Top Banner

of 21

EMCh4

Jun 02, 2018

Download

Documents

samer
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 EMCh4

    1/21

    1

    Chapter 4. Electrostatics of Macroscopic Media

    4.1 Multipole Expansion

    Approximate potentials at large distances

    Fig 4.1

    We consider the potential in the far-field region (see Fig. 4.1 where || ) due to alocalized charge distribution ( for ). If the total charge is q, it is a goodapproximation to treat the charge distribution as a point charge, so . Even if qiszero, the potential does not vanish, but it decays much faster than . We will discuss moredetails about how the potential behaves in the far-field region.

    Electric dipole

    We begin with a simple, yet exceedingly important case of charge distribution. Two equal and

    opposite charges separated by a small distance form an electric dipole. Suppose that +qandq

    are separated by a displacement vector d as shown in Figure 4.2, then the potential at xis

    x'x

    x' x

    x

    x'd3

    )(x'

    a

    d

    +q

    -q

    x

    r+

    r- Fig 4.2. An electric dipole consists of two

    equal and opposite charges +qandq

    separated by a displacement d.

    (4.1)

  • 8/10/2019 EMCh4

    2/21

    2

    In the far-field region for || , [ ]

    This reduces to the coordinate independent expression

    where is the electric dipole moment. For the dipole palong the z-axis, the electric fieldstake the form

    From this, we can obtain the coordinate independent expression

    where is a unit vector.

    (4.2)

    (4.3)

    (4.4)

    (4.5)

    Fig 4.3. Field of an electric dipole

  • 8/10/2019 EMCh4

    3/21

    3

    Multipole expansion

    We can expand the potential due to the charge distribution

    | |

    using Eq. 3.68

    ||

    In the far-field region, . Then we find

    [

    ]

    We can rewrite the equation

    where the coefficients

    are called multipole moments. This is the multipole expansion of in powers of . The firstterm ( ) is the monopole contribution (); the second ( ) is the dipole ();the third is quadrupole; and so on.

    Monopole moment or total charge q( :

    Electric dipole moment p( linear combinations of ):

    Quadrupole moment tensor ( linear combinations of ):

    ( )

    (3.68)

    (1.12)

    (4.6)

    (4.7)

    (4.8)

    (4.9)

    (4.10)

    (4.11)

  • 8/10/2019 EMCh4

    4/21

    4

    The expansion of in rectangular coordinates

    Energy of a charge distribution in an external field

    If a localized charge distribution is placed in an external potential , theelectrostatic energy of the system is

    If is slowly varying over the region of , we can expand it in a Taylor series

    ( ) Then, the energy takes the form

    4.2 Polarization and Electric Displacement in Macroscopic Media

    Dielectrics

    Properties of an ideal dielectric material

    It has no free charges. Instead, all charges are attached to specific atoms or molecules.

    Electric fields can induce only small displacements from their equilibrium positions.

    In a macroscopic scale, the effects of the electric fields can be visualized as a

    displacement of the entire positive charge in the dielectric relative to the negative

    charge. The dielectric is said to be polarized.Electric Polarization

    If an electric field is applied to a medium composed of many atoms and molecules, each atom

    or molecule forms a dipole pidue to the field induced displacements of the bound charges (see

    Fig. 4.4). Typically, this induced dipole moment is approximately proportional to the field:

    (4.12)

    (4.13)

    (4.14)

    (4.15)

    (4.16)

  • 8/10/2019 EMCh4

    5/21

    5

    where is called atomic polarizability. These little dipoles are aligned along the direction ofthe field, and the material becomes polarized. An electric polarization Pis defined as dipole

    moment per unit volume:

    is a volume element which contains many atoms, yet it is infinitesimally small in themacroscopic scale. Nis the number of atoms per unit volume and is the average dipolemoment of the atoms.

    Bound charges

    The dipole moment of is , so the total electric potential (see Eq. 4.3) is | |

    We can rewrite this equation as

    | | Integrating by parts gives

    | | | | }Using the divergence theorem

    | | | | }

    +

    ++

    +

    ++

    +

    +++

    dV

    pi

    i

    idV

    pP 1

    E

    Fig 4.4. An external electric field

    induces electric polarization in a

    dielectric medium.

    (4.17)

    (4.18)

    (4.19)

    (4.20)

    (4.21)

  • 8/10/2019 EMCh4

    6/21

    6

    where is a surface element and nis the normal unit vector. Here we define surface andvolume charge densities: and

    Then, the potential due to the bound charges becomes

    | | | |

    Electric displacement

    When a material system includes free charges as well as bound charges , the total chargedensity can be written:

    And Gausss law reads With the definition of the electric displacement D, Equation 4.26 becomes

    When an averaging is made of the homogeneous equation, , the same equation holds for the macroscopic, electric field E. This means that the electric field is still derivable

    from a potential in electrostatics. Equations 4.28 and 4.29 are the two electrostatic equations in

    the macroscopic scale.

    +

    +

    +

    + b

    b

    (4.22)

    (4.23)

    (4.24)

    Fig 4.5. Origin of bound

    charge density.

    (4.25)

    (4.26)

    (4.27)

    (4.28)

    (4.29)

  • 8/10/2019 EMCh4

    7/21

    7

    Electric susceptibility, permittivity, and dielectric constant

    For many substances (we suppose that the media are isotropic), the polarization is proportional

    to the field, provided Eis not too strong:

    The constantis called the electric susceptibility of the medium. The displacement Distherefore proportional to E, where is electric permittivity and is called the dielectric constant orrelative electric permittivity.

    Boundary conditions on the field vectors

    Consider two media, 1 and 2, in contact as shown in Fig. 4.6. We shall assume that there is a

    surface charge density . Applying the Gausss law to the small pill box S, we obtain

    This leads to i.e., Thus the discontinuity in the normal component of Dis given by the surface density of free

    charge on the interface.

    The line integral of

    around the path Lmust be zero:

    This gives i.e, Thus the tangential component of the electric field is continuous across an interface.

    n21

    1

    2

    D2

    E1D1

    E2

    LS

    S l

    (4.30)

    (4.31)

    (4.33)

    Fig 4.6. Boundary conditions on the

    field vectors at the interface between

    two media may be obtained by

    applying Gausss law to surface Sand

    integrating around the path L.

    (4.32)

    (4.34)

    (4.35)

    (4.36)

    (4.37)

  • 8/10/2019 EMCh4

    8/21

    8

    4.3 Boundary-Value Problems with Dielectrics

    If the dielectrics of interest are linear, isotropic, and homogeneous, (Eq. 4.31), where is a constant characteristic of the material, and we may write

    Since still holds, the electric field is derivable from a scalar potential , i.e., , so that

    Thus the potential in the dielectric satisfies the Poissons equation; the only difference between

    this equation and the corresponding equation for the potential in vacuum is that

    replaces

    (vacuum permittivity). In most cases of interest dielectrics contains no charge, i.e., . Inthose circumstances, the potential satisfies Laplaces equation throughout the body of dielectric: An electrostatic problem involving linear, isotropic, and homogeneous dielectrics reduces,

    therefore, to finding solutions of Laplaces equation in each medium and joining the solutions in

    the various media by means of the boundary conditions. We treat a few examples of the

    various techniques applied to dielectric media.

    Point charge near a plane interface of dielectric media

    We consider a point charge qembedded in a semi-infinite dielectric a distance daway from aplane interface ( ) that separates the first medium from another semi-infinite dielectric as shown in Fig. 4.7. From Eqs. 3.34 and 3.37, we obtain the boundary conditions:

    | || || |

    zq

    d

    2

    1

    x

    (4.38)

    (4.39)

    (4.40)

    Fig 4.7.

    (4.41)

  • 8/10/2019 EMCh4

    9/21

    9

    We apply the method of images to find the potential satisfying these boundary conditions (see

    Fig. 4.8). For the potential in the region , we locate an image charge qat . Thenthe potential at a point described by cylindrical coordinates is

    where and

    For the potential in the region , we locate an image charge qat . Then thepotential at a point is

    Fig 4.8. (a) The potential for is due to qand an image charge qat . (b) The potential for is due to an image charge qat .The first two boundary conditions in Eq. 4.41 are for the tangential components of the electric

    field:

    The third boundary condition in Eq. 4.41 is for the normal component of the displacement:

    zq

    d

    1

    1

    d

    q

    P

    zq

    d

    2

    2

    d

    PR1R2 R1

    (a) In the region z>0 (b) In the region z

  • 8/10/2019 EMCh4

    10/21

    10

    From Eqs. 4.45 and 4.46, we obtain the image charges qand q:

    Figure 4.8 shows the lines of Dfor two cases and for .

    The surface charge density is given by (Eq. 4.22). Therefore, the polarization-surface-charge density on the interface is Since ,

    In the limit (behaves like a conductor) and , Eq. 4.49 becomes equivalent toEq. 2.2 for a point charge in front of a conducting surface.

    12 12

    (4.46)

    (4.47)

    Fig 4.8. Lines of electric

    displacement

    (4.48)

    (4.49)

  • 8/10/2019 EMCh4

    11/21

    11

    Dielectric sphere in a uniform electric field

    A dielectric sphere of radius aand permittivity is placed in a region of space containing aninitially uniform electric field as shown in Fig. 4.9. The origin of our coordinatesystem is taken at the center of the sphere, and the electric field is aligned along the z-axis. We

    should like to determine how the electric fields are modified by the dielectric sphere.

    Inside and outside potential

    From the azimuthal symmetry of the geometry we can take the solution to be of the form:

    (i) Outside:

    [ ]

    (4.50)

    At large distances from the sphere, i.e., for the region

    , the potential is given by

    Accordingly, we can immediately set all except for equal to zero.(ii) Inside:

    Since is finite at , terms must vanish.Boundary conditions at

    (i) Tangential E: (4.53)or (4.54)

    (ii) Normal D: (4.55)

    a

    P

    z

    r

    0E

    0E

    Fig 4.9.

    (4.52)

    (4.51)

  • 8/10/2019 EMCh4

    12/21

    12

    Applying boundary condition (i) (Eq. 4.54) tells us that

    We deduce from this that

    We apply boundary condition (ii) results in

    We deduce from this that

    The equations 4.57 and 4.60 can be satisfied only if

    where is the dielectric constant (or relative electric permittivity). From Eqs. 4.58 and4.61, we can deduce that for all . The potential is therefore Electric field and polarization

    Equation 4.64 tells us that the field inside the sphere is a constant in the zdirection:

    (4.56)

    (4.57)

    (4.58)

    (4.59)

    (4.60)

    (4.61)

    (4.62)

    (4.63)

    (4.64)

    (4.65)

    (4.66)

  • 8/10/2019 EMCh4

    13/21

    13

    For (no dielectric), this reduces as expected to . The field outside the dielectric isclearly composed of the original constant field and a field which has a characteristic dipoledistribution with dipole moment of

    We compare this with that from integrating the polarization Pover the sphere. Insider the

    dielectric we have

    Since Pis constant, we obtain the total dipole moment

    which is equal to Eq. 4.67.Surface charge density

    Fig. 4.10

    The uniform external electric field induces the constant polarization inside a dielectric sphere

    (Eq. 4.68), and the induced polarization gives rise to surface charge which produces opposing

    electric field if , as illustrated in Fig. 4.10. The surface charge density (Eq. 4.22) is

    Spherical cavity in a dielectric medium

    Fig. 4.11

    Figure 4.11 sketches the problem of a spherical cavity of radius ain a dielectric medium () withan external field . We can obtain the solution of this problem by switching and in

    0E

    0E

    P

    (a) polarization (b) Electric field due to surface charge

    a

    0E

    z

    0

    (4.67)

    (4.68)

    (4.69)

  • 8/10/2019 EMCh4

    14/21

    14

    the solution of the previous problem (i.e., ). For example, the fieldinside the cavity is constant in the zdirection:

    The field outside the dielectric is composed of the original constant field and a field of thedipole moment which is oriented oppositely to the applied field if .4.4 Microscopic Theory of Dielectrics

    We now examine the molecular nature of the dielectric, and see how the electric field

    responsible for polarizing the molecule is related to the macroscopic electric field. Ourdiscussion is in terms of simple classical models of the molecular properties, although a proper

    treatment necessarily would involve quantum mechanical consideration. On the basis of a

    simple molecular model it is possible to understand the linear behavior that is characteristic of

    a large class of dielectric materials.

    Molecular polarizability and electric susceptibility

    Molecular field and macroscopic field

    The electric susceptibilityis defined through the relation (Eq. 4.30), where is themacroscopic electric field. The electric field responsible for polarizing a molecule of the

    dielectric is called the molecular field . is different from because the polarization ofother molecules gives rise to an internal field , so that we can write .

    Internal field

    In order to find out , we consider an imaginary sphere which contains neighboring molecules.It is much larger than the molecules, yet infinitesimally small in the macroscopic scale. The

    geometry is shown in Fig. 4.12. Then we can decompose into two terms: ,where is the field due to the neighboring molecules close to the given molecule and is

    E

    +

    ++

    +

    +

    +

    +

    +

    +

    pmol

    mE

    b

    (4.70)

    (4.71)

    Fig 4.12. The dielectric outside

    the cavity is replaced by a system

    of polarization charges

    .

  • 8/10/2019 EMCh4

    15/21

    15

    the contribution from all the other molecules. arises from surface charge density onthe cavity surface. Using spherical coordinates, we obtain

    Thexand ycomponents vanish because they include the integrals of and , respectively. Therefore,

    Now we consider the term, . If the many molecules are randomly distributed in position,then . This is the case if the dielectric is a gas or a liquid. If the dipoles in the cavityare located at the regular atomic positions of a cubic crystal, then again

    (you may

    refer to the proof in the textbook, pp. 160-161). We restrict further discussion to the rather

    large classs of materials in which . Then,

    Polarization and molecular polarizability

    The polarization vector is defined as

    where Nis the number of molecules per unit volume and is the dipole moment of themolecules. We define the molecular polarizability as Combining Eqs. 4.73, 4.74, and 4.75, we obtain

    Using (Eq. 4.30), we find

    as the relation between susceptibility (the macroscopic parameter) and molecular polarizability

    (the macroscopic parameter).

    (4.72)

    (4.74)

    (4.75)

    (4.73)

    (4.76)

    (4.77)

  • 8/10/2019 EMCh4

    16/21

    16

    Using , we find

    This is called the Clausius-Mossotti equation.

    Models for the molecular polarizability

    The molecules of a dielectric may be classified as polar or nonpolar. A polar molecule such as

    H2O and CO has a permanent dipole moment, even in the absence of a polarizing field Em. In

    nonpolar molecules, the centers of gravity of the positive and negative charge distributions

    normally coincide. Symmetrical molecules such as O2, monoatomic molecules such as He, and

    monoatomic solids such as Si fall into this category. We will discuss simple models for these

    polar and nonpolar molecules.

    Induced dipoles: simple harmonic oscillator model

    The application of an electric field causes a relative displacement of the positive and negative

    charges in nonpolar molecules, and the molecular dipoles so created are called induced dipoles.

    To estimate the induced dipole moments we consider a simple harmonic oscillator model of

    bound charges (electrons and ions). Each charge eis bound under the action of a restoring force

    by an applied electric field where m is the mass of the charge, and

    is the frequency of oscillation about equilibrium.

    Consequently the induced dipole moment is Therefore the polarizability is

    For a bound electron, a typical oscillation frequency is in the optical range, i.e.,

    Hz.

    Then the electronic contribution is m3

    . For gases at NTP, m-3

    , so thattheir susceptibilities,(see Eq. 4.77), are of the order of at best. For example, theexperimental value of dielectric constant for air is 1.00054. For solids or liquiddielectrics, m-3, therefore the susceptibility can be of the order of unity.

    (4.78)

    (4.79)

    (4.80)

    (4.81)

  • 8/10/2019 EMCh4

    17/21

    17

    Polar molecules: Langevin-Debye formula

    In the absence of an electric field a macroscopic piece of polar dielectric is not polarized, since

    thermal agitation keeps the molecules randomly oriented. If the polar dielectric is subjected to

    an electric field, the individual dipoles experience torques which tend to align them with the

    field. The average effective dipole moment per molecule may be calculated by means of aprinciple from statistical mechanics. At temperature Tthe probability of finding a particular

    molecular energy or Hamiltonian His proportional to

    For a polar molecule in the presence of an electric field , the Hamiltonian includes thepotential energy (see Eq. 4.16),

    Where is a permanent dipole moment. Then the Hamiltonian is given by where is a function of only the internal coordinates of the molecule (e.g., kinetic energy)so that it is independent of the applied field. Using the Boltzmann factor Eq. 4.82 we can write

    the average dipole moment as:

    [

    ]Here the components of not parallel to vanish. In general, the dipole potential energyis much smaller than the thermal energy except at very low temperature. Then

    Therefore the polarizability of the polar molecule is

    In general, induced dipole effects are also present in polar molecules, yet they are independent

    of temperature. Then, the total molecular polarizability is

    (4.84)

    (4.83)

    (4.85)

    (4.86)

    (4.87)

    (4.88)

    (4.82)

  • 8/10/2019 EMCh4

    18/21

    18

    4.5 Electrostatic Energy in Dielectric Media and Forces on Dielectrics

    Energy in dielectric systems

    We discuss the electrostatic energy of an arbitrary distribution of charge in dielectric media

    characterized by the macroscopic charge density

    . The work done to make a small change

    in is Where is the potential due to the charge density already present. Since , , where is the resulting change in , so

    Now

    and hence (integrating by parts)

    The divergence theorem turns the first term into a surface integral, which vanishes if islocalized and we integrate over all of space. Therefore, the work done is equal to So far, this applies to any material. Now, if the medium is a linear dielectric, then so

    Thus The total work done, then, as we build the free charge up from zero to the final configuration, is

    Parallel-plate capacitor filled with a dielectric medium

    V d

    +Q

    -Q

    A

    (4.89)

    (4.90)

    (4.91)

    (4.92)

    (4.93)

    (4.94)

    (4.95)

    Fig 4.13.

  • 8/10/2019 EMCh4

    19/21

    19

    We shall find the electrostatic energy stored in a parallel-plate capacitor. Its geometry is shown

    in Fig. 4.13: two conducting plates of areaA(charged with +Qand -Q) is separated by d(we

    assume that dis very small compared with the dimensions of the plates), and the gap is filled

    with dielectric ().(i) CapacitanceThe electric field between the plates is

    The potential difference . Therefore,

    (ii) Electrostatic energy

    Using Eq. 1.40, we obtain the electrostatic energy stored in the capacitor.

    This is consistent with Eq. 4.95:

    Forces on dielectrics

    We have just developed a procedure for calculating the electrostatic energy of a charge system

    including dielectric media. We now discuss how the force on one of the objects in the charge

    system may be calculated from this electrostatic energy. We assume all the charge resides onthe surfaces on the conductors.

    Constant total charge

    Let us suppose we are dealing with an isolated system composed of a number of parts

    (conductors, point charges, dielectrics) and allow one of these parts to make a small

    displacement under the influence of the electrical forces acting upon it. The workperformed by the electrical force on the system is

    Because the system is isolated, this work is done at the expense of the electrostatic energy ;in other words, the change in the electrostatic energy is . Therefore,

    where the subscript Qhas been added to denote that the system is isolated, and hence its total

    charge remains constant during the displacement .

    (4.99)

    (4.100)

    (4.96)

    (4.97)

    (4.98)

  • 8/10/2019 EMCh4

    20/21

    20

    Fixed potential

    We assume that all the conductors of the system are maintained at fixed potentials, , bymeans of external sources of energy (e.g., by means of batteries). Then, the work performed

    where is the work supplied by the batteries. The electrostatic energy Wof the system (seeEq. 1.36) is given as

    Since s are constant,

    Furthermore, the work supplied by the batteries is the work required to move each of the

    charge increments from zero potential to the potential of the appropriate conductor,therefore, Consequently, , and hence

    Here the subscript Vis used to denote that all potentials are maintained constant.

    Dielectric slab within a parallel-plate capacitor

    As an example of the energy method, we consider a parallel-plate capacitor in which a dielectric

    slab () is partially inserted. The dimensions of each plate are length and width . Theseparation between them is . The geometry is illustrated in Fig. 4.14. We shall calculate theforce tending to pull the dielectric slab back into place. We consider two cases of (i) a constant

    potential difference Vand (ii) a constant total chargeQ.

    l

    V

    x

    d

    +Q

    -Q

    Fig 4.14. Dielectric slab partially

    withdrawn from the gap between

    two charged plates.

    (4.101)

    (4.102)

    (4.103)

    (4.104)

    (4.105)

  • 8/10/2019 EMCh4

    21/21

    21

    (i) Constant potential difference V

    Since the electric field is the same everywhere between the plates, we find

    The force may be calculated from Eq. 4.106:

    (ii) Constant total charge Q

    The energy stored in the capacitor (see Eq. 1.42) is

    and the capacitance in this case is

    We apply Eq. 4.101 to obtain the force:

    Since

    , we find Eq. 4.111 has the same expression with Eq. 4.107, but the force of constant charge (Eq. 4.111)

    is a function of (Cvaries withx) while the force of constant potential (Eq. 4.107) isindependent ofx.

    (4.107)

    (4.108)

    (4.109)

    (4.110)

    (4.111)

    (4.106)