Top Banner
The Energy Internet An alternative renewable power distribution system to the electrical grid using dynamic charging of autonomous eVehicles and Internet Routing Protocols Latest Update November 5, 2017 [email protected]
31

Energy internet

Jan 28, 2018

Download

Internet

Bill St. Arnaud
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Energy internet

The Energy InternetAn alternative renewable power distribution system to the

electrical grid using dynamic charging of autonomous eVehicles and Internet Routing Protocols

Latest Update November 5, 2017

[email protected]

Page 2: Energy internet

Executive Summary• Autonomous eVehicle used to transport energy from roadside or roof top solar

panels in rural or suburban areas to buildings (V2B) in cities or other infrastructure as needed

• It allows eVehicles to become an energy transport system in competition with electrical grid in addition to carrying people and goods

• Charging eVehicles as they move (dynamic Charging) significantly reduces size, cost and weight of batteries and allows rapid transfer of power from/to vehicle

• Technology already working for buses in various cities around the world and in use on factory floors

• Energy Internet can significantly mitigate against two largest sources of CO2 -Transportation and Electrical Energy Generation

• New energy routing protocols adopted from Internet - SDN-P, BGP-P

Page 3: Energy internet

“Packetized Power” with autonomous eVehicles

• Autonomous eVehicles could be used to capture renewable power from solar panels using dynamic charging along highways and suburbia to deliver to buildings and infrastructure elsewhere

• Alternative back up power source instead of diesel generators for cell phone towers, etc

• Autonomous vehicles could store and forward power to other vehicles at packet power routing points

• Where practical can be also used to carry passengers – next generation ZipCar

Page 4: Energy internet

Suburban sprawl answer to global warming?

• Suburban lifestyle with solar panels on every house with dynamic charging of vehicles driving by the house

• Rather than charging vehicles at home and driving to work or shopping, vehicle is charged on the way to and from work or shopping

• eVehicle can then be used for supplementary power during the day at work, or during the night at home

– http://www.navigantresearch.com/research/vehicle-to-building-technologies

• Suburban sprawl to power cities of the future– http://www.lincoln.ac.uk/news/2013/07/745.asp

• How suburban sprawl paradoxically could be the answer to global warming

– http://goo.gl/bXO6x

Page 5: Energy internet

Vehicle To Building (V2B) Power

• In the coming decade, the energy stored electric vehicle batteries will increasingly be made available to commercial buildings

• Numerous pilot projects are now underway around the world to develop and test V2B technologies.

• The majority of these programs are part of larger projects that are testing microgrid and smart grid technologies.

– http://www.navigantresearch.com/research/vehicle-to-building-technologies

Page 6: Energy internet

eVehicle energy storage and micro grids for university

6UCSD 2nd life battery program

University Delaware use of eVehicles for power

Page 7: Energy internet

Energy Internet Routing• With Energy Internet it is assumed that their are small local power source part of micro

grid e.g:– Local rooftop solar panels– WiFi and Internet of Things (IoT) with its own solar panel– Business or home powered by eVehicles (V2B)

• Many possible virtual and real power circuits: Software Defined Power Networks (SDN-P)

– PoE, USB, Traditional 110/220, 48V Dc,Pulse power over Cat 5– Power routing across devices following path of virtual power circuit– Power routing between eVehicles and dynamic charging stations

• Ideal for existing intelligent networked devices like computers, power walls, switches, routers, servers, Wifi hot spots , electric vehicle charging stations, etc

– Most of these devices have their own on board storage and so techniques such as round-robin power distribution are possible

• Network engineers & researchers have to start thinking how to deploy networks that are powered solely by solar power and autonomous eVehicles http://www.theglobeandmail.com/report-on-business/rob-commentary/rob-insight/an-earth-day-look-at-the-sunny-state-of-solar/article18101176/#dashboard/follows/ …

7

Page 8: Energy internet

Current limitations of eVehicles (EV)• High capital cost due to large cost of batteries

• High operating cost because batteries need to be replaced every 2-5 years

• Limited range, especially in cold weather when battery capacity is reduced

– Battery capacity reduced by up to 1/3 if air conditioning or cabin heating is required

• Long time to re-charge between trips

– So a small number of short trips within a day can deplete batteries

– Inhibits spontaneity of taking a long trip because of uncertainty of charge state

• Battery powered trucks and buses are more problematic in terms of range and cost

8

Page 9: Energy internet

Alternative to the battery

• Rather than waiting for perfect battery why not change the charging system?

• Old world thinking that vehicles must be stationary to be refueled.

– This was true when using fossil fuels

• But with electric vehicles there is no reason why they cannot be charged while on the move

• Dynamic (on the move) charging (aka opportunity charging)

– Only 1/5 of battery capacity required compared to regular eVehicle

9

Page 10: Energy internet

Dynamic Charging

• The current vision for most eVehicles is stationary charging at home or at the office

• With dynamic mobile charging, the eVehicle can be charged as it is travelling along the highway using power from roadside solar panels and/or windmills

– Technology already in use for public bus transportation in various cities and on factory/warehouse systems (opportunity charging)

• eVehicle can then be used to deliver this energy as a backup or primary power source at the home or office, rather than consuming electricity at destination

– Also known as Vehicle to Building (V2B) Power distribution

– http://www.navigantresearch.com/research/vehicle-to-building-technologies

• eVehicle then would become a competitor to the electrical grid for delivering renewable energy.

Page 11: Energy internet

Advantages of dynamic charging

• Smaller number of batteries possible -reducing capital costs

• Frequent charging of batteries prevents battery depletion and longer life

• Reduces concerns of range anxiety

• Heavier eVehicles such as trucks and buses are realistically possible

• Vehicle can be charged enroute and then used as an alternate power source for the home or business –vehicle to grid or vehicle to business

• Eventually concepts of “packet” based power are conceivable leading to future “Energy Internet”

11

Page 12: Energy internet

Dynamic Charging Technologies• Wireless :

– Inductive charging uses the electromagnetic field to transfer energy between two objects in close

– Magnetic resonance uses the magnetic coupling of two objects exchanging energy through their varying or oscillating magnetic fields.

• Conductive Requires physical contact

– Overhead Conductive uses overhead rails or wires as in tram and trolley wires

– In Ground Conductive embedded rails as in subways or slot car racing

– Capacitive Umbrellas uses overhead “electrical umbrellas”

12

Page 13: Energy internet

Wireless vs Conductive• Wireless

– Pros

• No wires or physical obstructions

– Cons

• Difficult to maintain in heavy traffic and inclement weather such as ice and snow

• Concerns about impact on embedded medical devices such as pace makers from strong magnetic fields

• Risks of fire if small pieces of metal debris or on charging pad

• Very low efficiencies

• Still experimental

• Conductive

– Pros

• In operation in several cities around the world with public buses and trams

• Well proven technology

– Cons

• Unsightly wires and infrastructure

• High voltages and currents

Page 14: Energy internet

Qualcomm Dynamic Charging

• Qualcomm Technologies, Inc., designed and built

a wireless DEVC system capable of charging an

electric vehicle (EV) dynamically at up to 20

kilowatts at highway speeds.

• Qualcomm Technologies also demonstrated

simultaneous charging, in which two vehicles on

the same track can charge dynamically at the

same time.

• The vehicles can pick up charge in both

directions along the track, and in reverse, further

showcasing how the Qualcomm Halo DEVC

system has been designed to support real-world

implementation of dynamic charging.

Page 15: Energy internet

EU Funded Program

• Project addresses directly the technological feasibility, economic viability and socio-environmental of dynamic on-road charging of electric vehicles

• Advanced solutions, conceived to enable full integration in the grid and road infrastructure within urban- and extra-urban environments for a wide range of future electric vehicles, will be implemented and tested.

• http://www.fabric-project.eu/

Page 16: Energy internet

England Is Going to Test Roads That Actually

Charge Electric Cars

Trials, slated to begin later this year, will

involve installing charging systems

underneath mock roads designed to

replicate real highway conditions. In

these “dynamic charging” systems, coils

are buried beneath the asphalt of special

charging lanes, offering contactless

charging to vehicles fitted with charging

“receivers.”

Read more:

http://www.smithsonianmag.com/innovati

on/england-going-to-test-roads-that-

actually-charge-electric-cars-

180956336/#ES24P9XDe7Exzlyy.99

Page 17: Energy internet

KAIST reveals proof of concept dynamic charging in city park

• Batteries 1/5 the size required for normal eVehicle

• http://www.gizmag.com/kaist-proof-of-concept-olev-power-road/14454/

Page 18: Energy internet

Brabant NL to deploy world’s first dynamic mobile charging

• Starting in mid -2013 the demonstration project will use inductive charging to charge vehicles as they drive a special lane in the highway.

– http://www.youtube.com/watch?v=IBTx87xiscs

– http://www.wired.com/autopia/2012/10/glowing-roads/

Page 19: Energy internet

Shanghai Capabus – Capacitive Dynamic Charging

China is experimenting with a new form of electric bus, known as Capabus, which runs without continuous overhead lines (is an autonomous vehicle) by using power stored in large onboard electric double-layer capacitors (EDLCs), which are quickly recharged whenever the vehicle stops at any bus stop (under so-called electric umbrellas), and fully charged in the terminus.

19

http://en.wikipedia.org/wiki/Capa_vehicle

Page 20: Energy internet

Flash Charging of Buses

• 15 second charging of bus at each stop

• http://www.abb.com/cawp/seitp202/9315e568e4c6a1f8c1257b7400302fcd.aspx

Page 21: Energy internet

Volvo’s electric i-road

• Volvo research into a future where trucks and buses continuously are supplied with electric power without carrying large batteries. Instead, power lines are built into the surface of the road. This could be a future solution for long-distance trucks and buses running on electricity.

– http://news.volvogroup.com/2013/05/23/the-road-of-tomorrow-is-electric/

Page 22: Energy internet

Sweden Elways

http://elways.se/elways-solution/?lang=en

Conductive solution

Page 23: Energy internet

Siemens dynamic charging for trucks

23

http://reviews.cnet.com/8301-13746_7-57430211-48/siemens-electrifies-trucks-with-trolley-technology/

Page 24: Energy internet

Case Study Campus Golf Cart

• Application:

– Golf courses, retirement community vehicles, university campus service fleet, emergency V2B backup for critical systems such as network and computing equipment

• Assume :

– Golf course with dynamic charge rail at each hole and course distance 10km (including distance between holes) or average .5km hole

– Typical golf cart consumption 200 wh/km. Therefore need to charge golf cart 100 wh to get to next hole

– 2 Golf carts arriving at a given hole every 7-8 minutes –9 arrivals per hour

• Solar capacity:

– 2 x 100 wh x 9 arrivals/hr = 1.8 kwh

– Assuming 150w panels = 12-15 panels average per hole

• Skeg power capacity:

– Assume golf cart stays on charging rail for one minute= 6000 watt-minutes power transfer

– Approx 6000 volts @1A or 250V @ 20A or 600V @ 10A for 60v @ 100A or 48V @125A

– Note that streetcar and subways usually operate at 600V @ 200 A & Elways claims 250 Kw power

– 48V design would eliminate need for DC/DC converters (but would not be useful for cars or trucks)

• Ultra capacitor size:

– Maxwell BCAP 3000 3wh => 33 caps required

Page 25: Energy internet

System Diagram for Golf Cart System

Solar PV array

InverterRegulatorCharger

DC/DC Converter

Ultra Capacitor

Battery Bank

Charge Rail 600V

600V.1 KW

48V1.5 KW

600V.1KW

Skeg

Battery Bank

Motor

48V

Ult

ra

Cap

acit

or

100wH

50

0w

H

DC/DCConverter

Solenoid

Rail Activation Switch

Rail De-Activation Switch

To grid ~

Go

lf C

art

Page 26: Energy internet

Golf Cart System Design Notes• Golf Cart electrical systems are very simple typically with 48V circuits

– http://s985.photobucket.com/user/wizards1/media/DIAGRAMS/1980marathonwiringdiagram.png.html

• 600V design chosen for charge rail as this is the most common voltage for streetcars, subways, etc. But based on design of charge rail and skeg other voltages and power ratings may make more sense to reduce arcing and/or welding

• DC/DC converter pulse power requirements is .5KW over 1 minute duration assuming voltage rail is 600 V

– DC/DC converters should be bi-directional to enable future V2B and power routing applications

• Assumption that golf cart stays in contact with rail for 1 minute. May be possible to use higher currents and voltages or longer rails

– E.g. Elways has tested their rail at 250KW continuous

• Solar array charging system has 5x capacity of individual golf cart to enable charging of several carts in rapid succession

• Only one golf cart allowed per charge rail segment. Charge rail may be made up many segments to allow several carts to be charged at once

• For rail and skeg design see www.elways.se

Page 27: Energy internet

Why not use power from grid for dynamic charging?

• Within 3- 4 years it is expected electricity from solar panels will be cheaper than from grid

– http://mobile.nytimes.com/2014/11/24/business/energy-environment/solar-and-wind-energy-start-to-win-on-price-vs-conventional-fuels.html?referrer=&_r=0

• Most grid systems have large percentage of coal power

– CO2 savings are marginal

– Scant CO2 Benefit from China’s Coal-Powered Electric Cars

– http://green-broadband.blogspot.com/2011/10/scant-co2-benefit-from-chinas-coal.html

• Grid interconnection fees, transformers, debt retirement charges, etc significantly drive up costs

– However in some locations using solar panel to feed power to grid may allow for additional revenue

• Grid and utility power reliability is declining with increased severe weather due to climate change

27

Page 28: Energy internet

Future vulnerability of gridwhy we need an alternative for distribution of local renewable power

• “US Energy sector vulnerabilities to climate change and extreme weather” US Department of Energy July 2013– http://energy.gov/sites/prod/files/20

13/07/f2/20130716-Energy%20Sector%20Vulnerabilities%20Report.pdf

28Recent Sample outages

• Coal and nuclear power generating capacity will decrease by between 4 and 16 percent in the United States and a 6 to 19 percent decline in Europe due to lack of cooling water.• http://www.reuters.com/articl

e/2012/06/04/climate-water-energy-idUSL3E8H41SO20120604

Page 29: Energy internet

Initial target markets

• Drive through banks, fast food restaurants, parking garages, universities, golf courses, etc

– “Will that be fries with your free electrical charge?”

– Complete package of PV system on roof connected to ultra-capacitor and charge rail

– When PV is not charging vehicles it can be making money from feed in tariff

– Guaranteed 6-10% return even if not a single vehicle charged

• V2B for maintain critical systems at universities and businesses such as computing and network equipment, alarm systems, etc

• Eventually deployed at toll plazas, on/off ramps, stop lights and intersections

29

Page 30: Energy internet

More on Energy Internet• How suburban sprawl paradoxically could be the answer to global warming

http://goo.gl/bXO6x

• Green Investment Opportunity for small business - on the move electric car charginghttp://goo.gl/c44Tv

• Dynamic Charging and Why Energy needs to be Free to reduce CO2http://goo.gl/LQQum

• Packet Based Energy Delivery Systemshttp://goo.gl/pZEdE

• Electric roads and Internet will allow coast to coast driving with no stopping and no emissionshttp://goo.gl/lMmLy

Page 31: Energy internet

Let’s Keep The Conversation Going

E-mail

Blogshttp://green-broadband.blogspot.com

Twitterhttp://twitter.com/BillStArnaud

[email protected]

Bill St. Arnaud is a R&E Network and Green IT consultant who works with clients on a variety of subjects such as the next generation research and education and Internet networks. He also works with clients to develop practical solutions to reduce GHG emissions such as free broadband and electrical highways (See http://green-broadband.blogspot.com/) .