Top Banner
ME13A: ENGINEERING STATICS COURSE INTRODUCTION
71

EM chapter1and2.ppt

Jun 02, 2018

Download

Documents

dpksobs
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 1/71

ME13A: ENGINEERING

STATICS

COURSEINTRODUCTION

Page 2: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 2/71

Details of Lecturer

Course Lecturer : Dr. E.I. Ekwue

Room Number : 216 Main Block,Faculty of Engineering

Email: [email protected] ,

Tel. No. : 662 2002 Extension 3171

Office Hours: 9 a.m. to 12 Noon. (Tue,Wed and Friday) 

Page 3: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 3/71

COURSE GOALS

This course has two specific goals:

(i) To introduce students to basicconcepts of force, couples and

moments in two and three dimensions.

(ii) To develop analytical skills relevant

to the areas mentioned in (i) above.

Page 4: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 4/71

COURSE OBJECTIVES

Upon successful completion of this course, students

should be able to:

) Determine the resultant of coplanar and space forcesystems.

(ii) Determine the centroid and center of mass ofplane areas and volumes.

(iii) Distinguish between concurrent, coplanar andspace force systems

(iv) Draw free body diagrams.

Page 5: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 5/71

COURSE OBJECTIVES CONTD.

(v)  Analyze the reactions and pin forcesinduces in coplanar and space systemsusing equilibrium equations and free bodydiagrams.

(vi) Determine friction forces and theirinfluence upon the equilibrium of a system.

(vii)  Apply sound analytical techniques andlogical procedures in the solution ofengineering problems.

Page 6: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 6/71

  Course Content 

(i)  Introduction, Forces in a plane, Forces in

  space (ii) Statics of Rigid bodies

(iii) Equilibrium of Rigid bodies (2 and 3

  dimensions)(iv) Centroids and Centres of gravity

(v) Moments of inertia of areas and masses

(vi) Analysis of structures (Trusses, Frames

  and Machines)

(vii) Forces in Beams

(viii)Friction

Page 7: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 7/71

  Teaching Strategies 

The course will be taught via

Lectures and Tutorial Sessions,

the tutorial being designed to

complement and enhance boththe lectures and the students

appreciation of the subject.

  Course work assignments will

be reviewed with the students.

Page 8: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 8/71

Course Textbook and Lecture Times

Vector Mechanics For Engineers By F.P.

Beer and E.R. Johnston (Third MetricEdition), McGraw-Hill.

Lectures: Wednesday, 1.00 to 1.50 p.m.

Thursday , 10.10 to 11.00 a.m.

Tutorials: Monday, 1.00 to 4.00 p.m. [Once in

Two Weeks]

Attendance at Lectures and Tutorials is Compulsory

Page 9: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 9/71

Tutorial OutlineChapter 2  – STATICS OF PARTICLES

2.39*, 41, 42*, 55, 85*, 86, 93*, 95, 99*, 104, 107*, 113

Chapter 3 –

 RIGID BODIES: EQUIVALENT SYSTEM OF FORCES

3.1*, 4, 7*, 21, 24*, 38, 37*, 47, 48*, 49, 70*, 71, 94*, 96, 148*, 155

Chapter 4 –  EQUILIBRIUM OF RIGID BODIES

4.4*, 5, 9*, 12, 15*, 20, 21*, 31, 61*, 65, 67*, 93, 115*

Chapters 5 and 9 – 

 CENTROIDS AND CENTRES OF GRAVITY, MOMENTS OFINERTIA

5.1*, 5, 7*, 21, 41*, 42, 43*, 45, 75*, 77 9.1*, 2, 10*, 13, 31*, 43, 44*

Chapter 6  –  ANALYSIS OF STRUCTURES

6.1*, 2, 6*, 9, 43*, 45, 75*, 87, 88*, 95, 122*, 152, 166*, 169

Chapters 7 and 8  –  FORCES IN BEAMS AND FRICTION

7.30 , 35, 36, 81, 85 8.25, 21, 65

* For Chapters 1 to 6 and 9, two groups will do the problems in asterisks; the other twogroups will do the other ones. All the groups will solve all the questions in Chapters 7

and 8.

Page 10: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 10/71

Time-Table For Tutorials/Labs

MONDAY 1:00 - 4:00 P.M. 

 WeekGroup 

1,5,9 2,6,10 3,7,11, 4,8,12

K - ME13A ME16A(3,7)

ME13A

L ME13A - ME13A ME16A(4,8)

M ME16A(5,9)

ME13A - ME13A

N ME13A ME16A(6,10)

ME13A -

Page 11: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 11/71

ourse ssessmen  

(i) One (1) mid-semester test, 1-hour

duration counting for 20% of the total

course.

(ii) One (1) End-of-semester

examination, 2 hours duration counting

for 80% of the total course marks. 

Page 12: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 12/71

ME13A: ENGINEERING

STATICS

CHAPTER ONE:INTRODUCTION

Page 13: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 13/71

1.1 MECHANICS

Body of Knowledge which

Deals with the Study andPrediction of the State of Rest

or Motion of Particles and

Bodies under the action of

Forces

Page 14: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 14/71

PARTS OF MECHANICS

Page 15: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 15/71

1.2  STATICS

 Statics Deals With the Equilibriumof Bodies, That Is Those That Are

Either at Rest or Move With aConstant Velocity.

  Dynamics Is Concerned With the

 Accelerated Motion of Bodies andWill Be Dealt in the NextSemester.

Page 16: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 16/71

ME13A: ENGINEERING

STATICS

CHAPTER TWO:STATICS OF

PARTICLES

Page 17: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 17/71

   A particle has a mass but a size that can

be neglected.

When a body is idealised as a particle,

the principles of mechanics reduce to a

simplified form, since the geometry of

the body will not be concerned in theanalysis of the problem.

2.1 PARTICLE 

Page 18: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 18/71

PARTICLE CONTINUED

 All the forces acting on a

body will be assumed to beapplied at the same point,

that is the forces are

assumed concurrent.

Page 19: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 19/71

2.2 FORCE ON A PARTICLE

 A Force is a Vector quantity and must

have Magnitude, Direction and Point of

action.

 

F

P

Page 20: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 20/71

Force on a Particle Contd.

Note:  Point P is the point of action of

force and and are directions. To

notify that F  is a vector, it is printed inbold as in the text book.

Its magnitude is denoted as |F| or

simply F.

 

Page 21: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 21/71

Force on a Particle Contd.

There can be many forces acting on aparticle.

The resultant  of a system of forceson a particle is the single force 

which has the same effect   as the

system of forces. The resultant oftwo forces can be found using the

 paralleolegram law.

Page 22: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 22/71

2.2.VECTOR OPERATIONS

2.3.1 EQUAL VECTORS

Two vectors  are equal   if they are equal

in magnitude  and act in the same 

direction. pP

Q

Page 23: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 23/71

Equal Vectors Contd.

Forces equal in Magnitude can act inopposite Directions

S

R

Page 24: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 24/71

Q

P

R

2.3.2 Vector Addition

Using the Paralleologram Law, Construct aParm. with two Forces as Parts. The

resultant of the forces is the diagonal.

Vector Addition Contd

Page 25: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 25/71

Vector Addition Contd.

Triangle Rule: Draw the first Vector. Join

the tail of the Second to the head of the

First and then join the head of the third to

the tail of the first force to get the resultant

force, R

Q

PR = Q + P

Page 26: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 26/71

Triangle Rule Contd.

Also:

PQ

R = P + Q

Q + P = P + Q. This is the cummutative law of

vector addition

l l

Page 27: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 27/71

Polygon Rule

Can be used for the addition of more

than two vectors. Two vectors are

actually summed and added to thethird.

Page 28: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 28/71

Polygon Rule contd.

P

QS

P

Q

S

R

R = P + Q + S

(P + Q)

P l R l C d

Page 29: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 29/71

Polygon Rule Contd.

P + Q = (P + Q) ………. Triangle Rule 

i.e. P + Q + S = (P + Q) + S = R

The method of drawing the vectors is

immaterial . The following method can

be used.

Page 30: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 30/71

Polygon Rule contd.

P

QS

P

Q

S

R

R = P + Q + S

(Q + S)

P l R l C l d d

Page 31: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 31/71

Polygon Rule Concluded

Q + S = (Q + S) ……. Triangle Rule 

P + Q + S = P + (Q + S) = R

i.e. P + Q + S = (P + Q) + S = P + (Q + S)

This is the associative Law of Vector

Addition

Page 32: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 32/71

Page 33: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 33/71

2.4 Resolution of Forces

It has been shown that theresultant of forces acting at the

same point (concurrent forces) canbe found.

In the same way, a given force, F

can be resolved into components.  There are two major cases.

R l ti f F C 1

Page 34: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 34/71

Resolution of Forces: Case 1

(a) When one of the two components, P isknown:  The second component Q  is

obtained using the triangle rule. Join the tipof   P  to the tip of F. The magnitude anddirection of Q  are determined graphically orby trignometry.

F

PQ

i.e. F = P + Q

l i f

Page 35: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 35/71

Resolution of Forces: Case 2

(b) When the line of action of each component is known: The force, F  can be

resolved into two components having lines of action along lines ‘a’ and ‘b’ using the

paralleogram law. From the head of  F, extend a line parallel to ‘a’ until it intersects ‘b’.

Likewise, a line parallel to ‘b’ is drawn from the head of  F to the point of intersection with

‘a’. The two components P and Q are then drawn such that they extend from the tail of

F to points of intersection.

Q F 

P b

Page 36: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 36/71

S l ti

Page 37: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 37/71

Solution

Solution:  A parm. with sides equal to 900 N and 600 N is drawn to scale as shown.

The magnitude and direction of the resultant can be found by drawing to scale.

600 N R

15o  900 N

45o  30o 

The triangle rule may also be used. Join the forces in a tip to tail fashion and

measure the magnitude and direction of the resultant.

600 N

R 45o 

135o  C

B 30o 900 N 

900N600N

30o45o

T i t i S l ti

Page 38: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 38/71

Trignometric Solution

Using the cosine law:

R2  = 9002  + 6002  - 2 x 900 x 600 cos 1350 

R = 1390.6 = 1391 N

Using the sine law:

 R

 Bi e B

The angle of the resul t 

sin sin. . sin

  sin

.tan . .

135

600 600 135

1391

17 830 17 8 47 8

1

 

 

 

 

 

ie. R = 139N

47.8o

 

R

900 N

600N

135o

30o

B

Page 39: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 39/71

Solution

Page 40: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 40/71

Solution

Solution: Using Triangle rule:

75o  30 kN

20 kN 105o

     25o 

Q

R

R2  = 302 + 202 - 2 x 30 x 20 cos 1050 - cosine law

R = 40.13 N

Using sine rule:

4013

105

20 20 105

401328 8

28 8 25 3 8

401 3 8

1.   sin

..

. .

. . , .

 N 

Sin   Sinand Sin

 Angle R

i e R N  

o

oo

o o o

o

 

 

Page 41: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 41/71

2.5  RECTANGULAR

COMPONENTS OF FORCE 

x

F

 j

iFx = Fx i

Fy = Fy j

y

Page 42: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 42/71

Page 43: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 43/71

RECTANGULAR COMPONENTS

OF FORCE CONTD.

While the scalars, Fx and Fy may be positive or negative, depending on the sense of Fx

and Fy, their absolute values are respectively equal to the magnitudes of the component

forces Fx and Fy,

Scalar components of F  have magnitudes:

Fx = F cos 

  and Fy = F sin 

 

F is the magnitude of force F.

Page 44: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 44/71

o u on

Page 45: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 45/71

o u on

 F x = 350 cos 25o  + 800 cos 70o  - 600 cos 60o 

= 317.2 + 273.6 - 300 = 290.8 N

 F y = 350 sin 25o  + 800 sin 70o  + 600 sin 60o

= 147.9 + 751 + 519.6 = 1419.3 N

i.e. F = 290.8 N i + 1419.3 N  j 

Resultant, F

 F N 

290 8 1419 3 1449

1419 3

290878 4

2 2

1 0

. .

tan  .

.. 

 

F = 1449 N 78.4o

 

25o45o

350 N

800 N

600 N

60o

y

Example

Page 46: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 46/71

Example

 A hoist trolley is subjected to the three

forces shown. Knowing that = 40o  ,determine (a) the magnitude of force, P forwhich the resultant of the three forces isvertical (b) the corresponding magnitude of

the resultant.

 

1000 N

P

2000 N

  

Page 47: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 47/71

2 6 EQUILIBRIUM OF A PARTICLE

Page 48: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 48/71

2.6. EQUILIBRIUM OF A PARTICLE

 A particle is said to be at equilibrium when the resultant of all the forces acting on it is

zero. It two forces are involved on a body in equilibrium, then the forces are equal and

opposite.

.. 150 N 150 N

If there are three forces, when resolving, the triangle of forces will close, if they are in

equilibrium.

F2  F1  F2 

F3 

F1 

F3

EQUILIBRIUM OF A PARTICLE

Page 49: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 49/71

EQUILIBRIUM OF A PARTICLE

CONTD.

If there are more than three forces, the polygon of forces will be closed if the particle is

in equilibrium.

F3

F2  F2

F3  F1  F4 

F1 

F4

The closed polygon provides a graphical expression of the equilibrium of forces.

Mathematically: For equilibrium:

R  =  F  = 0

i.e.  ( Fx i  + Fy j) = 0 or  (Fx) i  +  (Fy) j

Page 50: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 50/71

EQUILIBRIUM OF A PARTICLE

CONCLUDED

For equilibrium:

   Fx = 0 and

   F y = 0.

Note:  Considering Newton’s  first law

of motion, equilibrium can mean that

the particle is either at rest or moving in

a straight line at constant speed.

FREE BODY DIAGRAMS:

Page 51: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 51/71

  FREE BODY DIAGRAMS:

Space diagram represents the sketchof the physical problem. The free bodydiagram selects the significant particleor points and draws the force system

on that particle or point. Steps:

1.  Imagine the particle to be isolated or

cut free from its surroundings. Draw orsketch its outlined shape.

Free Body Diagrams Contd

Page 52: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 52/71

Free Body Diagrams Contd.

2. Indicate on this sketch all the forces

that act on the particle.

These include active forces - tend to

set the particle in motion e.g. from

cables and weights and reactive forces

caused by constraints or supports thatprevent motion.

Free Body Diagrams Contd

Page 53: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 53/71

Free Body Diagrams Contd.

 3. Label known forces with their

magnitudes and directions. use letters

to represent magnitudes and directionsof unknown forces.

 Assume direction of force which may

be corrected later.

Example

Page 54: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 54/71

Example

The crate below has a weight of 50 kg. Drawa free body diagram of the crate, the cord BDand the ring at B.

CRATE

B ring C

A

D

45o

Solution

Page 55: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 55/71

Solution(a) Crate

FD ( force of cord acting on crate)

50 kg (wt. of crate)

(b) Cord BD

FB (force of ring acting on cord)

FD (force of crate acting on cord)

CRATE

C45o B

A

D

Solution Contd.

Page 56: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 56/71

Solution Contd.

(c) Ring

F A (Force of cord BA acting along ring)

FC

(force of cord BC acting on ring)

FB (force of cord BD acting on ring)

Example

Page 57: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 57/71

Example

Solution Contd

Page 58: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 58/71

Solution Contd.

 F   F 

 F  BC  AC 

o

o   AC  sin

cos. .............( )

75

753 73 1  

 Fy = 0 i.e. FBC sin 75o  - F AC cos 75o - 1962 = 0

 F   F 

 F  BC  AC 

 AC  

1962 0 26

09662031 2 0 27 2

.

.. . ......( )  

From Equations (1) and (2), 3.73 F AC  = 2031.2 + 0.27 F AC 

F AC = 587 N

From (1), FBC = 3.73 x 587 = 2190 N

RECTANGULAR COMPONENTS

Page 59: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 59/71

 RECTANGULAR COMPONENTS

OF FORCE  (REVISITED)

x

 j

iFx = Fx i

Fy = Fy j

y

F = Fx + Fy

F = |Fx| . i + |Fy| . j

|F|2  = |Fx|2  + |Fy|2

F | | | | | | F Fx Fy 2 2

2 8 Forces in Space

Page 60: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 60/71

2.8 Forces in Space

Rectangular Components

Fy

Fx

Fz

 j

i

k

F  

Rectangular Components of a Force

Page 61: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 61/71

Rectangular Components of a Force

in Space

F = Fx + Fy + Fz

F = |Fx| . i + |Fy| . j + |Fz| . k

|F|2  = |Fx|2  + |Fy|2 + |Fz|2

| | | | | | | | F Fx Fy Fz  2 2 2

| | | | cos | | | | cos | | | |cos

, cos

,

 Fx F Fy F Fz F 

Cos Cos and Cos are called direction ines of   

angles and  

 x y z 

 x y z 

 x y z 

 

 

 

Forces in Space Contd

Page 62: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 62/71

Forces in Space Contd.

i.e. F  = F ( cos x  i + cos y  j + cos z  k) = F

F can therefore be expressed as the product of scalar, F

and the unit vector where:  = cos x  i + cos y  j + cos z  k.

is  a unit vector of magnitude 1 and of the same direction as F.

  is a unit vector along the line of action of   F.

Forces in Space Contd

Page 63: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 63/71

Forces in Space Contd.

 Also:

x  =  cos x, y = cos y and z =  cos z  - Scalar vectors

i.e. magnitudes.

x2  + y

2  + z2  = 1 =

i.e. cos2 x, + cos2 y + cos2 z  = 1

Note: If components, Fx, Fy, and Fz of a Force,  F are known,

the magnitude of F, F = Fx2  + Fy

2  + Fz2 

Direction cosines are: cos x  = Fx/F , cos y = Fy/F and cos2 z = Fz/F

Page 64: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 64/71

Force Defined by Magnitude and two Points

Page 65: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 65/71

Force Defined by Magnitude and two Points

on its Line of Action Contd.

Unit vector,   along the line of action of   F = MN/MN

MN is the distance, d from M to N.

= MN/MN  = 1/d ( dx i  + dy  j  + dz k )

Recall that: F = F 

F = F = F/d  ( dx i  + dy  j  + dz k )

 F    Fd d 

 F   Fd d 

 F    Fd d 

d x x d y y d z z  

d d d d  

 x x

 y y

 z  z 

 x y z 

 x y z 

 x  x  y  y  z   z 

, ,

, ,

cos , cos , cos

2 1 2 1 2 1

2 2 2

 

 

2 8 3 Addition of Concurrent Forces

Page 66: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 66/71

2.8.3 Addition of Concurrent Forces

in Space 

The resultant, R of   two or more forces in space is obtained by

summing their rectangular components i.e.

R  =  F 

i.e. Rx i  + Ry j  + Rz k  =  ( Fx i  + Fy  j  + Fz k )

= ( Fx) i  + ( Fy) j  + ( Fz )k

R x =  Fx, Ry  =  Fy , Rz  =  Fz

R = Rx2  + Ry

2  + Rz2

cos x = Rx/R cos y = Ry/R cos z = Rz/R

Page 67: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 67/71

Solution

Page 68: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 68/71

Solution:

Position vector of BH = 0.6 m i  + 1.2 m j - 1.2 m k

Magnitude, BH = 0 6 1 2 1 2 182 2 2. . . .   m  

 

 

 BH 

 BH BH BH BH 

 BH 

 x y z 

 BH 

 BH m i m j m k  

T T T    BH  BH 

 N m

m i m j m k  

T N i N j N k  

 F N F N F N 

| | .( . . . )

| |. | || | .

. . .

( ) (500 ) (500 )

, ,

1

180 6 1 2 1 2

75018

0 6 1 2 1 2

250

250 500 500

 

2.9 EQUILIBRIUM OF A

Page 69: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 69/71

Q

PARTICLE IN SPACE 

For equilibrium:

 Fx = 0, Fy = 0 and Fz =

0.

The equations may be used tosolve problems dealing with the

equilibrium of a particle involvingno more than three unknowns.

Page 70: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 70/71

Page 71: EM chapter1and2.ppt

8/10/2019 EM chapter1and2.ppt

http://slidepdf.com/reader/full/em-chapter1and2ppt 71/71