Top Banner
Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft Research Ravin Balakrishnan University of Toronto Jim Turner Microsoft Corporation James A. Landay University of Washington
39

Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Dec 16, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Enabling Always-Available Input with Muscle-Computer Interfaces

T. Scott SaponasUniversity of Washington

Desney S. Tan Microsoft Research

Dan Morris Microsoft Research

Ravin Balakrishnan University of Toronto

Jim Turner Microsoft Corporation

James A. Landay University of Washington

Page 2: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Mobile Computing Enables…

Page 3: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

“How the computer sees us.”

Igoe & O'Sullivan

Page 4: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Hands Busy

Physically Active

Page 5: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.
Page 6: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.
Page 7: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.
Page 8: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.
Page 9: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Muscle-Computer Interfaces

Page 10: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Muscles Activate via Electrical Signal

Page 11: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Muscles Activate via Electrical Signal

Electrical Signal can be sensed by Electromyography (EMG)

Page 12: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

EMG for Diagnostics, Prosthetics & HCI

Jacobsen, et al. “Utah Arm”

Page 13: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Jacobsen, et al. “Utah Arm”

Costanza, et al. “Intimate interfaces in action”

EMG for Diagnostics, Prosthetics & HCI

Page 14: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Jacobsen, et al. “Utah Arm”

Costanza, et al. “Intimate interfaces in action”

Naik, et al. “Hand gestures”

EMG for Diagnostics, Prosthetics & HCI

Page 15: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Jacobsen, et al. “Utah Arm”

Costanza, et al. “Intimate interfaces in action” Wheeler & Jorgensen “Neuroelectric joysticks”

Naik, et al. “Hand gestures”

EMG for Diagnostics, Prosthetics & HCI

Page 16: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Finger Gestures Detected from Upper Forearm

Page 17: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Detecting Finger Gestures Challenging

Page 18: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Offline Classification of Finger Gestures on a Surface

Saponas, et al. CHI 2008

Page 19: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Real-Time Classification ofFree Space & Hands Busy Gestures

Pinch

Mug Bag

Page 20: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Bimanual Gesture

+

dominant handgesture

non-dominant hand squeeze

Page 21: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Sensor Placed on Upper Forearm

Page 22: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.
Page 23: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Stimulus / Response Training

Page 24: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Gesture Classification Technique

30 millisecond sample

X 6 Sensors

Support VectorMachine

labeledtraining data

user specific model

machine learning

Page 25: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Gesture Classification Technique

30 millisecond sample

Root Mean Square (RMS) ratios between channels

Frequency Energy10 Hz bands

Phase Coherence ratios between channels

X 6 Sensors

Features Support VectorMachine

labeledtraining data

user specific model

machine learning

Page 26: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Gesture Classification Technique

30 millisecond sample

Root Mean Square (RMS) ratios between channels

Frequency Energy10 Hz bands

Phase Coherence ratios between channels

X 6 Sensors

Features

Support VectorMachine

user specific model

machine learning

gesture classification

Page 27: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.
Page 28: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

12 Person Experiment

Pinch

Mug Bag

Page 29: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Training vs Testing in Several Postures

TrainTest

Left Center Right

Left 78% 72% 57%

Center 70% 79% 74%

Right 68% 73% 74%

Page 30: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

4 Finger 3 Finger0%

10%20%30%40%50%60%70%80%90%

100%

Hands-Free Gesture Accuracy

Posture Independent Pinching

Page 31: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Bag in Hand Better Recognized

Mug Bags0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Hands-Busy Gesture Accuracy

Four FingersThree Fingers

Page 32: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Worked Well for Those Who “got it”

all bottom 50% top 50%0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Bags in Hands Gestures

Four Fingers

Three Fingers

Page 33: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

80% Accurate with 70 Seconds Training

0 25 50 75 100 125 150 1750%

10%20%30%40%50%60%70%80%90%

100%

Quantity of Training Data vs. Classification Ac-curacy

Seconds of Training Data

Clas

sific

ation

Acc

urac

y

Page 34: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Portable Music Player Menus

• Some participants navigated menus easily• Other participants found interaction difficult

Page 35: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Limitations of Current Technique

• Works best for SINGLE user SINGLE session• Wired Sensors with Gel and Adhesive• Sitting or Standing at a Desk in the Lab

Page 36: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Ongoing & Future WorkWireless Armband, Dry Electrodes, Cross-Session Models

Page 37: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Ongoing & Future Work

Walking & Jogging

Wireless Armband, Dry Electrodes, Cross-Session Models

Page 38: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Ongoing & Future Work

Walking & Jogging

Interactive Tabletops

Wireless Armband, Dry Electrodes, Cross-Session Models

Page 39: Enabling Always-Available Input with Muscle-Computer Interfaces T. Scott Saponas University of Washington Desney S. Tan Microsoft Research Dan Morris Microsoft.

Enabling Always-Available Input with Muscle-Computer Interfaces

T. Scott SaponasUniversity of Washington

Desney S. Tan Microsoft Research

Dan Morris Microsoft Research

Ravin Balakrishnan University of Toronto

Jim Turner Microsoft Corporation

James A. Landay University of Washington

Thanks for Listening