Top Banner
Dr. S. Cruz-Pol, INEL 4151- Electromagnetics I Electrical Engineering, UPRM (please print on BOTH sides of paper) 1 Electrostatic fields Sandra Cruz-Pol, Ph. D. INEL 4151 ch 4 ECE UPRM Mayagüez, PR Some applications n Power transmission, X rays, lightning protection n Solid-state Electronics: resistors, capacitors, FET n Computer peripherals: touch pads, LCD, CRT n Medicine: electrocardiograms, electroencephalograms, monitoring eye activity n Agriculture: seed sorting, moisture content monitoring, spinning cotton, … n Art: spray painting n We will study Electric charges: n Coulomb's Law- n Use when charge distribution is known n Gausss Law n Use when charge distribution is symmetrical n Electric Potential (uses scalar, not vectors) n Use when potential V is known 2 2 1 R Q kQ F = enc S Q S d D = = Ψ ! ! = r l d E r V ! ! ) ( Coulombs Law (1785) n Force one charge exerts on another where k= 9 x 10 9 or k = 1/4πε o ε 0 =8.85 x 10 -12 2 2 1 R Q kQ F = + + R Point charges *Superposition applies Force with direction ! F 12 = Q 1 Q 2 4πε o R 2 ˆ a 12 ˆ a 12 = ! r 2 ! r 1 ! r 2 ! r 1 Force that Q 1 exerts on Q 2 Note: Observation point goes First! Example ! F x = 1 4πε o Q 1 Q x ! r x ! r 1 ( ) ! r x ! r 1 3 + Q x Q 2 ! r x ! r 2 ( ) ! r x ! r 2 3 Example: Point charges 5nC and -2nC are located at r 1 =(2,0,4) and r 2 =(-3,0,5), respectively. a) Find the force on a 1nC point charge, Q x , located at (1,-3,7) Apply superposition:
8

Electrostatic fieldsece.uprm.edu/~pol/pdf/Electrostatics.pdf · R More Charge distributions Find E from n Point charge (we just saw this one) n Line charge n Surface charge nVolume

Jan 31, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Dr. S. Cruz-Pol, INEL 4151-Electromagnetics I

    Electrical Engineering, UPRM (please print on BOTH sides of paper) 1

    Electrostatic fields Sandra Cruz-Pol, Ph. D. INEL 4151 ch 4 ECE UPRM Mayagüez, PR

    Some applications n  Power transmission, X rays, lightning protection n  Solid-state Electronics: resistors, capacitors, FET n  Computer peripherals: touch pads, LCD, CRT n  Medicine: electrocardiograms, electroencephalograms,

    monitoring eye activity n  Agriculture: seed sorting, moisture content monitoring,

    spinning cotton, … n  Art: spray painting n  …

    We will study Electric charges:

    n Coulomb's Law- n Use when charge distribution is known

    n Gauss’s Law – n Use when charge distribution is symmetrical

    n Electric Potential (uses scalar, not vectors)

    n Use when potential V is known

    221

    RQkQF =

    encS

    QSdD =⋅=Ψ ∫!!

    ∫∞

    ⋅−=r

    ldErV!!

    )(

    Coulomb’s Law (1785)

    n  Force one charge exerts on another

    where k= 9 x 109 or k = 1/4πεo ε0=8.85 x 10-12

    221

    RQkQF =

    + + R

    Point charges

    *Superposition applies

    Force with direction

    !F12 =

    Q1Q24πεoR

    2 â12

    â12 =!r2 −!r1!r2 −!r1

    Force that Q1 exerts on Q2

    Note: Observation point goes First!

    Example

    !Fx =

    14πεo

    Q1Qx!rx −!r1( )

    !rx −!r13 +

    QxQ2!rx −!r2( )

    !rx −!r23

    ⎣⎢⎢

    ⎦⎥⎥

    !F = 9

    5 −1,−3,3( )(1+ 9+ 9)⎡⎣

    ⎤⎦3 −2 4,−3,2( )156.2

    ⎜⎜⎜

    ⎟⎟⎟= −1.004,−1.285,1.3998( )nN

    Example: Point charges 5nC and -2nC are located at r1=(2,0,4) and r2=(-3,0,5), respectively.

    a)  Find the force on a 1nC point charge, Qx, located at (1,-3,7)

    Apply superposition:

  • Dr. S. Cruz-Pol, INEL 4151-Electromagnetics I

    Electrical Engineering, UPRM (please print on BOTH sides of paper) 2

    Electric field intensity

    n  Is the force per unit charge when placed in the E field E =

    FQ

    E = Q4πεoR

    2 âRExample: Same point charges 5nC and -2nC are located at (2,0,4) and (-3,0,5), respectively.

    b) Find the E field at rx=(1,-3,7).

    ( ) ( )⎥⎥⎦

    ⎢⎢⎣

    −+

    −= 3

    2

    223

    1

    11

    41

    rrrrQ

    rrrrQE

    x

    x

    x

    x

    oπε

    != −1.0,−1.29,1.4( )V /m

    If we have many charges

    dvQv

    v∫= ρ

    Line charge density, ρL

    C/m

    Surface charge density ρS

    C/m2

    Volume charge density ρv

    C/m3

    dSQS

    S∫= ρdlQL

    L∫= ρ

    E = FQ

    E = Q4πεoR

    2 âR

    The total E-field intensity is

    E =ρLdl( )4πεoR

    2∫ âR

    E =ρSdS( )4πεoR

    2∫ âR

    E =ρvdv( )4πεoR

    2∫ âR

    Epoint charge

    =Q

    4πεoR2 âR More Charge distributions

    Find E from n  Point charge (we just saw this one) n  Line charge n  Surface charge n  Volume charge

    Results Preview

    !E = ρS

    2εoân

    !E = Q

    4πεor2 âr

    !E= ρL

    2πεoρâρLine charge

    Sheet charge

    Volume Charge

    We will derive these 3 cases!!1. Using Coulomb!

    2. Using Gauss!

    Find E from LINE charge n  Line charge w/uniform

    charge density, ρL *use cylindrical coordinates

    dlQB

    A L∫= ρ

    x

    z

    B

    A

    R

    dl

    dE

    α

    Ro

    L aRdzE ˆ

    4'2∫= πε

    ρ

    0

    T

    αρ tan' −=OTz

    zRRRR

    âsinâcossec

    αα

    αρ

    ρ +=

    =!

    'dzdl =

    (0,0,z’)

    (x,y,z)

    zR RR âsinâcosâ αα ρ +==!

  • Dr. S. Cruz-Pol, INEL 4151-Electromagnetics I

    Electrical Engineering, UPRM (please print on BOTH sides of paper) 3

    Defining angles α1 and α2 α1 =imaginary perpendicular line with the back α2=imaginary perpendicular line with the front

    x

    z

    B

    A

    dl

    dE

    0

    T α 2

    α 1

    LINE charge n  Substituting in:

    Ro

    L aRdzE ˆ

    4'2∫= πε

    ρ

    z

    ααρ

    αρ

    ddzOTz

    ]sec0['tan'

    2−=

    −=

    αρ sec=R

    x

    B

    A

    R

    dl

    α

    0

    T

    zR âsinâcosâ αα ρ +=

    !E = ρL[−ρ sec

    2α]dα4πεoρ

    2 sec2αα1

    α2

    ∫ [cosα âρ + sinα âz ]

    finite Line Charge:!E = ρL

    4πεoρ[−(sinα2 − sinα1 )âρ + (cosα2 − cosα1 )âz ]

    ρρπερ

    α

    â2

    )90( Charge Line infinite o1,2

    o

    LE =

    = ∓

    More Charge distributions

    n  Point charge n  Line charge n  Surface charge n  Volume charge

    Find E from Surface charge

    n  Sheet of charge w/uniform density ρS

    dSdQ Sρ=

    y zhR â)â( +−= ρρ

    RR

    R

    !=â

    ρφρ dddS =

    [ ][ ] 2322

    4

    ââ

    h

    hdddE

    o

    S

    +

    +−=

    ρπε

    ρρφρρ

    Ro

    S aRdSdE ˆ

    4 2περ

    =

    z

    Observation point is at z-axis:

    Element of area is:

    SURFACE charge n  Due to SYMMETRY the ρ component cancels

    out. [ ]∫∫

    == +=

    0 2322

    2

    04 ρπ

    φ ρ

    ρρφ

    περ

    h

    dhdEo

    Sz

    no

    SE â2

    :Charge Surface infinite

    ερ

    =

    ⎥⎥⎦

    ⎢⎢⎣

    +

    −∞

    =22

    24

    0hh

    o

    SzE

    ρπ

    περ

    More Charge distributions

    n  Point charge n  Line charge n  Surface charge n  Volume charge

  • Dr. S. Cruz-Pol, INEL 4151-Electromagnetics I

    Electrical Engineering, UPRM (please print on BOTH sides of paper) 4

    Find E from Volume charge n  Sphere of charge w/

    uniform density, ρv dvdQ vρ=

    x

    Law of cosines:

    R2 = z2 + r '2− 2zr 'cosθ 'r '2 = z2 + R2 − 2zRcosα

    '''sinzrRdRd =θθ

    .cos

    symmetry toDue

    survivesdEdE

    only

    z α=

    Ro

    v aRdvdE ˆ

    4 2περ

    =

    θ’

    φ’

    (r’,θ’,φ’)

    P(0,0,z)

    ρv

    dE

    (Eq. *) α

    Differentiating (Eq. *)

    ''''sin'2 drddrdv φθθ=R

    z

    Find E from Volume charge n  Substituting…

    zo

    vz aR

    dvdE ˆcos4 2

    απερ

    =

    x

    '''sinzrRdRd =θθ

    ''''sin'2 drddrdv φθθ=

    θ’

    φ’

    (r’,θ’,φ’)

    P(0,0,z)

    ρv

    dE

    2

    222'

    '

    2

    0'

    2

    0

    12

    '''

    ''4 RzR

    rRzdrzrRdRrdE

    rz

    rzR

    a

    ro

    vz

    −+= ∫∫∫

    +

    −===

    π

    φ

    φπερ

    E = 14πεoz

    243πa3ρv

    ⎝⎜

    ⎠⎟ âz =

    Q4πεor

    2 âr

    De donde salen los limites de R?

    R r '2 = z2 + R2 − 2zRcosα

    P.E. 4.5 n  A square plate at plane z=0 and

    carries a charge mC/m2 . Find the total charge on the plate and the electric field intensity at (0,0,10).

    2,2 ±≤±≤ yx

    dyydxdyydxQyxyx∫∫∫∫=−=−=−=

    ==2

    0

    2

    2

    2

    2

    2

    2

    )2(1212

    y12

    mC1922)2(124

    2

    0

    2y⋅=

    !E = ρs

    4πεor2 dS∫ âr 3'

    '4 rr

    rrdS

    o

    s!!

    !!

    −= ∫ πε

    ρ

    )10,','()0,','()10,0,0(' yxyxrr −−=−=− !!

    dSQS

    S∫= ρ

    10 --

    Cont…

    ( ) 2/3222

    2

    2

    2 100)10,,(

    412

    ++

    −−= ∫ ∫

    − −= yxyxdxdyyE

    y oπε

    !

    ( ) ( ) ( ) ⎥⎥⎦

    ⎢⎢⎣

    +++

    ++

    −+

    ++

    −⋅= ∫ ∫ ∫∫ ∫ ∫

    − − −=−= − −=

    2

    2

    2

    2

    2

    22/322

    2

    2

    2

    2

    2

    22/3222/322

    6

    100

    ˆ10

    100

    ˆ

    100

    ˆ10108

    x

    z

    x x

    yx

    yx

    adxdyyy

    yx

    adxdyyy

    yxaxdxdyy

    sheet of charge

    x=2

    y=2

    z

    Due to symmetry only Ez survives:

    ( )mMVa

    yxaydxdyE

    z

    z

    /ˆ5.16100

    ˆ102101082

    2

    2

    02/322

    6

    =

    ⎥⎥⎦

    ⎢⎢⎣

    ++⋅⋅= ∫ ∫

    !

    Chapter Outline

    n Coulomb's Law- n Use when charge distribution is known

    n Gauss’s Law – n Use when charge distribution is symmetrical

    n Electric Potential (uses scalar, not vectors)

    n Use when potential V is known

    221

    RQkQF =

    encS

    QSdD =⋅=Ψ ∫!!

    ∫∞

    ⋅−=r

    ldErV!!

    )(

    Electric Flux Density

    !D = εo

    !E = ρvdv

    4πR2∫ âR [C /m2 ]

    Then the electric flux is:

    Ψ =!D ⋅d!S∫ [C]

    D is independent of the medium in which the charge is placed.

  • Dr. S. Cruz-Pol, INEL 4151-Electromagnetics I

    Electrical Engineering, UPRM (please print on BOTH sides of paper) 5

    Gauss’s Law

    ∫∫

    ∫∫

    ⋅∇=⋅

    ⋅==

    =⋅=Ψ

    vS

    Svenc

    encS

    dvDSdD

    SdDdvQ

    QSdD

    !!!

    !!

    !!

    ρ

    Dv!

    ⋅∇=ρThis is the 1st of the Maxwell’s equations derived here."

    Therefore:

    Gauss’s Law

    n  The total electric flux Ψ, through any closed surface is equal to the total charge enclosed by that surface.

    ∫∫

    ∫=⋅==Ψ

    ==

    vv

    Senc

    Rv

    o

    dvSdDQ

    aRdvED

    ρ

    πρ

    ε!!

    !!ˆ

    4 2

    The key is to choose the Gauss surface to simplify the problem."Follow the symmetry of the particular case. "Pick surface so that D is ⊥

    Some examples: Finding D at point P from the charges:

    Point Charge is at the origin.

    n  Choose a spherical dS n  Note where D is perpendicular to

    this surface. 24 rDdSDQ r

    Sr π== ∫

    ∫ ⋅=S

    SdDQ!!

    D

    P

    r

    charge

    rarQD ˆ4 2π

    =

    Some examples: Finding D at point P from the charges:

    Infinite Line Charge

    n  Choose a cylindrical dS n  Note that integral =0 at top and

    bottom surfaces of cylinder

    ∫ ⋅==S

    l SdDQdl!!

    ρ

    P

    Line

    charge

    lDdSDQS

    πρρρ 2== ∫ρπρ

    ρ aD L ˆ2

    =!

    Some examples: Find D at point P from the charges:

    n  Infinite Sheet of charge

    n  Choose a cylindrical box cutting the sheet

    Note that D is parallel to the

    sides of the box.

    ∫∫ ⋅==S

    s SdDQdS!!

    ρ

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡+== ∫∫bottomtop

    sS dSdSDQAρ

    zS aD ˆ2ρ

    =!

    [ ]AADA sS +=ρ

    sheet of charge

    D

    DArea A

    P.E. 4.7

    A point charge of 30nC is located at the origin, while plane y=3 carries charge 10nC/m2.

    Find D at (0, 4, 3)

    ns

    rQ aarQDDD ˆ

    4 2ρ

    πρ+=+=

    !!!

    ( )[ ] ya

    nD ˆ210)0,0,0()3,4,0(

    344

    10303

    22

    9

    +−+

    ⋅=

    π

    !

    ( )2

    3

    9

    nC/m ˆ057.0ˆ08.5

    ˆ5)3,4,0(54

    1030

    zy

    y

    aa

    anD

    +=

    +⋅

    =−

    π

    !

  • Dr. S. Cruz-Pol, INEL 4151-Electromagnetics I

    Electrical Engineering, UPRM (please print on BOTH sides of paper) 6

    P.E. 4.8 If C/m2 . Find : n  volume charge density at (-1,0,3)

    n  Flux thru the cube defined by

    n  Total charge enclosed by the cube

    ( ) zyx axaxyazyD ˆˆ4ˆ2 2 +++=!

    CQ 2=Ψ=

    10,10,10 ≤≤≤≤≤≤ zyx

    ∫ ∫ ∫∫ ===Ψ1

    0

    1

    0

    1

    0

    4 dzdydxxdvQv

    venc ρ

    3C/m44)3,0,1( −==⋅∇=− xDv!

    ρ

    Review

    nS aD ˆ2ρ

    =!

    rarQD ˆ4 2π

    =

    ρπρρ aD L ˆ2

    =!

    Point charge or volume

    Charge distribution

    Line charge distribution

    Sheet charge distribution

    We will study Electric charges:

    n Coulomb's Law (general cases) n Gauss’s Law (symmetrical cases) n Electric Potential (uses scalar, not vectors)

    Electric Potential, V n  The work done to move a charge Q from A to B is

    n  The (-) means the work is done by an external force. n  The total work= potential energy required in moving Q:

    n  The energy per unit charge= potential difference between the 2 points:

    yâ dlEQ

    dlFdW

    ⋅−=

    ⋅−=!

    !

    ∫ ⋅−=B

    A

    ldEQW!!

    [ ]VCJ =⎥⎦⎤

    ⎢⎣

    ⎡⋅−== ∫B

    AAB ldEQ

    WV!!

    V is independent of the path taken.

    The Potential at any point is the potential difference between that point and a chosen reference point at which the potential is zero. (choosing infinity):

    For many Point charges at rk: (apply superposition)

    For Line Charges: For Surface charges:

    For Volume charges: ( )

    ∫ −= vv

    o rrdvrrV'ˆˆ''ˆ

    41)ˆ( ρπε

    [ ]V ˆˆ

    Q4

    1 )(n

    1k

    k∑= −

    =ko rr

    rVπε

    ( )∫ −= L

    L

    o rrdlrrV'ˆˆ''ˆ

    41)ˆ( ρπε

    [ ]V 4

    '

    14

    ˆ'ˆ'4

    )( 2 rQ

    rQadra

    rQldErV

    o

    r

    or

    r

    ro

    r

    πεπεπε==⋅−=⋅−=

    ∞∞∞∫∫

    !!

    ( )∫ −= S

    s

    o rrdSrrV'ˆˆ''ˆ

    41)ˆ( ρπε

    P.E. 4.10 A point charge of -4µC is located at (2,-1,3) A point charge of 5µC is located at (0,4,-2) A point charge of 3µC is located at the origin Assume V(∞)=0 and Find the potential at (-1, 5, 2)

    Crr

    QrVk ko

    k +−

    =∑=

    3

    1 4)(

    πε

    ⎥⎦

    ⎤⎢⎣

    ⎡++

    ⋅=−

    =−−=−

    =−−−=−

    =−−−=−

    303

    185

    464

    109/110)2,5,1(

    30)0,0,0()2,5,1(

    18)2,4,0()2,5,1(

    46)3,1,2()2,5,1(

    9

    6

    3

    2

    1

    V

    rr

    rr

    rr

    =10.23 kV

  • Dr. S. Cruz-Pol, INEL 4151-Electromagnetics I

    Electrical Engineering, UPRM (please print on BOTH sides of paper) 7

    Example A line charge of 5nC/m is located on line x=10, y=20 Assume V(0,0,0)=0 and Find the potential at A(3, 0, 5)

    ρρ ρρπερ adaldErVo

    L ˆˆ2

    )ˆ( ∫∫ ⋅−=⋅−=!

    ρ0=|(0,0,0)-(10,20,0)|=22.36 and ρA=|(3,0,5)-(10,20,0)|= 21.2

    [ ]

    8.40

    lnln2

    ln2

    )ˆ(

    −=−

    −−=−

    +−=

    A

    Aoo

    LAorigin

    o

    L

    V

    VV

    CrV

    ρρπερ

    ρπερ

    VA=+4.8V

    P.E. 4.11 QUIZ #2: A point charge of 7nC is located at the origin

    V(0,3,-5)=2V and Find C

    Cr

    QVo

    +=πε4

    P.E. 4.11 A point charge of 5nC is located at the origin V(0,6,-8)=2V and Find the potential at A(-3, 2, 6)

    Find the potential at B(1,5,7), the potential difference VAB

    Cr

    QVo

    +=πε4 ( ) C

    nr

    o

    +=

    =−−=

    10452

    10)8,6,0()0,0,0(

    πε5.2−=∴C

    VCnVo

    A 93.3)0,0,0()6,2,3(45

    =+−−

    =πε

    VnVo

    B 696.25.2)0,0,0()7,5,1(45

    =−−

    =πε

    VVVV ABAB 233.1−=−=

    Relation between E and V

    0=⋅=+

    −=

    ∫ ldEVVVV

    BAAB

    BAAB!

    A

    B

    *Esto aplica sólo a campos estáticos.

    Significa que no hay trabajo NETO en mover una carga en un paso cerrado donde haya un campo estático E.

    ( ) 0=⋅×∇=⋅ ∫∫ SdEldES

    !!

    V is independent of the path taken.

    Static E satisfies:

    dzEdyEdxEldEdV

    zyx −−−=

    ⋅−=!

    0=×∇ E!

    dzzVdy

    yVdx

    xVdV

    ∂+

    ∂+

    ∂=

    A

    B Condition for Conservative field = independent of path of integration

    VE −∇=

    Example Given the potential Find D at .

    φθ cossin102rV =

    ( )VED oo ∇−== εε!!

    ⎟⎠

    ⎞⎜⎝

    ⎛ 0,2,2 π

    2/ˆ1.22 mCaD r=!

    ⎥⎦

    ⎤⎢⎣

    ∂+−−= φθ φ

    θφθφθ aVr

    ar

    ar

    E r ˆsin10ˆcoscos10ˆcossin20 333

    !

    In spherical coordinates:

    ⎟⎠

    ⎞⎜⎝

    ⎛ +−+== φθπεε aaaED roo ˆ0ˆ0ˆ820

    )0,2/,2(

    !!

    ⎥⎦

    ⎤⎢⎣

    ∂+

    ∂+

    ∂−= φθ φθθ

    aVr

    aVr

    arVE r ˆsin

    1ˆ1ˆ!

  • Dr. S. Cruz-Pol, INEL 4151-Electromagnetics I

    Electrical Engineering, UPRM (please print on BOTH sides of paper) 8

    P.E. 4.12 Given that E=(3x2+y)ax +x ay kV/m, find the work done in moving a -2µC charge from (0,5,0) to (2,-1,0) by taking the straight-line path.

    ( )[ ]∫ ∫ ++=⋅=− xdydxyxdlEQW 23

    ( ) ∫∫−

    +=− 1

    5

    2

    0

    23 xdydxyxQW

    ( )[ ]∫ ∫ =−+−+=⋅=− )3(353 2 dxxdxxxdlEQW

    ( )∫ +−=− 2

    0

    2 563 dxxxQW

    )1218)(( −−= QW

    610128 =+−=−QW

    a) (0,5,0)→(2,5,0) →(2,-1,0)

    b) y = 5-3x dxdy 3−=

    mJW 12)2(6 µ−=

    mJW 12=

    Electric Dipole

    n  Is formed when 2 point charges of equal but opposite sign are separated by a small distance.

    ⎥⎦

    ⎤⎢⎣

    ⎡ −=⎥

    ⎤⎢⎣

    ⎡−=

    21

    12

    21 411

    4 rrrrQ

    rrQV

    oo πεπε

    2

    cos4 r

    dQVo

    θπε

    =

    P

    y

    r1

    r2 r

    z

    d

    Q+

    Q-

    For far away observation points (r>>d):

    Energy Density in Electrostatic fields

    n  It can be shown that the total electric work done is:

    ∫∫ =⋅=v

    o

    vE dvEdvEDW

    2

    221 ε!!