Top Banner
Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer Science, Purdue University, West Lafayette, IN
31

Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Apr 01, 2015

Download

Documents

Jake Picker
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Emergent Crowd BehaviorChing-Shoei Chiang1

Christoph Hoffmann2

Sagar Mittal2

1) Computer Science, Soochow University, Taipei, R.O.C.2) Computer Science, Purdue University, West Lafayette, IN

Page 2: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Problem

• Many crowds have no central control • Individual decisions, based on limited

cognition, create an emergent crowd behavior

• How can we script the collective behavior by prescribing the limited individual behavior?

Page 3: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Applications?

Page 4: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Robotics

Page 5: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Fish Vortex

Page 6: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Starlings flocking

Page 7: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Modeling Crowds

Page 8: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Some Prior Art

• Reynolds, 1988 and 1999– Three core rules (separation, alignment, cohesion)– Behavior hierarchy

• Couzin, 2002 and 2005– Investigate core rules– Determine leadership fraction

• Bajec et al., 2005– Fuzzy logic

• Cucker and Smale, 2007– Convergence results

• Itoh and Chua, 2007– Chaotic trajectories

Page 9: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Core Rules (Reynolds ‘88)

• First to articulate these rules

• Centroid used for attraction

• Limited perception

Page 10: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Couzin’s Model

• Seven parameters– Zonal radii (rr , ro , ra)

– Field of perception (a)– Speed of motion (s)– Speed of turning (q)– Error (s)

• Focus on direction

Page 11: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Emergent Behavior

• Does the flock stay together?

• Higher-order group behavior?

Page 12: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Characterizing Flock Behavior

• Group polarization

• Group momentum

• where vk is the velocity vector, xk the position vector, and

the centroid’s position

1

1 Nk

k k

vp

N v

1

1k k

Nk k

k k

r x x

r vm

N r

x

Page 13: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Couzin’s Formation Types

• Swarm (A): m ≈ 0, p ≈ 0

• Torus (B): m > 0.7, p ≈ 0

• Dynamic parallel (C): m ≈ 0, p ≈ 0.8

• Highly parallel (D): m ≈ 0, p ≈ 1

Page 14: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Swarm Behavior

• Random milling around• Start behavior for random initial

position/orientation• Stable for Dro near zero with Dra large

Page 15: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Sample Run – Highly Parallel, N=100

take-off, t≈100

rr= 1ro= 8ra= 23t ≈ 200

Page 16: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Sample Run – Toroidal, N=100

organizational phase (at t≈50)

centroid track at t≈530

rr= 1ro= 5ra= 17t ≈500

Page 17: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Loss of Cohesion – N=100

rr= 1ro= 4ra= 9t = 37

individuals leavesubgroups form

Page 18: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Our Questions

• How does the choice of the zonal parameters and the initial configuration affect:– Cohesion of the flock ?– Formation type ?

• Is this behavior scale-independent ?• Do the answers in 3D differ from 2D ?

Page 19: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

N=100, s=0, q=40o, a=270o

Region of breakup approximately Dra+Dro < 8

Page 20: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

N=50, 100, 200, 400s=0, 0.05 rad, 0.10 rad

Page 21: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.
Page 22: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.
Page 23: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.
Page 24: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

2D Vs. 3D

Page 25: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

The 2D graph could almost be the 3D graph, but doubled in size… but why?

Page 26: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

The 2D graph could almost be the 3D graph, but doubled in size… but why?

Page 27: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Much more noise for low ra and high ro

Page 28: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Configuration Dependence

Page 29: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

3D:5x5x4 grid

3D:plane hexagon,30 trials

2D:plane hexagon,48 trials

2D:R=5, random

Initial Configuration in 2D and 3D

Cohesion

Page 30: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Some Observations

• 2D and 3D scenarios differ in how they evolve• Cohesion and swarm type is not scale-invariant– In triangle: subgroup development– In saw-tooth notch: individuals take off

• Cohesion and swarm type has dependence on initial configurations―the collective memory.

• No dynamic parallel behavior

Page 31: Emergent Crowd Behavior Ching-Shoei Chiang 1 Christoph Hoffmann 2 Sagar Mittal 2 1 ) Computer Science, Soochow University, Taipei, R.O.C. 2 ) Computer.

Acknowledgements

• NSC Taiwan grant NSC 97-2212-E-031-002• NSF grant DSC 03-25227• DOE award DE-FG52-06NA26290.