Top Banner
Material Point Method Simulations of Fragmenting Cylinders Biswajit Banerjee Department of Mechanical Engineering University of Utah 17th ASCE Engineering Mechanics Conference, 2004
23
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Em2004 270

Material Point Method Simulations of Fragmenting Cylinders

Biswajit BanerjeeDepartment of Mechanical Engineering

University of Utah

17th ASCE Engineering Mechanics Conference, 2004

Page 2: Em2004 270

Outline

• Scenario

• Material Point Method (MPM)

• Approach

• Validation

• Simulations of fragmentation

Page 3: Em2004 270

Scenario

Page 4: Em2004 270

What happens to the container ?

Page 5: Em2004 270

Simulation Requirements

• Fire-container interaction

• Large deformations

• Strain-rate/temperature dependence

• Failure due to void growth/shear bands

Page 6: Em2004 270

The Material Point Method (MPM)(Sulsky et al.,1994)

Page 7: Em2004 270

Why MPM ?

• Tightly-coupled fluid-structure interaction.

• No mesh entanglement.• Convenient contact

framework.• Mesh generation trivial.• Easily parallelized.• No tensile instabilities.

• First-order accuracy.• High particle density for

tension dominated problems.

• Computationally more expensive than FEM.

Advantages Disadvantages

Page 8: Em2004 270

Stress update

• Hypoelastic-plastic material• Corotational formulation (Maudlin & Schiferl,1996)

• Semi-implicit (Nemat-Nasser & Chung, 1992)

• Stress tensor split into isotropic/deviatoric

• Radial return plasticity

• State dependent elastic moduli, melting temperature

Page 9: Em2004 270

Plasticity modeling

• Isotropic stress using Mie-Gruneisen Equation of State.

• Deviatoric stress :• Flow stress : Johnson-Cook, Mechanical Threshold

Stress, Steinberg-Cochran-Guinan• Yield function : von Mises, Gurson-Tvergaard-

Needleman, Rousselier

• Temperature rise due to plastic dissipation• Associated flow rule

Page 10: Em2004 270

Damage/Failure modeling

• Damage models:• Void nucleation/growth (strain-based)• Porosity evolution (strain-based)• Scalar damage evolution: Johnson-Cook/Hancock-

MacKenzie

• Failure• Melt temperature exceeded• Modified TEPLA model (Addessio and Johnson, 1988)

• Drucker stability postulate• Loss of hyperbolicity (Acoustic tensor)

Page 11: Em2004 270

Fracture Simulation

• Particle mass is removed.

• Particle stress is set to zero.

• Particle converted into a new material that interacts with the rest of the body via contact.

Page 12: Em2004 270

Validation: Plasticity Models

6061-T6 Aluminum EFC Copper

JC MTS SCG JC MTS SCG

635 K 194 m/s

655 K 354 m/s

718 K 188 m/s

727 K 211 m/s

Page 13: Em2004 270

Validation: Mesh dependence

OFHC Copper298 K 177 m/sMTS

6061-T6 Al655 K 354 m/sJC

1,200,000 cells151,000 cells18,900 cells

735,000 cells91,800 cells11,500 cells

Page 14: Em2004 270

Validation: Penetration/Failure

Page 15: Em2004 270

Validation: Penetration/Failure

160,000 cells 1,280,000 cells

Page 16: Em2004 270

Validation: Erosion Algorithm

Page 17: Em2004 270

Validation: Impact

Page 18: Em2004 270

Validation: Impact Results

Page 19: Em2004 270

Validation: 2D Fragmentation

Page 20: Em2004 270

Validation: 2D Fragmentation

Gurson-Tvergaard-Needleman yield, Drucker stability, Acoustic tensor, Gaussian porosity, fragments match Grady equation, gases with ICE-CFD code.

JC (steel), ViscoScram (PBX 9501)

MTS (steel), ViscoScram (PBX 9501)

Page 21: Em2004 270

Simulations: 3D Fragmentation

QuickTime™ and aVideo decompressor

are needed to see this picture.

Page 22: Em2004 270

Simulation: Container in Fire

QuickTime™ and aMotion JPEG A decompressor

are needed to see this picture.

Page 23: Em2004 270

Questions ?