.[1984BI08] L. Bimbot, T. Hennino, J.C. Jourdain, Y. Le Bornec, F. Reide, N. Willis, J.F. Germond, Phys

C 30 (1984) 739.[1984BL1B] K.I. Blomqvist, A.M. Bernstein, J. Comuzzi, J.A. Nelson, B.H. Cottman, K. Min, P. Sto

P.K. Teng, E.J. Winhold, M. Yamazaki, et al., Bull. Am. Phys. Soc. 29 (1984) 708.[1984BR22] T. Bressani, E. Chiavassa, S. Costa, G. Dellacasa, N. De Marco, M. Gallio, A. Musso, E. Aslanide

G. Bergdolt, P. Fassnacht, et al., Phys. Rev. C 30 (1984) 1745.[1984BY03] R.C. Byrd, C.E. Floyd, K. Murphy, P.P. Guss, R.L. Walter, Nucl. Phys. A 427 (1984) 36.[1984DA17] B. Dasmahapatra, B. Cujec, F. Lahlou, Nucl. Phys. A 427 (1984) 186.[1984DA22] J. D’Auria, M. Dombsky, L. Moritz, T. Ruth, G. Sheffer, T.E. Ward, C.C. Foster, J.W. Wa

B.D. Anderson, J. Rapaport, Phys. Rev. C 30 (1984) 1999.[1984DE1A] P. De Bievre, M. Gallet, N.E. Holden, I.L. Barnes, J. Phys. Chem. Ref. Data 13 (1984) 809.[1984DE1F] Descroix, Unpublished thesis, University Lyon, France (1984).[1984DE46] A.S. Deineko, I.I. Zalyubovsky, V.D. Sarana, A.I. Tutubalin, N.A. Shlyakhov, Izv. Akad. Nau

SSSR, Ser. Fiz. 48 (1984) 1000.[1984FE1A] Ferch, et al., INDC (CCP)-221/L (1984) 18.[1984FU10] C.B. Fulmer, G.R. Satchler, K.A. Erb, D.C. Hensley, R.L. Auble, J.R. Ball, F.E. Bertran

E.E. Gross, Nucl. Phys. A 427 (1984) 545.[1984GA07] R.B. Galloway, A.M. Ghazarian, Phys. Rev. C 29 (1984) 2349.[1984GL06] Yu.A. Glukhov, A.S. Demyanova, A.A. Ogloblin, S.B. Sakuta, V.V. Sukharevsky, Yad. Fiz.

(1984) 62, Sov. J. Nucl. Phys. 40 (1984) 41.[1984GO03] A. Gokmen, H. Breuer, A.C.Mignerey, B.G. Glagola,K. Kwiatkowski, V.E. Viola Jr., Phys. Rev

C 29 (1984) 1595.[1984GR20] K. Grotowski, Z. Majka, R. Planeta, M. Szczodrak, Y. Chan, G. Guarino, L.G. Moretto, D.J.

rissey, L.G. Sobotka, R.G. Stokstad, I.Tserruya, et al., Phys. Rev. C 30 (1984) 1214.[1984HA48] R.C. Haight, S.M. Grimes, R.G. Johnson, H.H. Barschall, Nucl. Sci. Eng. 87 (1984) 41.[1984HE03] R.L. Helmer, R.E.L. Green, K.P. Jackson, R.G. Korteling, Phys. Rev. C 29 (1984) 676.[1984HO09] S. Homma, M. Kanazawa, M. Koike, Y. Murata,H. Okuno, F. Soga, N. Yoshikawa, A. Sasaki, Ph

Rev. Lett. 52 (1984) 2026.[1984HO24] S. Homma, M. Kanazawa, M. Koike, Y. Murata, H. Okuno, F. Soga, M. Sudo, M. Torik

N. Yoshikawa, A. Sasaki, et al., Phys. Rev. Lett. 53 (1984) 2536.[1984HU1D] Huang, et al., Chin. J. Nucl. Phys. 6 (1984) 156.

Page 175: Energy levels of light nuclei A = 8,9,10

4)

hys.

30

BD4.Ra-

134

chi,

, Ser.

evins,

984)

39

,

,

,iz. 49

,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 329

[1984IN03] M. Inoue, S.E. Koonin, Phys. Rev. C 30 (1984) 175.[1984JE1B] Jeong, et al., New Phys. (Korea) 24 (1984) 404;

Jeong, et al., Phys. Abs. 123552 (1985).[1984KO25] I. Koenig, D. Fick, S. Kossionides, P. Egelhof, K.-H. Mobius, E. Steffens, Z. Phys. A 318 (198

135.[1984KR1B] A.V. Kravtsov, N.P. Popov, G.E. Solvakin, JETP Lett. 40 (1984) 875.[1984KU15] V.I. Kukulin, M. Kamal, V.T. Voronchev, V.M. Krasnopolsky, J. Phys. G 10 (1984) L213.[1984LI1D] Y.-G. Li, S.-Y. Lo, Aust. J. Phys. 37 (1984) 255.[1984LIZY] P.W. Lisowski, R.E. Brown, J.C. Gursky, S.D. Howe, N. Jarmie, G.L. Morgan, Bull. Am. P

Soc. 29 (1984) 748, JH13.[1984LO1A] M.M. Lowry, R.T. Kouzes, Bull. Am. Phys. Soc. 29 (1984) 629.[1984MA28] J.F. Mateja, J. Garman, D.E. Fields, R.L. Kozub, A.D. Frawley, L.C. Dennis, Phys. Rev. C

(1984) 134.[1984ME11] C.R. Meitzler, A.E. Khalil, A.B. Robbins, G.M. Temmer, Phys. Rev. C 30 (1984) 1105.[1984NA07] J. Napolitano, S.J. Freedman, Nucl. Phys. A 417 (1984) 289.[1984NE1A] Nemets, Rudchik, Chuvilski, in: [Alma Ata 84],† 1984, p. 334.[1984OM02] A.R. Omar, J.S. Eck, J.R. Leigh, T.R. Ophel, Phys. Rev. C 30 (1984) 896.[1984OM03] A.R. Omar, J.S. Eck, T.R. Ophel, J.R. Leigh, Phys. Rev. C 30 (1984) 1516.[1984PA1E] G. Paic, B. Antolkovic, K. Kadija, Fizika 16 (1984) 37.[1984SH01] G. Shen, S. Wen, T. Huang, A. Li, X. Bai, Nucl. Sci. Eng. 86 (1984) 184.[1984SH1D] Shvedov, Dobrikov, Nemets, in: [Alma Ata 84],† 1984, p. 331.[1984SMZX] D.L. Smith, J.W. Meadows, M.M. Bretscher, S.A. Cox, Bull. Am. Phys. Soc. 29 (1984) 1036,[1984TA07] T.N. Taddeucci, T.A. Carey, C. Gaarde, J. Larsen, C.D. Goodman, D.J. Horen, T. Masterson, J.

paport, T.P. Welch, E. Sugarbaker, Phys. Rev. Lett. 52 (1984) 1960.[1984TE1A] Teh, et al., Bull. Am. Phys. Soc. 29 (1984) 1502.[1984TO02] M. Tohyama, R. Kaps, D. Masak, U. Mosel, Phys. Lett. B 136 (1984) 226.[1984TR03] R.P. Trelle, J. Birkhauser, F. Hinterberger, S. Kuhn, D. Prasuhn, P. Von Rossen, Phys. Lett. B

(1984) 34.[1984TU02] M. Turk, B. Antolkovic, Nucl. Phys. A 431 (1984) 381.[1984UM04] K. Umeda, T. Yamaya, T. Suehiro, K. Takimoto, R. Wada, E. Takada, S. Shimoura, A. Sakagu

S. Murakami, M. Fukada, et al., Nucl. Phys. A 429 (1984) 88.[1984VA07] O.I. Vasileva, V.M. Lebedev, A.V. Spassky, I.B. Teplov, L.N. Fateeva, Izv. Akad. Nauk SSSR

Fiz. 48 (1984) 155.[1984WA21] J.W. Watson, P.J. Pella, M. Ahmad, B.S. Flanders, N.S. Chant, P.G. Roos, D.W. D

D.L. Friesel, J. Phys. Colloq. 45 (1984) C4–91.[1984WI06] N. Willis, L. Bimbot, T. Hennino, J.C. Jourdain, Y. Le Bornec, F. Reide, Phys. Lett. B 136 (1

334.[1984WO09] C.L. Woods, F.C. Barker, Nucl. Phys. A 427 (1984) 73.[1984ZA07] N.I. Zaika, A.V. Mokhnach, A.T. Rudchik, V.S. Semenov, V.A. Shityuk, P.L. Shmarin, Yad. Fiz.

(1984) 1081, Sov. J. Nucl. Phys. 39 (1984) 682.[1985AJ01] F. Ajzenberg-Selove, Nucl. Phys. A 433 (1985) 1;

F. Ajzenberg-Selove, Nucl.Phys. A 449 (1986) 155, Erratum.[1985AL16] G.D. Alkhazov, S.L. Belostotsky, A.A.Vorobyov, O.A. Domchenkov, Yu.V. Dotsenko

N.P. Kuropatkin, V.N. Nikulin, Yad. Fiz. 42 (1985) 8, Sov. J. Nucl. Phys. 42 (1985) 4.[1985AL29] D.V. Aleksandrov, Yu.A. Glukhov, B.G. Novatsky, E.Yu. Nikolsky, A.A. Ogloblin, D.N. Stepanov

Izv. Akad. Nauk SSSR, Ser. Fiz. 49 (1985) 2115, Bull. Acad. Sci. USSR, Phys. Ser. 49 (1985) 30.[1985AN28] M.S. Antony, J. Britz, J.B. Bueb,A. Pape, At. Data Nucl. Data Tables 33 (1985) 447.[1985BE13] R.B. Begzhanov, E.A. Romanovsky, Yu.I. Denisov, A.M. Mukhamedzhanov, I.R. Gulamov

T. Iskhakov, G.K. Ni, R. Yarmukhamedov, G.S. Valiev, V.A. Stepanenko, Izv. Akad. Nauk SSSR, Ser. F(1985) 111, Bull. Acad. Sci. USSR, Phys. Ser. 49 (1985) 117.

[1985BE1E] Bell, et al., Nucl. Phys. B 254 (1985) 475.[1985BE30] S.L. Belostotsky, S.S. Volkov, A.A. Vorobyev, Yu.V. Dotsenko, L.G. Kudin, N.P. Kuropatkin

O.V. Miklukho, V.N. Nikulin, O.E. Prokofyev, Yad. Fiz. 41 (1985) 1425, Sov. J. Nucl. Phys. 41 (1985)903.

Page 176: Energy levels of light nuclei A = 8,9,10

s,

85)

h.

(1985)

zi,

5)

.kemeti,

ur-

dt,

t,

1.

g,

eiss-

ner,

85)

330 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1985BIZZ] R.A. Bigelow, P.A. Quin, S.J. Freedman, J. Napolitano, Bull. Am. Phys. Soc. 30 (1985) 701.[1985BO1B] M. Bouten, M.C. Bouten, T. Cornelissens, J. Phys. G 11 (1985) 231.[1985CA36] R.F. Carlson, A.J. Cox, T.N. Nasr, M.S. De Jong, D.L. Ginther, D.K. Hasell, A.M. Sourke

W.T.H. Van Oers, D.J. Margaziotis, Nucl. Phys. A 445 (1985) 57.[1985CA41] G.R. Caughlan, W.A. Fowler, M.J. Harris, B.A. Zimmerman, At. Data Nucl. Data Tables 32 (19

197.[1985CE12] F.E. Cecil, R.J. Peterson, P.D. Kunz, Nucl. Phys. A 441 (1985) 477.[1985CH37] S. Chiba, M. Baba, H. Nakashima, M. Ono, N. Yabuta, S. Yukinori, N. Hirakawa, J. Nucl. Sci. Tec

(Tokyo) 22 (1985) 771.[1985CO09] J. Cook, K.W. Kemper, Phys. Rev. C 31 (1985) 1745.[1985DA29] V. D’Amico, G. Fazio, S. Femino, G. Giardina, A. Italiano, F. Mezzanares, Can. J. Phys. 63

1438.[1985DE17] E. Descroix, M. Bedjidian, J.Y. Grossiord, A. Guichard, M. Gusakow, M. Jacquin, J.R. Piz

G. Bagieu, Nucl. Phys. A 438 (1985) 112.[1985DE22] A. De Rosa, G. Inglima, M. Sandoli, G. Vourvopoulos, X. Aslanoglou, Nuovo Cimento A 85 (198

269.[1985DO16] Yu.V. Dotsenko, V.E. Starodubsky, Sov. J. Nucl. Phys. 42 (1985) 66, Yad. Fiz. 42 (1985) 107[1985FR07] J. Franz, E. Rossle, C. Sauerwein, H. Schmitt, H.L. Woolverton, J. Ero, Z. Fodor, J. Kecs

P. Koncz, Zs. Kovacs, et al., Phys. Lett. B 153 (1985) 382.[1985FR13] K.A. Frankel, J.A. Bistirlich, R. Bossingham, H.R. Bowman, K.M. Crowe, C.J. Martoff, D.L. M

phy, J.O. Rasmussen, J.P. Sullivan, E. Yoo, et al., Phys. Rev. C 32 (1985) 975.[1985GLZZ] C.W. Glover, E.E. Gross, A.W. Carpenter, J.A.Carr, R.J. Philpott, F. Petrovich, P. Schwan

W.W. Jacobs, H.O. Meyer, Bull. Am. Phys. Soc. 30 (1985) 701.[1985GO18] E. Goldberg, R.L. Barber, P.E. Barry, N.A. Bonner, J.E. Fontanilla, C.M. Griffith, R.C. Haigh

D.R. Nethaway, G.B. Hudson, Nucl. Sci. Eng. 91 (1985) 173.[1985GO1G] Gorionov, et al., in: [Leningrad 85],† 1985, p. 310.[1985GO1H] Gorionov, et al., in: [Leningrad 85],† 1985, p. 362.[1985GU1C] Gulyamov, et al., in: [Leningrad 85],† 1985, p. 291.[1985GU1E] Gulyamov, et al., in: [Leningrad 85],† 1985, p. 291.[1985HA02] L.F. Hansen, F.S. Dietrich, B.A.Pohl, C.H. Poppe, C. Wong, Phys. Rev. C 31 (1985) 111.[1985HA40] R.C. Haight, G.J. Mathews, R.W. Bauer, Nucl. Instrum. Methods Phys. Res. B 10–11 (1985) 36[1985HO27] S. Homma, Nucl. Phys. A 446 (1985) 241C.[1985HU1B] Huang, et al., Chin. Phys. 5 (1985) 420.[1985HY1A] Hyde-Wright, PhD thesis (1985).[1985JA09] L. Jarczyk, B. Kamys, A. Magiera, A. Strzalkowski, A. Szczurek, K. Bodek, M. Hugi, J. Lan

R. Muller, E. Ungricht, J. Phys. G 11 (1985) 843.[1985JA12] L. Jarczyk, B. Kamys, Z. Rudy, A. Strzalkowski, B. Styczen, G.P.A. Berg, A. Magiera, J. M

burger, W. Oelert, P. von Rossen, et al., Z. Phys. A 322 (1985) 221.[1985KA1J] Katori, et al., J. Phys. Soc. Jpn. 54 (1985) 100.[1985KI1A] Kitching, McDonald, Maris, Vasconcellos, Adv. Nucl. Phys. 15 (1985) 43.[1985KI1B] Kiss, et al., AIP Conf. Proc. 125 (1985) 851.[1985KO04] D. Konnerth, W. Trombik, K.G. Bernhardt, K.A. Eberhard, R. Singh, A. Strzalkowski, W. Traut-

mann, Nucl. Phys. A 436 (1985) 538.[1985LI1C] Ling, Zhao, Zeng, Phys. Energ. Fortis Phys. Nucl. 9 (1985) 236;

Ling, Zhao, Zeng, Phys. Abs. 83976 (1985).[1985MA10] J.F. Mateja, A.D. Frawley, D.G. Kovar, D. Henderson, H. Ikezoe, R.V.F. Janssens, G. Ros

G.S.F. Stephans, B. Wilkins, K.T. Lesko, et al., Phys. Rev. C 31 (1985) 867.[1985MA1G] Matthews, AIP Conf. Proc. 133 (1985) 296.[1985MU14] T. Murakami, E. Ungricht, Y.-W. Lui, Y. Mihara, E. Takada, R.E. Tribble, Phys. Rev. C 32 (19

1558.[1985NE05] J.E. Nelson, J. Napolitano, S.J. Freedman, Phys. Rev. C 31 (1985) 2295.[1985NO1A] Norbeck, Lin, Bull. Am. Phys. Soc. 30 (1985) 1248.

[1985OS06] A. Osman, S.A. Saleh, Acta Phys. Pol. B 16 (1985) 865.[1985PA1C] Pasechnik, et al., in: [Leningrad 85],† 1985, p. 296.
Page 177: Energy levels of light nuclei A = 8,9,10

-

Abegg,

89

.

a,

a,

. Mills,

kad.

Ser.

-

enz,

57

86)

shita,

rum.

941,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 331

[1985PN01] J. Pniewski, K. Garbowska-Pniewska, D.Kielczewska, D.H. Davis, G. Bohm, U. Krecker, A. Montwill, P. Moriarty, G. Coremans-Bertrand, J. Sacton, et al., Nucl. Phys. A 443 (1985) 685.

[1985PO02] L. Potvin, B. Cujec, Nucl. Phys. A 433 (1985) 550.[1985PO10] N.A.F.M. Poppelier, L.D. Wood, P.W.M. Glaudemans, Phys. Lett. B 157 (1985) 120.[1985PU1A] B. Pugh, PhD thesis, MIT (1985).[1985RO15] G. Roy, H.S. Sherif, E.D. Cooper, L.G. Greeniaus, G.A. Moss, J. Soukup, G.M. Stinson, R.

D.P. Gurd, D.A. Hutcheon, et al., Nucl. Phys. A 442 (1985) 686.[1985SC08] H.R. Schelin, E. Farrelly Pessoa, W.R. Wylie, J.L. Cardoso Jr., R.A. Douglas, Nucl. Sci. Eng.

(1985) 87.[1985SE15] R.E. Segel, S.M. Levenson, P. Zupranski,A.A. Hassan, S. Mukhopadhyay,J.V. Maher, Phys. Rev

C 32 (1985) 721.[1985SH1D] Shvedov, Nemets, in: [Leningrad 85],† 1985, p. 317.[1985SR01] B.B. Srivastava, A. Saxena, Phys. Rev. C 31 (1985) 745.[1985SW01] M.T. Swinhoe, C.A. Uttley, Nucl. Sci. Eng. 89 (1985) 261.[1985TA13] I. Tanihata, H. Hamagaki, O. Hashimoto,S. Nagamiya, Y. Shida, N. Yoshikawa, O. Yamakaw

K. Sugimoto, T. Kobayashi, D.E. Greiner, et al., Phys. Lett. B 160 (1985) 380.[1985TA18] I. Tanihata, H. Hamagaki, O. Hashimoto,Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakaw

T. Kobayashi, N. Takahashi, Phys. Rev. Lett. 55 (1985) 2676.[1985TE01] J.A. Templon, J.H. Dave, C.R. Gould, S. Singkarat, Nucl. Sci. Eng. 91 (1985) 451.[1985WA13] C.W. Wang, P.G. Roos, N.S. Chant, G. Ciangaru, F. Khazaie, D.J. Mack, A. Nadasen, S.J

R.E. Warner, E. Norbeck, et al., Phys. Rev. C 31 (1985) 1662.[1985WI18] J.S. Winfield, N.A. Jelley, W.D.M. Rae, C.L. Woods, Nucl. Phys. A 437 (1985) 65.[1985WO11] L.W. Woo, K. Kwiatkowski, S.H. Zhou, V.E. Viola, Phys. Rev. C 32 (1985) 706.[1986AB04] S.N. Abramovich, B.Ya. Guzhovsky, A.G. Zvenigorodsky, S.V. Trusillo, S.A. Dunaeva, Izv. A

Nauk SSSR, Ser. Fiz. 50 (1986) 65, Bull. Acad. Sci. USSR, Phys. Ser. 50 (1986) 62.[1986AB10] S.N. Abramovich, B.Ya. Guzhovsky, A.V. Ershov, L.M. Lazarev, Izv. Akad. Nauk SSSR,

Fiz. 50 (1986) 2021, Bull. Acad. Sci. USSR, Phys. Ser. 50 (1986) 148.[1986AJ01] F. Ajzenberg-Selove, Nucl. Phys. A 449 (1986) 1.[1986AJ04] F. Ajzenberg-Selove, Nucl. Phys. A 460 (1986) 1.[1986AN1M] Antolkovic, Turk, Kadija, in: [Santa Fe 85],† 1985, p. 183.[1986AR04] K.P. Artemov, M.S. Golovkov, V.Z. Goldberg, I.P. Petrov, V.P. Rudakov, I.N. Serikov, V.A. Timo

feev, Yad. Fiz. 43 (1986) 529, Sov. J. Nucl. Phys. 43 (1986) 335.[1986AR06] J. Arends, P. Detemple, N.Floss, A. Hegerath, S. Huthmacher, B. Mecking, G. Noldeke, R. St

V. Werler, Nucl. Phys. A 454 (1986) 579.[1986AR14] N. Arena, Seb. Cavallaro, G. Fazio, G. Giardina, A. Italiano, F. Mezzanares, Phys. Rev. Lett.

(1986) 1839.[1986AV1C] G.V. Avakov, L.D. Blokhintsev, A.M. Mukhamedzhanov, R. Yarmukhamedov, Yad. Fiz. 43 (19

824, Sov. J. Nucl. Phys. 43 (1986) 524.[1986BA07] K. Baba, I. Endo, H. Fukuma, K. Inoue, S. Kouno, T. Kawamoto, T. Ohsugi, Y. Sumi, T. Take

S. Uehara, Y. Yano, T. Maki, Nucl. Phys. A 448 (1986) 578.[1986BA38] F.C. Barker, R.H. Spear, Astrophys. J. 307 (1986) 847.[1986BA40] F.M. Baumann, G. Domogala, H. Freiesleben, H.J. Paul, S. Puhlvers, H. Sohlbach, Nucl. Inst

Methods Phys. Res. A 247 (1986) 359.[1986BE1Q] Belozerov, et al., [Dubna 86],† 1986, p. 53.[1986BE33] B. Bellenberg, H. Hemmert, E. Kuhlmann, Phys. Rev. C 34 (1986) 1991.[1986BI1D] Bigelow, Freedman, Napolitano, Quin, J. Phys. Soc. Jpn. Suppl. 55 (1986) 1030.[1986BU22] N.A. Burkova, M.A. Zhusupov, A.A. Chumbalov, Izv. Akad. Nauk SSSR, Ser. Fiz. 50 (1986)

Bull. Acad. Sci. USSR, Phys. Ser. 50 (1986) 109.[1986CA1F] D.D.P. Casavant, L.D. Knutson, Bull. Am. Phys. Soc. 31 (1986) 1224.[1986CH1R] Chiba, et al., in: [Santa Fe 85],† 1985, p. 227.[1986CL1B] Clarke, et al., J. Phys. Soc. Jpn. Suppl. 55 (1986) 756.

[1986CO14] C.M. Conneely, W.V. Prestwich, T.J. Kennett, Nucl. Instrum. Methods Phys. Res. A 248 (1986)

416.

Page 178: Energy levels of light nuclei A = 8,9,10

,

. 56

Kotlin-

es.

an,

,

,

u-ov. J.

. Sci.

ill,

eiss-

eiss-

l.

Sav-

t,

37.

,

332 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1986CR1A] P.J. Lindstrom, M.E. Baumgartner, E. Beleal, F. Bieser, M. Bronson, D.E.Greiner, C.P. McParlandD.L. Olson, H.J. Crawford, J. Engelage, et al., Bull. Am. Phys. Soc. 31 (1986) 888.

[1986CU01] M.S. Curtin, L.H. Harwood, J.A. Nolen, B. Sherrill, Z.Q. Xie, B.A. Brown, Phys. Rev. Lett(1986) 34.

[1986CU02] B. Cujec, B. Dasmahapatra, Q. Haider,F. Lahlou, R.A. Dayras, Nucl. Phys. A 453 (1986) 505.[1986DE25] F.W.N. De Boer, K. Abrahams, A. Balanda, H. Bokemeyer, R. van Dantzig, J.F.W. Jansen, B.

ski, M.J.A. De Voigt, J. van Klinken, Phys. Lett. B 180 (1986) 4.[1986DI1B] Dierckx, et al., in: [Santa Fe 85],† 1985, p. 151.[1986DO12] P. Doll, G. Fink, F.P. Brady, R. Garrett, H.O.Klages, H. Krupp, Nucl. Instrum. Methods Phys. R

A 250 (1986) 526.[1986GA18] M. Garcon, B. Bonin, G. Bruge, J.C. Duchazeaubeneix, M. Rouger, J. Saudinos, B.H. Silverm

D.M. Sheppard, J. Arvieux, G. Gaillard, et al., Nucl. Phys. A 458 (1986) 287.[1986GL1C] Yu.A. Glukhov, E.I. Koshchy, Yu.G. Mashkarov, E.Yu. Nikolsky, A.T. Rudchik, S.B. Sakuta

K.F. Ustimenkov, in: [Kharkov 86],† 1986, p. 370.[1986GL1D] Yu.A. Glukhov, E.I. Koshchy, N.S. Lutsay, Yu.G. Mashkarov, E.Yu. Nikolsky, A.T. Rudchik

S.B. Sakuta, K.F. Ustimenkov, in: [Kharkov 86],† 1986, p. 371.[1986GO1B] Gorionov, et al., in: [Kharkov 86],† 1986, p. 373.[1986GO1L] Gould, et al., in: [Santa Fe 85],† 1986, p. 139.[1986GO23] S.A. Goncharov, Yu.I. Denisov, A.M. Mukhamedzhanov, E.A. Romanovsky, G.E. Valiev, I.R. G

lamov, T. Iskhakov, G. Ni, N.K. Timofeyuk, R. Yarmukhamedov, et al., Yad. Fiz. 44 (1986) 303, SNucl. Phys. 44 (1986) 191.

[1986GO28] N.F. Golovanova, V.V. Kurovsky, Izv. Akad. Nauk SSSR, Ser. Fiz. 50 (1986) 963, Bull. AcadUSSR, Phys. Ser. 50 (1986) 131.

[1986HAYU] L.F. Hansen, in: [Santa Fe 85],† 1986, p. 83.[1986HO11] S. Homma, H. Tezuka, J. Phys. Soc. Jpn. 55 (1986) 780.[1986HO23] B. Hoistad, M. Barlett, G.S. Adams, M. Gazzaly, B. Aas, G. Pauletta, F. Irom, K. Jones, J.A. McG

Phys. Lett. B 177 (1986) 299.[1986JA02] L. Jarczyk, B. Kamys, Z. Rudy, A. Strzalkowski, B. Styczen, G.P.A. Berg, A. Magiera, J. M

burger, W. Oelert, P. Von Rossen, et al., Nucl. Phys. A 448 (1986) 1.[1986JA14] L. Jarczyk, B. Kamys, Z. Rudy, A. Strzalkowski, B. Styczen, G.P.A. Berg, A. Magiera, J. M

burger, W. Oelert, P. von Rossen, et al., Nucl. Phys. A 459 (1986) 52.[1986KN06] D.W. Kneff, B.M. Oliver, E. Goldberg, R.C. Haight, Nucl. Sci. Eng. 94 (1986) 136.[1986LA05] K. Langanke, C. Rolfs, Phys. Rev. C 33 (1986) 790.[1986LA19] K. Langanke, C. Rolfs, Z. Phys. A 324 (1986) 307.[1986LA26] M. Lattuada, F. Riggi, C. Spitaleri, D. Vinciguerra, D. Miljanic, M. Zadro, Yao Jinzhang, Nuc

Phys. A 458 (1986) 493.[1986LI22] V.P. Likhachev, A.Yu. Buki, I.G. Evseev, A.A. Zayats, Yu.V. Vladimirov, S.A. Pashchuk, G.A.

itsky, O.G. Savchuk, V.M. Khvastunov, V.A. Fartushny, V.B. Shostak, Yad. Fiz. 44 (1986) 1377.[1986MA48] D.M. Manley, B.L. Berman, W. Bertozzi, J.M. Finn, F.W. Hersman, C.E. Hyde-Wrigh

M.V. Hynes, J.J. Kelly, M.A. Kovash, S. Kowalski, et al., Phys. Rev. C 34 (1986) 1214.[1986MC09] M.W. McNaughton, H. Spinka, H. Shimizu, Nucl. Instrum. Methods Phys. Res. A 243 (1986) 1[1986MC1G] McLean, Zubanov, Thompson, in: [Australia],† 1986, p. 72;

McLean, Zubanov, Thompson, Phys. Abs. 79252 (1986).[1986MI11] D. Miljanic, S. Blagus, M. Zadro, Phys. Rev. C 33 (1986) 2204.[1986MO1D] D.J. Morrissey, C. Bloch, W. Benenson, E. Kashy, Bull. Am. Phys. Soc. 31 (1986) 840.[1986MU07] K. Murphy, R.C. Byrd, C.E. Floyd, P.P. Guss, R.L. Walter, Nucl. Phys. A 455 (1986) 525.[1986MU1D] Murphy, Byrd, Howell, Walter, in: [Santa Fe 85],† 1986, p. 219.[1986NAZZ] J. Napolitano, J. Camp, S.J. Freedom, Bull. Am. Phys. Soc. 31 (1986) 780.[1986PE05] J.P. Perroud, A. Perrenoud,J.C. Alder, B. Gabioud, C. Joseph,J.F. Loude, N. Morel, M.T. Tran

E. Winkelmann, H. Von Fellenberg, et al., Nucl. Phys. A 453 (1986) 542.[1986RO12] G. Royer, J. Phys. G 12 (1986) 623.[1986RO13] C. Rolfs, R.W. Kavanagh, Nucl. Phys. A 455 (1986) 179.

[1986SA1P] Sale, et al., J. Phys. Soc. Jpn. Suppl. 55 (1986) 992.[1986SA1U] E.T. Sadowski, H.D. Knox, D.A. Resler, R.O. Lane, Bull. Am. Phys. Soc. 31 (1986) 1209.
Page 179: Energy levels of light nuclei A = 8,9,10

173

v,

te

R,

,

.

. 51

ov. J.

v,

r-1,

n,

s.

vev,dev

g-

iz. 51

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 333

[1986SC35] R.L. Schulte, J.M. Papazian, P.N. Adler, Nucl. Instrum. Methods Phys. Res. B 15 (1986) 550.[1986SE04] K.K. Seth, S. Iversen, M. Kaletka, D. Barlow, A. Saha, R. Soundranayagam, Phys. Lett. B

(1986) 397.[1986SH1M] Shardanov, Yurev, Vestnik Mosk. Univ. Ser. 3 (1986) 66.[1986SO07] J.P. Soderstrum, L.D. Knutson, Phys. Rev. C 34 (1986) 401.[1986ST1E] Steffens, J. Phys. Soc. Jpn. Suppl. 55 (1986) 459.[1986TE1A] G.M. Ter-Akopian, P.N. Chuong, N.V. Yeremin,V.F. Strizhov, A.P. Kabachenko, L.P. Chelnoko

Nucl. Instrum. Methods Phys. Res. B 17 (1986) 393;G.M. Ter-Akopian, P.N. Chuong, N.V. Yeremin, V.F. Strizhov, A.P. Kabachenko, L.P. Chelnokov, privacommunication.

[1986VD04] A.I. Vdovin, I.G. Golikov, A.V. Golovin, M.N. Zhukov, I.I. Loshchakov, Izv. Akad. Nauk SSSSer. Fiz. 50 (1986) 936, Bull. Acad. Sci. USSR, Phys. Ser. 50 (1986) 103.

[1986VD1C] Vdovin, et al., in: [Kharkov 86],† 1986, p. 290.[1986WA01] E.K. Warburton, Phys. Rev. C 33 (1986) 303.[1986XI1A] X.-L. Xie, X.-J. Kong, C.-W. Sun, S.-M. Wang, Chin. Phys. 6 (1986) 52.[1986YA07] M. Yamazaki, K. Shoda, M. Torikoshi, O. Sasaki, H. Tsubota, Phys. Rev. C 34 (1986) 1123.[1986YA12] T. Yamaya, J.I. Hirota, K. Takimoto, S. Shimoura, A. Sakaguchi, S. Kubono, M. Sugitani, S. Kato

T. Suehiro, M. Fukada, Phys. Rev. C 34 (1986) 2369.[1986YA15] K. Yabana, H. Horiuchi, Prog. Theor. Phys. 76 (1986) 1071.[1986ZA09] M. Zadro, S. Blagus, D. Miljanic, M. Lattuada, F. Riggi, C. Spitaleri, Z. Phys. A 325 (1986) 119[1986ZI01] F. Zijderhand, C. Van Der Leun, Phys. Lett. B 166 (1986) 389.[1987AB09] S.N. Abramovich, L.A. Morkin, V.I. Serov, Yu.V. Strelnikov, Izv. Akad. Nauk SSSR, Ser. Fiz

(1987) 930, Bull. Acad. Sci. USSR, Phys. Ser. 51 (1987) 92.[1987AB15] S.N. Abramovich, B.Ya. Guzhovsky, A.V. Ershov, L.M. Lazarev, Yad. Fiz. 46 (1987) 499, S

Nucl. Phys. 46 (1987) 269.[1987AH02] M.H. Ahsan, S.A. Siddiqui, H.H. Thies, Nucl. Phys. A 469 (1987) 381.[1987AJ02] F. Ajzenberg-Selove, Nucl. Phys. A 475 (1987) 1.[1987ALZG] D.V. Aleksandrov, Yu.A. Glukhov, E.Yu. Nikolsky, B.G. Novatsky, A.A. Ogloblin, D.N. Stepano

in: [Jurmala],† 1987, p. 393.[1987AN14] A.K. Ananikyan, E.A. Arakelyan, G.L. Bayatyan, G.S. Vartanyan, A.R. Voskanyan, K.T. Da

binyan, N.K. Grigoryan, S.G. Knyazyan, A.T. Margaryan, G.G. Marikyan, et al., Yad. Fiz. 46 (1987) 40Sov. J. Nucl. Phys. 46 (1987) 208.

[1987AR13] A.E. Aravantinos, A.C. Xenoulis, Phys. Rev. C 35 (1987) 1746.[1987AR22] ISOLDE Collaboration, E. Arnold, J. Bonn,R. Gegenwarth, W. Neu, R. Neugart, E.-W. Otte

G. Ulm, K. Wendt, Phys. Lett. B 197 (1987) 311.[1987BA34] S. Barhoumi, M. Allab, H. Beaumevieille, A.C. Chami, Z. Meliani, Nucl. Instrum. Methods Phy

Res. B 24–25 (1987) 477.[1987BA54] F.C. Barker, Aust. J. Phys. 40 (1987) 307.[1987BE17] H.W. Becker, C. Rolfs, H.P. Trautvetter, Z. Phys. A 327 (1987) 341.[1987BE2B] A.S. Belousov, Ya.A. Vazdik, E.I. Malinovskii, S.V. Rusakov, P.A. Smirnov, Yu.V. Solo

A.P. Usik, A.R. Terkulov, A.M. Fomenko, KratkieSoobshcheniya Fiz. 9 (1987) 28, Sov. Phys. LebeInst. Rep. No. 9 (1987) 35.

[1987BI1C] Bimbot, et al., in: [Panic 87],† 1987, p. 370.[1987BL13] C. Bloch, W. Bensenson, A.I. Galonsky, E. Kashy, J. Heltsley, L. Heilbronn, M. Lowe, B. Remin

ton, D.J. Morrissey, J. Kasagi, Phys. Rev. C 36 (1987) 203.[1987BL18] R. Blumel, K. Dietrich, Nucl. Phys. A 471 (1987) 453.[1987BO1M] Bochkarev, in: [Jurmala],† 1987, p. 384.[1987BO39] O.V. Bochkarev, A.A. Korsheninnikov, E.A. Kuzmin, I.G. Mukha, A.A. Ogloblin, L.V. Chulkov,

G.B. Yankov, Sov. J. Nucl. Phys. 46 (1987) 7, Yad. Fiz. 46 (1987) 12.[1987BU1A] Burkov, Glozman, Zhusupov, Neudachin, in: [Jurmala],† 1987, p. 515.[1987BU27] N.T. Burtebaev, A.D. Duisebaev, V.S. Sadkovskii, G.A. Feofilov, Izv. Akad. Nauk SSSR, Ser. F

(1987) 615, Bull. Acad. Sci. USSR, Phys. Ser. 51 (1987) 191.

[1987CA06] Z.-J. Cao, T.E. Ward, R.D. Bent, J.D. Brown, E. Korkmaz, H. Nann, T.G. Throwe, Phys. Rev. C 35

(1987) 825.

Page 180: Energy levels of light nuclei A = 8,9,10

,

kemeti,

:

.

ov,(1987)

1987)

i,

n,

-

h,

ys.

er,

i-

ys.

334 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1987CH33] Z. Chen, C.K. Gelbke, W.G. Gong, Y.D. Kim,W.G. Lynch, M.R. Maier, J.Pochodzalla, M.B. TsangF. Saint-Laurent, D. Ardouin, et al., Phys. Rev. C 36 (1987) 2297.

[1987CO16] J. Cook, M.N. Stephens, K.W. Kemper, Nucl. Phys. A 466 (1987) 168.[1987CZ02] J. Czakanski, W. Zipper, W. Dunnweber, W. Hering, D. Konnerth, W. Trombik, K.G. Bernhardt,

H. Bohn, K.A. Eberhard, R. Vandenbosch, Phys. Lett. 199 (1987) 166.[1987DA25] N. Dai, B. Qi, Y. Mao, F. Zhuang, J. Yao, X. Wang, Chin. J. Nucl. Phys. 9 (1987) 103.[1987DE43] H. De Vries, C.W. De Jager, C. De Vries, At. Data Nucl. Data Tables 36 (1987) 495.[1987FR16] J. Franz, E. Rossle, C. Sauerwein, H. Schmitt, H.L. Woolverton, J. Ero, Z. Fodor, J. Kecs

P. Koncz, Zs. Kovacs, et al., Nucl. Phys. A 472 (1987) 733.[1987GA08] E. Gadioli, E. Gadioli Erba, Z. Phys. A 327 (1987) 81.[1987GA11] E. Gadioli, E. Gadioli Erba, Phys. Rev. C 36 (1987) 741.[1987GA20] A.K. Ganguly, B. Chaudhuri, B.B. Baliga, Nuovo Cimento A 97 (1987) 639.[1987GAZM] S.A. Gaidaenko, E.P. Kadkin, M.V. Pasechnik, L.S. Saltykov, A.D. Fursa, in: [Jurmala],† 1987,

p. 299.[1987GL06] H. Glattli, J. Coustham, A. Malinovski, M. Pinot, Z. Phys. A 327 (1987) 149.[1987GLZX] Yu.A. Glukhov, E.I. Koshchy, Yu.G. Mashkarov, E.Yu. Nikolsky, A.T. Rudchik, S.B. Sakuta, in

[Jurmala],† 1987, p. 382.[1987GLZY] Yu.A. Glukhov, O.Yu. Goryunov, E.I. Koshchy,Yu.G. Mashkarov, A.T. Rudchik, S.B. Sakuta, D.N

Stepanov, V.K. Chernievsky, in: [Jurmala],† 1987, p. 381.[1987GO1S] Goryunov, et al., in: [Jurmala],† 1987, p. 474.[1987GO27] S.A. Goncharov, A.M.Mukhamedzhanov, E.A. Romanovsky, G.E. Valiev, I.R. Gulam

T. Iskhakov, G. Nie, N.K. Tomopheyuk, R. Yarmukhamedov, V. Kroha, et al., Czech. J. Phys. B 37168.

[1987GR11] R.E.L. Green, R.G. Korteling, J.M. D’Auria, K.P. Jackson, R.L. Helmer, Phys. Rev. C 35 (1341.

[1987GU1F] I.R. Gulamov, T. Iskhakov, A.M. Mukhamedzhanov, Sh. Kayumov, A.A. Karakhodzhaev, G.K. NE.A. Romanovsky, G.S. Valiev, in: [Jurmala],† 1987, p. 344.

[1987HA1O] Hallin, et al., Nucl. Instrum. Methods Phys. Res. B 24–25 (1987) 276.[1987HO1P] Hofmann, et al., Nucl. Instrum. Methods Phys. Res. B 29 (1987) 32.[1987HU12] G.M. Huber, G.J. Lolos, Z. Papandreou, K.H.Hicks, P.L. Walden, S. Yen, E.G. Auld, F.A. Dunca

R.D. Bent, W.R. Falk, Phys. Rev. C 36 (1987) 2683.[1987HU13] J.R. Hurd, J.S. Boswell, R.C. Minehart, Y. Tzeng, H.J. Ziock, K.O.H. Ziock, L.C. Liu, E.R. Sicil

iano, Nucl. Phys. A 475 (1987) 743.[1987HY01] C.E. Hyde-Wright, W. Bertozzi, T.N. Buti,J.M. Finn, F.W. Hersman, M.V. Hynes, M.A. Kovas

J.J. Kelly, S. Kowalski, J. Lichtenstadt, et al., Phys. Rev. C 35 (1987) 880.[1987KA13] M. Kanazawa, S. Homma, M. Koike, Y. Murata, H. Okuno, F. Soga, N. Yoshikawa, A. Sasaki, Ph

Rev. C 35 (1987) 1828.[1987KA25] K. Kadija, G. Paic, D. Vranic, A. Berdoz, F. Foroughi, Ch. Nussbaum, H.H. Muller, P. Schob

St. Steiner, Nucl. Phys. A 469 (1987) 183.[1987KA32] R.W. Kavanagh, R.G. Marcley, Phys. Rev. C 36 (1987) 1194.[1987KA36] K. Kadija, G. Paic, B. Antolkovic, A. Djaloeis, J. Bojowald, Phys. Rev. C 36 (1987) 1269.[1987KAZL] F. Kadirov, M.A. Kayumov, Sh. Kayumov, A.M. Mukhamedzhanov, U.I. Faizullaev, K. Kham

dova, R. Yarmukhamedov, in: [Jurmala],† 1987, p. 343.[1987KI01] K.H. Kim, M.H. Park, B.T. Kim, Phys. Rev. C 35 (1987) 363.[1987KI05] A. Kiss, F. Deak, Z. Seres, G. Caskey, A. Galonsky, L. Heilbronn, B.A. Remington, J. Kasagi, Ph

Lett. B 184 (1987) 149.[1987KN04] H.D. Knox, D.A. Resler, R.O. Lane, Nucl. Phys. A 466 (1987) 245.[1987KO1K] Kolalis, et al., in: [Jurmala],† 1987, p. 324.[1987KU05] G. Kuechler, A. Richter, W. von Witsch, Z. Phys. A 326 (1987) 447.[1987KW01] E. Kwasniewicz, J. Kisiel, J. Phys. G 13 (1987) 121.[1987KW1B] K. Kwiatkowski, Nucl. Phys. A 471 (1987) 271C.[1987LA16] D. Lal, K. Nishiizumi, R.C. Reedy, M. Suter, W. Wolfli, Nucl. Phys. A 468 (1987) 189;

D. Lal, K. Nishiizumi, R.C. Reedy, M. Suter,W. Wolfli, Nucl. Phys. A 481 (1988) 834, Erratum.[1987LA25] M. Lattuada, F. Riggi, D. Vinciguerra, C. Spitaleri, D. Miljanic, Z. Phys. A 328 (1987) 497.

Page 181: Energy levels of light nuclei A = 8,9,10

wa,

-

36

.

l.

m,

hmidt,

s.

463

v,ys. 45

arden,

Phys.

cl. 18

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 335

[1987LE1F] Leeper, et al., Nucl. Instrum. Methods Phys. Res. B 24–25 (1987) 695.[1987LU1B] Lubovoi, Chitanava, in: [Jurmala],† 1987, p. 512.[1987LY01] J.E. Lynn, S. Kahane, S. Raman, Phys. Rev. C 35 (1987) 26.[1987LY05] Yu.S. Lyutostansky, V.N. Tikhonov, Yad. Fiz. 46 (1987) 66, Sov. J. Nucl. Phys. 46 (1987) 42.[1987MU13] D.E. Murnick, E.G. Myers, M.M. Lowry, F.P. Calaprice, Phys. Rev. Lett. 59 (1987) 1088.[1987NA08] J. Napolitano, S.J. Freedman, J. Camp, Phys. Rev. C 36 (1987) 298.[1987NE1C] Nemets, et al., in: [Jurmala],† 1987, p. 323.[1987NO04] Y. Nojiri, K. Takeyama, K. Matsuta, T. Minamisono, Hyperfine Interact. 35 (1987) 1015.[1987OR02] H. Orihara, S. Nishihara, K. Furukawa, M. Kabasawa, T. Kawamura, Y. Takahashi, T. Nakaga

K. Maeda, Nucl. Instrum. Methods Phys. Res. A 257 (1987) 189.[1987PO03] J. Pochodzalla, C.K. Gelbke, W.G. Lynch,M. Maier, D. Ardouin, H. Delagrange, H. Doubre, C. Gre

goire, A. Kyanowski, W. Mittig, et al., Phys. Rev. C 35 (1987) 1695.[1987PR01] D. Provoost, F. Grummer, K. Goeke, Ann. Phys. 174 (1987) 202.[1987QA01] S.M. Qaim, R. Wolfle, Nucl. Sci. Eng. 96 (1987) 52.[1987RA01] S. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor Jr., P.H. Stelson, At. Data Nucl. Data Tables

(1987) 1.[1987RA23] J. Raisanen, T. Witting, J. Keinonen, Nucl. Instrum. Methods Phys. Res. B 28 (1987) 199.[1987RA32] J. Rapaport, Can. J. Phys. 65 (1987) 574.[1987RA36] M. Rahman, H.M. Sen Gupta, Md.A. Rahman, A.B. Siddique, Nuovo Cimento A 98 (1987) 513[1987SA15] H. Sagawa, H. Toki, J. Phys. G 13 (1987) 453.[1987SA1H] E.T. Sadowski, H.D. Knox, D.A. Resler, R.O. Lane, Bull. Am. Phys. Soc. 32 (1987) 1061.[1987SC08] D. Schmidt, D. Seeliger, G.N. Lovchikova, A.M. Trufanov, Nucl. Sci. Eng. 96 (1987) 159.[1987SC11] L. Schmieder, D. Hilscher, H. Rossner, U. Jahnke, M. Lehmann, K. Ziegler, H.-H. Knitter, Nuc

Instrum. Methods Phys. Res. A 256 (1987) 457.[1987SE05] K.K. Seth, M. Artuso, D. Barlow, S. Iversen, M. Kaletka, H. Nann, B. Parker, R. Soundranayaga

Phys. Rev. Lett. 58 (1987) 1930.[1987SI06] K. Siwek-Wilczynska, J. Wilczynski, C.R. Albiston, Y. Chan, E. Chavez, S.B. Gazes, H.R. Sc

R.G. Stokstad, Phys. Rev. C 35 (1987) 1316.[1987SI18] P.B. Siegel, W.R. Gibbs, Phys. Rev. C 36 (1987) 2473.[1987TA07] Y. Tagishi, Y. Aoki, M. Kurokawa, T. Murayama, T. Sakai, M. Takei, M. Tomizawa, K. Yagi, Phy

Rev. C 35 (1987) 1153.[1987TI07] D.R. Tilley, H.R. Weller, H.H. Hasan, Nucl. Phys. A 474 (1987) 1.[1987TO06] M. Tosaki, M. Fujiwara, K. Hosono, T. Noro, H. Ito, T. Yamazaki, H. Ikegami, Nucl. Phys. A

(1987) 429C.[1987TR01] H.-J. Trost, P. Lezoch, U. Strohbusch, Nucl. Phys. A 462 (1987) 333.[1987VA13] O.I. Vasileva, G.S. Gurevich, A.V. Ignatenko,V.M. Lebedev, N.V. Orlova, A.V. Spassky, I.B. Teplo

L.N. Fateeva, G.V. Shakhvorostova, A.Kh. El-Kamkhavi, Yad. Fiz. 45 (1987) 312, Sov. J. Nucl. Ph(1987) 195.

[1987VA1I] Valiev, et al., in: [Jurmala],† 1987, p. 346.[1987VI05] G.A. Viano, Phys. Rev. C 36 (1987) 933.[1987VO08] V.I. Voloshchuk, I.V. Dogyust, V.V. Zolenko,V.V. Kirichenko, A.F. Khodyachikh, Ukr. Fiz. Zh. 32

(1987) 651.[1987VO1F] Voronaova, et al., in: [Jurmala],† 1987, p. 581.[1987WA07] H. Walliser, S. Nakaichi-Maeda, Nucl. Phys. A 464 (1987) 366.[1987WA21] R.E. Warner, B.A. Vaughan, J.A. Ditusa, J.W. Rovine, R.S. Wakeland, C.P. Browne, S.E. D

S. Sen, A. Nadasen, A. Basak,et al., Nucl. Phys. A 470 (1987) 339.[1987WA25] R.E. Warner, F.G. Johnson, C.P. Browne, A. Rollefson, A. Galonsky, A. Nadasen, Nucl.

A 472 (1987) 522.[1987ZA01] M. Zadro, S. Blagus, D. Miljanic, D. Rendic, Nucl. Sci. Eng. 95 (1987) 79.[1987ZA07] M. Zadro, D. Miljanic, M. Lattuada, F.Riggi, C. Spitaleri, Nucl. Phys. A 474 (1987) 373.[1987ZH10] M.A. Zhusupov, Yu.N. Uzikov, Fiz. Elem. Chastits At. Yadra 18 (1987) 323, Sov. J. Part. Nu

(1987) 136.

[1987ZI01] F. Zijderhand, S.W. Kikstra, S.S.Hanna, C. van der Leun, Nucl. Phys. A 462 (1987) 205.[1988AB11] S. Abd el-Kariem, T. Rohwer, G. Staudt, W. Leitner, Nucl. Phys. A 487 (1988) 353.
Page 182: Energy levels of light nuclei A = 8,9,10

01

. 5

8)

17.

271

.

,

.

s. B 35

n,

1.ov. J.

2078.

ellie,

ez2124.

u.I.88)

, Bull.

336 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1988AJ01] F. Ajzenberg-Selove, Nucl. Phys. A 490 (1988) 1.[1988AL07] S.C. Allcock, W.D.M. Rae, P.R. Keeling, A.E. Smith, B.R. Fulton, D.W. Banes, Phys. Lett. B 2

(1988) 201.[1988AL1G] Aleksandrov, et al., in: [Baku],† 1988, p. 377.[1988AR05] N. Arena, Seb. Cavallaro, G. Fazio, G. Giardina, A. Italiano, F. Mezzanares, Europhys. Lett

(1988) 517.[1988AR17] ISOLDE Collaboration, E. Arnold, J. Bonn,W. Neu, R. Neugart, E.W. Otten, Z. Phys. A 331 (198

295.[1988BA29] F.C. Barker, Phys. Rev. C 37 (1988) 2920.[1988BA30] A. Barbadoro, D. Consolaro, F. Pellegrini, G.F. Segato, I. Gabrielli, Phys. Rev. C 38 (1988) 5[1988BA55] P.H. Barker, S.M. Ferguson, Phys. Rev. C 38 (1988) 1936.[1988BA58] D.B. Barlow, B.M.K. Nefkens, C.T. Pillai, K.W. Jones, Nucl. Instrum. Methods Phys. Res. A

(1988) 471.[1988BA67] F.C. Barker, E.K. Warburton, Nucl. Phys. A 487 (1988) 269.[1988BA75] F.C. Barker, Aust. J. Phys. 41 (1988) 743.[1988BE04] T.D. Beynon, B.S. Sim, Ann. Nucl. Energy 15 (1988) 27.[1988BE34] A.V. Belozerov, K. Borcha, Z. Dlougy, A.M. Kalinin, N.H. Thiau, Yu.E. Penionzhkevich, Izv. Akad

Nauk SSSR, Ser. Fiz. 52 (1988) 100, Bull. Acad. Sci. USSR, Phys. Ser. 52 (1988) 94.[1988BEYJ] A.V. Belozerov, K. Borcha, I. Vintsour, Z. Dlougy, N. Tyau, Yu.E. Penionzhkevich, in: [Baku]†

1988, p. 380.[1988BO20] H.G. Bohlen, B. Gebauer, D. Kolbert, W. vonOertzen, E. Stiliaris, M. Wilpert, T. Wilpert, Z. Phys

A 330 (1988) 227.[1988BO37] C. Boni, E. Cereda, G.M. Braga Marcazzan, V. De Tomasi, Nucl. Instrum. Methods Phys. Re

(1988) 80.[1988BO38] O.V. Bochkarev, A.A. Korsheninnikov, E.A. Kuzmin, I.G.Mukha, L.V. Chulkov, G.B. Yankov,

Pis’ma Zh. Eksp. Teor. Fiz. 48 (1988) 124, JETP Lett. 48 (1988) 133.[1988BO47] K. Bodek, B. Bruggemann, J. Krug, P. Lekkas, W. Lubcke, H. Ruhl, M. Steinke, M. Stepha

A. Szczurek, D. Kamke, Few-Body Systems 3 (1988) 135.[1988BU04] S. Burzynski, J. Turkiewicz, K. Rusek, I.M. Turkiewicz, P. Zupranski, Nucl. Phys. A 480 (1988) 5[1988BU06] N.A. Burkova, L.Ya. Glozman, M.A. Zhusupov, V.G. Neudachin, Yad. Fiz. 47 (1988) 983, S

Nucl. Phys. 47 (1988) 627.[1988BU18] M. Burlein, H.T. Fortune, P.H. Kutt, R. Gilman, R. Sherr, J.D. Brown, Phys. Rev. C 38 (1988)[1988CA28] G.R. Caughlan, W.A. Fowler,At. Data Nucl. Data Tables 40 (1988) 283.[1988CHZN] S. Chiba, K. Hasegawa, M. Mizumoto, Y. Yamanouti, JAERI Ann. Rep. 1987 (1988) 159.[1988CO15] E. Comay, I. Kelson, A. Zidon, Phys. Lett. B 210 (1988) 31.[1988DA05] B. Dasmahapatra, B. Cujec, Nucl. Instrum. Methods Phys. Res. A 265 (1988) 411.[1988DA16] S.N. Dancer, I.J.D. MacGregor, J.R.M. Annand, I. Anthony, G.I. Crawford, S.J. Hall, J.D. K

J.C. McGeorge, R.O. Owens, P.A. Wallace, et al., Phys. Rev. Lett. 61 (1988) 1170.[1988DE38] P. Descouvemont, D. Baye, Nucl. Phys. A 487 (1988) 420.[1988DI02] S.S. Dietrich, B.L. Berman,At. Data Nucl. Data Tables 38 (1988) 199.[1988DU04] E.I. Dubovoy, G.I. Chitanava, Yad. Fiz. 47 (1988) 75.[1988DU06] E.I. Dubovoy, G.I. Chitanava, Yad. Fiz. 47 (1988) 370.[1988ET02] A. Etchegoyen, M.C. Etchegoyen, E.D. Izquierdo, D. Abriola, D.E. Di Gregorio, J.O. Fernand

Niello, A.M.J. Ferrero, S. Gil, A.O. Macchiavelli, A.J. Pacheco, J.E. Testoni, Phys. Rev. C 38 (1988)[1988FE06] D. Ferenc, B. Antolkovic, G. Paic, Fizika 20 (1988) 77.[1988GI02] T.A. Girard, A.S. Carnoy, J. Deutsch, R. Prieels, M.L. Schmit, Z. Phys. A 330 (1988) 51.[1988GO02] S.A. Goncharov, A.M. Mukhamedzhanov, E.A. Romanovsky, G.E. Valiev, I.R. Gulamov, Y

Denisov, T. Iskhakov, A. Karakhodzhaev, G.K. Nie, R. Yarmukhamedov, et al., Czech. J. Phys. B 38 (1912.

[1988GO1E] S.A. Goncharov, E.A. Romanovsky, N.K. Timofeyuk, in: [Baku],† 1988, p. 349.[1988GU10] B.Ya. Guzhovsky, L.M. Lazarev, A.V. Ershov, Izv. Akad. Nauk SSSR, Ser. Fiz. 52 (1988) 61

Acad. Sci. USSR, Phys. Ser. 52 (1988) 56.[1988GU1D] I.R. Gulamov, A.M. Mukhamedzhanov, G.K. Ni, in: [Baku],† 1988, p. 300.

Page 183: Energy levels of light nuclei A = 8,9,10

e-

i,

.

n,

bles of

v,

,

ys.

i-) 1,

az,

n, Bull.

4.ll,

Nuovo

. Xie,

en,

i-

Bull.

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 337

[1988GU20] I.R. Gulamov, T. Iskhakov, A.M. Mukhamedzhanov, G.K. Ni, E.A. Romanovsky, R. Yarmukhamdov, Ukr. Fiz. Zh. 33 (1988) 1618.

[1988HA21] J.R. Hall, D.L. Clark, S.J. Freedman, S.S. Hanna, Nucl. Phys. A 483 (1988) 1.[1988HE08] R. Henneck, C. Gysin, P. Haffter, M. Hammans, W. Lorenzon, M.A. Pickar, I. Sick, S. Burzynsk

Phys. Rev. C 37 (1988) 2224.[1988HI02] R.S. Hicks, J. Button-Shafer, B. Debebe, J.Dubach, A. Hotta, R.L. Huffman, R.A. Lindgren, G.A

Peterson, R.P. Singhal, C.W. de Jager, Phys. Rev. Lett. 60 (1988) 905.[1988HU08] M. Huyse, P. Dendooven, K. Deneffe, Nucl. Instrum. Methods Phys. Res. B 31 (1988) 483.[1988HU11] G.M. Huber, G.J. Lolos, K.M. Furutani, W.R. Falk, R.D. Bent, K.H. Hicks, P.L. Walden, S. Ye

Phys. Rev. C 38 (1988) 1304.[1988JA1K] K.P. Jackson, A. Celler, in: C.J. Horowitz, C.D. Goodman, G.E. Walker (Eds.), Spin Observa

Nuclear Probes, Plenum, New York, 1988, p. 139.[1988KA1K] Karmanov, et al., in: [Baku],† 1988, p. 326.[1988KA30] M.A. Kayumov, Sh.S. Kayumov, S.P. Krekoten, A.M. Mukhamedzhanov, Kh.D. Raziko

K. Khamidova, R. Yarmukhamedov, Yad. Fiz. 48 (1988) 629, Sov. J. Nucl. Phys. 48 (1988) 403.[1988KE04] J.J. Kelly, Phys. Rev. C 38 (1988) 1490.[1988KH11] A.E. Khalil, Can. J. Phys. 66 (1988) 612.[1988KN02] J. Knoll, R. Shyam, Nucl. Phys. A 483 (1988) 711.[1988KO03] P.E. Koehler, C.D. Bowman, F.J. Steinkruger, D.C. Moody, G.M. Hale, J.W. Starner, S.A. Wender

R.C. Haight, P.W. Lisowski, W.L. Talbert, Phys. Rev. C 37 (1988) 917.[1988KO10] T. Kobayashi, O. Yamakawa, K. Omata, K. Sugimoto, T. Shimoda, N. Takahashi, I. Tanihata, Ph

Rev. Lett. 60 (1988) 2599.[1988KO29] E. Kolbe, K. Langanke, H.J. Assenbaum, Phys. Lett. B 214 (1988) 169.[1988KO36] V.P. Koptev, S.M. Mikirtychyants, M.M. Nesterov, N.A. Tarasov, G.V. Shcherbakov, N.K. Abros

mov, V.A. Volchenkov, A.B. Gridnev, V.A. Eliseev, E.M. Ivanov, et al., Zh. Eksp. Teor. Fiz. 94 (1988Sov. Phys. JETP 94 (1988) 2177.

[1988KOZL] Korda, et al., in: [Baku],† 1988, p. 586.[1988KR11] L. Kraus, A. Boucenna, I. Linck, B. Lott,R. Rebmeister, N. Schulz, J.C. Sens, M.C. Merm

B. Berthier, R. Lucas, et al., Phys. Rev. C 37 (1988) 2529.[1988KRZY] M. Kroupa, S.J. Freedman, R. Holzmann, J. Napolitano, J. Nelson, P. Barker, S. Ferguso

Am. Phys. Soc. 33 (1988) 902.[1988LA07] R.A. Langley, M. Lewis, R.A. Zuhr, Nucl. Instrum. Methods Phys. Res. B 29 (1988) 599.[1988LA25] F. Lahlou, B. Cujec, B. Dasmahapatra, Nucl. Phys. A 486 (1988) 189.[1988LE06] M. LeMere, Y.C. Tang, Phys. Rev. C 37 (1988) 1369.[1988LI27] G.-B. Liu, H.T. Fortune, Phys. Rev. C 38 (1988) 1985.[1988MA07] J.F. Mateja, G.L. Gentry, N.R. Fletcher, L.C. Dennis, A.D. Frawley, Phys. Rev. C 37 (1988) 100[1988MI03] D. Mikolas, B.A. Brown, W. Benenson, L.H. Harwood, E. Kashy, J.A. Nolen Jr., B. Sherri

J. Stevenson, J.S. Winfield, Z.Q. Xie, et al., Phys. Rev. C 37 (1988) 766.[1988RA20] Md.A. Rahman, S.N. Rahman, H.M. Sen Gupta, H.-J. Trost, P. Lezoch, U. Strohbusch,

Cimento A 99 (1988) 317.[1988RA27] Md.A. Rahman, Nuovo Cimento A 100 (1988) 419.[1988RE09] D.A. Resler, E.T. Sadowski, Nucl. Instrum. Methods Phys. Res. A 269 (1988) 607.[1988SA04] M. Samuel, B.A. Brown, D. Mikolas, J. Nolen, B. Sherrill, J. Stevenson, J.S. Winfield, Z.Q

Phys. Rev. C 37 (1988) 1314.[1988SH1F] Shvedov, Nemets, Rudchik, in: [Baku],† 1988, p. 352.[1988SU14] T. Suda, O. Konno, I. Nomura, T. Suzuki, T. Terasawa, Y. Torizuka, J. Yokokawa, K. Maeda, J. Ed

G. O’Keefe, et al., J. Phys. Soc. Jpn. 57 (1988) 5.[1988TA10] I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura, K. Ekuni, K. Sugimoto, N. Takahashi, T. Sh

moda, H. Sato, Phys. Lett. B 206 (1988) 592.[1988TA13] H. Takai, K. Koide, A. Bairrio Nuevo Jr., O. Dietzsch, Phys. Rev. C 38 (1988) 741.[1988TE04] H. Tezuka, J. Phys. Soc. Jpn. 57 (1988) 3766.[1988TRZY] D.E. Trcka, S.P. Van Verst, A.D. Frawley, K.W. Kemper, J.D. Fox, V. Hnizdo, E.G. Myers,

Am. Phys. Soc. 33 (1988) 1101.[1988WA1E] E.K. Warburton, in: [Brighton 87],† 1988, p. 81.

Page 184: Energy levels of light nuclei A = 8,9,10

.9

rleson,

Kong,

4.,

d.

b-

Sci.

za-

ck,

ai,

ajdas,

9

9)

) 53.v. J.

v,

338 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1988WE09] J. Wen, J.C. Travis, T.B. Lucatorto, B.C. Johnson, C.W. Clark, Phys. Rev. A 37 (1988) 4207[1988WE17] I. Weitzenfelder, N. Bischof, W. Tiereth, H. Voit, W. von Oertzen, H.H. Wolter, Nucl. Phys. A 48

(1988) 125.[1988ZE01] B. Zeidman, D.F. Geesaman, P. Zupranski, R.E. Segel, G.C. Morrison, C. Olmer, G.R. Bu

S.J. Greene, R.L. Boudrie, C.L. Morris, et al., Phys. Rev. C 38 (1988) 2251.[1989BA24] A.K. Basak, Nucl. Phys. A 499 (1989) 353.[1989BA28] S.C. Baker, M.J. Brown, P.H. Barker, Phys. Rev. C 40 (1989) 940.[1989BA31] F.C. Barker, Aust. J. Phys. 42 (1989) 25.[1989BE28] F.D. Becchetti, W.Z. Liu, D.A. Roberts, J.W. Janecke, J.J. Kolata, A. Morsad, X.J.

R.E. Warner, Phys. Rev. C 40 (1989) R1104.[1989BO26] I. Borbely, Sh.S. Kayumov, A.M. Mukhamedzhanov, R. Yarmukhamedov, Yad. Fiz. 50 (1989) 6[1989BO42] O.V. Bochkarev, L.V. Chulkov, A.A. Korsheninnikov, E.A. Kuzmin, I.G. Mukha, G.B. Yankov

Nucl. Phys. A 505 (1989) 215.[1989BR05] D.J. Brenner, R.E. Prael, At. Data Nucl. Data Tables 41 (1989) 71.[1989ET03] A. Etchegoyen, E.D. Izquierdo, M.C. Etchegoyen, Phys. Lett. B 231 (1989) 224.[1989FU03] Y. Fujiwara, Y.C. Tang, Phys. Rev. Lett. B 222 (1989) 311.[1989GE10] P.M. Gensini, Nuovo Cimento A 102 (1989) 1563.[1989GL03] Yu.A. Glukhov, O.Yu. Goryunov, E.I. Koshchy, Yu.G. Mashkarov, A.T. Rudchik, S.B. Sakuta, Ya

Fiz. 49 (1989) 1243.[1989GR06] P.A.M. Gram, S.A. Wood, E.R. Kinney, S. Hoibraten, P. Mansky, J.L. Matthews, T. Soos, G.A. Re

ka Jr., D.A. Roberts, Phys. Rev. Lett. 62 (1989) 1837.[1989GU08] R. Guidotti, F. Saporetti, G. Maino, A. Ventura, Nuovo Cimento A 101 (1989) 111.[1989HA14] J.F. Harmon, Nucl. Instrum. Methods Phys. Res. B 40–41 (1989) 507.[1989HE24] L. Heilbronn, A. Galonsky, X. Yang, F.Deak, A. Kiss, Z. Seres, Phys. Rev. C 40 (1989) 2576;

L. Heilbronn, A. Galonsky, X. Yang, F. Deak, A. Kiss, Z. Seres, Phys. Rev. C 43 (1991) 2898, Erratum.[1989KE03] J.J. Kelly, W. Bertozzi, T.N. Buti, J.M. Finn,F.W. Hersman, C. Hyde-Wright, M.V. Hynes, M.A. Ko-

vash, B. Murdock, B.E. Norum, et al., Phys. Rev. C 39 (1989) 1222.[1989KO55] Yu.E. Kozyr, M.V. Sokolov, Izv. Akad. Nauk SSSR, Ser. Fiz. 53 (1989) 2246, Bull. Acad.

USSR, Phys. Ser. 53 (1989) 194.[1989LE07] M. LeMere, Y.C. Tang, Phys. Rev. C 39 (1989) 1696.[1989LI24] Z. Liu, H. Zhang, J. Xu, S. Liu, Chin. J. Nucl. Phys. 11 (1989) 9.[1989NA03] T.K. Nayak, T. Murakami, W.G. Lynch, K. Swartz, D.J. Fields, C.K. Gelbke, Y.D. Kim, J. Pochod

lla, M.B. Tsang, H.M. Xu, et al., Phys. Rev. Lett. 62 (1989) 1021.[1989NA10] A. Nadasen, P.G. Roos, N.S. Chant, C.C. Chang, G. Ciangaru, H.F. Breuer, J. Wesick, E. Norbe

Phys. Rev. C 40 (1989) 1130.[1989RA17] P. Raghavan, At. Data Nucl. Data Tables 42 (1989) 189.[1989SI02] P.J. Simmonds, N.M. Clarke, K.I. Pearce, R.J. Griffiths, B. Stanley, S. Roman, A. Farooq, G. R

M.C. Mannion, C.A. Ogilvie, J. Phys. G 15 (1989) 353.[1989SU13] M. Sugimoto, P.T. Guenther, J.E. Lynn,A.B. Smith, J.F. Whalen, Nucl. Sci. Eng. 103 (1989) 37.[1989SZ02] A. Szczurek, K. Bodek, J. Krug, W. Lubcke, H. Ruhl, M. Steinke, M. Stephan, D. Kamke, W. H

L. Jarczyk, et al., Z. Phys. A 333 (1989) 271.[1989TE04] H. Terazawa, J. Phys. Soc. Jpn. 58 (1989) 767.[1989VA17] O.Yu. Vasilev, A.A. Korsheninnikov, I.G. Mukha, L.V. Chulkov, Pis’ma Zh. Eksp. Teor. Fiz. 4

(1989) 539, JETP Lett. 49 (1989) 622.[1989VA18] T.N. Vasina, V.M. Golovkov, M.R. Yakovlev, At. Energ. 66 (1989) 56, Sov. J. At. Energy 66 (198

75.[1989VO01] V.I. Voloshchuk, V.N. Guryev, V.A. Zolenko, Yad. Fiz. 49 (1989) 83, Sov. J. Nucl. Phys. (1989[1989VO04] V.I. Voloshchuk, I.V. Dogyust, V.V. Kirichenko, A.F. Khodyachikh, Yad. Fiz. 49 (1989) 916, So

Nucl. Phys. 49 (1989) 569.[1989WI16] M. Wiescher, R. Steininger, F. Kappeler, Astrophys. J. 344 (1989) 464.[1990AJ01] F. Ajzenberg-Selove, Nucl. Phys. A 506 (1990) 1.[1990AM05] A.I. Amelin, M.G. Gornov, Yu.B. Gurov, A.L. Ilin, P.V. Morokhov, V.A. Pechkurov, V.I. Savele

F.M. Sergeev, S.A. Smirnov, B.A. Chernyshev, et al., Yad. Fiz. 52 (1990) 1231, Sov. J. Nucl. Phys. 52 (1990)782.

Page 185: Energy levels of light nuclei A = 8,9,10

16

w-

,

90)

gov-

990)

.

0)

ull.

TP

tts-

n,

lfs,

u,

,

c,

1990)

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 339

[1990AR17] N. Arena, S. Cavallaro, A. D’Arrigo, G. Fazio, G. Giardina, A. Italiano, A. Taccone, J. Phys. G(1990) 1511.

[1990BA02] P.H. Barker, G.D. Leonard, Phys. Rev. C 41 (1990) 246.[1990BE49] C. Bennhold, L. Tiator, L.E. Wright, Can. J. Phys. 68 (1990) 1270.[1990BO43] K. Bodek, J. Krug, W. Lubcke, S. Obermanns, H. Ruhl, M. Steinke, M. Stephan, D. Kamke, Fe

Body Systems 8 (1990) 23.[1990BO51] O.V. Bochkarev, Yu.O. Vasilev, A.A. Korsheninnikov, E.A. Kuzmin, I.G. Mukha, V.M. Pugach

L.V. Chulkov, G.B. Yankov, Yad. Fiz. 52 (1990) 1525, Sov. J. Nucl. Phys. 52 (1990) 964.[1990BR24] F.P. Brady, J.L. Romero, Nucl. Sci. Eng. 106 (1990) 318.[1990CA41] A.S. Carnoy, J. Deutsch, T.A. Girard, R. Prieels, Phys. Rev. Lett. 65 (1990) 3249.[1990DE02] F.W.N. de Boer, J. Lehmann, J. Steyaert, J. Phys. G 16 (1990) L1.[1990DI06] B. Dittrich, U. Herpers, M. Lupke, R. Michel, H.J. Hofmann, W. Wolfli, Radiochim. Acta 50 (19

11.[1990DI13] B. Dittrich, U. Herpers, H.J. Hofmann, W. Wolfli, R. Bodemann, M. Lupke, R. Michel, P. Dra

itsch, D. Filges, Nucl. Instrum. Methods Phys. Res. B 52 (1990) 588.[1990DO03] I.V. Dogyust, V.A. Zolenko, V.V. Kirichenko, Yad. Fiz. 51 (1990) 913, Sov. J. Nucl. Phys. 51 (1

583.[1990EN08] P.M. Endt, C. van der Leun, Nucl. Phys. A 521 (1990) 1.[1990ER03] R.A. Eramzhyan, M. Gmitro, S.S. Kamalov, Phys. Rev. C 41 (1990) 2865.[1990GU36] B.Ya. Guzhovsky, L.M. Lazarev, Izv. Akad. Nauk SSSR, Ser. Fiz. 54 (1990) 2244, Bull. Acad. Sci

USSR, Phys. Ser. 54 (1990) 156.[1990HO28] N.E. Holden, Pure Appl. Chem. 62 (1990) 941.[1990HU09] J. Hufner, V. Kitipova, Nucl. Phys. A 517 (1990) 571.[1990KA17] Sh.S. Kayumov, A.M. Mukhamedzhanov,R. Yarmukhamedov, I. Borbely, Z. Phys. A 336 (199

297.[1990LE05] Y. Leifels, G. Domogala, R.P. Eule, H. Freiesleben, Z. Phys. A 335 (1990) 183.[1990LI37] Z. Liu, J. Xu, H. Zhang, S. Liu, Chin. J. Nucl. Phys. 12 (1990) 253.[1990LO18] I.I. Loshchakov, A.V. Golovin, A.I. Vdovin, Izv. Akad. Nauk SSSR, Ser. Fiz. 54 (1990) 93, B

Acad. Sci. USSR, Phys. Ser. 54 (1990) 97.[1990MU13] A.M. Mukhamedzhanov, N.K. Timofeyuk, Pis’ma Zh. Eksp. Teor. Fiz. 51 (1990) 247, JE

Lett. 51 (1990) 282.[1990NY01] ISOLDE Collaboration, G. Nyman, R.E. Azuma, P.G. Hansen, B. Jonson, P.O. Larsson, S. Ma

son, A. Richter, K. Riisager, O. Tengblad, K. Wilhelmsen, Nucl. Phys. A 510 (1990) 189.[1990OL01] N. Olsson, E. Ramstrom, B. Trostell, Nucl. Phys. A 509 (1990) 161.[1990PA03] Z. Papandreou, G.J. Lolos, G.M. Huber, J.C.Cormier, S.I.H. Naqvi, D.F. Ottewell, P.L. Walde

G. Jones, Phys. Rev. C 41 (1990) R1339.[1990PA22] T. Paradellis, S. Kossionides, G. Doukellis, X. Aslanoglou, P. Assimakopoulos, A. Pakou, C. Ro

K. Langanke, Z. Phys. A 337 (1990) 211.[1990RA16] D.P. Rath, R.N. Boyd, H.J. Hausman, M.S. Islam, G.W. Kolnicki, Nucl. Phys. A 515 (1990) 338.[1990RA28] G. Raimann, B. Bach, K. Grun, H. Herndl, H. Oberhummer, S. Engstler, C. Rolfs, H. Abele, R. Ne

G. Staudt, Phys. Lett. B 249 (1990) 191.[1990RI06] L. Ricken, K. Bodek, A. Szczurek, Nucl. Phys. A 515 (1990) 226.[1990SA16] K.E. Sale, T.-F. Wang, R.N. Boyd, G.J. Mathews, D.W. Heikkinen, M.L. Roberts, M.S. Islam

P.B. Corn, Phys. Rev. C 41 (1990) 2418.[1990SA24] E.T. Sadowski, H.D. Knox, D.A. Resler, R.O. Lane, Phys. Rev. C 42 (1990) 190.[1990SR03] J. Sromicki, M. Allet, A. Converse, W. Hajdas, J. Lang, H. Luscher, R. Muller, O. Naviliat-Cunci

W. Haeberli, M.A. Miller, et al., J. Phys. Colloq. C 6 (1990) 527.[1990TR02] D.E. Trcka, A.D. Frawley, K.W. Kemper, D. Robson, J.D. Fox, E.G. Myers, Phys. Rev. C 41 (

2134.[1990ZH01] D.-C. Zheng, L. Zamick, N. Auerbach, Ann. Phys. 197 (1990) 343.[1991AB04] S. Abdel-Kariem, Czech. J. Phys. B 41 (1991) 545.[1991AJ01] F. Ajzenberg-Selove, Nucl. Phys. A 523 (1991) 1.

[1991AR18] N. Arena, S. Cavallaro, A. D’Arrigo, G. Fazio, G. Giardina, A. Italiano, A. Taccone, J. Phys. Soc.

Jpn. 60 (1991) 2175.

Page 186: Energy levels of light nuclei A = 8,9,10

J.

.J. Ko-

el

r,

ellin,

th,

chik,

v,0.

. A 310

ack-

i-

a,

i-

5.

e,

n,

340 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1991BE40] S.M. Bekbaev, G. Kim, A.M. Mukhamedzhanov, N.K. Timofeyuk, Yad. Fiz. 54 (1991) 387, Sov.Nucl. Phys. 54 (1991) 232.

[1991BE42] Ya.A. Berdnikov, Yad. Fiz. 54 (1991) 1197, Sov. J. Nucl. Phys. 54 (1991) 726.[1991BE49] F.D. Becchetti, J.A. Brown, K. Ashktorab, J.W. Janecke, W.Z. Liu, D.A. Roberts, R.J. Smith, J

lata, K. Lamkin, A. Morsad, R.E. Warner, Nucl. Instrum. Methods Phys. Res. B 56–57 (1991) 554.[1991BL10] B. Blank, J.-J. Gaimard, H. Geissel, K.-H. Schmidt, H. Stelzer, K. Summerer, D. Bazin, R. D

Moral, J.P. Dufour, A. Fleury, et al., Z. Phys. A 340 (1991) 41.[1991BO31] M.J.G. Borge, P.G. Hansen, L. Johannsen, B. Jonson, T. Nilsson, G. Nyman, A. Richter, K. Riisage

O. Tengblad, K. Wilhelmsen, et al., Z. Phys. A 340 (1991) 255.[1991BO48] M. Bozoian, Nucl. Instrum. Methods Phys. Res. B 56–57 (1991) 740.[1991BR09] H.J. Brede, G. Dietze, H. Klein,H. Scholermann, Nucl. Sci. Eng. 107 (1991) 22.[1991BR11] D. Branford, A. Sada, T. Davinson, N.J. Davis, E.W. Macdonald, J. Rahighi, P. S

C.H. Shepherd-Themistocleous, A.C. Shotter, Phys. Rev. C 43 (1991) 2866.[1991BR14] J.A. Brown, F.D. Becchetti, J.W. Janecke, K.Ashktorab, D.A. Roberts, J.J. Kolata, R.J. Smi

K. Lamkin, R.E. Warner, Phys. Rev. Lett. 66 (1991) 2452.[1991CA12] A.S. Carnoy, J. Deutsch, T.A. Girard, R. Prieels, Phys. Rev. C 43 (1991) 2825.[1991DI03] S. Dixit, W. Bertozzi, T.N. Buti, J.M. Finn,F.W. Hersman, C.E. Hyde-Wright, M.V. Hynes, M.A. Ko-

vash, B.E. Norum, J.J. Kelly, et al., Phys. Rev. C 43 (1991) 1758.[1991GL02] J.P. Glickman, W. Bertozzi, T.N. Buti, S.Dixit, F.W. Hersman, C.E.Hyde-Wright, M.V. Hynes,

R.W. Lourie, B.E. Norum, J.J. Kelly, et al., Phys. Rev. C 43 (1991) 1740.[1991GL03] L. Glowacka, J. Turkiewicz, O.Yu. Goryunov, A.V. Mokhnach, O.A. Ponkratenko, A.T. Rud

V.K. Chernievsky, A.A. Shvedov, E.I. Koshchy, Yu.G. Mashkarov, Nucl. Phys. A 534 (1991) 349.[1991GO13] M.S. Golovkov, V.Z. Goldberg, L.S. Danelyan, V.I. Dukhanov, I.L. Kuleshov, A.E. Pakhomo

I.N. Serikov, V.A. Timofeev, V.N. Unezhev, Yad. Fiz. 53 (1991) 888, Sov. J. Nucl. Phys. 53 (1991) 55[1991IO01] D.B. Ion, R. Ion-Mihai, Rev. Roum. Phys. 36 (1991) 15.[1991KR19] M.A. Kroupa, S.J. Freedman, P.H. Barker, S.M. Ferguson, Nucl. Instrum. Methods Phys. Res

(1991) 649.[1991LE22] P.R. Lewis, G.G. Shute, B.M. Spicer, R.S. Henderson, R. Abegg, D. Frekers, O. Hausser, K.P. J

son, C.A. Miller, S. Yen, Nucl. Phys. A 532 (1991) 583.[1991LE33] J.A. Leavitt, L.C. McIntyre Jr., Nucl. Instrum. Methods Phys. Res. B 56–57 (1991) 734.[1991LY01] J.E. Lynn, E.T. Jurney, S. Raman, Phys. Rev. C 44 (1991) 764.[1991MA04] Z.Q. Mao, A.E. Champagne, Nucl. Phys. A 522 (1991) 568.[1991NA01] Y. Nagai, K. Kunihiro, T. Toriyama, S. Harada, Y. Torii, A. Yoshida, T. Nomura, J. Tanaka, T. Sh

nozuka, Phys. Rev. C 43 (1991) R9.[1991NA16] Y. Nagai, M. Igashira, N. Mukai, T. Ohsaki, F. Uesawa, K. Takeda, T. Ando, H. Kitazaw

S. Kubono, T. Fukuda, Astrophys. J. 381 (1991) 444.[1991NA19] Y. Nagai, K. Takeda, S. Motoyama, T. Ohsaki, M. Igashira, N. Mukai, F. Uesawa, T. Ando, H. K

tazawa, T. Fukuda, Nucl. Instrum. Methods Phys. Res. B 56–57 (1991) 492.[1991RA09] G. Rasche, D. Robustelli, F.C. Barker, Phys. Rev. C 44 (1991) R5.[1991RE02] P.L. Reeder, R.A. Warner, W.K. Hensley,D.J. Vieira, J.M. Wouters, Phys. Rev. C 44 (1991) 143[1991RI03] S.P. Riley, J.M. Irvine, J. Phys. G 17 (1991) 35.[1991SC12] A. Scalia, Nuovo Cimento A 104 (1991) 563.[1991SC25] A. Scalia, Nuovo Cimento A 104 (1991) 713.[1991SC32] A. Scalia, Nuovo Cimento A 104 (1991) 1441.[1991SE06] K.K. Seth, B. Parker, Phys. Rev. Lett. 66 (1991) 2448.[1991SM02] R.J. Smith, J.J. Kolata, K. Lamkin, A. Morsad, F.D. Becchetti, J.A. Brown, W.Z. Liu, J.W. Janeck

D.A. Roberts, R.E. Warner, Phys. Rev. C 43 (1991) 2346.[1991SU05] D. Sundholm, J. Olsen, Chem. Phys. Lett. 177 (1991) 91.[1991SZ06] A. Szczurek, K. Bodek, L. Jarczyk, B. Kamys, J. Krug, W. Lubcke, H. Ruhl, M. Steinke, M. Stepha

D. Kamke, et al., Nucl. Phys. A 531 (1991) 77.[1991WI19] J.Z. Williams, G. Feldman, H.R. Weller, D.R. Tilley, Phys. Lett. 273B (1991) 216.

[1992AD06] V.V. Adodin, N.T. Burtebaev, A.D. Duisebaev, Yad. Fiz. 55 (1992) 577, Sov. J. Nucl. Phys. 55

(1992) 319.

Page 187: Energy levels of light nuclei A = 8,9,10

rse,

n,

, J. Liu,

ts At.

el

,

.

7.

1992)

ika

-

-

62.8

92) 1.. Pu-

ds

i-

i,

za-

s. Rev.

kad.

,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 341

[1992AL01] M. Allet, W. Hajdas, J. Lang, H. Luscher, R. Muller, O. Naviliat-Cuncic, J. Sromicki, A. ConveW. Haeberli, M.A. Miller, et al., Phys. Rev. Lett. 68 (1992) 572.

[1992AR07] ISOLDE Collaboration, E. Arnold, J. Bonn, A. Klein, R. Neugart, M. Neuroth, E.W. OtteP. Lievens, H. Reich, W. Widdra, Phys. Lett. B 281 (1992) 16.

[1992BA22] F.C. Barker, B.A. Brown, W. Jaus, G. Rasche, Nucl. Phys. A 540 (1992) 501.[1992BA76] H. Baghaei, R.A. Lindgren, P. Slocum, E.J. Stephenson, A.D. Bacher, S. Chang, J. Lisantti

C. Olmer, S. Wells, et al., Phys. Rev. Lett. 69 (1992) 2054.[1992BE65] B.N. Belyaev, V.D. Domkin, V.S. Mukhin, Sov. J. Part. Nucl. 23 (1992) 439, Fiz. Elem. Chasti

Yad. 23 (1992) 993.[1992BL10] B. Blank, J.-J. Gaimard, H. Geissel, K.-H. Schmidt, H. Stelzer, K. Summerer, D. Bazin, R. D

Moral, J.P. Dufour, A. Fleury, et al., Z. Phys. A 343 (1992) 375.[1992BO1H] M. Bogovac, G. Calvi, M. Lattuada, D. Miljanic, D. Rendic, F. RiggiI, C. Spitaleri, M. Zadro

Few-Body Systems 12 (1992) 191.[1992BO25] O.V. Bochkarev, A.A. Korsheninnikov, E.A. Kuzmin, I.G. Mukha, L.V. Chulkov, G.B. Yankov, Sov

J. Nucl. Phys. 55 (1992) 955.[1992CA31] W.N. Catford, L.K. Fifield, E.L. Reber, K.W. Kemper, J.D. Brown, Nucl. Phys. A 550 (1992) 51[1992CE02] F.E. Cecil, D. Ferg, H. Liu, J.C. Scorby, J.A. McNeil, P.D. Kunz, Nucl. Phys. A 539 (1992) 75.[1992CL04] N.M. Clarke, J. Phys. G 18 (1992) 917.[1992CO05] L.M. Comere, L. Reber, K.W. Kemper, D. Robson, J.D. Brown, T.L. Talley, Phys. Rev. C 45 (

1803.[1992DA22] P. D’Agostino, A. D’Arrigo, G. Fazio, G. Giardina, A. Italiano, A. Taccone, R. Palamara, Fiz

(Zagreb) B 1 (1992) 139.[1992DE07] L. De Braeckeleer, Phys. Rev. C 45 (1992) 1935.[1992DE42] Yu.N. Demkov, F.F. Karpeshin, Bull. Russ. Acad. Sci., Phys. Ser. 56 (1992) 108.[1992EN01] S. Engstler, G. Raimann, C.Angulo, U. Greife, C. Rolfs, U. Schroder, E. Somorjai, B. Kirch, K. Lan

ganke, Phys. Lett. B 279 (1992) 20.[1992EN04] S. Engstler, G. Raimann, C.Angulo, U. Greife, C. Rolfs, U. Schroder, E. Somorjai, B. Kirch, K. Lan

ganke, Z. Phys. A 342 (1992) 471.[1992GO27] A.M. Goryachev, G.N. Zalesny, I.V. Pozdnev, Bull. Russ. Acad. Sci., Phys. Ser. 56 (1992) 7[1992KA06] M. Kamal, V.T. Voronchev, V.I. Kukulin, V.M. Krasnopolsky, Y. Nakao, K. Kudo, J. Phys. G 1

(1992) 379.[1992KE02] T. Kempisty, K. Pochwalski, Nucl. Instrum. Methods Phys. Res. A 312 (1992) 390.[1992KE05] J.J. Kelly, Phys. Rev. C 46 (1992) 711.[1992KI05] S.W. Kikstra, S.S. Hanna, A.G.M. van Hees, Z. Guo, C. van der Leun, Nucl. Phys. A 539 (19[1992KO26] V.V. Komarov, A.M. Popova, F.I. Karmanov, V.L. Shablov, O.F. Nemets, Yu.N. Pavlenko, V.M

gach, Fiz. Elem. Chastits At. Yadra 23 (1992) 1035, Sov. J. Part. Nucl. 23 (1992) 459.[1992KW01] E. Kwasniewicz, L. Jarczyk, Nucl. Phys. A 541 (1992) 193.[1992LI24] ISOLDE Collaboration, P. Lievens, Hyperfine Interact. 74 (1992) 3.[1992MC03] L.C. McIntyre Jr., J.A. Leavitt, M.D. Ashbaugh, Z. Lin, J.O. Stoner Jr., Nucl. Instrum. Metho

Phys. Res. B 64 (1992) 457.[1992MI03] K. Miura, A. Sato, J. Takamatsu, S. Mori, Y.Takahashi, T. Nakagawa, T. Tohei, T. Niizeki, S. H

rasaki, G.C. Jon, et al., Nucl. Phys. A 539 (1992) 441.[1992MI18] T. Minamisono, T. Ohtsubo, I. Minami, S. Fukuda, A. Kitagawa, M. Fukuda, K. Matsuta, Y. Nojir

S. Takeda, H. Sagawa, et al., Phys. Rev. Lett. 69 (1992) 2058.[1992NA01] T.K. Nayak, T. Murakami, W.G. Lynch, K. Swartz, D.J. Fields, C.K. Gelbke, Y.D. Kim, J. Pochod

lla, M.B. Tsang, H.M. Xu, et al., Phys. Rev. C 45 (1992) 132.[1992PE12] F. Pellegrini, G.F. Segato, A. Barbadoro, L. Corradi, M. Morando, P. Pavan, I. Gabrielli, Phy

C 46 (1992) 2354.[1992PU06] V.M. Pugach, Yu.N. Pavlenko, A.G. Prokopets, Yu.O. Vasiliev, V.A. Kiva, V.I. Medvedev, Izv. A

Nauk SSSR, Ser. Fiz. 56 (1992) 129, Bull. Russ. Acad. Sci., Phys. Ser. 56 (1992) 1768.[1992RA11] R.D. Ransome, C.L. Morris, M.K. Jones, B.G. Ritchie, D.L. Watson, J.A. McGill, K. Pujara

D.B. Clayton, I. Brown, P. Campbell, C.F. Moore, Phys. Rev. C 46 (1992) 273.

[1992SA01] C. Samanta, S. Ghosh, M. Lahiri, S. Ray, S.R. Banerjee, Phys. Rev. C 45 (1992) 1757.[1992SC22] A. Scalia, P. Figuera, Phys. Rev. C 46 (1992) 2610.
Page 188: Energy levels of light nuclei A = 8,9,10

2)

2)

ils-

,

fs,

ang,

d.

3)

in,

-30,

berts,

t,

gblad,

n,

Teor.

h,

(1993)

,

her-

342 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1992SO25] E. Somorjai, Fiz. Elem. Chastits At. Yad. 23 (1992) 974, Sov. J. Part. Nucl. 23 (1992) 430.[1992TA18] I. Tanihata, D. Hirata, T. Kobayashi, S.Shimoura, K. Sugimoto, H. Toki, Phys. Lett. B 289 (199

261.[1992TA21] Y. Tagishi, A. Tomizawa, M. Tomizawa, K.Yagi, Nucl. Instrum. Methods Phys. Res. A 322 (199

304.[1992TE03] ISOLDE Collaboration, O. Tengblad, M.J.G. Borge, L. Johannsen, B. Jonson, M. Lindroos, T. N

son, G. Nyman, A. Poves, H.L. Ravn, J. Retamosa, et al., Z. Phys. A 342 (1992) 303.[1992TI02] D.R. Tilley, H.R. Weller, G.M. Hale, Nucl. Phys. A 541 (1992) 1.[1992WA02] E.K. Warburton, Phys. Rev. C 45 (1992) 463.[1992WA09] R.E. Warner, A. Okihana, M. Fujiwara,N. Matsuoka, S. Kakigi, S.Hayashi, K. Fukunaga

J. Kasagi, M. Tosaki, Phys. Rev. C 45 (1992) 2328.[1992WA22] E.K. Warburton, B.A. Brown, Phys. Rev. C 46 (1992) 923.[1992WU09] S. Wustenbecker, H.W. Becker, H. Ebbing, W.H. Schulte, M. Berheide, M. Buschmann, C. Rol

G.E. Mitchell, J.S. Schweitzer, Z. Phys. A 344 (1992) 205.[1992ZH08] F. Zhu, W.G. Lynch, D.R. Bowman, R.T. de Souza, C.K. Gelbke, Y.D. Kim, L. Phair, M.B. Ts

C. Williams, H.M. Xu, et al., Phys. Lett. B 282 (1992) 299.[1993AB10] S.N. Abramovich, L.N. Generalov, B.Ya. Guzhovsky, B.M. Dzyba, B.P. Sabanin, Bull. Russ. Aca

Sci., Phys. Ser. 57 (1993) 165, Izv. Ross. Akad. Nauk, Ser. Fiz. 57 (1993) 179.[1993AN06] C. Angulo, S. Engstler, G. Raimann, C. Rolfs, W.H. Schulte, E. Somorjai, Z. Phys. A 345 (199

231.[1993AN08] R.M. Anjos, C. Tenreiro, A.S. De Toledo, S.J. Sanders, Nucl. Phys. A 555 (1993) 621.[1993AN15] R.M. Anjos, N. Added, N. Carlin, L. FanteJr., M.C.S. Figueira, R. Matheus, H.R. Schel

E.M. Szanto, C. Tenreiro, A. Szanto deToledo, et al., Phys. Rev. C 48 (1993) R2154.[1993AR14] S.V. Artemov, I.R. Gulamov, I.Yu. Zotov, A. Karakhodzhaev, M. Kayumov, A.M. Muk

hamedzhanov, M. Makhmudov, G.K.Ni, I. Yuldashev, Izv. Ross. Akad. Nauk, Ser. Fiz. 57 (1993) 1Bull. Russ. Acad. Sci., Phys. Ser. 57 (1993) 883.

[1993BE22] F.D. Becchetti, W.Z. Liu, K. Ashktorab, J.F. Bajema, J.A. Brown, J.W. Jänecke, D.A. RoJ.J. Kolata, K.L. Lamkin, A. Morsad, et al., Phys. Rev. C 48 (1993) 308.

[1993BO03] H.G. Bohlen, B. Gebauer, M. Vonluckepetsch, W. Vonoertzen, A.N. Ostrowski, M. WilperT. Wilpert, H. Lenske, D.V. Alexandrov, A.S. Demyanova, et al., Z. Phys. A 344 (1993) 381.

[1993BO24] M.J.G. Borge, L. Johannsen, B. Jonson, T. Nilsson, G. Nyman, K. Riisager, O. TenK.W. Rolander, Nucl. Phys. A 560 (1993) 664.

[1993BO35] S. Boffi, C. Giusti, F.D. Pacati, M. Radici, Nucl. Phys. A 564 (1993) 473.[1993BO41] R. Bodemann, H.-J. Lange, I. Leya, R. Michel, T. Schiekel, R. Rösel, U. Herpers, H.J. Hofman

B. Dittrich, M. Suter, et al., Nucl. Instrum. Methods Phys. Res. B 82 (1993) 9.[1993BU29] M.I. Bulgakov, A.D. Gul’ko, F.S. Dzheparov, S.V. Stepanov, S.S. Trostin, Pis’ma Zh. Eksp.

Fiz. 58 (1993) 614, JETP Lett. (1993) 592.[1993CA04] D.D. Caussyn, N.R. Fletcher, K.W. Kemper,E.E. Towers, J.J. Kolata, K. Lamkin, R.J. Smit

F.D. Becchetti, J.A. Brown, J.W. Janecke, et al., Phys. Rev. C 47 (1993) 387.[1993CE02] F.E. Cecil, H. Liu, J.S. Yan, G.M. Hale, Phys. Rev. C 47 (1993) 1178.[1993CH06] W.T. Chou, E.K. Warburton, B.A. Brown, Phys. Rev. C 47 (1993) 163.[1993CH35] L. Chkhaidze, T. Dzobava, L. Kharkhelauri, J. Phys. G 19 (1993) 1155.[1993CZ01] K. Czerski, H. Bucka, P. Heide, T. Makubire, Phys. Lett. B 307 (1993) 20.[1993DE1A] Th. Delbar, Phys. Rev. C 47 (1993) R14.[1993DE2A] L.J. de Bever, PhD thesis, Utrecht (1993).[1993DE30] P. Descouvemont, J. Phys. G 19 Suppl. (1993) S141.[1993HA12] P.D. Harty, I.J.D. MacGregor, J.C. McGeorge, S.N. Dancer, R.O. Owens, Phys. Rev. C 47

2185.[1993KO34] A.A. Korsheninnikov, K. Yoshida, D.V. Aleksandrov, N. Aoi, Y. Doki, N. Inabe, M. Fujimaki

T. Kobayashi, H. Kumagai, C.-B. Moon, et al., Phys. Lett. B 316 (1993) 38.[1993KR09] R.A. Kryger, A. Azhari, A. Galonsky, J.H. Kelley, R. Pfaff, E. Ramakrishnan, D. Sackett, B.M. S

rill, M. Thoennessen, J.A. Winger, et al., Phys. Rev. C 47 (1993) R2439.[1993KR18] H. Krauss, K. Grun, T. Rauscher, H. Oberhummer, Ann. Phys. 2 (1993) 258.

Page 189: Energy levels of light nuclei A = 8,9,10

ys.

n,993)

82

i,

at-

P. Paul,

ono,

i-

y-

ta,

ov,iz. 57

s.

s.

s.

ugar-

tthast,

ova,(1994)

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 343

[1993KU21] V.I. Kukulin, V.T. Voronchev, Kh.D. Razikov, V.N. Pomerantsev, Bull. Russ. Acad. Sci., PhSer. 57 (1993) 889.

[1993MA48] Yu.G. Mashkarov, E.I. Koshchy, I.I. Zalyubovsky, N.t. Burtebaev, A.D. Duisebaev, V.V. AdodiA.T. Rudchik, Izv. Ross. Akad. Nauk, Ser. Fiz. 57 (1993) 137, Bull. Acad. Russ. Sci., Phys. Ser. 57 (1889.

[1993ME10] J.W. Meadows, Nucl. Instrum. Methods Phys. Res. A 324 (1993) 239.[1993MI26] R. Middleton, L. Brown, B. Dezfoulyarjomandy, J. Klein, Nucl. Instrum. Methods Phys. Res. B

(1993) 399.[1993MI34] T. Minamisono, T. Ohtsubo, Y. Nakayama, S. Fukuda, T. Izumikawa, M. Tanigaki, M. Matsu

S. Takeda, N. Nakamura, M. Fukuda, et al., Hyperfine Interact. 78 (1993) 159.[1993MI35] T. Minamisono, T. Ohtsubo, I. Minami, A. Kitagawa, S. Fukuda, Y. Nakayama, M. Fukuda, K. M

suta, Y. Nojiri, S. Takeda, H. Sagawa, H. Kitagawa, Hyperfine Interact. 78 (1993) 165.[1993MO28] C.P. Montoya, S. Schadmand, R. Varma, P.H. Zhang, R. Butsch, I. Diószegi, D.J. Hofman,

Nucl. Instrum. Methods Phys. Res. A 334 (1993) 437.[1993MO33] S. Momota, Y. Nojiri, M.-B. Tanaka, T. Yanagisawa, M. Fukuda, K. Matsuta, T. Minamis

Hyperfine Interact. 80 (1993) 1275.[1993MO34] S. Momota, Y. Nojiri, M.-B. Tanaka, T. Yanagisawa, M.-Y. Tanaka, M. Fukuda, K. Matsuta, T. M

namisono, Hyperfine Interact. 80 (1993) 1281.[1993NE08] R. Neugart, Hyperfine Interact. 78 (1993) 47.[1993NO08] Y. Nojiri, S. Momota, T. Yanagisawa, M.-B. Tanaka, M. Fukuda, K. Matsuta, T. Minamisono, H

perfine Interact. 80 (1993) 567.[1993OH11] T. Ohtsubo, Y. Nakayama, I. Minami, M. Tanigaki, S. Fukuda, A. Kitagawa, M. Fukuda, K. Matsu

Y. Nojiri, H. Akai, et al., Hyperfine Interact. 80 (1993) 1051.[1993PA31] Yu.N. Pavlenko, B.M. Pugach, V.A. Kiva, V.I. Medvedev, Yu.O. Vasilev, V.N. Dobrik

I.N. Kolomiets, Bull. Russ. Acad. Sci., Phys. Ser. 57 (1993) 1788, Izv. Ross. Akad. Nauk, Ser. F(1993) 140.

[1993RA14] G. Raimann, Z. Phys. A 347 (1993) 73.[1993RE04] E.L. Reber, K.W. Kemper, P.L. Kerr, A.J. Mendez, E.G. Myers, B.G. Schmidt, N.M. Clarke, Phy

Rev. C 47 (1993) 2190.[1993RE08] E.L. Reber, K.W. Kemper, P.L. Kerr, A.J.Mendez, E.G. Myers, B.G. Schmidt, V. Hnizdo, Phy

Rev. C 48 (1993) 285.[1993RI04] K. Riisager, A.S. Jensen, Phys. Lett. B 301 (1993) 6.[1993RO04] G. Royer, F. Haddad, Phys. Rev. C 47 (1993) 1302.[1993SC06] A. Scalia, Phys. Rev. C 47 (1993) 1247.[1993SC19] G.J. Schmid, R.M. Chasteler, H.R. Weller, D.R. Tilley, Phys. Rev. C 48 (1993) 441.[1993SH27] S. Shibata, M. Imamura, H. Nagai, K. Kobayashi, K. Sakamoto, M. Furukawa, I. Fujiwara, Phy

Rev. C 48 (1993) 2617.[1993SI06] T. Sinha, S. Roy, C. Samanta, Phys. Rev. C 47 (1993) 2994.[1993SI09] T. Sinha, S. Roy, C. Samanta, Phys. Rev. C 48 (1993) 785.[1993TI01] N.K. Timofeyuk, D. Baye, P. Descouvemont, Nucl. Phys. A 551 (1993) 1.[1993TI07] D.R. Tilley, H.R. Weller, C.M. Cheves, Nucl. Phys. A 564 (1993) 1.[1993TR06] H.P. Trautvetter, J. Phys. G 19 (1993) S95.[1993VL02] G.N. Vlaskin, E.V. Chvankin, At. Energ. 74 (1993) 134;

Sov. J. At. Energ. 74 (1993) 129.[1993WA06] L. Wang, X. Yang, J. Rapaport, C.D. Goodman, C.C. Foster, Y. Wang, R.A. Lindgren, E. S

baker, D. Marchlenski, S. DeLucia, et al., Phys. Rev. C 47 (1993) 2123.[1993WI13] S. Wiebach, A. Bachmann, H. Brand, R.P. Eule, H. Freiesleben, B. Heyber, Y. Leifels, K.W. Po

P. Rosenthal, B. Kamys, Z. Phys. A 346 (1993) 173.[1993YA01] Y. Yamamoto, T. Kajino, K.I. Kubo, Phys. Rev. C 47 (1993) 846.[1994AB25] S.N. Abramovich, L.N. Generalov, B.Ya. Guzhovsky, L.N. Kryazhimskaya, E.G. Orlik

V.N. Popov, Bull. Russ. Acad. Sci., Phys. Ser. 58 (1994) 75, Izv. Ross. Akad. Nauk, Ser. Fiz. 5887.

[1994AK02] H. Akimune, I. Daito, Y. Fujita, M. Fujiwara, M.B. Greefield, M.N. Harakeh, T. Innomata, J. Ja-necke, K. Katori, S. Nakayama, et al., Nucl. Phys. A 569 (1994) 245C.

Page 190: Energy levels of light nuclei A = 8,9,10

o-

n-

cchi,

hys.

ez,

,

s,

ts,ys.

. Part.

ds

k-

)

,

994)

-

Cox,

21

344 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1994AM09] A.I. Amelin, M.N. Behr, B.A. Chernyshev, M.G. Gornov, Y.B. Gurov, S.V. Lapushkin, P.V. Mrokhov, V.A. Pechkurov, R.R. Shafigullin, T.D. Shurenkova, et al., Phys. Lett. B 337 (1994) 261.

[1994AN05] R.M. Anjos, N. Added, N. Carlin, L. Fante Jr., M.C.S. Figueira, R. Matheus, E.M. Szanto, C. Tereiro, A. Szanto de Toledo, S.J. Sanders, Phys. Rev. C 49 (1994) 2018.

[1994AR24] N. Arena, I.Ya. Barit, Seb. Cavallaro, A. d’Arrigo, G. Fazio, G. Giardina, V.V. Ostashko, M. SaV.N. Urin, S.V. Zuyev, J. Phys. G 20 (1994) 1973.

[1994BA65] F.C. Barker, Nucl. Phys. A 579 (1994) 62.[1994BO04] J.G.L. Booten, A.G.M. Van Hees, Nucl. Phys. A 569 (1994) 510.[1994CH23] R.M. Chasteler, H.R. Weller, D.R. Tilley, R.M. Prior, Phys. Rev. Lett. 72 (1994) 3949.[1994CH70] R.M. Chasteler, H.R. Weller, Nucl. Instrum. Methods Phys. Res. A 344 (1994) 429.[1994CO16] A.A. Cowley, G.F. Steyn, S.V. Fortsch, J.J. Lawrie, J.V. Pilcher, F.D. Smit, D.M. Whittal, P

Rev. C 50 (1994) 2449.[1994CO26] J. Collot, P. De Saintignon, P. Gabor, A. Hoummada, G. Mahout, D. Marchand, F. Merch

E.L. Florian, C. Leroy, Ph. Jean, et al., Nucl. Instrum. Methods Phys. Res. A 350 (1994) 525.[1994DE03] P. Descouvemont, D. Baye, Nucl. Phys. A 567 (1994) 341.[1994DE09] P. Descouvemont, D. Baye, Nucl. Phys. A 573 (1994) 28.[1994DE17] P.V. Degtyarenko, J. Button-Shafer, L. Elouadrhiri, R.A. Miskimen, G.A. Peterson, K. Wang

V.B. Gavrilov, M.V. Kossov, G.A. Leksin, S.M. Shuvalov, et al., Phys. Rev. C 50 (1994) R541.[1994DE23] L.J. Debever, H.P. Blok, J. Blouw, M. Fujiwara, K. Hosono, J.J. Kelly, S. Kuwamoto, L. Lapika

G. Vandersteenhoven, K. Takahisa, et al., Nucl. Phys. A 579 (1994) 13.[1994DE30] L. De Braeckeleer, Nucl. Phys. A 577 (1994) 383C.[1994DO32] V.N. Domnikov, D.Sh. Eleukenov, E.P. Kadkin, S.N. Kondratiev, S.V. Nevsky, O.F. Neme

L.S. Saltykov, V.D. Sklyarenko, L.I. Slyusarenko, V.V. Tokarevsky, et al., Bull. Russ. Acad. Sci., PhSer. 58 (1994) 1910, Izv. Ross. Akad. Nauk, Ser. Fiz. 58 (1994) 178.

[1994FU07] R.J. Furnstahl, Phys. Rev. C 50 (1994) 1735.[1994GA49] F.A. Gareev, E.A. Strokovsky, Yu.L. Ratis, Fiz. Elem. Chastits At. Yadra 25 (1994) 855, Phys

Nucl. 25 (1994) 361.[1994HA16] S. Hamada, M. Yasue, S. Kubono, M.H. Tanaka, R.J. Peterson, Phys. Rev. C 49 (1994) 3192.[1994HA39] I. Hamamoto, Nucl. Phys. A 577 (1994) 19.[1994HA41] S.S. Hanna, Nucl. Phys. A 577 (1994) C173.[1994HO23] H. Hofsass, U. Wahl, M. Restle, C. Ronning,E. Recknagel, S.G. Jahn, Nucl. Instrum. Metho

Phys. Res. B 85 (1994) 468.[1994JA05] H.J. Jänsch, M. Detje, H.D. Ebinger, W. Preyss, H. Reich, R. Veith, W. Widdra, D. Fick, M. Röc

elein, H.-G. Völk, Nucl. Phys. A 568 (1994) 544.[1994KA02] M. Kamionkowski, J.N. Bahcall, Phys. Rev. C 49 (1994) 545.[1994KA25] D.M. Kalassa, G. Baur, J. Phys. G 20 (1994) 1023.[1994KI09] H. Kitazawa, M. Igashira, S. Shibata, K. Tanaka, H. Takakuwa, K. Masuda, Nucl. Phys. A 575 (1994

72.[1994KO16] A.A. Korsheninnikov, K. Yoshida, D.V. Aleksandrov, N. Aoi, Y. Doki, N. Inabe, M. Fujimaki

T. Kobayashi, H. Kumagai, C.B. Moon, et al., Phys. Lett. B 326 (1994) 31.[1994KO53] V.D. Kovalchuk, V.I. Trotsik, V.D. Kovalchuk, Nucl. Instrum. Methods Phys. Res. A 351 (1

590.[1994LA08] K. Langanke, T.D. Shoppa, Phys. Rev. C 49 (1994) R1771;

K. Langanke, T.D. Shoppa, Phys. Rev. C 51 (1995) 2844, Erratum.[1994LE08] Y. Le Coz, N. Redon, A. Astier, R. Beraud, R. Duffait, M. Meyer, F. Hannachi, G. Bastin, I. Delon

cle, B. Gall, et al., Z. Phys. A 348 (1994) 87.[1994LE18] J.A. Leavitt, L.C. Mcintyre, R.S. Champlin, J.O. Stoner, Z. Lin, M.D. Ashbaugh, R.P.

J.D. Frank, Nucl. Instrum. Methods Phys. Res. B 85 (1994) 37.[1994LI51] Z.M. Liu, R. Wang, Nucl. Instrum. Methods Phys. Res. B 93 (1994) 404.[1994ME08] J.W. Meadows, D.L. Smith, L.R. Greenwood, D.W. Kneff, B.M. Oliver, Ann. Nucl. Energy

(1994) 155.

[1994MO33] T. Motobayashi, N. Iwasa, Y. Ando, M. Kurokawa, H. Murakami, J. Ruan, S. Shimoura, S. Shirato,

N. Inabe, M. Ishihara, et al., Phys. Rev. Lett. 73 (1994) 2680.

Page 191: Energy levels of light nuclei A = 8,9,10

ri,

8.hner,

u,

572.

ar-

v.

-

v,

la-

ki,

a

s. At.

n

Beck,

Schi-

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 345

[1994MO41] M. Moszynski, G.J. Costa, G. Guillaume,B. Heusch, A. Huck, S. Mouatassim, Y. El-MasP. Leleu, P. Lipnik, I. Tilquin, et al., Nucl. Instrum. Methods Phys. Res. A 343 (1994) 563.

[1994NE05] V.G. Neudatchin, A.A. Sakharuk, W.W. Kurowsky, Yu.M. Tchuvil’sky, Phys. Rev. C 50 (1994) 14[1994OS04] A.N. Ostrowski, H.G. Bohlen, B. Gebauer, S.M. Grimes, R. Kalpakchieva, T. Kirc

T.N. Massey, W. Von Oertzen, T. Stolla, M. Wilpert, et al., Phys. Lett. B 338 (1994) 13.[1994RA23] J. Rapaport, Nucl. Phys. A 577 (1994) C83.[1994RO16] C. Rolfs, R.W. Kavanagh, Z. Phys. A 350 (1994) 93.[1994RY02] J. Ryckebusch, M. Vanderhaeghen, L.Machenil, M. Waroquier, Nucl. Phys. A 568 (1994) 828.[1994SA02] T. Sato, N. Odagawa, H. Ohtsubo, T.-S.H. Lee, Phys. Rev. C 49 (1994) 776.[1994SA43] H. Sakai, M.B. Greenfield, K. Hatanaka, S.Ishida, N. Koori, H. Okamura, A. Okihana, H. Ots

N. Sakamoto, Y. Satou, et al., Nucl. Phys. A 577 (1994) C111.[1994SA44] T. Sato, N. Odagawa, H. Ohtsubo, T.S.H. Lee, Nucl. Phys. A 577 (1994) C219.[1994SC14] A. Scalia, Phys. Rev. C 49 (1994) 2847.[1994SH21] Q.B. Shen, J.S. Zhang, Phys. Rev. C 50 (1994) 2473.[1994SO26] S. Soheli, E. Hai, Md.A. Rahman, H.M.Sen Gupta, M. Rahman, J. Phys. Soc. Jpn. 63 (1994) 2[1994TY03] S. Typel, G. Baur, Phys. Rev. C 50 (1994) 2104.[1994WA22] L. Wang, X. Yang, J. Rapaport, C.D. Goodman, C.C. Foster, Y. Wang, J. Piekarewicz, E. Sug

baker, D. Marchlenski, S. Delucia, et al., Phys. Rev. C 50 (1994) 2438.[1994WI08] J.Z. Williams, G. Feldman, H.R. Weller, D.R. Tilley, Nucl. Phys. A 577 (1994) 653.[1994WR01] P.R. Wrean, C.R. Brune, R.W. Kavanagh, Phys. Rev. C 49 (1994) 1205.[1994XU08] H.M. Xu, C.A. Gagliardi, R.E. Tribble,A.M. Mukhamedzhanov, N.K. Timofeyuk, Phys. Re

Lett. 73 (1994) 2027.[1994YO01] B.M. Young, W. Benenson, J.H. Kelley, N.A. Orr, R. Pfaff, B.M. Sherrill, M. Steiner, M. Thoen

nessen, J.S. Winfield, J.A. Winger, et al., Phys. Rev. C 49 (1994) 279.[1994ZH14] M.V. Zhukov, A.A. Korsheninnikov, M.H. Smedberg, Phys. Rev. C 50 (1994) R1.[1995AB41] S.N. Abramovich, Yu.I. Vinogradov, L.N. Generalov, B.Ya. Guzhovsky, B.P. Sabanin, V.V. Chulko

Bull. Russ. Acad. Sci., Phys. Ser. 59 (1995) 1880, Izv. Ross. Akad. Nauk, Ser. Fiz. 59 (1995) 88.[1995AL25] P. Alexa, J. Kvasil, Z. Phys. A 353 (1995) 255.[1995AR25] N. Arena, S. Cavallaro, P. Dagostino, G. Fazio, G. Giardina, O.Y. Goryunov, V.V. Ostashko, R. Pa

mara, A.A. Shvedov, J. Phys. G 21 (1995) 1403.[1995BA24] D. Baddou, C. Rioux, R.J. Slobodrian, J.M. Nelson, Can. J. Phys. 73 (1995) 74.[1995BA36] F.C. Barker, Nucl. Phys. A 588 (1995) 693.[1995BB21] F.C. Barker, Aust. J. Phys. 48 (1995) 813.[1995BE26] C.A. Bertulani, H. Sagawa, Nucl. Phys. A 588 (1995) 667.[1995BO10] H.G. Bohlen, B. Gebauer, T. Kirchner, M.Vonluckepetsch, W. Vonoertzen, A.N. Ostrows

C. Seyfert, T. Stolla, M. Wilpert, T. Wilpert, et al., Nucl. Phys. A 583 (1995) C775.[1995BO35] M. Bogovac, S. Fazinic, M. Jaksic, M. Lattuada, D. Miljanic, N. Soic, C. Spitaleri, M. Zadro, Fizik

(Zagreb) B 4 (1995) 229.[1995BU20] N. Burtebaev, A.D. Duisebaev, G.N. Ivanov, S.B. Sakuta, Yad. Fiz. 58 (1995) 596, Phy

Nucl. 58 (1995) 540.[1995CA26] J. Carter, Z.Z. Vilakazi, R.W. Fearick, V. Hnizdo, E. Muskat, K.W. Kemper, D.E. Trcka, S.P. Va

Verst, Nucl. Phys. A 591 (1995) 349.[1995CH19] L.V. Chulkov, C.A. Bertulani, A.A. Korsheninnikov, Nucl. Phys. A 587 (1995) 291.[1995CI02] A. Cichocki, J. Dubach, R.S. Hicks, G.A. Peterson, C.W. de Jager, H.de Vries, N. Kalantar-

Nayestanaki, T. Sato, Phys. Rev. C 51 (1995) 2406.[1995CR03] R. Crespo, J.A. Tostevin, R.C. Johnson, Phys. Rev. C 51 (1995) 3283.[1995CR04] G.E. Cross, I.J.D. Macgregor, J.C. McGeorge, J. Ahrens, I. Anthony, J.R.M. Annand, R.

D. Branford, T. Davinson, P. Grabmayr, et al., Nucl. Phys. A 593 (1995) 463.[1995CS01] A. Csoto, K. Langanke, S.E. Koonin, T.D. Shoppa, Phys. Rev. C 52 (1995) 1130.[1995DE18] L. De Braeckeleer, E.G. Adelberger, J.H. Gundlach, M. Kaplan, D. Markoff, A.M. Nathan, W.

eff, K.A. Snover, D.W. Storm, K.B. Swartz, et al., Phys. Rev. C 51 (1995) 2778;

L. De Braeckeleer, E.G. Adelberger, J.H. Gundlach, M. Kaplan, D. Markoff, A.M. Nathan, W. Schieff,K.A. Snover, D.W. Storm, K.B. Swartz, et al., Phys. Rev. C 52 (1995) 3509, Erratum.
Page 192: Energy levels of light nuclei A = 8,9,10

7

95)

lo,

) 354.

8

sen,

ns,

i,

i,

ci.,

5)

d,

,

5)

lpert,

v,

ev.

er,

i,

346 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1995FA17] S.A. Fayans, O.M. Knyazkov, I.N. Kuchtina,Y.E. Penionzhkevich, N.K.Skobelev, Phys. Lett. B 35(1995) 509.

[1995FA21] G. Fazio, G. Giardina, O.Yu. Goryunov, A.A. Shvedov, R. Palamara, J. Phys. Soc. Jpn. 64 (191141.

[1995FU11] Y. Fujiwara, Y.C. Tang, Prog. Theor. Phys. 93 (1995) 357.[1995GA20] C.A. Gagliardi, R.E. Tribble, J. Jiang, A.M. Mukhamedzhanov, L. Trache, H.M. Xu, S.J. Yennel

X.G. Zhou, Nucl. Phys. A 588 (1995) 327C.[1995GA25] M.S. Gai, C.A. Bertulani, Phys. Rev. C 52 (1995) 1706.[1995GA39] L.I. Galanina, N.S. Zelenskaya,Yad. Fiz. 58 (1995) 1518, Phys. At. Nucl. 58 (1995) 1435.[1995GO10] R.A. Golubev, V.V. Kirichenko, Nucl. Phys. A 587 (1995) 241.[1995GO21] E.N. Golovach, B.S. Ishkhanov, V.N. Orlin, Yad. Fiz. 58 (1995) 404, Phys. At. Nucl. 58 (1995[1995GO32] S.A. Goncharov, A.A. Korsheninnikov, Europhys. Lett. 30 (1995) 13.[1995GU22] I.R. Gulamov, A.M. Mukhamedzhanov,G.K. Nie, Phys. At. Nucl. 58 (1995) 1689, Yad. Fiz. 5

(1995) 1789.[1995IC02] S. Ichimaru, H. Kitamura, J. Phys. Soc. Jpn. 64 (1995) 2270.[1995IM01] B. Imanishi, W. von Oertzen, Phys. Rev. C 52 (1995) 3249.[1995KA07] R. Kanungo, M. Lahiri, C. Samanta, H. Rebel, Z. Phys. A 351 (1995) 9.[1995KE02] J.H. Kelley, S.M. Austin, R.A. Kryger, D.J. Morrissey, N.A. Orr, B.M. Sherrill, M. Thoennes

J.S. Winfield, J.A. Winger, B.M. Young, Phys. Rev. Lett. 74 (1995) 30.[1995KE06] L.J.H.M. Kester, W.H.A. Hesselink, N. Kalantar-Nayestanaki, J.H. Mitchell, A. Pellegrino, E. Ja

J. Konijn, J.J.M. Steijger, J.L. Visschers, A. Zondervan, et al., Phys. Rev. Lett. 74 (1995) 1712.[1995KO10] A.A. Korsheninnikov, E.Y. Nikolskii, T. Kobayashi, D.V. Aleksandrov, M. Fujimaki, H. Kumaga

A.A. Ogloblin, B. Ozawa, I. Tanihata, Y. Watanabe, et al., Phys. Lett. B 343 (1995) 53.[1995KO27] A.A. Korsheninnikov, D.V. Aleksandrov, N. Aoi, Y. Doki, N. Inabe, M. Fujimaki, T. Kobayash

H. Kumagai, C.B. Moon, E.Y. Nikolskii, et al., Nucl. Phys. A 588 (1995) 23C.[1995LA17] K. Langanke, T.D. Shoppa, Phys. Rev. C 52 (1995) 1709.[1995LI07] Q.K.K. Liu, S.G. Cooper, Phys. Rev. C 51 (1995) 2268.[1995LY03] Yu.V. Lyashko, A.S. Deineko, N.A. Shlyakhov,R.P. Slabospitsky, P.P. Diky, Bull. Russ. Acad. S

Phys. Ser. 59 (1995) 111, Izv. Ross. Akad. Nauk, Ser. Fiz. 59 (1995) 129.[1995MA57] Yu.G. Mashkarov, E.I. Koshchy, Yu.M. Chuvilsky, Bull. Russ. Acad. Sci., Phys. Ser. 59 (199

150.[1995MC02] J.C. McGeorge, I.J.D. MacGregor, S.N. Dancer, J.R.M. Annand, I. Anthony, G.I. Crawfor

S.J. Hall, P.D. Harty, J.D. Kellie, G.J. Miller, et al., Phys. Rev. C 51 (1995) 1967.[1995MI16] D. Miljanic, S. Blagus, M. Lattuada,N. Soic, C. Spitaleri, Phys. Rev. C 52 (1995) 1140.[1995MU01] E. Muskat, J. Carter, R.W. Fearick, V. Hnizdo, Nucl. Phys. A 581 (1995) 42.[1995MU10] A.M. Mukhamedzhanov, R.E. Tribble, N.K. Timofeyuk, Phys. Rev. C 51 (1995) 3472.[1995NE04] S. Neumaier, G.D. Alkhazov, M.N. Andronenko, T. Beha, K.H. Behr, A. Brunle, K. Burkhard

A.V. Dobrovolsky, P. Egelhof, C. Fischer, et al., Nucl. Phys. A 583 (1995) C799.[1995NE11] V.G. Neudatchin, A.A.Sakharuk, W.W. Kurowsky, Y.M. Tchuvilsky, Phys. At. Nucl. 58 (199

1155, Yad. Fiz. 58 (1995) 1234.[1995OSZX] A.N. Ostrowski, H.G. Bohlen, B. Gebauer, M. von Lucke-Petsch, W. von Oertzen, M. Wi

T. Wilpert, D.V. Alexandrov, A.A. Korsheninnikov, A.A. Ogloblin, et al., in: [Arles],† 1995, p. 169.[1995PE09] I. Pecina, R. Anne, D. Bazin, C. Borcea, V. Borrel, F. Carstoiu, J.M. Corre, Z. Dlouhy, A. Fomitche

D. Guillemaudmueller, et al., Phys. Rev. C 52 (1995) 191.[1995RO21] S. Roy, J.M. Chatterjee, H. Majumdar, S.K. Datta, S.R. Banerjee, S.N. Chintalapudi, Phys. R

C 52 (1995) 1524.[1995SA12] S.S. Saad, Appl. Radiat. Isot. 46 (1995) 23.[1995SA16] G. Savard, A. Galindo-Uribarri, E. Hagberg, J.C. Hardy, V.T. Koslowsky, D.C. Radford, I.S. Town

Phys. Rev. Lett. 74 (1995) 1521.[1995SC10] W. Schwab, H. Geissel, H. Lenske, K.H. Behr, A. Brunle, K. Burkard, H. Irnich, T. Kobayash

G. Kraus, A. Magel, et al., Z. Phys. A 350 (1995) 283.[1995ST29] E.A. Strokovsky, F.A. Gareev, Yad. Fiz. 58 (1995) 1404, Phys. At. Nucl. 58 (1995) 1320.

[1995SU13] Y. Suzuki, K. Arai, Y. Ohbayasi, K. Varga, Nucl. Phys. A 588 (1995) 15C.[1995TC01] Yu.M. Tchuvilsky, W.W. Kurowsky, A.A.Sakharuk, V.G. Neudatchin, Phys. Rev. C 51 (1995) 784.
Page 193: Energy levels of light nuclei A = 8,9,10

wn,

rt,

ad.

nsky,

n-

5)

s.

,

. Coun-

in-

s.

s. Rev.

. Lar-

v,

Fiz. 59

an

ev.

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 347

[1995TI06] M.A. Tiede, K.W. Kemper, N.R. Fletcher,D. Robson, D.D. Caussyn, S.J. Bennett, J.D. BroW.N. Catford, C.D. Jones, D.L. Watson, et al., Phys. Rev. C 52 (1995) 1315.

[1995TI07] D.R. Tilley, H.R. Weller, C.M. Cheves, R.M. Chasteler, Nucl. Phys. A 595 (1995) 1.[1995VO05] W. von Oertzen, H.G. Bohlen, B. Gebauer, M. von Lucke-Petsch, A.N. Ostrowski, Ch. Seyfe

Th. Stolla, M. Wilpert, Th. Wilpert, D.V. Alexandrov, et al., Nucl. Phys. A 588 (1995) 129C.[1995VU01] V.A. Vukolov, E.A. Koltypin, Y.D. Molchanov, G.B. Yankov, Phys. At. Nucl. 58 (1995) 1453, Y

Fiz. 58 (1995) 1539.[1995WA19] R.E. Warner, J.H. Kelley, P. Zecher, F.D. Becchetti, J.A. Brown, C.L. Carpenter, A. Galo

J. Kruse, A. Muthukrishnan, A. Nadasen, et al., Phys. Rev. C 52 (1995) R1166.[1995WE11] H.R. Weller, R.M. Chasteler, Z. Phys. A 352 (1995) 353.[1995YA02] Y. Yamashita, Nucl. Phys. A 582 (1995) 270.[1995YA07] Y. Yamashita, Y. Kudo, Nucl. Phys. A 589 (1995) 460.[1995YA12] X. Yang, L. Wang, J. Rapaport, C.D. Goodman, C.C. Foster, Y. Wang, E. Sugarbaker, D. Marchle

ski, S. Delucia, B. Luther, et al., Phys. Rev. C 52 (1995) 2535.[1995YI01] S. Ying, E.M. Henley, Nucl. Phys. A 585 (1995) 463.[1995ZA03] D. Zahnow, C. Angulo, C. Rolfs, S. Schmidt, W.H. Schulte, E. Somorjai, Z. Phys. A 351 (199

229.[1995ZA04] D. Zahnow, C. Angulo, M. Junker, C. Rolfs, S. Schmidt, W.H. Schulte, E. Somorjai, Nucl. Phy

A 589 (1995) 95.[1995ZI03] M. Zinser, F. Humbert, T. Nilsson, W. Schwab, T. Blaich, M.J.G. Borge, L.V. Chulkov, H. Eickhoff

T.W. Elze, H. Emling, et al., Phys. Rev. Lett. 75 (1995) 1719.[1995ZO01] A. Zondervan, L.J. Debever, E. Jans, J. Konijn, M. Kruijer, J.J.M. Steijger, J.L. Visschers, P.J

tryman, W.H.A. Hesselink, N. Kalantarnayestanaki, et al., Nucl. Phys. A 587 (1995) 697.[1996AL03] M. Aliotta, S. Cherubini, E. Costanzo, M. Lattuada, S. Romano, C. Spitaleri, A. Tumino, D. V

ciguerra, M. Zadro, Z. Phys. A 354 (1996) 119.[1996AR07] S.V. Artemov, I.R. Gulamov, E.A. Zaparov, I.Yu. Zotov, G.K. Nie, Yad. Fiz. 59 (1996) 454, Phy

At. Nucl. 59 (1996) 428.[1996BA22] F.C. Barker, Phys. Rev. C 53 (1996) 2539.[1996BA28] J.N. Bahcall, E. Lisi, D.E. Alburger, L. De Braeckeleer, S.J. Freedman, J. Napolitano, Phy

C 54 (1996) 411.[1996BA66] F.C. Barker, Nucl. Phys. A 609 (1996) 38.[1996BB26] F.C. Barker, Aust. J. Phys. 49 (1996) 1081.[1996BE83] C.A. Bertulani, Z. Phys. A 356 (1996) 293.[1996BL10] J.C. Blackmon, A.E. Champagne, J.K. Dickens, J.A. Harvey, M.A. Hofstee, S. Kopecky, D.C

son, D.C. Powell, S. Raman, M.S. Smith, Phys. Rev. C 54 (1996) 383.[1996BO27] O.V. Bochkarev, V.A. Vukolov, E.A. Koltipin, E.A. Kuzmin, Yu.D. Molchanov, L.V. Chulko

G.B. Yankov, Yad. Fiz. 59 (1996) 1749, Phys. At. Nucl. 59 (1996) 1690.[1996BR04] B.A. Brown, A. Csótó, R. Sherr, Nucl. Phys. A 597 (1996) 66.[1996BU06] N. Burtebaev, A.D. Duisebaev, G.N. Ivanov, S.B. Sakuta, Phys. At. Nucl. 59 (1996) 29, Yad.

(1996) 33.[1996CH33] S. Chiba, M. Harada, J. Nucl. Sci. Technol. 33 (1996) 346.[1996CS05] A. Csoto, S. Karataglidis, Nucl. Phys. A 607 (1996) 62;

A. Csoto, S. Karataglidis, Nucl. Phys. A 609 (1996) 601, Erratum.[1996DE02] P. Descouvemont, Nucl. Phys. A 596 (1996) 285.[1996DE51] F.W.N. de Boer, O. Frohlich, K.E. Stiebing,K. Bethge, H. Bokemeyer, A. Balanda, A. Buda, R. v

Dantzig, Th.W. Elze, H. Folger, et al., Phys. Lett. B 388 (1996) 235.[1996EB01] H.D. Ebinger, H.J. Jansch, C. Polenz, B. Polivka, W. Preyss, V. Saier, R. Veith, D. Fick, Phys. R

Lett. 76 (1996) 656.[1996ES01] H. Esbensen, Phys. Rev. C 53 (1996) 2007.[1996ES02] H. Esbensen, G.F. Bertsch, Nucl. Phys. A 600 (1996) 37.[1996FA05] G. Fazio, G. Giardina, F.I. Karmanov, V.L. Shablov, Int. J. Mod. Phys. E 5 (1996) 175.

[1996FIZY] R.B. Firestone, in: V.S. Shirley, C.M. Baglin, S.Y.F. Chu, J. Zipkin (Eds.), Table of Isotopes, vol.1,

eighth ed., Wiley, New York, 1996.

Page 194: Energy levels of light nuclei A = 8,9,10

Rev.

hi,

k,

Hell-

59

428.n-

ev.

azin,

e,

on,

ikov,

,

s

a,

597

a,

e,er. 60

348 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1996GO01] M.A. Godwin, R.M. Chasteler, C.M. Laymon, R.M. Prior, D.R. Tilley, H.R. Weller, Phys.C 53 (1996) R1.

[1996GR16] L.V. Grigorenko, N.B. Shul’gina, M.V. Zhukov, Nucl. Phys. A 607 (1996) 277;L.V. Grigorenko, N.B. Shul’gina, M.V. Zhukov, Nucl. Phys. A 614 (1997) 567, Erratum.

[1996GR21] F. Grummer, B.Q. Chen, Z.Y. Ma, S. Krewald, Phys. Lett. B 387 (1996) 673.[1996HA06] K.I. Hahn, C.R. Brune, R.W. Kavanagh, Phys. Rev. C 53 (1996) 1273.[1996HA16] A. Harder, F. Donau, K.P. Lieb, R.A. Cunningham, W. Gelletly, C.J. Gross, F. Hannac

M.K. Kabadiyski, H.A. Roth, D. Rudolph, et al., Phys. Lett. B 374 (1996) 277.[1996HA17] P.D. Harty, I.J.D. MacGregor, P. Grabmayr, J. Ahrens, J.R.M. Annand, I. Anthony, R. Bec

D. Branford, G.E. Cross, T. Davinson, et al., Phys. Lett. B 380 (1996) 247.[1996KA14] Y. Kanada-Enyo, H. Horiuchi, Phys. Rev. C 54 (1996) R468.[1996KE16] J.H. Kelley, S.M. Austin, A. Azhari, D. Bazin, J.A. Brown, H. Esbensen, M. Fauerbach, M.

strom, S.E. Hirzebruch, R.A. Kryger, et al., Phys. Rev. Lett. 77 (1996) 5020.[1996KN05] O.M. Knyazkov, I.N. Kukhtina, Yu.E. Penionzhkevich, N.K. Skobelev, S.A. Fayans, Yad. Fiz.

(1996) 1188, Phys. At. Nucl. 59 (1996) 1138.[1996KU08] A.V. Kulik, Yad. Fiz. 59 (1996) 217, Phys. At. Nucl. 59 (1996) 199.[1996KU14] V.I. Kukilin, V.N. Pomerantsev, S.V. Zuev, Phys. At. Nucl. 59 (1996) 403, Yad. Fiz. 59 (1996)[1996LA15] Th. Lamparter, J. Ahrens, J.R.M. Annand, I.Anthony, R. Beck, D. Branford, G.E. Cross, T. Davi

son, P. Grabmayr, S.J. Hall, et al., Z. Phys. A 355 (1996) 1.[1996LI12] W. Liu, X. Bai, S. Zhou, Z. Ma, Z. Li, Y. Wang, A. Li, Z. Ma, B. Chen, X. Tang, et al., Phys. R

Lett. 77 (1996) 611.[1996MA02] T. Maruyama, K. Niita, A. Iwamoto, Phys. Rev. C 53 (1996) 297.[1996MA38] K. Matsuta, T. Minamisono, M. Tanigaki, M. Fukuda, Y. Nojiri, M. Mihara, T. Onishi, T. Yam-

aguchi, A. Harada, M. Sasaki, et al., Hyperfine Interact. 97–98 (1996) 519.[1996NE06] F. Negoita, C. Borcea, F. Carstoiu, M. Lewitowicz, M.G. Saint-Laurent, R. Anne, D. B

J.M. Corre, P. Roussel-Chomaz, V. Borrel, et al., Phys. Rev. C 54 (1996) 1787.[1996NI02] T. Nilsson, F. Humbert, W. Schwab, H. Simon,M.H. Smedberg, M. Zinser, T. Blaich, M.J.G. Borg

L.V. Chulkov, T.W. Elze, et al., Nucl. Phys. A 598 (1996) 418.[1996NO11] Y. Nojiri, Hyperfine Interact. 100 (1996) 23.[1996OB01] M.M. Obuti, T. Kobayashi, D. Hirata, Y. Ogawa, A. Ozawa, K. Sugimoto, I. Tanihata, D. Ols

W. Christie, H. Wieman, Nucl. Phys. A 609 (1996) 74.[1996OS1A] A.N. Ostrowski, H.G. Bohlen, B. Gebauer, S.M. Grimes, R. Kalpakchieva, A.A. Korsheninn

T.N. Massey, W. Von Oertzen, A.A. Ogloblin, Y.E. Penionzhkevich, et al., in: [Hirschegg 96],† 1996, p. 356.[1996OZ01] A. Ozawa, I. Tanihata, T. Kobayashi, Y. Sugahara, O. Yamakawa, K. Omata, K. Sugimoto, D. Olson

W. Christie, H. Wieman, et al., Nucl. Phys. A 608 (1996) 63.[1996QI03] Y. Qiu, U. Geyer, S. Schneider, M.-P. Macht,W.L. Johnson, T.A. Tombrello, Nucl. Instrum. Method

Phys. Res. B 117 (1996) 151.[1996RA14] T. Rauscher, G. Raimann, Phys. Rev. C 53 (1996) 2496.[1996RE16] H. Rebel, Acta Phys. Pol. B 27 (1996) 231.[1996RU13] A.T. Rudchik, E.I. Koshchy, A. Budzanowski, R. Siudak, A. Szczurek, I. Skwirczynsk

Yu.G. Mashkarov, L. Glowacka, J. Turkiewicz, I.I. Zalyubovsky, et al., Nucl. Phys. A 609 (1996) 147.[1996RY04] J. Ryckebusch, Phys. Lett. B 383 (1996) 1.[1996SA09] H. Sagawa, V.G. Nguyen, T. Suzuki, Phys. Rev. C 53 (1996) 2163.[1996SH02] N.B. Shul’gina, B.V. Danilin, V.D. Efros, J.M. Bang, J.S. Vaagen, M.V. Zhukov, Nucl. Phys. A

(1996) 197.[1996SH08] R. Shyam, I.J. Thompson, A.K. Duttmazumder, Phys. Lett. B 371 (1996) 1.[1996SH29] S. Shibata, T. Shibata, M. Imamura, T. Ohkubo, S. Satoh, Y. Uwamino, N. Morikawa, N. Nogaw

Radiochim. Acta 75 (1996) 1.[1996SI13] T. Sinha, R. Kanungo, C. Samanta, S. Ghosh, P. Basu, H. Rebel, Z. Phys. A 355 (1996) 397.[1996SK04] N.K. Skobelev, S.M. Lukyanov, Yu.E. Penionzhkevich, O.B. Tarasov, A.S. Fomichev, R. Ann

D. Bazin, J.-M. Corre, M. Lewitowicz, P. Roussel-Chomaz, et al., Bull. Russ. Acad. Sci., Phys. S(1996) 123, Izv. Ross. Akad. Nauk. Ser. Fiz. 60 (1996) 154.

[1996SO17] N. Soic, S. Blagus, M. Bogovac, S. Fazinic, M. Lattuada, M. Milin, D. Miljanic, D. Rendic, C. Spi-taleri, T. Tadic, M. Zadro, Europhys. Lett. 34 (1996) 7.

Page 195: Energy levels of light nuclei A = 8,9,10

,

,

en,

.

3

A. Ga-

Akad.

14.r-

a,

a,

.

a,

55

,

,

-

7.

jita,

r,

,

05.

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 349

[1996SR02] J. Sromicki, M. Allet, K. Bodek, W. Hajdas, J. Lang, R. Müller, S. Navert, O.N. Naviliat-CuncicJ. Zejma, W. Haeberli, Phys. Rev. C 53 (1996) 932.

[1996ST18] F. Strieder, L. Gialanella, U. Greife, C. Rolfs, S. Schmidt, W.H. Schulte, H.P. Trautvetter, D. ZahnowF. Terrasi, L. Campajola, et al., Z. Phys. A 355 (1996) 209.

[1996ST29] Th. Stolla, H.G. Bohlen, B. Gebauer, S.M. Grimes, R. Kalpakchieva, T.N. Massey, W. von OertzA.N. Ostrowski, M. Wilpert, Th. Wilpert, Z. Phys. A 356 (1996) 233.

[1996SU24] Y. Sugahara, K. Sumiyoshi, H. Toki, A. Ozawa, I. Tanihata, Prog. Theor. Phys. 96 (1996) 1165[1996VO03] W. Von Oertzen, Z. Phys. A 354 (1996) 37.[1996VO09] J. von Schwarzenberg, J.J. Kolata, D. Peterson, P. Santi, M. Belbot, J.D. Hinnefeld, Phys. Rev. C 5

(1996) R2598.[1996VO15] P. von Brentano, Phys. Rep. (Netherlands) 264 (1996) 57.[1996WA27] R.E. Warner, R.A. Patty, P.M. Voyles, A. Nadasen, F.D. Becchetti, J.A. Brown, H. Esbensen,

lonsky, J.J. Kolata, J. Kruse, et al., Phys. Rev. C 54 (1996) 1700.[1996YA09] Y. Yamashita, Y. Kudo, Phys. Rev. C 54 (1996) 2077.[1996ZH31] M.A. Zhusupov, E.T. Ibraeva, Bull. Russ. Acad. Sci., Phys. Ser. 60 (1996) 809, Izv. Ross.

Nauk, Ser. Fiz. 60 (1996) 162.[1996ZH36] Z.S. Zheng, J.R. Liu, X.T. Cui, W.K. Chu, Nucl. Instrum. Methods Phys. Res. B 118 (1996) 2[1997AL09] G.D. Alkhazov, M.N. Andronenko, A.V. Dobrovolsky, P. Egelhof, G.E. Gavrilov, H. Geissel, H. I

nich, A.V. Khanzadeev, G.A. Korolev, A.A. Lobodenko, et al., Phys. Rev. Lett. 78 (1997) 2313.[1997AO01] N. Aoi, K. Yoneda, H. Miyatake, H. Ogawa,Y. Yamamoto, E. Ideguchi, T. Kishida, T. Nakamur

M. Notani, H. Sakurai, et al., Nucl. Phys. A 616 (1997) C181.[1997AO04] N. Aoi, K. Yoneda, H. Miyatake, H. Ogawa,Y. Yamamoto, E. Ideguchi, T. Kishida, T. Nakamur

M. Notani, H. Sakurai, et al., Z. Phys. A 358 (1997) 253.[1997BA04] F.C. Barker, Phys. Rev. C 55 (1997) 535.[1997BA2M] S. Baumgartner, J. Beer, G. Wagner, P. Kubik, M. Suter, G.M. Raisbeck, F. Yiou, Nucl. Instrum

Methods Phys. Res. B 123 (1977) 296.[1997BA54] X. Bai, J. Hu, Phys. Rev. C 56 (1997) 1410.[1997BA95] A.B. Balantekin, C.A. Bertulani, M.S. Hussein, Nucl. Phys. A 627 (1997) 324.[1997BL08] B. Blank, C. Marchand, M.S. Pravikoff, T. Baumann, F. Boue, H. Geissel, M. Hellstrom, N. Iwas

W. Schwab, K. Summerer, et al., Nucl. Phys. A 624 (1997) 242.[1997BO01] ISOLDE Collaboration, M.J.G. Borge, H.Fynbo, D. Guillemaud-Mueller, et al., Phys. Rev. C

(1997) R8.[1997BO10] H.G. Bohlen, W. von Oertzen, Th. Stolla, R. Kalpakchieva, B.Gebauer, M. Wilpert, Th. Wilpert

A.N. Ostrowski, S.M. Grimes, T.N. Massey, Nucl. Phys. A 616 (1997) 254C.[1997BO12] Y. Boudouma, A.C. Chami, H. Beaumevielle, Nucl. Phys. A 617 (1997) 57.[1997CA36] G. Calvi, S. Cherubini, M. Lattuada, S. Romano, C. Spitaleri, M. Aliotta, G. Rizzari, M. Sciuto

R.A. Zappala, V.N. Kondratyev, et al., Nucl. Phys. A 621 (1997) C139.[1997CS02] A. Csoto, Phys. Lett. B 394 (1997) 247.[1997CS07] A. Csoto, Acta Phys. Hung. 6 (1997) 103.[1997CU03] J. Cub, J. Holeczek, S. Wan, T. Aumann, T. Baumann, K. Boretzky, W. Dostal, B. Eberlein, H. Em

ling, C. Ender, et al., Acta Phys. Pol. B 28 (1997) 367.[1997CZ01] K. Czerski, A. Huke, H. Bucka, P. Heide, G. Ruprecht, B. Unrau, Phys. Rev. C 55 (1997) 151[1997CZ04] K. Czerski, G. Ruprecht, H. Bucka, P. Heide, Nuc. Phys. A 621 (1997) C119.[1997DA28] I. Daito, H. Akimune, S.M. Austin, D. Bazin, G.P.A. Berg, J.A. Brown, B.S. Davids, Y. Fu

H. Fujimura, M. Fujiwara, et al., Nucl. Instrum. Methods Phys. Res. A 397 (1997) 465.[1997DE46] F.W.N. de Boer, R. van Dantzig, J. van Klinken, K. Bethge, H. Bokemeyer, A. Buda, K.A. Mulle

K.E. Stiebing, J. Phys. (London) G 23 (1997) L85.[1997DO01] P.J. Dortmans, K. Amos, S. Karataglidis, J. Phys. G 23 (1997) 183.[1997ER03] I.P. Eremeev, A.L. Barabanov, Phys. Lett. B 401 (1997) 224.[1997FA17] W.R. Falk, R. Aryaeinejad, J.R. Campbell, D.B. Stetski, A.A. Mirzai, O.A. Abou-zeid

T.L. Belyaeva, N.S. Zelenskaya, Nucl. Phys. A 624 (1997) 370.[1997GO13] M.A. Godwin, C.M. Laymon, R.M. Prior, D.R. Tilley, H.R. Weller, Phys. Rev. C 56 (1997) 16

[1997GR1H] I.J. Graham, R.G. Ditchburn, R.J. Sparks, N.E. Whitehead, Nucl. Instrum. Methods Phys. Res.

B 123 (1977) 307.

Page 196: Energy levels of light nuclei A = 8,9,10

io,

astits

,

a,

,

ys.

rill,

,

s

ad.

r-

,

r-

ta,er. 61

1312.

ll.

84,

lkov,

350 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1997JO07] J.I. Johansson, H.S. Sherif, Phys. Rev. C 56 (1997) 328.[1997KI01] T. Kikuchi, T. Motobayashi, N. Iwasa, Y. Ando, M. Kurokawa, S. Moriya, H. Murakami, T. Nish

J. Ruan (Gen), S. Shirato, et al., Phys. Lett. B 391 (1997) 261.[1997KI02] Y.E. Kim, Y.J. Kim, A.L. Zubarev, J.-H. Yoon, Phys. Rev. C 55 (1997) 801.[1997KN07] O.M. Knyazkov, I.N. Kukhtina, S.A. Fayans, Phys. Part. Nucl. 28 (1997) 418, Fiz. Elem. Ch

At. Yadra 28 (1997) 1061.[1997KO06] A.A. Korsheninnikov, E.A. Kuzmin, E.Yu. Nikolsky, C.A. Bertulani, O.V. Bochkarev, S. Fukuda

T. Kobayashi, S. Momota, B.G. Novatsky, A.A.Ogloblin, et al., Nucl. Phys. A 616 (1997) C189.[1997KO07] T. Kobayashi, K. Yoshida, A. Ozawa, I. Tanihata, A. Korsheninnikov, E. Nikolsky, T. Nakamur

Nucl. Phys. A 616 (1997) C223.[1997KO12] A.A. Korsheninnikov, E.Yu. Nikolskii, C.A. Bertulnai, S. Fukuda, T. Kobayashi, E.A. Kuzmin

S. Momota, B.G. Novatskii, A.A. Ogloblin, A. Ozawa, et al., Nucl. Phys. A 617 (1997) 45.[1997LI05] W. Liu, X. Bai, S. Zhou, Z. Ma, Z. Li, Y. Wang, A. Li, Z. Ma, B. Chen, X. Tang, et al., Nucl. Ph

A 616 (1997) C131.[1997MO35] D.J. Morrissey, K.N. McDonald, D. Bazin, B.A. Brown, R. Harkewicz, N.A. Orr, B.M. Sher

G.A. Souliotis, M. Steiner, J.A. Winger, et al., Nucl. Phys. a627 (1997) 222.[1997MU19] A.M. Mukhamedzhanov, H.L.Clark, C.A. Gagliardi, Y.-W. Lui, L. Trache, R.E. Tribble, H.M. Xu

X.G. Zhou, V. Burjan, J. Cejpek, et al., Phys. Rev. C 56 (1997) 1302.[1997MU1D] M. Murayama, H. Nagai, M. Imamura, S. Hatori, K. Kobayashi, A. Taira, Nucl. Instrum. Method

Phys. Res. B 123 (1977) 302.[1997NO04] K.M. Nollett, M. Lemoine, D.N. Schramm, Phys. Rev. C 56 (1997) 1144.[1997NU01] F.M. Nunes, R. Crespo, I.J. Thompson, Nucl. Phys. A 615 (1997) 69;

F.M. Nunes, R. Crespo, I.J. Thompson, Nucl. Phys. A 627 (1997) 747, Erratum.[1997PE03] Yu.E. Penionzhkevich, Nucl. Phys. A 616 (1997) C247.[1997PO12] I.V. Poplavsky, M.N. Popushoi, Bull. Russ.Acad. Sci., Phys. Ser. 61 (1997) 160, Izv. Ross. Ak

Nauk, Ser. Fiz. 61 (1997) 197.[1997RY01] J. Ryckebusch, V. Van der Sluys, K. Heyde, H. Holvoet, W. Van Nespen, M. Waroquier, M. Vande

haeghen, Nucl. Phys. A 624 (1997) 581.[1997SA04] A.A. Sakharuk, V. Zelevinsky, Phys. Rev. C 55 (1997) 302.[1997SC03] R.-W. Schulze, P.U. Sauer, Phys. Rev. C 55 (1997) 1051.[1997SC46] J.N. Scheurer, F. Hammache, G. Bogaert, C.Angulo, L. Brillard, A. Coc, J.F. Chemin, G. Claverie

M. Hussonis, M. Jacotin, et al., Acta Phys. Hung. 6 (1997) 107.[1997SH19] N.B. Shul’gina, L.V. Grigorenko, M.V. Zhulov, J.M. Bang, Nucl. Phys. A 619 (1997) 143.[1997SI29] J.M. Sisterson, K. Kim, A. Beverding, P.A.J.Englert, M. Caffee, A.J.T. Jull, D.J. Donahue, L. McHa

gue, C. Castaneda, J. Vincent, et al., Nucl. Instrum. Methods Phys. Res. B 123 (1997) 324.[1997SK03] N.K. Skobelev, S.M. Lukyanov, Yu.E. Penionzhkevich, O.B. Tarasov, A.S. Fomichev, F. Negoi

C. Borcea, F. Carstoiu, M. Lewitowicz, M.-G. Saint-Laurent, et al., Bull. Russ. Acad. Sci., Phys. S(1997) 1762, Izv. Ross. Akad. Nauk, Ser. Fiz. 61 (1997) 2239.

[1997SZ01] S. Szilner, Z. Basrak, R.M. Freeman, F. Haas, A. Morsad, C. Beck, Phys. Rev. C 55 (1997)[1997TI03] N.K. Timofeyuk, D. Baye, P. Descouvemont, Nucl. Phys. A 620 (1997) 29.[1997TY01] S. Typel, H.H. Wolter, G. Baur, Nucl. Phys. A 613 (1997) 147.[1997VO06] W. von Oertzen, Z. Phys. A 357 (1997) 355.[1997VO17] W. von Oertzen, Nuovo Cimento A 110 (1997) 895.[1997YA02] J.S. Yan, F.E. Cecil, J.A. McNeil, M.A. Hofstee, P.D. Kunz, Phys. Rev. C 55 (1997) 1890.[1997YA08] J. Yan, F.E. Cecil, J.A. McNeil,M.A. Hofstee, Nucl. Phys. A 621 (1997) 127C.[1997ZA06] D. Zahnow, C. Rolfs, S. Schmidt, H.P. Trautvetter, Z. Phys. A 359 (1997) 211.[1997ZH39] M.A. Zhusupov, E.T. Ibraeva, T.G. Usmanov, Izv. Ross. Akad. Nauk, Ser. Fiz. 61 (1997) 2182, Bu

Russ. Acad. Sci., Phys. Ser. 61 (1997) 1715.[1997ZH40] M.A. Zhusupov, A.K. Morzabaev, S.K. Sahiev, Izv. Ross. Akad. Nauk, Ser. Fiz. 61 (1997) 24

Bull. Russ. Acad. Sci., Phys. Ser. 61 (1997) 1959.[1997ZI04] M. Zinser, F. Humbert, T. Nilsson, W. Schwab, H. Simon, T. Aumann, M.J.G. Borge, L.V. Chu

J. Cub, Th.W. Elze, et al., Nucl. Phys. A 619 (1997) 151.

[1997ZI1F] M. Zinser, F. Humbert, T. Nilsson, W. Schwab, H. Simon, T. Aumann, M.J.G. Borge, L.V. Chulkov,

J. Cub, Th.W. Elze, et al., in: [Darmstadt],† 1997, p. 37.

Page 197: Energy levels of light nuclei A = 8,9,10

,

-

62

.

.

tin,

s,

t,

-

37.

jita,

-

s,

icks,

8)

56;59901,

a

r,

98)

,

verie,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 351

[1997ZO1C] U. Zoppi, H. Matsuzaki, K. Kobayashi, M. Imamura, H. Nagai, S. Hatori, C. Nakano, Y. SunoharaNucl. Instrum. Methods Phys. Res. B 123 (1977) 319.

[1998AD12] E.G. Adelberger, S.M. Austin, J.B. Bahcall,A.B. Balantekin, G. Bogaert, L.S. Brown, L. Buchmann, F.E. Cecil, A.E. Champagne, L. de Braeckeleer, et al., Rev. Mod. Phys. 70 (1998) 1265.

[1998AN25] A.A. Andrianov, K.A. Gridnev, T.V. Tarutina,M.A. Yugaldin, Bull. Russ. Acad. Sci., Phys. Ser.(1998) 75.

[1998AR15] S.V. Artemov, I.R. Gulamov, E.A. Zaparov, I.Yu. Zotov, M.A. Kayumov, G.K. Ni, Bull. RussAcad. Sci., Phys. Ser. 62 (1998) 149.

[1998BA83] P.H. Barker, P.A. Amundsen, Phys. Rev. C 58 (1998) 2571.[1998BE1Q] V.B. Belyaev, D.E. Monakhov, D.V. Naumov, F.M. Penkov, Phys. Lett. A 247 (1998) 241.[1998BE31] A. Belymam, A. Hoummada, J. Collot, P.Desaintignon, G. Mahout, B. Merkel, Nucl. Instrum

Methods Phys. Res. B 134 (1998) 217.[1998BE44] K. Bennaceur, F. Nowacki, J. Okolowicz, M. Ploszajczak, J. Phys. G 24 (1998) 1631.[1998BE63] A.V. Belozyorov, J. Vincour, S. Piskor, R. Kalpakchieva, Yu.E. Penionzhkevich, V.S. Salama

V.E. Zhuchko, Nucl. Instrum. Methods Phys. Res. A 411 (1998) 343.[1998BL06] K.I. Blomqvist, W.U. Boeglin, R. Bohm, M. Distler, R. Edelhoff, J. Friedrich, R. Geige

M.K. Jones, M. Kahrau, M. Korn, et al., Phys. Lett. B 421 (1998) 71.[1998BO1M] H.G. Bohlen, W. von Oertzen, A. Blazevic, B. Gebauer, S. Thummerer, M. Wilper

R. Kalpakchieva, S.M. Grimes, T.N. Massey, A. Lepine-Szily, et al., in: [Dubna 97],† 1998, p. 134.[1998BO38] H.G. Bohlen, W. von Oertzen, R. Kalpakchieva, A. Blazevic, B.Gebauer, S.M. Grimes, A. Lepine

Szily, T.N. Massey, W. Mittig, A.N. Ostrowski, et al., Nuovo Cimento A 111 (1998) 841.[1998BR10] C.R. Brune, W.H. Geist, H.J. Karwowski, E.J. Ludwig, K.D. Veal, Phys. Rev. C 57 (1998) 34[1998CA18] F. Carstoiu, C. Lazard, R.J. Lombard, Phys. Rev. C 57 (1998) 3237.[1998CS03] A. Csoto, K. Langanke, Nucl. Phys. A 636 (1998) 240.[1998DA05] I. Daito, H. Akimune, S.M. Austin, D. Bazin, G.P.A. Berg, J.A. Brown, B.S. Davids, Y. Fu

H. Fujimura, M. Fujiwara, et al., Phys. Lett. B 418 (1998) 27.[1998DA14] B. Davids, D.W. Anthony, Sam M. Austin, D. Bazin, B. Blank, J.A. Caggiano, M. Chartier, H. Es

bensen, P. Hui, C.F. Powell, et al., Phys. Rev. Lett. 81 (1998) 2209.[1998DA15] C.H. Dasso, S.M. Lenzi, A. Vitturi, Nucl. Phys. A 639 (1998) 635.[1998DE13] G. de France, Nucl. Phys. A 630 (1998) 268C.[1998DE23] L.J. de Bever, H.P. Blok, R.S. Hicks, C.W. de Jager, N. Kalantar-Nayestanaki, J.J. Kelly, L. Lapika

R.A. Miskimen, D. Van Neck, G.A. Peterson, et al., Phys. Rev. Lett. 80 (1998) 3924.[1998DE34] L.J. de Bever, D. Branford, J.-O. Adler, B.-E. Anderson, I. Bobeldijk, T. Davinson, R.S. H

D.G. Ireland, K. Livingston, R.L.J. van der Meer, et al., Phys. Rev. C 58 (1998) 981.[1998EF05] V.D. Efros, H. Oberhummer, A. Pushkin, I.J. Thompson, Eur. Phys. J. A 1 (1998) 447.[1998FA05] M.S. Fayache, E. Moya de Guerra, P. Sarriguren, Y.Y. Sharon, L. Zamick, Phys. Rev. C 57 (199

2351;M.S. Fayache, E. Moya de Guerra, P. Sarriguren, Y.Y. Sharon, L. Zamick, Phys. Rev. C 59 (1999) 29M.S. Fayache, E. Moya de Guerra, P. Sarriguren, Y.Y. Sharon, L. Zamick, Phys. Rev. C 61 (2000) 0Erratum.

[1998FI02] G. Fiorentini, E. Lisi, S. Sarkar, F.L. Villante, Phys. Rev. D 58 (1998) 063506.[1998GA02] C.A. Gagliardi, A.M. Mukhamedzhanov, R.E. Tribble, H.M. Xu, Phys. Rev. Lett. 80 (1998) 421.[1998GO16] V.Z. Goldberg, G.V. Rogachev, M.S. Golovkov, V.I. Dukhanov, I.N. Serikov, V.A. Timofeev, Pis’m

Zh. Eksp. Teor. Fiz. 67 (1998) 959, JETP Lett. 67 (1998) 1013.[1998GO30] M.G. Gornov, Yu.B. Gurov, S.V. Lapushkin,P.V. Morokhov, V.A. Pechkurov, K. Seth, T. Pedla

J. Wise, D. Zhao, Bull. Russ. Acad. Sci., Phys. Ser. 62 (1998) 1781.[1998GR07] L.V. Grigorenko, B.V. Danilin, V.D. Efros, N.B. Shul’gina, M.V. Zhukov, Phys. Rev. C 57 (19

R2099.[1998HA01] P.D. Harty, I.J.D. MacGregor, J. Ahrens,J.R.M. Annand, I. Anthony, R. Beck, D. Branford

G.E. Cross, T. Davinson, P. Grabmayr, et al., Phys. Rev. C 57 (1998) 123.[1998HA05] F. Hammache, G. Bogaert, P. Aguer, C. Angulo, S. Barhoumi, L. Brillard, J.F. Chemin, G. Cla

A. Coc, M. Hussonnois, et al., Phys. Rev. Lett. 80 (1998) 928.

[1998HE35] M. Heil, F. Kappeler, M. Wiescher, A. Mengoni, Astrophys. J. 507 (1998) 997.[1998IO03] D.B. Ion, W. Stocker, Roum. J. Phys. 43 (1998) 15.
Page 198: Energy levels of light nuclei A = 8,9,10

20.io,

yr,

44.35

b-

,

pian,

ri,

,

ki,1.

ys.

ker,

mayr,

ri,

Warner,

9)

c,

352 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1998JE04] B.K. Jennings, S. Karataglidis, T.D. Shoppa, Phys. Rev. C 58 (1998) 579.[1998JE10] B.K. Jennings, S. Karataglidis, Phys. Rev. C 58 (1998) 3002.[1998JE11] B.K. Jennings, S. Karataglidis, T.D. Shoppa, Phys. Rev. C 58 (1998) 3711.[1998JO09] G. Jonkmans, I.S. Towner, B. Sur, Phys. Rev. C 58 (1998) 1278.[1998KA51] F.F. Karpeshin, M.A. Listengarten, L.I. Mileshina, Bull. Russ. Acad. Sci., Phys. Ser. 62 (1998)[1998KI19] T. Kikuchi, T. Motobayashi, N. Iwasa, Y. Ando, M. Kurokawa, S. Moriya, H. Murakami, T. Nish

J. Ruan, S. Shirato, et al., Eur. Phys. J. A 3 (1998) 213.[1998KN02] O.M. Knyazkov, I.N. Kuchtina, S.A. Fayans, Phys. At. Nucl. 61 (1998) 533.[1998KO17] I.V. Kopytin, A.A. Khuskivadze, V.N. Pomerantsev, Phys. At. Nucl. 61 (1998) 569.[1998LE27] V.M. Lebedev, N.V. Orlova, A.V. Spassky, Phys. At. Nucl. 61 (1998) 1493.[1998MA02] I.J.D. MacGregor, T.T.H. Yau, J. Ahrens,J.R.M. Annand, R. Beck, D. Branford, P. Grabma

S.J. Hall, P.D. Harty, T. Hehl, et al., Phys. Rev. Lett. 80 (1998) 245.[1998MA36] G. Martinez-Pinedo, P. Vogel, Phys. Rev. Lett. 81 (1998) 281.[1998MA54] M. Mayer, A. Annen, W.Jacob, S. Grigull, Nucl. Instrum. Methods Phys. Res. B 143 (1998) 2[1998MO13] D.E. Monakhov, V.B. Belyaev, S.A. Sofianos, S.A. Rakityansky, W. Sandhas, Nucl. Phys. A 6

(1998) 257.[1998MU09] A.M. Mukhamedzhanov, H.L.Clark, H. Dejbakhsh, C.A. Gagliardi, Y.W. Lui, L. Trache, R.E. Tri

ble, H.M. Xu, V. Burjan, J. Cejpek, et al., Nucl. Phys. A 631 (1998) C788.[1998MU17] N.C. Mukhooadhyay, H.C. Chiang, S.K. Singh, E. Oset, Phys. Lett. B 434 (1998) 7.[1998NA01] S. Nakamura, V. Guimarpes, S. Kubono, Phys. Lett. B 416 (1998) 43.[1998NU01] F.M. Nunes, I.J. Thompson, Nucl. Phys. C 57 (1998) R2818.[1998OL04] L. Olah, A.M. Elmegrab, A. Fenyvesi, A.D. Majdeddin, R. Doczi, V. Semkova, S.M. Qaim

J. Csikai, Nucl. Instrum. Methods Phys. Res. A 404 (1998) 373.[1998RA16] A.V. Ramayya, J.K. Hwang, J.H. Hamilton, A. Sandulescu, A. Florescu, G.M. Ter-Ako

A.V. Daniel, Yu.T. Oganessian, G.S. Popeko, W. Greiner, et al., Phys. Rev. Lett. 81 (1998) 947.[1998RY01] J. Ryckebusch, D. Debruyne, W. Van Nespen, Phys. Rev. C 57 (1998) 1319.[1998RY05] J. Ryckebusch, W. Van Nespen, D. Debruyne, Phys. Lett. B 441 (1998) 1.[1998SH09] R. Shyam, H. Lenske, Phys. Rev. C 57 (1998) 2427.[1998SO05] N. Soic, D. Cali, S. Cherubini, E. Costanzo, M. Lattuada, D. Miljanic, S. Romano, C. Spitale

M. Zadro, Europhys. Lett. 41 (1998) 489.[1998ST20] F. Strieder, F. Schumann, L.Gialanella, U. Greife, D. Rogalla, C. Rolfs, H.P. Trautvetter, Zs. Fulop

G. Gyurky, E. Somorjai, et al., Eur. Phys. J. A 3 (1998) 1.[1998TE03] G.M. Ter-Akopian, A.M. Rodin, A.S. Fomichev, S.I. Sidorchuk, S.V. Stepantsov, R. Wols

M.L. Chelnokov, V.A. Gorshkov, A.Yu. LavrentYev, V.I. Zagrebaev, et al., Phys. Lett. B 426 (1998) 25[1998TI06] D.R. Tilley, C.M. Cheves, J.H. Kelley, S. Raman, H.R. Weller, Nucl. Phys. A 636 (1998) 249.[1998TOZQ] I.S. Towner, RCNP (Osaka) Ann. Rep. 1997 (1998) 202.[1998WE05] L. Weissman, C. Broude, G. Goldring, R. Hadar, M. Hass, F. Schwamm, M. Shaanan, Nucl. Ph

A 630 (1998) 678.[1998WI10] R.B. Wiringa, Nucl. Phys. A 631 (1998) 70C.[1998WU05] E.A. Wulf, M.A. Godwin, J.F. Guillemette, C.M. Laymon, R.M. Prior, B.J. Rice, M. Spra

D.R. Tilley, H.R. Weller, Phys. Rev. C 58 (1998) 517.[1998YA05] T.T.H. Yau, I.J.D. MacGregor, J. Ahrens, J.R.M. Annand, R. Beck, D. Branford, P. Grab

S.J. Hall, P.D. Harty, T. Hehl, et al., Eur. Phys. J. A 1 (1998) 241.[1998YO09] T. Yoshimura, A. Okihana, R.E. Warner, N.S. Chant, P.G. Roos, C. Samanta, S. Kakigi, N. Koo

M. Fujiwara, N. Matsuoka, et al., Nucl. Phys. A 641 (1998) 3.[1998ZE01] P.D. Zecher, A. Galonsky, S.J. Gaff, J.J. Kruse, G. Kunde, E. Tryggestad, J. Wang, R.E.

D.J. Morrissey, K. Ieki, et al., Phys. Rev. C 57 (1998) 959.[1998ZH02] M.A. Zhusupov, E.T. Ibraeva, Phys. At. Nucl. 61 (1998) 46.[1999AB38] S.N. Abramovich, L.N. Generalov, A.G. Zvenigorodsky, Izv. Ross. Akad. Nauk, Ser. Fiz. 63 (199

76, Bull. Russ. Acad. Sci., Phys. Ser. 63 (1999) 64.[1999AN35] C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. Leclercq-Willain, A. Co

S. Barhoumi, P. Auger, C. Rolfs, et al., Nucl. Phys. A 656 (1999) 3.

[1999AZ02] A. Azhari, V. Burjan, F. Carstoiu, H. Dejbakhsh, C.A. Gagliardi, V. Kroha, A.M. Mukhamedzhanov,

L. Trache, R.E. Tribble, Phys. Rev. Lett. 82 (1999) 3960.

Page 199: Energy levels of light nuclei A = 8,9,10

g,

eva,

25

r,

n,

n,

Tilley,

,

,

ry,

Nucl.

1999)

Phys.

. Kel-

c,

T. Gu,

n,

ach,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 353

[1999AZ04] A. Azhari, V. Burjan, F. Carstoiu, C.A. Gagliardi, V. Kroha, A.M. Mukhamedzhanov, X. TanL. Trache, R.E. Tribble, Phys. Rev. C 60 (1999) 055803.

[1999BB07] F.C. Barker, Nucl. Phys. A 660 (1999) 249.[1999BE25] K. Bennaceur, F. Nowacki, J. Okolowicz, M. Ploszajczak, Nucl. Phys. A 651 (1999) 289.[1999BE46] C.A. Bertulani, J. Phys. G 25 (1999) 1959.[1999BO26] H.G. Bohlen, A. Blazevic, B. Gebauer, W. von Oertzen, S. Thummerer, R. Kalpakchi

S.M. Grimes, T.N. Massey, Prog. Part. Nucl. Phys. 42 (1999) 17.[1999BU26] B. Burggraf, K. Farzin, J. Grabis, Th. Last, E. Manthey, H.P. Trautvetter, C. Rolfs, J. Phys. G

(1999) L71.[1999CA48] J.A. Caggiano, D. Bazin, W. Benenson, B. Davids, B.M. Sherrill, M. Steiner, J. Yurkon, A.F. Zelle

B. Blank, Phys. Rev. C 60 (1999) 064322.[1999CH50] M.B. Chadwick, D.T.L. Jones, G.J. Arendse, A.A. Cowley, W.A. Richter, J.J. Lawrie, R.T. Newma

J.V. Pilcher, F.D. Smit, G.F. Steyn, et al., Nucl. Phys. (Proc. Suppl.) A 654 (1999) 1051C.[1999DE23] P. Descouvemont, D. Baye, Phys. Rev. C 60 (1999) 015803.[1999DE33] V.M. de Aquino, M. Canaves Jr., Phys. Rev. D 60 (1999) 073001.[1999EF01] V.D. Efros, J.M. Bang, Eur. Phys. J. A 4 (1999) 33.[1999FE04] J.C. Fernandes, R. Crespo, F.M. Nunes, I.J. Thompson, Phys. Rev. C 59 (1999) 2865.[1999FR12] S. Frixione, P. Nason,G. Ridolfi, Nucl. Phys. B 542 (1999) 311.[1999FU04] B.K. Fujikawa, S.J. Aaztalos, R.M. Clark, M.-A. Deleplanque-Stephens, P. Fallon, S.J. Freedma

J.P. Greene, I.-Y. Lee, L.J. Lising, A.O. Macchiavelli, et al., Phys. Lett. B 449 (1999) 6.[1999FU08] M. Fukuda, M. Mihara, T. Fukao, S. Fukuda, M. Ishihara, S. Ito,T. Kobayashi, K. Matsuta, T. Mi-

namisono, S. Momota, et al., Nucl. Phys. A 656 (1999) 209.[1999GA21] S.J. Gaff, R.S. Canon, J.H. Kelley, S.O. Nelson, K. Sabourov, E.C. Schreiber, D.R.

H.R. Weller, E.A. Wulf, Phys. Rev. C 59 (1999) 3425.[1999GO15] N. Godinovic, S. Blagus, M. Bogovac, M.Latuada, M. Milin, D. Miljanic, D. Rendic, N. Soic

C. Spitaleri, M. Zadro, Phys. Rev. C 60 (1999) 037601.[1999HA27] M. Harada, Y. Watanbe, A. Yamamoto, S. Yoshioka, K. Sato, T. Nakashima, H. Ijiri, H. Yoshida

Y. Uozumi, N. Koori, et al., J. Nucl. Sci. Tech. (Tokyo) 36 (1999) 313.[1999HA51] ISOLDE Collaboration, M. Hass, C. Broude, V. Fedoseev, G. Goldring, G. Huber, J. Lett

V. Mishin, H.J. Ravn, V. Sebastian, L. Weissman, Phys. Lett. B 462 (1999) 237.[1999HA61] I. Hamamoto, H. Sagawa, Phys. Rev. C 60 (1999) 064314.[1999IR01] D.G. Ireland, I.J.D. MacGregor, J. Ryckebusch, Phys. Rev. C 59 (1999) 3297.[1999IW03] N. Iwasa, F. Boue, G. Surowka, K. Summerer,T. Baumann, B. Blank, S. Czajkowski, A. Forster,

M. Gai, H. Geissel, et al., Phys. Rev. Lett. 83 (1999) 2910.[1999JO03] J. Jordanova, L. Olah, A. Fenyvesi, A.M. El-Megrab, I. ElAgib, Darsono, U. Klein, J. Csikai,

Instrum. Methods Phys. Res. A 421 (1999) 522.[1999KA67] R. Kalpakchieva, Yu.E. Penionzhkevich, H.G. Bohlen, Fiz. Elem. Chastits At. Yadra 30 (

1429, Phys. Part. Nucl. 30 (1999) 627.[1999KH06] A.F. Khodyachikh, Yad. Fiz. 62 (1999) 1355, Phys. At. Nucl. 62 (1999) 1276.[1999KN04] O.M. Knyazkov, I.N. Kukhtina, S.A. Fayans, Fiz. Elem. Chastits At. Yad. 30 (1999) 870,

Part. Nucl. 30 (1999) 369.[1999MC06] S.J. McAllister, J.C. McGeorge, I.J.D. MacGregor, J.R.M. Annand, S.J. Hall, P.D. Harty, J.D

lie, G.J. Miller, R.O. Owens, D.P. Watts, et al., Phys. Rev. C 60 (1999) 044610.[1999MI39] M. Milin, M. Aliotta, S. Cherubini, T. Davinson, A. Di Pietro, P. Figuera, W. Galster, D. Miljani

A. Ninane, A.N. Ostrowski, et al., Europhys. Lett. 48 (1999) 616.[1999NA05] A. Nadasen, J. Brusoe, J. Farhat, K.A.G. Rao, D. Sisan, J. Williams, P.G. Roos, F. Adimi,

M. Khayat, et al., Phys. Rev. C 59 (1999) 760.[1999RA15] R. Raabe, A. Piechaczek, A. Andreyev, D. Baye,W. Bradfield-Smith, S. Cherubini, T. Davinso

P. Descouvemont, A. Di Pietro, W. Galster, et al., Phys. Lett. B 458 (1999) 1.[1999RU10] A.T. Rudchik, O.A. Momotyuk, A. Budzanowski, A. Szczurek, V.K. Chernievsky, A.V. Mokhn

V.A. Ziman, E.I. Koshchy, S. Kliczewski, R. Siudak, et al., Nucl. Phys. A 660 (1999) 267.[1999SA27] A. Sakharuk, V. Zelevinsky, V.G. Neudatchin, Phys. Rev. C 60 (1999) 014605.

[1999SA39] A. Sattarov, A.M. Mukhamedzhanov, A. Azhari, C.A. Gagliardi, L. Trache, R.E. Tribble, Phys. Rev.

C 60 (1999) 035801.

Page 200: Energy levels of light nuclei A = 8,9,10

ortina-

o,

ilcher,

en,

b,

o,

alli,

37

e,

n-

ad.

b-

00)

is,

-

354 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[1999SH05] K. Shoda, T. Tanaka, Phys. Rev. C 59 (1999) 239.[1999SM04] M.H. Smedberg, T. Baumann, T. Aumann, L. Axelsson, U. Bergmann, M.J.G. Borge, D. C

Gil, L.M. Fraile, H. Geissel, L. Grigorenko, et al., Phys. Lett. B 452 (1999) 1.[1999SP09] C. Spitaleri, M. Aliotta, S. Cherubini, M. Lattuada, Dj. Miljanic, S. Romano, N. Soic, M. Zadr

R.A. Zappala, Phys. Rev. C 60 (1999) 055802.[1999ST06] G.F. Steyn, S.V. Fortsch, A.A. Cowley, J.J. Lawrie, G.J. Arendse, G.C. Hillhouse, J.V. P

F.D. Smit, R. Neveling, Phys. Rev. C 59 (1999) 2097.[1999TH01] M. Thoennessen, S. Yokoyama, A. Azhari, T. Baumann, J.A. Brown, A. Galonsky, P.G. Hans

J.H. Kelley, R.A. Kryger, E. Ramakrishnan, et al., Phys. Rev. C 59 (1999) 111.[1999TI04] N.K. Timofeyuk, R.C. Johnson, Phys. Rev. C 59 (1999) 1545.[1999TI07] N.K. Timofeyuk, Nucl. Phys. A 652 (1999) 132.[1999TO07] J.A. Tostevin, J. Phys. G 25 (1999) 735.[2000AL04] D. Aleksandrov, T. Aumann, L. Axelsson,T. Baumann, M.J.G. Borge, L.V. Chulkov, J. Cu

W. Dostal, B. Eberlein, Th.W. Elze, et al., Nucl. Phys. A 669 (2000) 51.[2000AL06] F. Alves, M. Jensen, H.J. Jensen, R.J.Nickles, S. Holm, Appl. Radiat. Isot. 52 (2000) 899.[2000AU02] T. Aumann, A. Navin, D.P. Balamuth, D. Bazin, B. Blank, B.A. Brown, J.E. Bush, J.A. Caggian

B. Davids, T. Glasmacher, et al., Phys. Rev. Lett. 84 (2000) 35.[2000BA09] D. Baye, E. Brainis, Phys. Rev. C 61 (2000) 025801.[2000BA21] F.C. Barker, Aust. J. Phys. 53 (2000) 247.[2000BA46] F.C. Barker, A.M. Mukhamedzhanov, Nucl. Phys. A 673 (2000) 526.[2000BA52] M. Bargiotti, A. Bertin, M. Bruschi, M. Capponi, S. De Castro, R. Dona, P. Faccioli, D. G

B. Giacobbe, U. Marconi, et al., Riv. Nuovo Cimento Soc. Ital. Fis. 23 (2000) 1.[2000BA89] F.C. Barker, Phys. Rev. C 62 (2000) 044607.[2000BB06] D. Baye, P. Descouvemont, R. Kamouni, Few-Body Systems 29 (2000) 131.[2000BB09] D. Baye, Phys. Rev. C 62 (2000) 065803.[2000BE21] K. Bennaceur, F. Nowacki, J. Okolowicz, M. Ploszajczak, Acta Phys. Pol. B 31 (2000) 311.[2000BU10] K. Buckley, T. Fugleberg, A. Zhitnitsky, Phys. Rev. Lett. 84 (2000) 4814.[2000CH31] S. Chiba, O. Iwamoto, E.S. Sukhovitsky, Y. Watanabe, T. Fukahori, J. Nucl. Sci. Technol. (Tokyo)

(2000) 498.[2000CO31] D. Cortina-Gil, F. Attallah, T. Aumann, L.Axelsson, T. Baumann, J. Benlliure, M.J.G. Borg

K. Boretzky, L. Chulkov, U.D. Pramanik,et al., Acta Phys. Hung. N.S. 12 (2000) 275.[2000CS01] A. Csoto, Phys. Rev. C 61 (2000) 024311.[2000CS03] A. Csoto, Phys. Rev. C 61 (2000) 037601.[2000DA22] S. Dangtip, J. Blomgren, N. Olsson, H. Conde, K. Elmgren, J. Rahm, A. Ringbom, G. Tibell, O. Jo

sson, L. Nilsson, et al., Nucl. Phys. A 677 (2000) 3.[2000DE61] P.K. Deb, K. Amos, S. Karataglidis, Aust. J. Phys. 53 (2000) 767.[2000FE08] J.C. Fernandes, R. Crespo, F.M. Nunes, Phys. Rev. C 61 (2000) 064616.[2000FO17] S. Fortier, Acta Phys. Hung. N.S. 12 (2000) 255.[2000GA49] L.I. Galanina, N.S. Zelenskaya,Phys. At. Nucl. 63 (2000) 1792, Yad. Fiz. 63 (2000) 1881.[2000GA59] L.I. Galanina, N.S. Zelenskaya, Bull. Russ. Acad. Sci., Phys. Ser. 64 (2000) 764, Izv. Ross. Ak

Nauk, Ser. Fiz. 64 (2001) 954.[2000GE09] E. Gete, L. Buchmann, R.E. Azuma, D. Anthony, N. Bateman, J.C. Chow, J.M. D’Auria, M. Dom

sky, U. Giesen, C. Iliadis, et al., Phys. Rev. C 61 (2000) 064310.[2000GE16] L.N. Generalov, S.N. Abramovich, A.G. Zvenigorodsky, Bull. Russ. Acad. Sci., Phys. Ser. 64 (20

352, Izv. Ross. Akad. Nauk, Ser. Fiz. 64 (2000) 440.[2000GI07] R.A. Giannelli, B.G. Ritchie, J.M. Applegate, E. Beck, J. Beck, A.O. Vanderpool, C.L. Morr

M. Rawool-Sullivan, M.K. Jones, R.D. Ransome, et al., Phys. Rev. C 61 (2000) 054615.[2000GL04] V.V. Glagolev, K.G. Gulamov, V.D. Lipin, S.L. Lutpullaev, K. Olimov, A.A. Yuldashev, B.S. Yul

dashev, Yad. Fiz. 63 (2000) 575, Phys. At. Nucl. 63 (2000) 520.[2000GR03] L.V. Grigorenko, N.B. Shul’gina, M.V. Zhukov, Nucl. Phys. A 665 (2000) 105.[2000GR07] L.V. Grigorenko, N.B. Shul’gina, B.V. Danilin, Nucl. Phys. A 671 (2000) 136.[2000GR22] Particle Data Group, D.E. Groom, Eur. Phys. J. C 15 (2000) 1.

[2000GU05] V. Guimaraes, J.J. Kolata, D. Peterson, P. Santi, R.H. White-Stevens, S.M. Vincent, F.D. Becchetti,

M.Y. Lee, T.W. O’Donnell, D.A. Roberts, et al., Phys. Rev. Lett. 84 (2000) 1862.

Page 201: Energy levels of light nuclei A = 8,9,10

lte,

n,

her,

-

2909.

. 64

ska,

,

3.s.

ller,

,

kellis,

yr,

zv.

cl. 31

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 355

[2000GU19] D. Gupta, C. Samanta, R. Kanungo, Nucl. Phys. A 674 (2000) 77.[2000HA33] T. Hagner, R. von Hentig, B. Heisinger, L.Oberauer, S. Schonert, F. von Feilitzsch, E. No

Astropart. Phys. 14 (2000) 33.[2000HA50] M. Hashmi, G. Staudenmaier, Phys. Scr. 62 (2000) 268.[2000HAZU] J.C. Hardy, I.S. Towner, in: [Lund],† 2000, p. 90.[2000IC01] S. Ichimaru, Phys. Lett. A 266 (2000) 167.[2000IW02] H. Iwasaki, T. Motobayashi, H. Akiyoshi, Y. Ando, N. Fukuda, H. Fujiwara, Zs. Fulop, K.I. Hah

Y. Higurashi, M. Hirai, et al., Phys. Lett. B 481 (2000) 7.[2000IW05] Y. Iwata, K. Ieki, A. Galonsky, J.J. Kruse, J. Wang, R.H. White-Stevens, E. Tryggestad, P.D. Zec

F. Deák, Á. Horváth, et al., Phys. Rev. C 62 (2000) 064311.[2000JE10] B.K. Jennings, Phys. Rev. C 62 (2000) 027602.[2000JO17] G.C. Jon, H. Orihara, C.C. Yun, A. Terakawa, K. Itoh, A. Yamamoto, H. Suzuki, H. Mizuno, H. Ka

murai, K. Ishi, et al., Phys. Rev. C 62 (2000) 044609.[2000KA04] S. Karataglidis, P.J. Dortmans,K. Amos, C. Bennhold, Phys. Rev. C 61 (2000) 024319.[2000LI13] T.E. Liolios, Phys. Rev. C 61 (2000) 055802.[2000MI07] S. Misicu, A. Sandulescu, W. Greiner, Phys. Rev. C 61 (2000) 041602.[2000MO07] P. Mohr, Phys. Rev. C 61 (2000) 045802.[2000NA34] H. Nagai, W. Tada, T. Kobayashi, Nucl. Instrum. Methods Phys. Res. B 172 (2000) 796.[2000NE09] S.O. Nelson, E.A. Wulf, J.H. Kelley, H.R. Weller, Nucl. Phys. A 679 (2000) 199.[2000OR04] C.E. Ortiz, A. Garcia, R.A. Waltz, M. Bhattacharya, A.K. Komives, Phys. Rev. Lett. 85 (2000)[2000PA15] E.Ya. Paryev, Yad. Fiz. 63 (2000) 348, Phys. At. Nucl. 63 (2000) 287.[2000PA53] Yu.L. Parfenova, M.V. Zhukov, J.S. Vaagen, Phys. Rev. C 62 (2000) 044602.[2000PO32] I.V. Poplavsky, Bull. Russ. Acad. Sci., Phys. Ser. 64 (2000) 795, Izv. Ross. Akad. Nauk, Ser. Fiz

(2000) 991.[2000RO17] G. Rosner, Prog. Part. Nucl. Phys. 44 (2000) 99.[2000RU02] A.T. Rudchik, O.A. Momotyuk, V.A. Ziman, A. Budzanowski, A. Szczurek, I. Skwirczyn

S. Kliczewski, R. Siudak, Nucl. Phys. A 662 (2000) 44.[2000RU05] A.T. Rudchik, O.A. Momotyuk, A. Budzanowski, V.K. Chernievsky, E.I. Koshchy, A.V. Mokhnach

V.A. Ziman, S. Kliczewski, R. Siudak, I. Skwirczynska, et al., Nucl. Phys. A 677 (2000) 61.[2000SA06] T. Sanami, M. Baba, K. Saito, N. Hirakawa, Nucl. Instrum. Methods Phys. Res. A 440 (2000) 40[2000SH01] V.B. Shostak, G.P. Palkin, N.I. Voloshin, V.P. Likhachev, M.N. Martins, J.D.T. Arruda-Neto, Phy

Rev. C 61 (2000) 024601.[2000SP01] M. Spraker, R.M. Prior, M.A. Godwin, B.J. Rice, E.A. Wulf, J.H. Kelley, D.R. Tilley, H.R. We

Phys. Rev. C 61 (2000) 015802.[2000SU23] F. Sudbrock, U. Herpers, S.M. Qaim, J. Csikai, P.W. Kubik, H.-A. Synal, M. Suter, Radiochim.

Acta 88 (2000) 829.[2000TR01] L. Trache, A. Azhari, H.L. Clark, C.A. Gagliardi, Y.-W. Lui, A.M. Mukhamedzhanov, R.E. Tribble

F. Carstoiu, Phys. Rev. C 61 (2000) 024612.[2000VE01] OBELIX Collaboration, S. Vecchi, Nucl. Phys. A 663-664 (2000) 613C.[2000VL04] R. Vlastou, C.T. Papadopoulos, C. Tsabaris, P.A. Assimakopoulos, A.A. Pakou, G. Dou

C.A. Kalfas, A.C. Xenoulis, Eur. Phys. J. A 8 (2000) 361.[2000VO22] V.T. Voronchev, V.I. Kukulin, J. Phys. G 26 (2000) L123.[2000WA20] D.P. Watts, I.J.D. MacGregor, J. Ahrens, J.R.M. Annand, R. Beck, D. Branford, P. Grabma

S.J. Hall, P.D. Harty, T. Hehl, et al., Phys. Rev. C 62 (2000) 014616.[2000WE03] S.P. Weppner, O. Garcia, Ch. Elster, Phys. Rev. C 61 (2000) 044601.[2000WI09] R.B. Wiringa, S.C. Pieper, J. Carlso, V.R. Pandharipande, Phys. Rev. C 62 (2000) 014001.[2000YA05] Z.-C. Yan, G.W.F. Drake, Phys. Rev. A 61 (2000) 022504.[2000YI02] M. Yilmaz, B. Gonul, Few-Body Systems 29 (2000) 223.[2000ZH38] M.A. Zhusupov, S.K. Sahiev, Sh. Sagindykov, Bull. Russ. Acad. Sci., Phys. Ser. 64 (2000) 103, I

Ross. Akad. Nauk, Ser. Fiz. 64 (2000) 121.[2000ZH50] M.A. Zhusupov, E.T. Ibraeva, Fiz. Elem. Chastits At. Yadra 31 (2000) 1427, Phys. Part. Nu

(2000) 723.

[2001AK09] H. Akimune, M. Fujimura, M. Fujiwara, K. Hara, T. Ishikawa, T. Kawabata, H. Utsunomiya, T. Ya-

magata, K. Yamasaki, M. Yosoi, Phys. Rev. C 64 (2001) 041305.

Page 202: Energy levels of light nuclei A = 8,9,10

r,

s,

o,

-

3.63

r,

ys.

se,

001)

n,

01)

ent,

Phys.

,

nhoz,

,

rostin,

ll,

aa,

a,

verie,

356 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[2001AV02] S.P. Avdeyev, V.A. Karnaukhov, L.A. Petrov, V.K. Rodionov, V.D. Toneev, H. OeschleO.V. Bochkarev, L.V. Chulkov, E.A. Kuzmin, A.Budzanowski, et al., Phys. Lett. B 503 (2001) 256.

[2001AZ01] A. Azhari, V. Burjan, F. Carstoiu, C.A. Gagliardi, V. Kroha, A.M. Mukhamedzhanov, F.M. NuneX. Tang, L. Trache, R.E. Tribble, Phys. Rev. C 63 (2001) 055803.

[2001BA47] F.C. Barker, Y. Kondo, Nucl. Phys. A 688 (2001) 959.[2001BE45] D. Beaumel, T. Kubo, T. Teranishi, H. Sakurai, S. Fortier, A. Mengoni, N. Aoi, N. Fukuda, M. Hirai,

N. Imai, et al., Phys. Lett. B 514 (2001) 226.[2001BE51] ISOLDE Collaboration, U.C. Bergmann, M.J.G. Borge, R. Boutami, L.M. Fraile, H.O.U. Fynb

P. Hornshoj, B. Jonson, K. Markenroth, I. Martel, I. Mukha, et al., Nucl. Phys. A 692 (2001) 427.[2001BO10] A. Bonaccorso, G.F. Bertsch, Phys. Rev. C 63 (2001) 044604.[2001BO35] H.G. Bohlen, R. Kalpakchieva, A. Blazevic, B. Gebauer, T.N. Massey, W. von Oertzen, S. Thum

merer, Phys. Rev. C 64 (2001) 024312.[2001BU05] L. Buchmann, E. Gete, J.C. Chow, J.D. King, D.F. Measday, Phys. Rev. C 63 (2001) 03430[2001CA21] F. Carstoiu, L. Trache, C.A. Gagliardi,R.E. Tribble, A.M. Mukhamedzhanov, Phys. Rev. C

(2001) 054310.[2001CA37] J.A. Caggiano, D. Bazin, W. Benenson, B. Davids, R. Ibbotson, H. Scheit, B.M. Sherrill, M. Steine

J. Yurkon, A.F. Zeller, et al., Phys. Rev. C 64 (2001) 025802.[2001CA50] E. Caurier, P. Navratil, W.E. Ormand, J.P. Vary, Phys. Rev. C 64 (2001) 051301.[2001CH31] L. Chen, B. Blank, B.A. Brown, M. Chartier,A. Galonsky, P.G. Hansen, M. Thoennessen, Ph

Lett. B 505 (2001) 21.[2001CH46] M. Chartier, J.R. Beene, B. Blank, L. Chen, A. Galonsky, N. Gan, K. Govaert, P.G. Hansen, J. Kru

V. Maddalena, et al., Phys. Lett. B 510 (2001) 24.[2001CH78] M. Chiari, L. Giumtini, P.A. Mando, N. Taccetti, Nucl. Instrum. Methods Phys. Res. B 184 (2

309.[2001CO06] D. Cortina-Gil, T. Baumann, H. Geissel,H. Lenske, K. Summerer, L. Axelsson, U. Bergman

M.J.G. Borge, L.M. Fraile, M. Hellstrom, et al., Eur. Phys. J. A 10 (2001) 49.[2001CO21] L. Corraggio, A. Covello, A. Gargano, N. Itaco, T.T.S. Kuo, J. Phys. G 27 (2001) 2351.[2001CS03] A. Csoto, K. Langanke, Nucl. Phys. A 688 (2001) 511C.[2001CS04] A. Csoto, H. Oberhummer, H. Schlattl, Nucl. Phys. A 688 (2001) 560C.[2001CU06] N. Curtis, D.D. Caussyn, N.R. Fletcher, F. Marechal, N. Fay, D. Robson, Phys. Rev. C 64 (20

044604.[2001DA03] B. Davids, D.W. Anthony, T. Aumann, S.M. Austin, T. Baumann, D. Bazin, R.R.C. Clem

C.N. Davids, H. Esbensen, P.A. Lofy, et al., Phys. Rev. Lett. 86 (2001) 2750.[2001DA11] B. Davids, S.M. Austin, D. Bazin, H. Esbensen, B.M. Sherrill, I.J. Thompson, J.A. Tostevin,

Rev. C 63 (2001) 065806.[2001DE11] F.W.N. de Boer, K. Bethge, H. Bokemeyer, R. van Dantzig, J. van Klinken, V. Mironov, K.A. Muller

K.E. Stiebing, J. Phys. (London) G 27 (2001) L29.[2001DE50] M.M. de Moura, A.A.P. Suaide, N. Added, E.E. Alonso, W.H.Z. Cardenas, R.J. Fujii, M.G. Mu

F.A. Souza, E.M. Szanto, A. Szanto de Toledo, et al., Nucl. Phys. A 696 (2001) 64.[2001DI12] A. Di Pietro, P. Figuera, R. Neal, C. Sukosd, F. Amorini,F. Binon, W. Bradfield-Smith, M. Cabibbo

G. Cardella, R. Coszach, et al., Nucl. Phys. A 689 (2001) 668.[2001DZ02] F. Dzheparov, A. Gulko, P. Heitjans, D. Lvov, A. Schirmer, V. Shestopal, S. Stepanov, S. T

Physica B 297 (2001) 288.[2001FR02] M. Freer, J.C. Angelique, L. Axelsson, B. Benoit, U. Bergmann, W.N. Catford, S.P.G. Chappe

N.M. Clarke, N. Curtis, A. D’Arrigo, et al., Phys. Rev. C 63 (2001) 034301.[2001FR03] M. Freer, J.T. Murgatroyd, S.M. Singer, N.Curtis, D.J. Henderson, D.J. Hofman, A.H. Wuosm

Phys. Rev. C 63 (2001) 034317.[2001GA19] C.A. Gagliardi, A. Azhari, P. Bem, V. Burjan, F. Carstoiu, J. Cejpek, H.L. Clark, V. Kroh

Y.-W. Lui, A.M. Mukhamedzhanov, et al., Nucl. Phys. A 682 (2001) 369C.[2001HA26] F. Hammache, G. Bogaert, P. Aguer, C. Angulo, S. Barhoumi, L. Brillard, J.F. Chemin, G. Cla

A. Coc, M. Hussonnois, et al., Phys. Rev. Lett. 86 (2001) 3985.

[2001HA36] F. Hammache, G. Bogaert, P. Aguer, C. Angulo, S. Barhoumi, L. Brillard, J.F. Chemin, G. Claverie,

A. Coc, M. Hussonnois, et al., Nucl. Phys. A 688 (2001) 273C.

Page 203: Energy levels of light nuclei A = 8,9,10

h,

1)

,

i.

hari,

i,

urtis,

n,

vi,

a,

l-

ck,

on,

. Hin-

.

royd,

a,

la,

y,

iu,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 357

[2001HO13] W.B. Howard, S.M. Grimes, T.N. Massey, S.I.Al-Quraishi, D.K. Jacobs, C.E. Brient, J.C. YancNucl. Sci. Eng. 138 (2001) 145.

[2001HO22] M. Hoeft, K. Czerski, P. Heide, M. Lang, Nucl. Phys. A 688 (2001) 524C.[2001HO23] M.A. Hofstee, A.K. Pallone, F.E. Cecil,J.A. McNeil, C.S. Galovich, Nucl. Phys. A 688 (200

527C.[2001JU01] B. Julia-Diaz, F. Fernandez, P. Gonzalez, A. Valcarce, Phys. Rev. C 63 (2001) 024006.[2001JUZZ] A.R. Junghans, E.C. Mohrmann, K.A. Snover, T.D. Steiger, E.G. Adelberger, J.M. Casandjian

H.E. Swanson, L. Buchmann, S.H. Park, A. Zyuzin, nucl-ex/0111014.[2001KO54] A.Yu. Konobeyev, Yu.A. Korovin, P.E. Pereslavtsev, U. Fischer, U. von Mollendorff, Nucl. Sc

Eng. 139 (2001) 1.[2001KR12] V. Kroha, P. Bem, V. Burjan, J. Novak, S. Piskor, E. Simeckova, J. Vincour, A. Az

C.A. Gagliardi, A.M. Mukhamedzhanov, et al., Czech. J. Phys. 51 (2001) 471.[2001LA35] M. Lattuada, R.G. Pizzone, S. Typel, P. Figuera, D. Miljanic, A. Musumarra, M.G. Pellegrit

C. Rolfs, C. Spitaleri, H.H. Wolter, Astrophys. J. 562 (2001) 1076.[2001LE05] P.J. Leask, M. Freer, N.M. Clarke, B.R. Fulton, C.D. Freeman, S.M. Singer, W.N. Catford, N. C

K.L. Jones, R.L. Cowin, et al., Phys. Rev. C 63 (2001) 034307.[2001MA05] K. Markenroth, M. Meister, B. Eberlein,D. Aleksandrov, T. Aumann, L. Axelsson, T. Bauman

M.J.G. Borge, L.V. Chulkov, W. Dostal, et al., Nucl. Phys. A 679 (2001) 462.[2001ME11] A. Mengoni, Nucl. Phys. A 687 (2001) 92C.[2001ME13] D.J. Mercer, S.M. Austin, J.A. Brown, S.A. Danczyk, S.E. Hirzebruch, J.H. Kelley, T. Suomijar

D.A. Roberts, T.P. Walker, Phys. Rev. C 63 (2001) 065805.[2001MI29] D.J. Millener, Nucl. Phys. A 693 (2001) 394.[2001MI39] D. Miljanic, N. Soic, S. Blagus, S. Cherubini, E. Costanzo, M. Lattuada, M. Milin, A. Musumarr

R.G. Pizzone, D. Rendic, et al., Fizika (Zagreb) B 10 (2001) 235.[2001MO32] T. Motobayashi, Nucl. Phys. A 693 (2001) 258.[2001MU20] A.M. Mukhamedzhanov, C.A. Gagliardi, R.E. Tribble, Nucl. Phys. A 688 (2001) 277C.[2001MU30] A. Musumarra, R.G. Pizzone, S. Blagus, M. Bogovac, P. Figuera, M. Lattuada, M. Milin, D. Mi

janic, M.G. Pellegriti, D. Rendic, et al., Phys. Rev. C 64 (2001) 068801.[2001OZ04] A. Ozawa, T. Suzuki, I. Tanihata, Nucl. Phys. A 693 (2001) 32.[2001PE27] Yu.E. Penionzhkevich,Hyperfine Interact. 132 (2001) 265.[2001PO19] C.J.Y. Powrie, J.C. McGeorge, I.J.D. MacGregor, J. Ahrens, J.R.M. Annand, J.F. Arneil, R. Be

D. Branford, S. Franczuk, D.I. Glazier, et al., Phys. Rev. C 64 (2001) 034602.[2001RI02] A. Ringbom, J. Blomgren, H. Conde, K. Elmgren, N. Olsson, J. Rahm, T. Ronnqvist, O. Jonss

L. Nilsson, P.-U. Renberg, et al., Nucl. Phys. A 679 (2001) 231.[2001RO32] G.V. Rogachev, J.J. Kolata, F.D. Becchetti, P.A. DeYoung, M. Hencheck, K. Helland, J.D

nefeld, B. Hughey, P.L. Jolivette, L.M. Kiessel, et al., Phys. Rev. C 64 (2001) 061601.[2001SA30] J.M. Sampaio, A.M. Eiro, I.J. Thompson, Nucl. Phys. A 688 (2001) 518C.[2001SA79] C. Samanta, Pramana J. Phys. 57 (2001) 519.[2001SC12] H. Schwoerer, P. Gibbon, S. Dusterer, R. Behrens, C. Ziener, C. Reich, R.Sauerbrey, Phys. Rev

Lett. 86 (2001) 2317.[2001SH08] M. Shawcross, N. Curtis, W.N. Catford, N.M. Clarke, B.R. Fulton, S.J. Hall, J.T. Murgat

S.P.G. Chappell, R.L. Cowin, G. Dillon, et al., Phys. Rev. C 63 (2001) 034311.[2001SP04] C. Spitaleri, S. Typel, R.G. Pizzone, M. Aliotta, S. Blagus, M. Bogovac, S. Cherubini, P. Figuer

M. Lattuada, M. Milin, et al., Phys. Rev. C 63 (2001) 055801.[2001ST27] F. Strieder, L. Gialanella, G. Gyurky, F. Schumann, R. Bonetti, C. Broggini, L. Campajo

P. Corvisiero, H. Costantini, A. D’Onofrio, et al., Nucl. Phys. A 696 (2001) 219.[2001STZZ] N.J. Stone, private communication, 2001.[2001TE03] F. Terrasi, L. Gialanella, G. Imbriani, F. Strieder, L. Campajola, A. D’Onofrio, U. Greife, G. Gyurk

C. Lubritto, A. Ordine, et al., Nucl. Phys. A 688 (2001) 539C.[2001TR04] L. Trache, A. Azhari, C.A. Gagliardi, A.M. Mukhamedzhanov, R.E. Tribble, X.D. Tang, F. Carsto

Acta Phys. Pol. B 32 (2001) 1071.

[2001UT01] H. Utsunomiya, Y. Yonezawa, H. Akimune, T. Yamagata, M. Ohta, M. Fujishiro, H. Toyokawa,

H. Ohgaki, Phys. Rev. C 63 (2001) 018801.

Page 204: Energy levels of light nuclei A = 8,9,10

ki,

A. Ga-

p-

1)

o-

v,

ir,

ys.

ent,

, Eur.

,

,

2002)

n,

ucl.

,

2)

n,

2)

358 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[2001UT03] H. Utsunomiya, Y. Yonezawa, H. Akimune, T. Yamagata, M. Ohta, H. Toyokawa, H. OhgaK. Sumiyoshi, Nucl. Phys. A 688 (2001) 340C.

[2001VO02] V.T. Voronchev, V.I. Kukulin, Y. Nakao, Phys. Rev. E 63 (2001) 026413.[2001WA40] R.E. Warner, M.H. McKinnon, J.S. Needleman, N.C. Shaner, F.D. Becchetti, D.A. Roberts,

lonsky, R.M. Ronningen, M. Steiner, J.A. Brown, et al., Phys. Rev. C 64 (2001) 044611.[2001WI05] J.S. Winfield, S. Fortier, W.N. Catford, S. Pita, N.A. Orr, J. Van de Wiele, Y. Blumenfeld, R. Cha

man, S.P.G. Chappell, N.M. Clarke, et al., Nucl. Phys. A 683 (2001) 48.[2001ZE09] N.S. Zelenskaya, A.V. Ignatenko, V.M. Lebedev, N.V. Orlova, A.V. Spassky, Yad. Fiz. 64 (200

1995, Phys. At. Nucl. 64 (2001) 1909.[2002AL26] G.D. Alkhazov, A.V. Dobrovolsky, P. Egelhof, H. Geissel, H. Irnich, A.V. Khanzadeev, G.A. K

rolev, A.A. Lobodenko, G. Munzenberg, M. Mutterer, et al., Nucl. Phys. A 712 (2002) 269.[2002BA09] F.C. Barker, Nucl. Phys. A 697 (2002) 915.[2002BA77] F.C. Barker, Nucl. Phys. A 707 (2002) 277.[2002BE76] C.A. Bertulani, Phys. Lett. B 547 (2002) 205.[2002BH03] M. Bhattacharya, E.G. Adelberger, Phys. Rev. C 65 (2002) 055502.[2002CO04] D. Cortina-Gil, K. Markenroth, F. Attallah,T. Baumann, J. Benlliure, M.J.G. Borge, L.V. Chulko

U.D. Pramanik, J. Fernandez-Vazquez, C.Forssen, et al., Phys. Lett. B 529 (2002) 36.[2002CO06] M. Colonna, Ph. Chomaz, S. Ayik, Phys. Rev. Lett. 88 (2002) 122701.[2002COZZ] N. Colonna, S. Agosteo, L. Beaulieu, E. Bisceglie, W.T. Chu, P. Colangelo, B. Ludewight, L. Pha

G. Tagliente, G.J. Wozniak, in: [Berkeley ’01],† 2002, p. 320.[2002CU04] N. Curtis, D.D. Caussyn, C. Chandler, M.W. Cooper, N.R. Fletcher, R.W. Laird, J. Pavan, Ph

Rev. C 66 (2002) 024315.[2002DA15] B. Davids, D.W. Anthony, T. Aumann, S.M. Austin, T. Baumann, D. Bazin, R.R.C. Clem

P.A. Lofy, T. Nakamura, B.M. Sherrill, et al., Nucl. Phys. A 701 (2002) 14C.[2002DA26] B. Davids, S.M. Austin, D. Bazin, H. Esbensen, B.M. Sherrill, I.J. Thompson, J.A. Tostevin

Phys. J. A 15 (2002) 65.[2002EG02] P. Egelhof, G.D. Alkhazov, M.N. Andronenko, A. Bauchet, A.V. Dobrovolsky, S. Fritz

G.E. Gavrilov, H. Geissel, C. Gross, A.V. Khanzadeev, et al., Eur. Phys. J. A 15 (2002) 27.[2002GA11] C.A. Gagliardi, A. Azhari, V. Burjan, F. Carstoiu, V. Kroha, A.M. Mukhamedzhanov, A. Sattarov

X. Tang, L. Trache, R.E. Tribble, Eur. Phys. J. A 13 (2002) 227.[2002GA12] E. Garrido, D.V. Fedorov, A.S. Jensen, Nucl. Phys. A 700 (2002) 117.[2002GR05] P. Grabmayr, Nucl. Phys. A 699 (2002) 41C.[2002GR25] L.V. Grigorenko, R.C. Johnson, I.G. Mukha, I.J. Thompson, M.V. Zhukov, Eur. Phys. J. A 15 (

125.[2002GU02] D. Gupta, C. Samanta, J. Phys. (London) G 28 (2002) 85.[2002HA47] J.C. Hardy, I.S. Towner, Eur. Phys. J. A 15 (2002) 223.[2002HA51] K. Hagino, A.B. Balantekin, Phys. Rev. C 66 (2002) 055801.[2002HU06] G.M. Huber, G.J. Lolos, Z. Papandreou, J.Hovdebo, S.I.H. Naqvi, D.F. Ottewell, P.L. Walde

G. Jones, X. Aslanoglou, Nucl. Phys. A 705 (2002) 367.[2002IT07] N. Itagaki, K. Hagino, Phys. Rev. C 66 (2002) 057301.[2002KI19] K.J. Kim, J.M. Sisterson, P.A.J. Englert, M.W. Caffee, R.C. Reedy, J. Vincent, C. Castaneda, N

Instrum. Methods Phys. Res. B 196 (2002) 239.[2002LE16] A. Lepine-Szily, J.M. Oliveira Jr., V.R. Vanin, A.N. Ostrowski, R. Lichtenthaler, A. Di Pietro

V. Guimaraes, A.M. Laird, L. Maunoury, G.F. Lima, et al., Phys. Rev. C 65 (2002) 054318.[2002LI15] J.A. Liendo, N. Curtis, D.D. Caussyn, N.R.Fletcher, T. Kurtukian Nieto, Phys. Rev. C 65 (200

034317.[2002LI29] J. Liu, X. Lu, X. Wang, W.-K. Chu, Nucl. Instrum. Methods Phys. Res. B 190 (2002) 107.[2002MA20] M. Matsuzaki, Y.R. Shimizu,K. Matsuyanagi, Phys. Rev. C 65 (2002) 041303.[2002MA21] F.M. Marques, M. Labiche, N.A. Orr, J.C.Angelique, L. Axelsson, B. Benoit, U.C. Bergman

M.J.G. Borge, W.N. Catford, S.P.G. Chappell, et al., Phys. Rev. C 65 (2002) 044006.[2002MA77] H. Masui, S. Aoyama, T. Myo, K. Kato, K. Ikeda, Prog. Theor. Phys. (Kyoto) Suppl. 146 (200

589.

[2002ME09] M. Meister, K. Markenroth, D. Aleksandrov, T. Aumann, T. Baumann, M.J.G. Borge, L.V. Chulkov,

D. Cortina-Gil, B. Eberlein, Th.W.Elze, et al., Nucl. Phys. A 700 (2002) 3.

Page 205: Energy levels of light nuclei A = 8,9,10

oura,

pson,

heu,

1.

s.

02)

t,

an,

e-

e-

e-

chev,

,

es,

e,

herrill,

6.

,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 359

[2002MO11] T. Motobayashi, Eur. Phys. J. A 13 (2002) 207.[2002MU16] A.M. Mukhamedzhanov, F.M. Nunes, Nucl. Phys. A 708 (2002) 437.[2002NE02] R.O. Nelson, A. Michaudon, Nucl. Sci. Eng. 140 (2002) 195.[2002PI19] S.C. Pieper, K. Varga, R.B. Wiringa, Phys. Rev. C 66 (2002) 044310.[2002SU17] A.A.P. Suaide, N. Added, N. Aissaoui, E.E. Alonso, W.H.Z. Cardenas, R.J. Fujii, M.M. de M

M.G. Munhoz, F.A. Souza, E.M. Szanto, et al., Phys. Rev. C 66 (2002) 014607.[2002SU19] K. Sumiyoshi, H. Utsunomiya, S. Goko, T. Kajino, Nucl. Phys. A 709 (2002) 467.[2002TA22] N.J. Tagg, A.S. Hamer, B. Sur, E.D. Earle, R.L. Helmer, G. Jonkmans, B.A. Moffat, J.J. Sim

Nucl. Instrum. Methods Phys. Res. A 489 (2002) 178.[2002TI10] D.R. Tilley, C.M. Cheves, J.L. Godwin, G.M. Hale, H.M. Hofmann, J.H. Kelley, C.G. S

H.R. Weller, Nucl. Phys. A 708 (2002) 3.[2002TO19] I.S. Towner, J.C. Hardy, Phys. Rev. C 66 (2002) 035501.[2002TR14] L. Trache, F. Carstoiu, A.M. Mukhamedzhanov, R.E. Tribble, Phys. Rev. C 66 (2002) 03580[2002WI09] D.H. Wilkinson, Nucl. Instrum. Methods Phys. Res. A 488 (2002) 654.[2002WI1K] W.B. Wilson, et al, Los Alamos Report LA-UR-02-1839 (2002).[2002WO08] R. Wolski, A.S. Fomichev, A.M. Rodin, S.I. Sidorchuk, S.V. Stepantsov, G.M. Ter-Akopian, Yu.T

Oganessian, W. Mittig, P. Roussel-Chomaz, N. Alamanos, et al., Nucl. Phys. A 701 (2002) 29C.[2002YA06] J. Yan, F.E. Cecil, U. Greife, C.C. Jewett, R.J. Peterson, R.A. Ristinen, Phys. Rev. C 65 (20

048801.[2003AD05] A. Adahchour, P. Descouvemont, J. Phys. (London) G 29 (2003) 395.[2003AN15] M. Anguiano, G. Co, A.M. Lallena, J. Phys. (London) G 29 (2003) 1119.[2003AN29] C. Angulo, P. Descouvemont, M. Cogneau, M. Couder, M. Gaelens, P. Leleux, M. Loisele

G. Ryckewaert, G. Tabacaru, F. Vanderbist, et al., Nucl. Phys. A 719 (2003) 300C.[2003AS04] N.I. Ashwood, N.M. Clarke, M. Freer, B.R. Fulton, R.J. Woolliscroft, W.N. Catford, V.A. Zim

R.P. Ward, C.J. Bickerton, C.E. Harrison, et al., Phys. Rev. C 68 (2003) 017603.[2003AU02] G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729 (2003) 3.[2003AU03] G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729 (2003) 337.[2003BA04] ISOLDE Collaboration, L.T. Baby, C. Bordeanu, G. Goldring, M. Hass, L. Weissman, V.N. F

doseyev, U. Koster, Y. Nir-El, G. Haquin, H.W.Gaggeler, et al., Phys. Rev. Lett. 90 (2003) 022501.[2003BA51] ISOLDE Collaboration, L.T. Baby, C. Bordeanu, G. Goldring, M. Hass, L. Weissman, V.N. F

doseyev, U. Koster, Y. Nir-el, G. Haquin, H.W. Gaggeler, et al., Phys. Rev. C 67 (2003) 065805.[2003BA65] E. Baldini-Neto, B.V. Carlson, R.A. Rego, M.S. Hussein, Nucl. Phys. A 724 (2003) 345.[2003BA84] ISOLDE Collaboration, L.T. Baby, C. Bordeanu, G. Goldring, M. Hass, L. Weissman, V.N. F

doseyev, U. Koster, Y. Nir-El, G. Haquin, H.W. Gaggeler, et al., Nucl. Phys. A 718 (2003) 487C.[2003BA99] F.C. Barker, Phys. Rev. C 68 (2003) 054602.[2003BE38] F.D. Becchetti, M.Y. Lee, T.W. O’Donnell, D.A. Roberts, J.J. Kolata, L.O. Lamm, G. Roga

V. Guimaraes, P.A. DeYoung, S. Vincent, Nucl. Instrum. Methods Phys. Res. A 505 (2003) 377.[2003BO24] H.G. Bohlen, W. von Oertzen, R. Kalpakchieva, B. Gebauer,S.M. Grimes, A. Lenz, T.N. Massey

M. Milin, Ch. Schulz, Tz. Kokalova, et al., Yad. Fiz. 66 (2003) 1539, Phys. At. Nucl. 66 (2003) 1494.[2003BO38] H.G. Bohlen, R. Kalpakchieva, W. von Oertzen, T.N. Massey, B. Gebauer, S.M. Grim

T. Kokalova, H. Lenske, A. Lenz, M. Milin, et al., Nucl. Phys. A 722 (2003) 3c.[2003CH79] S.S. Chandel, S.K. Dhiman, R. Shyam, Phys. Rev. C 68 (2003) 054320.[2003CO06] D. Cortina-Gil, J. Fernandez-Vazquez, F.Attallah, T. Baumann, J. Benlliure, M.J.G. Borg

L. Chulkov, C. Forssen, L.M. Fraile, H. Geissel, et al., Nucl. Phys. A 720 (2003) 3.[2003DA30] B. Davids, S. Typel, Phys. Rev. C 68 (2003) 045802.[2003EG03] P. Egelhof, Nucl. Phys. A 722 (2003) 254C.[2003EN05] J. Enders, T. Baumann, B.A. Brown, N.H. Frank, P.G. Hansen, P.R. Heckman, B.M. S

A. Stolz, M. Thoennessen, J.A. Tostevin, et al., Phys. Rev. C 67 (2003) 064301.[2003FL02] N.R. Fletcher, D.D. Caussyn, F. Marechal, N. Curtis, J.A. Liendo, Phys. Rev. C 68 (2003) 02431[2003FO07] C. Forssen, N.B. Shul’gina, M.V. Zhukov, Phys. Rev. C 67 (2003) 045801.[2003FR22] R.H. France III, L.T. Baby, C. Bordeanu, Th. Delbar, J.A. Dooley, M. Gai, M. Hass, J.E. McDonald

A. Ninane, C.M. Przybycien,Nucl. Phys. A 718 (2003) 398C.[2003FY01] H.O.U. Fynbo, Nucl. Instrum. Methods Phys. Res. B 207 (2003) 275.

Page 206: Energy levels of light nuclei A = 8,9,10

i,

3)

ncic,

i,

lpas,

,

-

k,

ech,

lpas,

en-

o,

et,

son,

v,.

zin,

r,

s.

il-

360 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[2003GE05] Y.-C. Ge, Y.-L. Ye, T. Zheng, Q.-J. Wang, Z.-H. Li, X.-Q. Li, D.-X. Jiang, A. Ozawa, Y. YamaguchC. Wu, et al., Chin. Phys. Lett. 20 (2003) 1034.

[2003HA30] S223 Collaboration, F. Hammache, F. Schumann, S. Typel, K. Summerer, Nucl. Phys. A 718 (200109C.

[2003HO30] H. Horiuchi, Y. Kanada-En’yo, M. Kimura, Nucl. Phys. A 722 (2003) 80C.[2003HU06] R. Huber, J. Lang, S. Navert, J. Sromicki, K. Bodek, St. Kistryn, J. Zejma, O. Naviliat-Cu

E. Stephan, W. Haeberli, Phys. Rev. 90 (2003) 202301.[2003IS12] H. Ishiyama, T. Hashimoto, T. Kawamura,T. Ishikawa, H. Miyatake, M.H. Tanaka, Y. Fuch

N. Yoshikawa, S.C. Jeong, Y. Watanabe, et al., Nucl. Phys. A 718 (2003) 481C.[2003JO09] C. Jouanne, N. Alamanos, F. Auger, A. Drouart, A. Gillibert, V. Lapoux, G. Lobo, L. Na

E.C. Pollacco, J.L. Sida, et al., Yad. Fiz. 66 (2003) 1553, Phys. At. Nucl. 66 (2003) 1508.[2003JU04] A.R. Junghans, E.C. Mohrmann, K.A. Snover, T.D. Steiger, E.G. Adelberger, J.M. Casandjian

H.E. Swanson, L. Buchmann, S.H. Park, A. Zyuzin, et al., Phys. Rev. C 68 (2003) 065803.[2003KO11] A.A. Korsheninnikov, E.Yu. Nikolskii, E.A.Kuzmin, A. Ozawa, K. Morimoto, F. Tokanai, R. Ka

nungo, I. Tanihata, N.K. Timofeyuk, M.S. Golovkov, et al., Phys. Rev. Lett. 90 (2003) 082501.[2003KR14] V. Kroha, A. Azhari, P. Bem, V. Burjan, C.A. Gagliardi, A.M. Mukhamedzhanov, J. Nova

S. Piskor, E. Simeckova, X. Tang, et al., Nucl. Phys. A 719 (2003) 119C.[2003KY01] V.M. Kyryanchuk, A.T. Rudchik, A. Budzanowski, V.K. Chernievsky, T. Czosnyka, B. Cz

L. Glowacka, S. Kliczewski, E.I. Koshchy, S.Yu. Mezhevych, et al., Nucl. Phys. A 726 (2003) 231.[2003LA22] V. Lapoux, N. Alamanos, F. Auger, A. Drouart, A. Gillibert, C. Jouanne, G. Lobo, L. Na

A. Obertelli, E. Pollacco, et al., Nucl. Phys. A 722 (2003) 49C.[2003MA88] R.N. Majumdar, J. Phys. Soc. Jpn. 72 (2003) 3087.[2003ME16] M. Meister, D. Cortina-Gil, J. Fernandez-Vazquez, K. Markenroth, F. Attallah, T. Baumann, J. B

lliure, M.J.G. Borge, L.V. Chulkov, U. Datta Pramanik, et al., Nucl. Phys. A 718 (2003) 431C.[2003MO12] P. Mohr, Phys. Rev. C 67 (2003) 065802.[2003MO23] T. Motobayashi, Nucl. Phys. A 718 (2003) 101C.[2003MO28] T. Motobayashi, Nucl. Phys. A 719 (2003) 65C.[2003OG02] K. Ogata, M. Yahiro, Y. Iseri, M. Kamimura, Phys. Rev. C 67 (2003) 011602;

K. Ogata, M. Yahiro, Y. Iseri, M. Kamimura, Phys. Rev. C 67 (2003) 019902, Erratum.[2003PA33] S.H. Park, A.R. Junghans, E.C. Mohrmann,K.A. Snover, T.D. Steiger, E.G. Adelberger,

J.M. Casandjian, H.E. Swanson, L. Buchmann, A. Zyuzin, A. Laird, Nucl. Phys. A 718 (2003) 113C.[2003PI13] R.G. Pizzone, C. Spitaleri, M. Lattuada,A. Musumarra, M.G. Pellegriti, S. Romano, A. Tumin

S. Cherubini, P. Figuera, D. Miljanic, et al., Nucl. Phys. A 718 (2003) 496c.[2003PR11] ISOLDE Collaboration, Y. Prezado, U.C. Bergmann, M.J.G. Borge, J. Cederkall, C.Aa. Dig

L.M. Fraile, H.O.U. Fynbo, H. Jeppesen, B. Jonson,M. Meister, et al., Phys. Lett. B 576 (2003) 55.[2003RE26] K.E. Rehm, W. Winter, C.L. Jiang, I. Ahmad, S.J. Freedman, J. Greene, A. Heinz, D. Hender

R.V.F. Janssens, E.F. Moore, et al., Nucl. Phys. A 718 (2003) 443c.[2003RO07] G.V. Rogachev, V.Z. Goldberg, J.J. Kolata, G. Chubarian, D. Aleksandrov, A. Fomiche

M.S. Golovkov, Yu.Ts. Oganessian, A. Rodin, B. Skorodumov, et al., Phys. Rev. C 67 (2003) 041603[2003SA07] P. Santi, J.J. Kolata, V. Guimaraes, D. Peterson, R. White-Stevens, E. Rischette, D. Ba

B.M. Sherrill, A. Navin, P.A. DeYoung, et al., Phys. Rev. C 67 (2003) 024606.[2003SC14] F. Schumann, F. Hammache, S. Typel, F. Uhlig, K. Summerer, L. Bottcher, D. Cortina, A. Forste

M. Gai, H. Geissel, et al., Phys. Rev. Lett. 90 (2003) 232501.[2003SH22] E.F. Shores, G.E. Mueller, G.A.Schlapper, Appl. Radiat. Isot. 59 (2003) 151.[2003SM02] N.A. Smirnova, C. Volpe, Nucl. Phys. A 714 (2003) 441.[2003SO22] N. Soic, S. Cherubini, M. Lattuada, D. Miljanic, S. Romano, C. Spitaleri, M. Zadro, Europhy

Lett. 63 (2003) 524.[2003SP02] C. Spitaleri, S. Cherubini, A. Del Zoppo, A. Di Pietro, P. Figuera, M. Gulino, M. Lattuada, D. M

janic, A. Musumarra, M.G. Pellegriti, et al., Nucl. Phys. A 719 (2003) 99C.[2003SU04] T. Suzuki, R. Fujimoto, T. Otsuka, Phys. Rev. C 67 (2003) 044302.[2003TI13] N.K. Timofeyuk, R.C. Johnson, A.M. Mukhamedzhanov, Phys. Rev. Lett. 91 (2003) 232501.[2003TO29] I.S. Towner, J.C. Hardy, J. Phys. (London) G 29 (2003) 197.

[2003TR04] L. Trache, A. Azhari, F. Carstoiu, H.L. Clark, C.A. Gagliardi, Y.-W. Lui, A.M. Mukhamedzhanov,

X. Tang, N. Timofeyuk, R.E. Tribble, Phys. Rev. C 67 (2003) 062801.

Page 207: Energy levels of light nuclei A = 8,9,10

,

erson,

v,

e,

r-

e,

vin,

ngen,

us,

une

ar

ic

ch-

er-

Birth-

any,

m-

7

e, Italy,

D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362 361

[2003UT02] H. Utsunomiya, H. Akimune, S. Goko, T. Hayakawa, Y.-W. Lui, H. Ohgaki, M. Ohta, T. ShizumaH. Toyokawa, T. Yamagata, Nucl. Phys. A 718 (2003) 199C.

[2003VO02] V.T. Voronchev, Y. Nakao, J. Phys. G 29 (2003) 431.[2003VO08] V.T. Voronchev, Y. Nakao, J. Phys. Soc. Jpn. 72 (2003) 1292.[2003WI01] D.H. Wilkinson, J. Phys. (London) G 29 (2003) 189.[2003WI16] W.T. Winter, S.J. Freedman, K.E. Rehm, I. Ahmad, J.P. Greene, A. Heinz, D. Hend

R.V.F. Janssens, C.L. Jiang, E.F. Moore, et al., Phys. Rev. Lett. 91 (2003) 252501.[2003WO13] R. Wolski, S.I. Sidorchuk, G.M. Ter-Akopian, A.S. Fomichev, A.M. Rodin, S.V. Stepantso

W. Mittig, P. Roussel-Chomaz, H. Savajols, N. Alamanos, et al., Nucl. Phys. A 722 (2003) 55C.[2004AH02] S. Ahmed, M. Freer, J.C. Angelique, N.I. Ashwood, V. Bouchat, W.N. Catford, N.M. Clark

N. Curtis, F. Hanappe, J.C. Lecouey, et al., Phys. Rev. C 69 (2004) 024303.[2004AR01] K. Arai, Phys. Rev. C 69 (2004) 014309.[2004AS02] N.I. Ashwood, M. Freer, S. Ahmed, J.C. Angelique, V. Bouchat, W.N. Catford, N.M. Clarke, N. Cu

tis, O. Dorvaux, B.R. Fulton, et al., Phys. Lett. B 580 (2004) 129.[2004MIZX] D.J. Millener, nucl-ex/0408017.[2004MI05] M. Milin, S. Cherubini, T. Davinson, A. Di Pietro, P. Figuera, D. Miljanic, A. Musumarra, A. Ninan

A.N. Ostrowski, M.G. Pellegriti, Nucl. Phys. A 730 (2004) 285.[2004MI07] D. Miljanic, Phys. Rev. C 69 (2004) 017303.[2004TA17] W.P. Tan, W.G. Lynch, T.X. Liu, X.D. Liu, M.B. Tsang, G. Verde, A. Wagner, H.S. Xu, B. Da

R.T. de Souza, et al., Phys. Rev. C 69 (2004) 061304.[2004TR06] L. Trache, F. Carstoiu, C.A. Gagliardi, R.E. Tribble, Phys. Rev. C 69 (2004) 032802.[2004WA06] R.E. Warner, F.D. Becchetti, J.A. Brown, A. Galonsky, J.H. Kelley, A. Nadasen, R.M. Ronni

J.A. Tostevin, J.S. Winfield, P. Zecher, Phys. Rev. C 69 (2004) 024612.

Reference key5

[Alma Ata 84] Abstracts of the 34th Meeting on Nuclear Spectroscopy and the Structure of the Atomic NucleAlma Ata, USSR, 17–20 April 1984, Nauka, Moscow, 1984.

[Arles] Proc. of the International Conference on Exotic Nuclei and Atomic Masses, Arles, France, 19–23 J1995.

[Australia] 11th AINSE Nuclear Physics Conference, Melbourne, Australia, 1986, Australian Institute of NucleScience and Engineering, Lucas Heights, NSW, 1986.

[Baku] Abstracts of Contrib. to the 38th Meeting on Nuclear Spectroscopy and the Structure of the AtomNucleus, Baku, USSR, 12–14 April 1988, Nauka, Moscow, 1988.

[Belgium 82] K.H. Bockhoff (Ed.), Proc. of the International Conference on Nuclear Data for Science and Tenology, Geel, Belgium, 1982, Reidel, Dordrecht, 1983.

[Berkeley ’01] E. Norman, L. Schroeder, G. Wozniak (Eds.), Proc. of the International Nuclear Physics Confence, Berkeley, CA, 30 July–3 August 2001, AIP Conf. Proc., vol. 610, 2002.

[Brighton 87] R.J. Blin-Stoyle, W.D. Hamilton (Eds.), Proceedings of a Conference to Celebrate the 65thday of Sir Denys Wilkinson FRS “Interactions and Structures in Nuclei”, Brighton, United Kingdom, 7–9September 1987, Hilger, Bristol, 1988.

[Darmstadt] Report GSI-91-14 (preprint), Gesellschaft für Schwerionenforschung mbH, Darmstadt, GermFebruary 1997.

[Dubna 86] Abstracts of the International School–Seminar on Heavy IonPhysics, Dubna, USSR, 23–30 Septeber 1986, JINR, Dubna, 1987, 07-87-68.

[Dubna 97] Abstracts of the 6th International School–Seminar on Heavy Ion Physics, Dubna, Russia, 22–2September 1997, World Scientific, Singapore, 1998.

[Florence] Abstracts of contributed papers to the International Conference on Nuclear Physics, Florenc29 August–3 September 1983, Tipografia Compoitori, Bologna, 1983.

5 Abstracts to contributed papers presented at various conferences, meetings, etc., are referred to by thefollowing key. The list is alphabetical by name; some names may be repeated for different publication years.

Page 208: Energy levels of light nuclei A = 8,9,10

nsen-

u-

us,

us,

n

nada,

ly–

,

362 D.R. Tilley et al. / Nuclear Physics A 745 (2004) 155–362

[Hirschegg 96] Proc. of the International Workshop 24on Gross Properties of Nuclei and Nuclear Excitatio“Extreme of Nuclear Structure”, Hirschegg, Austria, 15–20 January 1996, Gesellschaft für Schwerionforschung, 1996.

[Jurmala] Abstracts of the 37th Annual Meeting on Nuclear Spectroscopy and the Structure of the Atomic Ncleus, Jurmala, USSR, 14–17 April 1987, Nauka, Moscow, 1987.

[Kharkov 86] Abstracts of the 36th Meeting on Nuclear Spectroscopy and the Structure of the Atomic NucleKharkov, USSR, 15–18 April 1986, Nauka, Moscow, 1986.

[Leningrad 85] Abstracts of the 35th Meeting on Nuclear Spectroscopy and the Structure of the Atomic NucleLeningrad, USSR, 15–18 April 1985, Nauka, Moscow, 1985.

[Lund] D. Rudolph, M. Hellstrom (Eds.), Proc. of the International Workshop PINGST 2000, Selected Topics oN = Z nuclei, Lund, Sweden, 6–10 June 2000.

[Montreal] Contributions to the International Conference on Properties of Nuclear States, Montreal, Ca25–30 August 1969, Les Presses de l’Université de Montréal, Moscow, 1969.

[Panic 84] Abstracts of the 10th International Conference onParticles and Nuclei, Heidelberg, Germany, 30 Ju3 August 1984, Book of Abstracts, vol. II, published by the Organizing Committee.

[Panic 87] Abstracts of the XI International Conference on Particles and Nuclei, Kyoto, Japan, 20–24 April 1987published by the Organizing Committee.

[Santa Fe 85] P.G. Young, et al. (Eds.), Proc. of the International Conference “NuclearData for Basic and AppliedScience”, Santa Fe, NM, USA, 13–17 May 1985, Gordon & Breach, 1986.