Top Banner
2·XII·2011 - Universit´ e de Gen ` eve Electroweak lights from DM annihilations Andrea De Simone Based on: Ciafaloni, Cirelli, Comelli, DS, Riotto, Urbano JCAP 1106, 018 (2011) [arXiv:1104.2996] JCAP 1110, 034 (2011) [arXiv:1107.4453] + work in progress
37

Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

Sep 30, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve

Electroweak lights from DM annihilations

Andrea De Simone

Based on:Ciafaloni, Cirelli, Comelli, DS, Riotto, Urbano

JCAP 1106, 018 (2011) [arXiv:1104.2996]JCAP 1110, 034 (2011) [arXiv:1107.4453]

+ work in progress

Page 2: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Outline

• Indirect searches for DM

• ElectroWeak Bremsstrahlung in DM annihilations

• Radiation from final state

• Radiation from initial state

• Conclusions

Andrea De Simone 1/30

Page 3: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Dark Matter is real!

Evidences for DM:

• Rotation curves of galaxies

• Energy density budget

• Velocities of galaxiesin clusters

• Weak gravitational lensing

• Structure formation fromprimordial density fluctuations

• etc . . .

1982AJ.....87..945K

Andrea De Simone 2/30

Page 4: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Dark Matter Searches

Search strategies:

∗ Collider (in LHC we trust . . . ).Difficult unless correlating /ET with otherhandles (displaced vertex, ISR jets. . . ).

p

p

ET

ET

Andrea De Simone 3/30

Page 5: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Dark Matter SearchesSearch strategies:

∗ Collider (in LHC we trust . . . ).Difficult unless correlating /ET with otherhandles (displaced vertex, ISR jets. . . ).

p

p

ET

ET

∗ Direct detection

• 3 positive hints: DAMA, CoGeNT,CRESST;

• 3 null experiments (so far): Xenon,CDMS, Edelweiss-II;

• puzzling situation: maybe it is tellingus something about the interactionmechanism or the structure of theDM halo. . .

10 100 1000WIMP mass [GeV]

10-9

10-8

10-7

10-6

10-5

10-4

10-3

WIM

P-n

ucle

on c

ross s

ection [pb]

CRESST 1σ

CRESST 2σ

CRESST 2009EDELWEISS-IICDMS-IIXENON100DAMA chan.DAMACoGeNT

M2

M1

[CRESST Coll. 1109.0702]

Andrea De Simone 3/30

Page 6: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Dark Matter SearchesSearch strategies:

∗ Collider (in LHC we trust . . . ).Difficult unless correlating /ET with otherhandles (displaced vertex, ISR jets. . . ).

p

p

ET

ET

∗ Direct detection

• 3 positive hints: DAMA, CoGeNT,CRESST;

• 3 null experiments (so far): Xenon,CDMS, Edelweiss-II;

• puzzling situation: maybe it is tellingus something about the interactionmechanism or the structure of theDM halo. . .

10 100 1000WIMP mass [GeV]

10-9

10-8

10-7

10-6

10-5

10-4

10-3

WIM

P-n

ucle

on c

ross s

ection [pb]

CRESST 1σ

CRESST 2σ

CRESST 2009EDELWEISS-IICDMS-IIXENON100DAMA chan.DAMACoGeNT

M2

M1

[CRESST Coll. 1109.0702]

∗ Indirect detection (Fermi, PAMELA, Hess, AMS/02, IceCube, Antares . . . )

Andrea De Simone 3/30

Page 7: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Indirect Detection

Key observable for DM indirect detection: fluxesof stable particles (γ, ν, p, e) from DM annihila-tion/decay in the galactic halo or in the Sun

FIGURE 2. Simulated GLAST allsky map of neutralino DM annihilation in the Galactic halo, for a fiducial observer located 8kpc from the halo center along the intermediate principle axis. We assumedMχ = 46 GeV, !σv" = 5#10$26 cm3 s$1, a pixel sizeof 9 arcmin, and a 2 year exposure time. The flux from the subhalos has been boosted by a factor of 10 (see text for explanation).Backgrounds and known astrophysical gamma-ray sources have not been included.

DM ANNIHILATION ALLSKY MAP

Using the DM distribution in our Via Lactea simulation, we have constructed allsky maps of the gamma-ray flux fromDM annihilation in our Galaxy. As an illustrative example we have elected to pick a specific set of DM particle physicsand realistic GLAST/LAT parameters. This allows us to present maps of expected photon counts.The number of detected DM annihilation gamma-ray photons from a solid angle ΔΩ along a given line of sight (θ ,

φ ) over an integration time of τexp is given by

Nγ (θ ,φ) = ΔΩ τexp!σv"M2χ

!" Mχ

Eth

#dNγdE

$Aeff(E)dE

%"

losρ(l)2dl, (2)

where Mχ and !σv" are the DM particle mass and velocity-weighted cross section, Eth and Aeff(E) are the detectorthreshold and energy-dependent effective area, and dNγ/dE is the annihilation spectrum.We assume that the DM particle is a neutralino and have chosen standard values for the particle mass and annihilation

cross section:Mχ = 46 GeV and !σv" = 5#10$26 cm3 s$1. These values are somewhat favorable, but well within therange of theoretically and observationally allowed models. As a caveat we note that the allowed Mχ -!σv" parameterspace is enormous (see e.g. [7]), and it is quite possible that the true values lie orders of magnitude away from thechosen ones, or indeed that the DM particle is not a neutralino, or not even weakly interacting at all. We include onlythe continuum emission due to the hadronization and decay of the annihilation products (bb and uu only, for our lowMχ ) and use the spectrum dNγ/dE given in [8].For the detector parameters we chose an exposure time of τexp = 2 years and a pixel angular size of Δθ = 9 arcmin,

corresponding to the 68% containment GLAST/LAT angular resolution. For the effective area we used the curvepublished on the GLAST/LAT performance website [9] and adopted a threshold energy of Eth = 0.45 GeV (chosen to

[Kuhlen et al. 2007]

[Fermi Coll. 1110.2591]

Rise in e+ fraction.Possible signal of DM?also OK with astrophysics. . .

Andrea De Simone 4/30

Page 8: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Indirect Detection

In the other channels: from absence of signal, limits are placed on the (mχ, vσann) plane.

Photon and neutrino data

101 102 103

WIMP mass [GeV]

10-26

10-25

10-24

10-23

10-22

10-21

WIM

P c

ross

sect

ion [

cm3

/s]

Upper limits, Joint Likelihood of 10 dSphs

3 ·10−26

bb Channel

τ+ τ− Channel

µ+ µ− Channel

W+W− Channel

[Fermi-LAT Coll. – 1108.3546]

10 26

10 24

10 22

10 20

10 18

103 104<

Av>

[cm3s

1 ]

m [GeV]

Natural scale

Unitaritybb

WW

!!,

Einasto ProfileHalo Uncertainy

[IceCube Coll. – 1101.3349]

Andrea De Simone 5/30

Page 9: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Indirect Detection

kinetic energy [GeV]-110 1 10 210

-1 s

sr]

2an

tipro

ton

flux

[GeV

m

-610

-510

-410

-310

-210

-110

AMS (M. Aguilar et al.)

BESS-polar04 (K. Abe et al.)

BESS1999 (Y. Asaoka et al.)

BESS2000 (Y. Asaoka et al.)

CAPRICE1998 (M. Boezio et al.)

CAPRICE1994 (M. Boezio et al.)

PAMELA

[PAMELA Coll. – 1007.0821]

[Evoli et al. – 1108.0664]

p data and d expectations.

[Donato, Fornengo, Maurin – 0803.2640]

Andrea De Simone 6/30

Page 10: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Indirect DetectionStatement of the problem:

if the microscopic physics is known (L ),what is the spectrum of stable particles at the detection point?

γ

χ

e

ν

p

SM ev

olut

ion

prop

agat

ion

dete

ctio

n

χ

DM annihilationparticle physics−−−−−−−−−→ primary fluxes

astrophysics−−−−−−−→ observed fluxes

The particle physics evolution proceeds in 2 steps:

DM annihilation model−−−−→ primary channelsradiation/hadronization/decay−−−−−−−−−−−−−−−−−→ primary fluxes

QCD, QED (only `→ `γ, γ → ff ), NO EW

Andrea De Simone 7/30

Page 11: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

ElectroWeak Bremsstrahlung

p

χ

χ

π0

π+

e+

µ+

Ze+

e- νµνeνµ

γ

γ

∗ The final state of the DM annihilation process can radiate γ, Z,W±.

∗ It is a SM effect and can affect the final fluxes of stable particles importantly.[Bergstrom (1989); Bringmann, Bergstrom, Edsjo (2008); Ciafaloni, Comelli, Riotto, Sala, Strumia, Urbano (2010)]

Andrea De Simone 8/30

Page 12: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

ElectroWeak Bremsstrahlung

p

χ

χ

π0

π+

e+

µ+

Ze+

e- νµνeνµ

γ

γ

∗ The final state of the DM annihilation process can radiate γ, Z,W±.

∗ It is a SM effect and can affect the final fluxes of stable particles importantly.[Bergstrom (1989); Bringmann, Bergstrom, Edsjo (2008); Ciafaloni, Comelli, Riotto, Sala, Strumia, Urbano (2010)]

Why can EW Bremsstrahlung have a big effect on the final spectra?

I Log-enhanced terms: ∆σ/σ ∼ αW log2(M 2DM/M

2W ) ∼ 0.3, for MDM ∼ TeV.

I SU(2)L ⊗ U(1)Y quantum numbers:EW interactions connect all SM particles ; all species will be present in the final spectrum.

I Fragmentation of energy:a few very energetic particles are converted into many soft particles.

Andrea De Simone 8/30

Page 13: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

IR-logs in DM annihilations

Bloch-Nordsieck theorem: observables which are inclusive over soft final states are IR safe.

BN theorem can be violated in inclusive cross sections if the initial state is prepared with a fixed non-abelian charge. [Ciafaloni, Ciafaloni, Comelli (2000-2001)]

DM DM→ X (inclusive)bremsstrahlung−−−−−−−−→

no logs (BN theorem) (if DM gauge-singlet)αW log2(s/M 2

W )? (BN violation?) (if DM EW-charged)

DM DM→ e+ + X (not incl.)bremsstrahlung−−−−−−−−→ αW log2(s/M 2

W )

• Double-logs come from soft-collinear singularities:∫ dkT

kT

∫dxx ,

where x = fraction of EW , kT transverse momentum;

• If the emitting particle is non-relativistic, there is no phase-space region for kT singularity;

Andrea De Simone 9/30

Page 14: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

IR-logs in DM annihilations

Bloch-Nordsieck theorem: observables which are inclusive over soft final states are IR safe.

BN theorem can be violated in inclusive cross sections if the initial state is prepared with a fixed non-abelian charge. [Ciafaloni, Ciafaloni, Comelli (2000-2001)]

DM DM→ X (inclusive)bremsstrahlung−−−−−−−−→

no logs (BN theorem) (if DM gauge-singlet)

((((((((((((

αW log2(s/M 2W ) (if DM EW-charged)

DM DM→ e+ + X (not incl.)bremsstrahlung−−−−−−−−→ αW log2(s/M 2

W )

• Double-logs come from soft-collinear singularities:∫ dkT

kT

∫dxx ,

where x = fraction of EW , kT transverse momentum;

• If the emitting particle is non-relativistic, there is no phase-space region for kT singularity;

• if DM is EW-charged, one may have BN violation in inclusive DM annihilations, which would producedouble-logs; but the non-rel regime closes this possibility.

• IR cutoff is physical for a broken gauge theory.

Andrea De Simone 9/30

Page 15: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Spectra with EW BremsstrahlungDM DM→ e+

Le−L , γγ,W

+LW

−L

101 1 10 102 103103

102

101

1

10

E in GeV

dNdlnE

eL at M 3000 GeV

10-1 1 10 102 10310-3

10-2

10-1

1

10

E in GeV

dNd

lnE

Γ at M = 3000 GeV

10-1 1 10 102 10310-2

10-1

1

10

102

E in GeV

dNd

lnE

WT at M = 3000 GeV

—— γ

—— e+

—— ν

—— p

[Ciafaloni, Comelli, Riotto, Sala, Strumia, Urbano (2010)]

Andrea De Simone 10/30

Page 16: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Importance of EW corrections

EW corrections are particularly relevant in 3 situations:

1. when the low-energy regions of the spectra, which are largely populated by thedecay products of the emitted gauge bosons, are the ones contributing the most tothe observed fluxes of stable particles;

2. when some species are absent without EW corrections (e.g. p from χχ→ `+`−);

3. when σ(2→ 3), with soft gauge boson emission, is comparable or even dom-inant with respect to σ(2→ 2):

3a. the main 2→ 2 annihilation channels is helicity suppressed andEW Bremsstrahlung lifts the suppression (for gauge-singlet Majorana DM);

3b. EW Bremsstrahlung lifts the suppression of a 2 → 2 annihilation channel andmakes it comparable with the main one (for gauge-charged Majorana DM);

Andrea De Simone 11/30

Page 17: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Annihilations of Majorana fermions

vσann = a + b v2 +O(v4)

↑ ↑s-wave p-wave (today v ∼ 10−3)

For a Majorana fermion and SM singlet (e.g. Bino in SUSY)

χ

f

f

χ

only p-wave(mf Mχ)

Radiation−−−−−−→χ

f

f

χ

χ

f

f

χ

there is an s-wave!

Andrea De Simone 12/30

Page 18: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

The ModelThe DM couples to the SM via a heavy scalar doublet: S =

(η+

η0

)

L = LSM + Lχ + LS + Lint

Lχ =1

2χ(i/∂ −Mχ)χ ,

LS = (DµS)†(DµS)−M 2SS†S ,

Lint = yLχ(Liσ2S) + h.c.

= yL(χPLf2η+ − χPLf1η

0) + h.c.

Mass parameters: Mχ,MS ;Mχ, r ≡ (MS/Mχ)2 ≥ 1

χ0(k1)χ0(k2)→ fi(p1) fi(p2)

χ f

η+,η0

Mff ∼1

rM 2χ

[uf(p1) γαPL vf(p2)][vχ(k2) γαγ5 uχ(k1)]

vχ(k2)γαγ5uχ(k1) = −

=(p1+p2)α︷ ︸︸ ︷(k1 + k2)α

2Mχvχ(k2)γ5uχ(k1)

− i2Mχ

vχ(k2)σαβ (k1 − k2)β︸ ︷︷ ︸∼O(v)

γ5uχ(k1) =⇒ vσ ∼ 1M2χ

v2

r2

Andrea De Simone 13/30

Page 19: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

The Model

Now add radiation of EW gauge bosons ;

χ f

η+,η0

χ f

η+,η0

FSR VIBSchematically, the amplitude is

M∼ O(v)

[O(

1

r

)∣∣∣∣FSR

+ O(

1

r2

)∣∣∣∣FSR

]+O(v0)

[O(

1

r2

)∣∣∣∣VIB

+ O(

1

r2

)∣∣∣∣FSR

]

and the cross section

vσ(χχ→ ffZ) ∼ αWM 2

χ

[O(v2

r2

)+O

(v2

r3

)+O

(1

r4

)]

Important lesson:

I limiting the expansion to O(1/r) in the amplitude keeps the annihilation in p-wave.

I at O(1/r2), with VIB diagrams, the s-wave is opened.

Andrea De Simone 14/30

Page 20: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

When does the 3-body process dominate over the 2-body one?

Estimate:

vσ(2→ 2) ∼ 1

M 2χ

v2

r2

vσ(2→ 3) ∼ 1

M 2χ

αW4π

1

r4

σ(2 → 3) & σ(2 → 2)

when

r .

√αW4π

1

v∼ 50

(r ≡M 2S/M

2χ)

10!2

10!1

100

101

102

103

104

!v(2

!3)

/!v(2

!2)

m!±/mDM

mDM = 300 ,m!0 = m!±

!v("" ! #ee)/!v("" ! ee)

!v("" ! Zee)/!v("" ! ee)

!v("" ! Z$$)/!v("" ! ee)

!v("" ! We$)/!v("" ! ee)

[Garny, Ibarra, Vogl – 1105.5367]

Andrea De Simone 15/30

Page 21: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Effective Field Theory

Integrate out the heavy scalar S:

Leff = LSM + Lχ +1

r

O6

M 2χ

+1

r2

O8

M 4χ

+ ...

The lowest-dimensional operator gives a p-wave annihilation:

O6 =1

2|yL|2

[χγ5γµχ

] [LγµPLL

]=⇒ vσ(χχ→ ffZ)

∣∣O6∝ |yL|

4

M 2χ

v2

r2

• O8 ; s-wave. O8 can be more important than O6 despite larger dimensionality.

• Warning: in this case, naive dimensional analysis fails to assess the relative impor-tance of operators in the expansion.

• Need to carry out a general operator expansion in v and 1/Λ.

(in progress with Monin, Thamm, Urbano)

Andrea De Simone 16/30

Page 22: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Effective Field TheorySuppose χ interacts only with left-handed SM fermions.

Leff = LSM + χ(i/∂ −Mχ)χ +1

Λ2O6 +

1

Λ3O7 +

1

Λ4O8 + · · ·

Non-relativistic bilinears which are not velocity-suppressed:

〈0|χγ5, γ5γ0, γ5∂0, γ5γ

0∂0

χ|(p0, ~p); (p0,−~p)〉 ∼ v0

There are only a few operators contributing to χχ→ LLA in s-wave:

• Dim-6: O6|v0 = ∅

• Dim-7: O7|v0 = [χγ5χ][L←→/D PLL]→ 0 on the e.o.m. /DL = 0

• Dim-8:O8|v0 ⊃ [χγ5γµχ]

[L←−/D−→DµPLL + L

←−Dµ

−→/DPLL

]→ 0 on the e.o.m. /DL = 0

=⇒ ONLY ONE dim-8 operator contributing to s-wave:

O8|v0 = [χγ5γµχ][L←−D ργµ

−→D ρPLL

]

This is useful to place model-independent limits from ID data.

(in progress with Monin, Thamm, Urbano)

Andrea De Simone 17/30

Page 23: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Numerics

χχ→ e+e− , νν , e+e−γ , e+e−Z , ννZ , e±νW∓

• our MC generates primary annihilation events (2 → 3) according to the |M|2 distri-bution;

• PYTHIA 8 simulates showering + hadronization + decay to final stable SM particles;extract primary energy spectra at interaction point for each species;(Technical remark: PYTHIA 6 does not include γ → ff branchings in the showering)

• diffusion equations for the cosmic-ray propagation in the galactic halo.!

e

"

p

PYT

HIA

8

prop

agat

ion

final

flux

es

e+ e-

Z

our MC

Andrea De Simone 18/30

Page 24: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Energy spectra at the interaction point

10-4 10-3 10-2 10-1 110-3

10-2

10-1

1

10

x = Ekinetic MΧ

dNd

lnx

full Hthis workL

LO

Γ e

Ν

p

MS = 4 TeV

Mχ = 1 TeV

dNf

d lnx=

1

σ(2→ 2)

dσ(χχ→ f + X)

d lnx

“LO” means adding EW radiation atthe lowest order, keeping only theO(1/r) in the amplitude (p-wave).

∗ Bump of primary hard photons due to s-wave annihilation χχ→ e+e−γ.

∗ Large low-energy tails due to showering and hadronization of W,Z.

Andrea De Simone 19/30

Page 25: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Ratios

10-4 10-3 10-2 10-1 1

1

10

102

x = Ee MΧ

dNd

lnx

@dN

dln

xDL

O

Positrons

MS= 4 TeV

MS= 6 TeV

MS= 8 TeV

10-4 10-3 10-2 10-1 1

1

10

102

x = EΝ MΧ

dNd

lnx

@dN

dln

xDL

O

Neutrinos

MS= 4 TeV

MS= 6 TeV

MS= 8 TeV

10-4 10-3 10-2 10-1 1

1

10

102

x = EΓ MΧ

dNd

lnx

@dN

dln

xDL

O

Photons

MS= 4 TeV

MS= 6 TeV

MS= 8 TeV

10-4 10-3 10-2 10-1 1

1

10

102

x = IEp - mpM MΧ

dNd

lnx

@dN

dln

xDL

O

Antiprotons

MS= 4 TeV

MS= 6 TeV

MS= 8 TeV

∗ dN/dE/[dN/dE]LO ∼ O(10− 100).Of course, much larger enhancement wrt not including EW corrections.

Andrea De Simone 20/30

Page 26: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Propagated fluxes

Flux of cosmic rays received at Earth: dΦf/dE ≡ vfnf/(4π), where the number density nf(E, ~x) is thesolution of the diffusion-loss equation

dnfdt−K0(E/GeV)δ · ∇2nf︸ ︷︷ ︸

diffusion

− ∂

∂E(b(E, ~x)nf)

︸ ︷︷ ︸energy losses

+∂

∂z(sign(z)Vconv nf)

︸ ︷︷ ︸convection

= Q(E, ~x)︸ ︷︷ ︸source

− 2h δ(z) Γnf︸ ︷︷ ︸decay, annihilations

Q(E, ~x) ∝ [ρDM(~x)]2〈σv〉∑

f

BfdNf

dE

DM profiles and propagation parameters are variated simultaneously.ρ(r) rs [kpc] ρs [GeV/cm3]

NFW ρsrsr

(1 +

r

rs

)−2

24.42 0.184

Einasto ρs exp

[− 2

0.17

[(r

rs

)0.17

− 1

]]28.44 0.033

Burkertρs

(1 + r/rs)(1 + (r/rs)2)12.7 0.712

• Burkert/Isothermal: better fit to rotation curves

• Einasto/NFW: better fit to N-body simulations10-3 10-2 10-1 1 10 102

10-2

10-1

1

10

102

103

104

10¢¢ 30¢¢ 1¢ 5¢ 10¢ 30¢ 1o 2o 5o 10o20o45o

r @kpcD

Ρ DM

@GeV

cm3

D

Angle from the GC @degreesD

NFW

Moore

Iso

Einasto EinastoB

Burkert

r

Ρ

[From Cirelli et al. 1012.4515]

Andrea De Simone 21/30

Page 27: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Propagated fluxes

Electrons or positrons AntiprotonsModel δ K0 [kpc2/Myr] δ K0 [kpc2/Myr] Vconv [km/s] L [kpc]MIN 0.55 0.00595 0.85 0.0016 13.5 1MED 0.70 0.0112 0.70 0.0112 12 4MAX 0.46 0.0765 0.46 0.0765 5 15

dΦe±

dE(E, ~x) =

ve±

4π b(E, ~x)

1

2

(ρMχ

)2

〈σv〉∫ Mχ

E

dEsdNe±

dE(Es) I(E,Es, ~x),

dΦp

dE(E, ~x) =

vp4π

(ρMχ

)2

R(E)1

2〈σv〉dNp

dE

dΦγ,ν

dE(E) =

r4π

1

2

(ρMχ

)2

J ∆Ω 〈σv〉dNγ,ν

dE, with J =

1

∆Ω

∆Ω

l.o.s.

ds

r

(ρ(r(s, θ))

ρ

)2

,

R(E), I(E,Es, ~x), J encapsulate all the astrophysics and depend on the propagation parameters andthe halo profiles, but not on the particle physics model.

Andrea De Simone 22/30

Page 28: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Propagated fluxes

10-3 10-2 10-1 1

x = Ekinetic MΧ

x3dF

dx

Apar

ticle

scm

2s

srEH

arbi

trar

yno

rmal

izat

ionL

Electrons or Positrons

full Hthis workL

LO

propagation uncertainty

MΧ = 1 TeV

MS = 4 TeV

10-4 10-3 10-2 10-1 1

x = Ekinetic MΧ

dFd

xAp

artic

les

m2

ssr

EHar

bitr

ary

norm

aliz

atio

nL

Antiprotons

full Hthis workLLO

propagation uncertainty

MΧ = 1 TeV

MS = 4 TeV

10-3 10-2 10-1 1

x = Ekinetic MΧ

E2

dFd

EAG

eV2

cm

2s

srEH

arbi

trar

yno

rmal

izat

ionL

Gamma Rays

full Hthis workL

LO

DM profile uncertainty

MΧ = 1 TeV

MS = 4 TeV

b = 5o 30o window

• Spectra of charged particles (e±, p) get distorted by propagation.

• Neutral particles (γ, ν) just go straight, no spectrum distortion

• Propagation does not spoil the effect of s-wave opening.

Andrea De Simone 23/30

Page 29: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Initial State RadiationLet’s abandon the hypothesis that DM is a gauge singlet...Consider DM is the neutral Majorana component of a multiplet charged under SU(2)L × U(1)Y , e.g.

SU(2)-triplet with Y = 0 (wino-like):

χ+

χ0

χ−

←− DM particle

Gauge interactions: Lkin ⊃ χ i /D χ ⊃ εabc χa /W

bχc

? Dominant annihilation channel (if kinematically al-lowed): χ0χ0 → W+W−, in s-wave.

? ISR lifts the helicity suppression and makes the fermionchannel also in s-wave;χ0χ0 → ff can be competitive with χ0χ0 → W+W−.

χ0

χ0

W-

W+

f

f

χ0

χ0

χ+

W-

Andrea De Simone 24/30

Page 30: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Initial State Radiation with EFT

EFT analysis. Most general dimension-6 operators (Majorana nature forbids some operators):

Leff =CD

Λ2δab(L γµPLL

) (χaγµγ5χ

b)

+ iCND

Λ2εabc(L γµPLσ

cL) (χaγµχb

)

Andrea De Simone 25/30

Page 31: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Initial State Radiation with EFT

EFT analysis. Most general dimension-6 operators (Majorana nature forbids some operators):

Leff =CD

Λ2δab(L γµPLL

) (χaγµγ5χ

b)

+ iCND

Λ2εabc(L γµPLσ

cL) (χaγµχb

)

The amplitude for the process: χ0(k1)χ0(k2)→ f1(p1) f2(p2) W−(k) is

MISR ∼ CNDg

Λ2[uf γµPL vf ]

[vχ

(/ε∗(/k − /k2 + Mχ)γµ

m2W − 2k · k2

+γµ (/k1 − /k + Mχ)/ε∗

m2W − 2k · k1

)uχ

]

v→0−→ CNDg

Λ2[uf γµPL vf ]

[vχ/ε∗/k, γµ

m2W − 2k0Mχ

]6= 0

f

f

χ0

χ0

χ+

W-

Andrea De Simone 25/30

Page 32: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Initial State Radiation with EFTEFT analysis. Most general dimension-6 operators (Majorana nature forbids some operators):

Leff =CD

Λ2δab(L γµPLL

) (χaγµγ5χ

b)

+ iCND

Λ2εabc(L γµPLσ

cL) (χaγµχb

)

The amplitude for the process: χ0(k1)χ0(k2)→ f1(p1) f2(p2) W−(k) is

MISR ∼ CNDg

Λ2[uf γµPL vf ]

[vχ

(/ε∗(/k − /k2 + Mχ)γµ

m2W − 2k · k2

+γµ (/k1 − /k + Mχ)/ε∗

m2W − 2k · k1

)uχ

]

v→0−→ CNDg

Λ2[uf γµPL vf ]

[vχ/ε∗/k, γµ

m2W − 2k0Mχ

]6= 0

f

f

χ0

χ0

χ+

W-

The relevant cross-section behaviours are

vσ(χ0χ0 → W+W−) =g4

8πM 2χ

vσff(χχ→ fifi) ∼ C2D

1

M 2χ

O(M 4

χ

Λ4

)O(v2) ,

vσFSR(χ0χ0 → f1f2W−) ∼ C2

D

g2

M 2χ

O(M 4

χ

Λ4

)O(v2) ,

vσISR(χ0χ0 → f1f2W−) ∼ C2

ND

g2

M 2χ

O(M 4

χ

Λ4

)O(v0) .

ISR lifts the helicity suppression already at the level of dim-6 operators.

For CND ∼ (g/√

8π)(Λ/Mχ)2, the 3-body ISR cross section is comparable with the one for WW.

Andrea De Simone 25/30

Page 33: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Initial State Radiation with EFT

Comparison of e+, p spectra from W+W− (dashed) and from ISR (solid).Each contribution is normalized to 1 (proper channel-weighing is model-dependent).

10-4 10-3 10-2 10-1 110-2

10-1

1

10

x = Ee+ M Χ

dNd

lnx

udW

eΝW

10-4 10-3 10-2 10-1 110-3

10-2

10-1

1

10

x = IEp - mpM M Χ

dNd

lnx

udW

eΝW

Distinguishing features with respect to W+W−:

I abundant hard e+ in the eνW channel, due to primary positrons;

I abundant soft p in the udW channel, due to low-energy emitted W .

Andrea De Simone 26/30

Page 34: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Initial State Radiation in a toy modelToy model (as before): Lint = −yχL (σaχ

a)S + h.c.

Integrating out S would match to the EFT lagrangian with: CND/Λ2 = −CD/Λ2 = |yχ|2/(4M 2S)

FSRV

V

VIB

ISRV=W

V

s channelV=W

"A"

"D"

"F"

"C"

V

"B"

"E"

"F, exc."

Schematically, the amplitude is

M ∼ g|yχ|2O(v)

[O(

1

r

)∣∣∣∣FSR

+ O(

1

r2

)∣∣∣∣FSR

]+ g|yχ|2

O(v0)

[O(

1

r

)∣∣∣∣ISR

+ O(

1

r2

)∣∣∣∣VIB+FSR

]

+g3O(v0)

∣∣∣∣s−channel

and the s-wave part of the cross section is

vσ(χ0χ0 → νLW−e+

L) =g2|yχ|4

144π3M 2χr

2

︸ ︷︷ ︸ISR

+g4|yχ|2

96π3M 2χr︸ ︷︷ ︸

ISR/s-channel

+g6 [1 + 24 ln(2Mχ/mW )]

4608π3M 2χ︸ ︷︷ ︸

s-channel

+O(

1

r3

)

Andrea De Simone 27/30

Page 35: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Initial State Radiation in a toy model

0.5 1.0 1.5 2.0 2.5 3.00

1

2

3

4

5

6

7

y!

!!3"bo

dy"#!!W

W"

!u d W" #!u dW#

!WWM!$ 3000 GeV, r $ 1.07M!$ 1000 GeV, r $ 1.2M!$ 500 GeV, r $ 1.44M!$ 500 GeV, r $ 4

0.5 1.0 1.5 2.0 2.5 3.00

2

4

6

8

y!

!!3"bo

dy"#!!W

W",M !

#3TeV

!u d W" $!u dW$

!WWr # 1r # 1.06r # 1.36r # 2.8

Mχ = 3 TeV, r ≡ (MS/Mχ)2

For large – but still perturbative – values of yχ ISR starts to dominate over the 2-bodyannihilation into gauge bosons.

Andrea De Simone 28/30

Page 36: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Collider-DD connection ?N

N

W+

χ0

χ0

χ+

χ

N

χ

N

Mono-W + /ET Direct Detection

mono-jet analyses atTeVatron and LHC

∗ Data from mono-W+ /ET searches at collid-ers can be used to constrain DM – quarksinteractions.

∗ In practice: add signal events to the SMBG and require agreement with observa-tion within e.g. 90% CL; then, translate thebounds into DD scattering rates.

∗ Results are complementary to and compet-itive with those from Direct Detection(in progress).

0.5 1.0 5.0 10.0 50.0 100.010!44

10!42

10!40

10!38

10!36

m" !GeV"

#SI!n!cm2 "

u$% u "$%

"d$% d "$%

"uu""dd""

CDMS

CoGeNTDAMA

DAMA!w. channeling"cc""bb""

[Bai et al. 1005.3797]

90 C.L.

101 100 101 102 1031046104510441043104210411040103910381037

WIMP mass mΧ GeVWIMPnucleoncrosssectionΣNcm2

ATLAS 7TeV, 1fb1 VeryHighPt

Spinindependent

Solid : ObservedDashed : Expected

ΧΓΜΧqΓΜq

Αs ΧΧ GΜΝGΜΝ

CDMSXEN

ON10

XENON10

0

DAMA q 33CoGeNT CRESST

[Fox et al. 1109.4398]

Andrea De Simone 29/30

Page 37: Electroweak lights from DM annihilationscosmology.unige.ch/sites/default/files/oldseminar/... · 2XII2011 - Universit e de Gen eve EW lights from DM annihilations Dark Matter Searches

2·XII·2011 - Universite de Geneve EW lights from DM annihilations

Conclusions

EW corrections are an important SM effect (no exotics!) and have animpact on energy spectra when MDM MW .

Main effects: all final stable particles are present; the low-energy spectracan be greatly enhanced.

EW Bremsstrahlung can take place either when DM is a gauge singlet orwhen it belongs to a multiplet charged under EW interactions.

Particularly relevant when there is a suppression mechanism for the 2-body cross section (e.g. Majorana DM annihilates through s-wave onceEW radiation is included).

The resulting spectra get substantially enhanced by factors O(10 − 100)

(with respect to p-wave only).Even more drastic effect with respect to the case without EW corrections.

⇒ Reliable calculations of fluxes for DM Indirect Detection should in-clude EW radiation.

Andrea De Simone 30/30