Top Banner
Scaling Laws of Wake-Fields in Optical Structures Scaling Laws of Wake-Fields in Optical Structures Samer Banna Supervised by: Prof. L. Schächter & Prof. D. Schieber Technion – Israel Institute of Technology Department of Electrical Engineering
61

Electromagnetic Wake-Fields in Optical Accelerator

Oct 26, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Electromagnetic Wake-Fields in Optical Accelerator

Scaling Laws of Wake-Fields in Optical Structures

Scaling Laws of Wake-Fields in Optical Structures

Samer BannaSupervised by:

Prof. L. Schächter & Prof. D. Schieber

Technion – Israel Institute of TechnologyDepartment of Electrical Engineering

Page 2: Electromagnetic Wake-Fields in Optical Accelerator

2

OutlineOutlineOutlineBackground & Motivation

Optical AcceleratorsWake-Fields

Assumptions & approach to solutionWake-field in the vicinity of dielectric body

Radiated energyFrequency dependence of dielectric coefficient

Wake-field due to geometric discontinuityFrequency-domain versus time-domain solutionRadiated energy

Wake-field due to surface roughnessSimple model: quasi-periodic structure with random perturbationRadiated energy: average value and standard-deviation

Summary

Page 3: Electromagnetic Wake-Fields in Optical Accelerator

3

Background: AcceleratorBackground: AcceleratorBackground: Accelerator

Foundation of nature (constituents of matter)

Particle physics

X – ray sources

Medical Diagnostics and treatment

Applications:

Fermilab AcceleratorAccelerator: A device used to produce high-energy (high-speed) particles by converting EM energy into kinetic energy.

Page 4: Electromagnetic Wake-Fields in Optical Accelerator

4

Background: Beam-Wave InteractionBackground: BeamBackground: Beam--Wave InteractionWave Interaction

e-beam

EM-Wave EM-Wave

e-beam

1I 2 1I I<

1β 2 1β β>

Interaction

The EM wave’s phase velocity

The electrons’average velocity=

Page 5: Electromagnetic Wake-Fields in Optical Accelerator

5

Motivation: Optical AcceleratorsMotivation: Optical AcceleratorsMotivation: Optical Accelerators

Cost consideration

2E Pω∝High-energy requirement

Compact accelerators based on optical structures

CompactnessHigh

frequencyHigh-gradient

Page 6: Electromagnetic Wake-Fields in Optical Accelerator

6

Motivation: Lawson-Woodward TheoremMotivation: LawsonMotivation: Lawson--Woodward TheoremWoodward Theorem

No net energy gain in vacuum using optical fields

Infinite interaction region.

No walls or boundaries are present.

Highly relativistic electron on the acceleration path.

No static electric or magnetic fields present.

Non-linear effects are neglected.

Page 7: Electromagnetic Wake-Fields in Optical Accelerator

7

Motivation: Lawson-Woodward TheoremMotivation: LawsonMotivation: Lawson--Woodward TheoremWoodward Theorem

Acceleration: interaction should be limited in space or time

Lawson-Woodwardtheorem conditions

No acceleration in vacuum Optical

acceleration structures

Page 8: Electromagnetic Wake-Fields in Optical Accelerator

8

Motivation: Wake-FieldsMotivation: WakeMotivation: Wake--FieldsFields

Optical Acceleration Structures: Laser acceleration of electrons in vacuum entails relativistic motion of electrons in the vicinity of metallic or dielectric structures of sub-micron size.

It is important to determine:Characteristics of the wake-field.The impact of the wake-field on the bunch properties.Impact of radius of curvature.Wake-field of bunches moving/leaving geometric discontinuities.

Wake-field due to surface roughness in optical structures.Temperature consideration.Nonlinear effects.

Page 9: Electromagnetic Wake-Fields in Optical Accelerator

9

Motivation: Wake-FieldsMotivation: WakeMotivation: Wake--FieldsFields

Deceleration Force

WakeWake--FieldFieldBeam Characteristics Bunch Stability

Transverse Force

Page 10: Electromagnetic Wake-Fields in Optical Accelerator

10

Motivation: Wake-FieldsMotivation: WakeMotivation: Wake--FieldsFields

We focus on an analytic or quasi-analytic solutions, in order to have better understanding of the wake-field properties.

A bunch moving in a free space generates a broad spectrum of evanescent waves.

In the presence of an obstacle the evanescent waves are diffracted, carrying away energy.

Page 11: Electromagnetic Wake-Fields in Optical Accelerator

11

AssumptionsAssumptionsAssumptions

An external force is acting on the moving bunch keeping its velocity constant.

Transverse motion of the moving bunch is neglected.

Page 12: Electromagnetic Wake-Fields in Optical Accelerator

12

Approach to SolutionApproach to SolutionApproach to Solution

A moving bunch generates a current

density J

Excites the magnetic vector

potential A Effect of

an obstacle

A(p) - Primary fieldnon-homogeneous

wave equation

A(s) - Secondary fieldhomogeneous

wave equation

Boundary conditionsNo obstacle

Page 13: Electromagnetic Wake-Fields in Optical Accelerator

13

Line Charge Moving in the Vicinity of a Dielectric CylinderLine Charge Moving in the Vicinity of a Dielectric CylinderLine Charge Moving in the Vicinity of a Dielectric Cylinder

h 2R

x

yFree space

Infinite cylinder

Constant velocity

( )00 , µε

Page 14: Electromagnetic Wake-Fields in Optical Accelerator

14

Primary FieldPrimary FieldPrimary Field

)exp()(2

);,( xc

jhyyxJx βωδ

πλω −−−=

( ) 02 2 2

( )

exp sin sgn( )cos4

exp sgn( )4

p

pz

jE j x y h y hc

H j x y h y hc

ϕλµ ω ω ωϕ ϕπ β γ β γβ

λ ωπ β

− −= − −Γ − + − Γ

−= − −Γ − −

21 1;

1cos ; sin

c

x r y r

ωγγββ

ϕ ϕ

≡ Γ ≡−

= =

Page 15: Electromagnetic Wake-Fields in Optical Accelerator

15

Secondary FieldSecondary FieldSecondary Field

(2)

( )

(2)

( )0

H ( , ; )

J

H ( , ; )

J

n ns jn

zn

n n r

n ns jn

nn r n r

A r r Rc

H r eB r r R

c

A r r Rc

E r j eB r r R

c

ϕ

ϕϕ

ω

ϕ ωω ε

ω

ϕ ω ηωε ε

=−∞

=−∞

> = <

> = <

0 0 0η µ ε≡

Page 16: Electromagnetic Wake-Fields in Optical Accelerator

16

Longitudinal Impedance - SpectrumLongitudinal Impedance Longitudinal Impedance -- SpectrumSpectrum

||dW Zd

20

//

zWWλ πε

∆=

||0

|| 21 Z

hZ

η≡

||

2

||

1 ( , ; ) exp( )

/ ( , ; ) exp( ) 2

1 2

x

z x

z

Z dx E x h j xc

W d dx E x h j xc

dW Zd

ωωλ β

λ ωω ωπ β

λω π

−∞

∞ ∞

−∞ −∞

= −

∆ = −

⇒ =∆

∫ ∫

⇒h

Page 17: Electromagnetic Wake-Fields in Optical Accelerator

17

Longitudinal Impedance - SpectrumLongitudinal Impedance Longitudinal Impedance -- SpectrumSpectrum

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100

Z ||

Ω

γβ =1000ε = 2r

R/h = 0.9R/h = 0.5

( ), peakpeak ZΩ

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100Z ||

Ω

R/h = 0.5ε = 2r

γβ = 150γβ = 60γβ = 30

hcω

=Ωhcω

||0

|| 21 Z

hZ

η≡

Page 18: Electromagnetic Wake-Fields in Optical Accelerator

18

Longitudinal Impedance - SpectrumLongitudinal Impedance Longitudinal Impedance -- SpectrumSpectrum

Scaling Laws

peakRZh

∝ ( )1/3peakZ γβ∝ peak

hR

Ω ∝

Ω∝

1||Z

1R hΩ >>

Page 19: Electromagnetic Wake-Fields in Optical Accelerator

19

Radiated EnergyRadiated EnergyRadiated Energy

Ω

Ω−

Ω

Ω

Ω−

Ω

ΩΩ

ΩΩ

Ω=

Ω−

−∞=

−∞=

∑∑∫

hRJ

hRH

hRJ

hRH

ehRJU

hRJ

jV

A

AdWdAdW

rnnrrnn

rnnrnrn

n

nn

nn

εεε

εεεβ

γβ

)2()2(

22

0

)(

)(1)(1

Analytic Functions

112/

2/

)1(21)1(

21;

11

+−− −++=

Ω

−+

= nnnjn

n

n

n UjUjVehRJU

γγγγ π

Page 20: Electromagnetic Wake-Fields in Optical Accelerator

20

Radiated EnergyRadiated Energy

0

10

20

30

40

50

0 500 1000 1500 2000

W

γ−1

R/h = 0.9

R/h = 0.5

R/h = 0.3

ε = 2rε = 10r

2 250γ< < 1000γ >

2

2

2 hbR RW a eh

− ≈

11.5 2a< <

10.05 0.15b< <17 10a< <

3 614 10 2 10b× < < ×

20.1 / 0.9

r

R hε >

< <

[ ]1 1ln ( 1)W a b γ≈ −

5 100; 4rγ ε< < =

25 15a< <

243 10 0.3b−× < <

Page 21: Electromagnetic Wake-Fields in Optical Accelerator

21

Angular Distribution of RadiationAngular Distribution of Radiation

150

120 60

30

180 0

210 330

240 300270

90

0.1

0.2

0.30.4

0.5γβ =γβ =γβ =

1.5 0.5 0.3

150

120 60

180 0

210 330

240 300270

90

200

300

500

400

100

30γβ =γβ =γβ =

1000 100 20

Low Energies High Energies

Page 22: Electromagnetic Wake-Fields in Optical Accelerator

22

Transverse KickTransverse Kick

∫∞

∞−

=−∞=−∞== yyyy dtFtPtPP )()(∆

02∆∆2

∆ηλ

π

z

yy

PP ≡

2 30∆2

zPyλ η

π γ∆

≈ ×

1γ >>

0

5

10

15

20

0 20 40 60 80 100γ−1

( γ ∆

P y )

ε = 4r

R/h = 0.7

R/h = 0.5

R/h = 0.3

Page 23: Electromagnetic Wake-Fields in Optical Accelerator

23

Frequency Dependence of Frequency Dependence of Frequency Dependence of rε

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

Z ||

Ω

R/h=0.5

ε =2r

γβ=100

Laser pulse

; ( )

1; r C

rC

εε

Ω < ΩΩ = Ω > Ω

)200(2)0( nmWW cc =≈= λλ

pulselaser 06.1 mµ100peak nmλ ≈

c0.65W ≈ Ω4rε =

/ 0.5R h =

Page 24: Electromagnetic Wake-Fields in Optical Accelerator

24

Finite Size BunchFinite Size BunchFinite Size Bunch

0

2

4

6

0 10 20 30 40 50Ω

Z ||(∆x ,

∆ y )

ε =4rR/h=0.5

γβ=10

0

5

10

15

0 10 20 30 40 50Ω

Z ||(∆x ,

∆y )

/ Z||(∆

x = 0

, ∆ y=

0) ε =4rR/h=0.5

γβ=10

rεR

βc

h

x∆

y∆

( )( )( )5.0,5.1

5.1,5.1

5.1,5.0

=∆=∆

=∆=∆

=∆=∆

yx

yx

yx ( )( )( )5.0,5.1

5.1,5.1

5.1,5.0

=∆=∆

=∆=∆

=∆=∆

yx

yx

yx

/x x R∆ = ∆ /y y R∆ = ∆

Page 25: Electromagnetic Wake-Fields in Optical Accelerator

25

Finite Size BunchFinite Size BunchFinite Size Bunch

rεR

βc

h

x∆

y∆

0

10

20

30

40

0.0 0.5 1.0 1.5 2.0∆

y/R

W(∆

x , ∆ y )

/ W(∆

x=0 ,

∆ y= 0) ε =4r

R/h=0.5

γβ=10

5.10.15.0

=∆

=∆

=∆

x

x

x

Radiated energy increases with the transverse width and decreases with the longitudinal length.

Radiated energy is ∆y independent for γβ >>1 and decreases dramatically with the longitudinal length for γβ >>1.

Page 26: Electromagnetic Wake-Fields in Optical Accelerator

26

Electron Bunch Traversing a Geometric DiscontinuityElectron Bunch Traversing a Geometric DiscontinuityElectron Bunch Traversing a Geometric Discontinuity

22R

1RbR2

0v

Free space

Symmetric Discontinuity

Constant velocity

( )00 , µε

Page 27: Electromagnetic Wake-Fields in Optical Accelerator

27

WG Discontinuity: Frequency-Domain SolutionWG Discontinuity: FrequencyWG Discontinuity: Frequency--Domain SolutionDomain Solution

Green’s Function

( ) )0','()',0'|,0(1

20

)2(∑∞

=

Γ−<=<>ν

ννντ zeRrpJzrrzrzG

( ) ( )( ) [ ]

( ) )0','(

421

')',0'|,0(

110

1

'

)1(21

21

1010

)1(

)1(

∑∞

=

Γ

=

−Γ−

<+

Γ

=<<

s

zss

s

zz

ss

ss

s

s

eRrpJzr

epJR

RrpJRrpJrzrzG

ρ

πHomogeneous Solution

( ) ( ) ( ) ( )222

)2(221

)1( ; cRpcRp sss ωω ν −=Γ−=Γ

22R

1RbR2

0v

' 0z <

( )( )zj

z err

qzrJ 0v2 )(

2);,( ωδ

πω −−=

Non-Homogeneous Solution

Page 28: Electromagnetic Wake-Fields in Optical Accelerator

28

WG Discontinuity: Frequency-Domain SolutionWG Discontinuity: FrequencyWG Discontinuity: Frequency--Domain Solution

Er: continuity over the cross section

Hϕ: continuity across the aperture+

Bessel functions orthogonality

Matrix Formulation

0=z

Domain Solution

Boundary Conditions

( ) ( )( ) ( )[ ] )1(1)(

)1(1)(

gYZIYZIIYT

gYZIYZIR

−++=

−+=−−

−−

)1()1(

)(

)(

)0','(

)0','(

)0','(

gzrg

Tzr

Rzr

s

s

→<

→<

→<−

ντ

ρ

( ) ( ) ( )21

0

1121

212

1)1(

)2(

,

2

21)( RrpJRrpdrrJRpJR

RppZ

R

ssss

s ννν

νω ∫Γ

Γ=

Single Frequency

( )( )

')1(

21

21

10)1( )1(

41

21

')0','( z

ss

ss

sepJR

RrpJzrg Γ

Γ=<

π ' 0z <

Infinite size Matrices

Page 29: Electromagnetic Wake-Fields in Optical Accelerator

29

WG Discontinuity: Frequency-Domain SolutionWG Discontinuity: FrequencyWG Discontinuity: Frequency--Domain SolutionDomain Solution

( ) ( )( ) [ ]

( ) )0','(

421

')',0'|,0(

120

1

'

)2(21

22

2020

)2(

)2(

∑∞

=

Γ−

=

−Γ−

>+

Γ

=><

ν

νν

ννν

νν

ν

ν

τ

π

z

zz

eRrpJzr

epJR

RrpJRrpJrzrzG

Homogeneous Solution

Non-Homogeneous Solution

( )( )zj

z err

qzrJ 0v2 )(

2);,( ωδ

πω −−=

22R

1RbR2

0v

' 0z >( ) )0','()',0'|,0(

120

)1(∑∞

=

Γ>=>>s

zss

seRrpJzrrzrzG ρ

Green’s Function

( ) ( ) ( ) ( )222

)2(221

)1( ; cRpcRp sss ωω ν −=Γ−=Γ

Page 30: Electromagnetic Wake-Fields in Optical Accelerator

30

WG Discontinuity: Frequency-Domain SolutionWG Discontinuity: FrequencyWG Discontinuity: Frequency--Domain Solution

Er: continuity over the cross section

Hϕ: continuity across the aperture+

Bessel functions orthogonality

Matrix Formulation

0=z

Domain Solution

Boundary Conditions

Single Frequency ' 0z >

( )

( )

(2) (2)

( ', ' 0)

( ', ' 0)

( ', ' 0)

s

s

r z R

r z T

g r z gν

ρ

τ

+

+

> →

> →

> →

( ) ( ) ( )21

0

1121

212

1)1(

)2(

,

2

21)( RrpJRrpdrrJRpJR

RppZ

R

ssss

s ννν

νω ∫Γ

Γ=

( )( )

')2(

21

22

20)2( )2(

41

21

')0','( zepJR

RrpJzrg ν

νν

νν π

Γ−

Γ=>

( ) ( )( ) ( )

1( ) (2)

1( ) (2)

R I ZY I ZY g

T Y I I ZY I ZY g

−+

−+

= + −

= + + −

Infinite size Matrices

Page 31: Electromagnetic Wake-Fields in Optical Accelerator

31

WG Discontinuity: Frequency-Domain SolutionWG Discontinuity: FrequencyWG Discontinuity: Frequency--Domain SolutionDomain Solution

Single Frequency

Solution

Infinite size matrix inversion

Truncation Problems

Pulse Approaching

The DiscontinuityWide

Spectrum

Time-domain solution is preferable

Linear independent function+

Infinite size matrix inversion for each

frequency

Scalar solution

without truncation problem

Bessel function orthogonality

Page 32: Electromagnetic Wake-Fields in Optical Accelerator

32

WG Discontinuity: Time-Domain SolutionWG Discontinuity: TimeWG Discontinuity: Time--Domain SolutionDomain Solution

22R

1RbR2

0v

,10

,20

Ωv

,1 011( )

Ωv

,2 021

; 0, 0

( , ; )

; 0, 0

s

zt

s ssp

zzt

rJ p e t zR

A r z t

rJ p e t zR

ν

ν νν

α

α

− −∞

=

− −∞

=

< < =

> >

Primary Field

( ) ( )2

, , 2 20 , 1

02

1Ω ;2 Ω

v1 ; ; , ; 1, 21

ii j i j

j j i j i

p c qR R J p

i s jc

γβ α γβπε

γ β νβ

−= =

= = = =−

Page 33: Electromagnetic Wake-Fields in Optical Accelerator

33

tse 1,Ω

Long.-dependence

>

<

+

0 ;

0;2

1

2

2

01, v

Ω

ze

ze

Rp

Rpz

z

s

s

γβν

>

<

0;

0;

20

10

zR

rpJ

zR

rpJ s

ν

22R

1RbR2

0vFormulation: Secondary Field t<0Formulation: Secondary Field t<0Formulation: Secondary Field t<0

Metallic

BoundariesRadial-dependence

Primary Field

01, v

Ω

zts

e−− Time-dependence

Page 34: Electromagnetic Wake-Fields in Optical Accelerator

34

02, v

Ω

zt

e−− ν Time-dependence

Metallic

Boundaries Long.-dependence

22R

1RbR2

0v

te 2,Ων−

,20

2 2

1 2

Ωv ; 0

; 0s

z

p pzR R

e z

e z

ν

νγβ

+

>

<

>

<

0;

0;

20

10

zR

rpJ

zR

rpJ s

ν

Formulation: Secondary Field t>0Formulation: Secondary Field t>0Formulation: Secondary Field t>0

Radial-dependence

Primary Field

Page 35: Electromagnetic Wake-Fields in Optical Accelerator

35

>

<

=<

=

+

=

1,

Ω

20,

1

ΩΩ

10

)(

0;

0;

)0;,( 2

1

2

21,

01,

1,

ν

γβ

νν

ν

τ

ρ

s

Rp

Rpz

ts

s

vz

tss

sz

zeeRrpJ

z eeRrpJ

tzrAs

s

ss

22R

1RbR2

0vSecondary FieldSecondary FieldSecondary Field

>

<

=>

∑∞

=

−−

=

+

1

ΩΩ

20

1,

Ω

10,

)(

0;

0;)0;,(

02,

2,

2

2

2

12,

νν

ν

γβ

ν

νν

ν

ν

τ

ρ

z eeRrpJ

z eeRrpJ

tzrAvz

ts

s

Rp

Rpz

tss

sz

s

Page 36: Electromagnetic Wake-Fields in Optical Accelerator

36

∞<<= tz 0;0Er : continuity over the cross section

Hϕ : continuity across the aperture

22R

1RbR2

0vBoundary ConditionsBoundary ConditionsBoundary Conditions

0;0 <<∞−= tzEr : continuity over the cross section

Hϕ : continuity across the aperture

are determinedss ρτ ν & ,

are determinedνν τρ & ,s

te 2,Ων−

Linearly independent

functions

tse 1,Ω

Linearly independent

functions

( )RrpJ s /0

Orthogonal set of

functions

Page 37: Electromagnetic Wake-Fields in Optical Accelerator

37

22R

1RbR2

0vMagnetic FieldMagnetic FieldMagnetic Field

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

2 12, 0.5 , 0bR R Rγ = = =

10.25Rtc

=−cRt 125.0=

Page 38: Electromagnetic Wake-Fields in Optical Accelerator

38

Finite Size EffectFinite Size EffectFinite Size Effect

z∆

bR

( ) ( )|v|222v);,( 02

0 tzUrRUR

qtzrJ zbb

z −−∆−−=π

0 0( )

1 0U

ξξ

ξ≤

= >

0

0

0

0

1. 0;2v

2. 0;2v

3. 0;2v

4. 0;2v

z

z

z

z

z t

z t

z t

z t

∆< < −

∆< <

∆> >

∆> <

22R

1RbR2

0vz∆

Page 39: Electromagnetic Wake-Fields in Optical Accelerator

39

-30

-25

-20

-15

0.2 0.4 0.6 0.8 1.0

[W(∆

z ) / W

(∆z=

0)] d

B

R2

γ = 100

∆ = 2.0z

Rb= 0.10, 0.15

Rb= 0.10, 0.15

Rb= 0.10, 0.15

∆ = 0.7z

∆ = 0.3z

-40

-30

-20

-10

0.0 0.1 0.2 0.3 0.4 0.5

[W(∆

z) / W

(∆z=

0)] d

B

Rb

γ = 100R

2 = 0.5

∆ = 0.7z

∆ = 0.3

zz

∆ = 2.0z

∆ = 5.0z

WR

qW1

10

2

2

πε

22R

1RbR2

0vz∆

1/z z R∆ = ∆1/b bR R R=

2 2 1/R R R=

Radiated EnergyRadiated EnergyRadiated Energy

Page 40: Electromagnetic Wake-Fields in Optical Accelerator

40

Radiated Energy22R

1RbR2

0vz∆

WR

qW1

10

2

2

πε

1/z z R∆ = ∆1/b bR R R=

2 2 1/R R R=

-30

-20

-10

0

0 50 100 150 200 250

[W(∆

z ) / W

(∆z=

0)] d

B

γ−1

∆ = 2.0 = 1.0 = 0.5 = 0.3

zR

b= 0.1

R2= 0.5

0.95

0.96

0.97

0.98

0.99

1.00

0

0.01

0.02

0.03

0.04

0 50 100 150 200 250

WL /

W

WR / W

γ−1

R2 = 0.5 ∆

= 0.3zR

b = 0.3

Rb = 0.1

Rb = 0.1

Rb = 0.3

Radiated EnergyRadiated Energy

Page 41: Electromagnetic Wake-Fields in Optical Accelerator

41

22R

1RbR2

0vz∆Radiated EnergyRadiated EnergyRadiated Energy

( ) [ ]25.01

212

38.01 )/(cosh

/1/11

RRR

RRW

zb ∆−

≈γγ

WR

qW1

10

2

2

πε

1

12

1. 02. 03. 10

b

RzR R R

γ

≤ ∆ <

< < <

>

2 1

1. 0 Point Charge2. 0 Uniform Waveguide3. 0 Ultra-Relativistic

bR WR R W

→ ⇒ → ∞

→ ⇒ →

→ ∞ ⇒ →

Page 42: Electromagnetic Wake-Fields in Optical Accelerator

42

-50

-40

-30

-20

-10

0

0 50 100 150 200 250

[W] d

B

γ−1

R2= 0.5∆ = 0.5z

Rb= 0.1

ExactApproximate

-60

-50

-40

-30

-20

-10

0

0 1 2 3 4 5

[W] d

B

R2= 0.5γ = 100

Rb= 0.1

Exact

Approximate

z

22R

1RbR2

0vz∆Exact vs. ApproximateExact vs. ApproximateExact vs. Approximate

Page 43: Electromagnetic Wake-Fields in Optical Accelerator

43

WG Discontinuity: Time-Domain SolutionWG Discontinuity: TimeWG Discontinuity: Time--Domain SolutionDomain Solution

Time-domain analytic solution of the evanescent field in the region of the discontinuity. The solution uses the orthogonality of the Bessel functions and the fact that exponential functions describing the temporal behavior are linearly independent.Simulations based on this formulation enabled the development of an analyticexpression for the energy required to maintain the velocity of the bunch constant.

22R

1RbR2

0v

Page 44: Electromagnetic Wake-Fields in Optical Accelerator

44

Surface Roughness: MotivationSurface Roughness: MotivationSurface Roughness: Motivation

?1accuracy A≈

Optical1 mλ µ≈1cmλ ≈

1accuracy mµ≈

X-band

Superposition of plane waves.Broad frequency spectrum.An assumption of small

perturbation is not necessarily relevant.

DimensionsConstrains Source Properties

Atomic level engineering.

The size of the bunch as well as the roughness of the structure are anticipated to be of the same order of magnitude.

Page 45: Electromagnetic Wake-Fields in Optical Accelerator

45

v0

Roughness parameter

Partial reflection

Total charge Q

ConfigurationConfigurationConfiguration

Unif 0,ng δ ∼

in

ext, 11ext, 1 1

int intt

1 ; ; 0;2 2n n

n n n nn nn n n

R d d dzR d z z zg

Rg g

R R+

+≡ = + ≡ = ≡ = = + + +

Page 46: Electromagnetic Wake-Fields in Optical Accelerator

46

Wake-Field WakeWake--Field Field

( ) ( )sinsinc

ξξ

ξ≡Current Density

( )( )

( ) 02 2

0

2 1, ;22

vsincv

zj

z b zb

QJ r z U R r eR

ωωωπ

− = − − ∆

( )1; 00; 0

U

ζζ

ζ>

≡ ≤Magnetic Vector Potential

( ) ( )2

20, ; , ;z zA r z J r z

cω ω µ ω

∇ + = −

Page 47: Electromagnetic Wake-Fields in Optical Accelerator

47

Wake-Field WakeWake--Field Field

intr R<

( ) ( ) ( ) ( ) ( )0 00

, | ', ', ; 2 ' ' ' ', ';

homogeneous solutionNon-homogeneous solution

IbR

jkzz zG r z rA r z dr r dz J r z dkAz k e rω πµ ω

∞ ∞−

−∞ −∞

= + Γ∫ ∫ ∫

( ) ( ) ( )'' ', || ', jk z zkG r z r d rez gk r

∞− −

−∞

= ∫

22 2k

cω Γ ≡ −

( )( )

( ) ( )( ) ( )

0 02

0 0

' ; 0 '1' ; '2

| 'I K

K Ik

r r r r

r rr

rg r

Γ Γ ≤ ≤= Γ Γ ≤ < ∞

Green’s function in a boundless space

Page 48: Electromagnetic Wake-Fields in Optical Accelerator

48

Wake-Field WakeWake--Field Field

( )( )

( )10 2

0 0

21 122

Isinc

v vz

uQ k

uB k ω ωµ δ

π

= − ∆ −

( ) ( ) ( ) ( ) ( )0 0, ; I K jkzz b BA r R z dk A k kr r eω

∞−

−∞

> = Γ + Γ ∫

( ) ( ) 0,, ; T nnz nA r z r

cDω ω ω=

0vbu Rω

γ≡

intbR r R< <

nth groove

0 0 , 00 ,, 0ext extT J Y Y Inn nr R r Rc cc c

rc

ω ω ωω ω ≡ −

Single mode

approximation

Page 49: Electromagnetic Wake-Fields in Optical Accelerator

49

Wake-Field : Continuity of Ez & HϕWakeWake--Field : Continuity of Field : Continuity of EEzz & & HHϕϕ

intRcω

Ω ≡

intR∆ ≡ Γ

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

20

0.21 00

12

KT

II

N

z n nn

nDA k k B kπ

ω=

∆Ω= − Ω ℑ −

∆∆ ∆ ∑

( ) ( ) ( ),1

n m nm

m

N

D Sωτ ω ω=

=∑

( ) 1sinc

2n n

njkzk e kd ℑ =

( ) ( ) ( )*

0

1 1I

n nS dk B k k∞

−∞

= ℑΩ ∆∫

( ) ( ) ( ), 1, , 0, ,T Tn m n n m m n mτ ω δ χ≡ Ω − Ω

( ) ( ) ( )1, 1 0 , 1 0 ,ext extT J Y Y In n nR Rc cω ω Ω ≡ Ω − Ω

Page 50: Electromagnetic Wake-Fields in Optical Accelerator

50

Power & EnergyPower & EnergyPower & Energy

Emitted Power

( ) ( )( )

0

( ) 2 , ; , ;bR

sz zP t rdr dzJ r z t E r z tπ

−∞

= ∫ ∫

Secondary field due to metallic surface

Emitted Energy

( )2 2

0 int 0 int0

( ) Re4 4

Q QW dt P t d S W

R Rπε πε

∞ ∞

−∞

≡ = Ω Ω ≡

∫ ∫

Normalized spectrum

Page 51: Electromagnetic Wake-Fields in Optical Accelerator

51

v0

int0.5bR R=

int int0.15 0.3zR R< ∆ <

Typical DimensionsTypical DimensionsTypical Dimensions

int 0.5 0 0.2R mµ δ≈ ⇒ ≤ ≤30 45 1 mµ÷ ≈Bunch:

Each data point is a result ofaveraging over 80 different distributions

for a given value of δ

Page 52: Electromagnetic Wake-Fields in Optical Accelerator

52

Partial Reflection in GroovesPartial Reflection in GroovesPartial Reflection in Grooves

0.0

0.3

0.5

0.8

1.0

0 0.2 0.4 0.6 0.8

W /

N

|ZL|

∆z = 0.15

∆z = 0.20

∆z = 0.25

Rb= 0.5

δ = 10-4

γ = 104

0.0

0.3

0.5

0.8

1.0

0 0.2 0.4 0.6 0.8|Z

L|

∆z = 0.15

Rb= 0.5

δ = 10-1

γ = 104

∆z = 0.20

∆z = 0.25

Grooves’number intz z R∆ ≡ ∆

- Energy almost linear with the load impedance@ .

- Energy weakly dependent on the load impedance@ .

410δ −=

110δ −=

intb bR R R≡

Normalized impedance @ grooves’ end

Page 53: Electromagnetic Wake-Fields in Optical Accelerator

53

Partial Reflection in GroovesPartial Reflection in GroovesPartial Reflection in Grooves

0.0

0.1

0.3

0.4

0.5

0 10 20 30 40 50Ω

Rb = 0.5

δ = 10-1

∆z = 0.25

γ = 104

N = 10

|ZL| = 0.70

|ZL| = 0.32

|ZL| = 0.10

- Spectrum’s peak close to .- Spectrum’s width determined by

the bunch’s spectrum: sinc2 shape.

410δ −=0Ω = - Increasing the load impedance shifts

the main peak of the spectrumtowards .

110δ −=

0Ω =

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

|Re[

S(Ω

)]|

Ω

Rb = 0.5

δ = 10-4

∆z = 0.25

γ = 104

N = 10

|ZL| = 0.70

|ZL| = 0.32

|ZL| = 0.10

Page 54: Electromagnetic Wake-Fields in Optical Accelerator

54

- The spectrum per number of grooves is virtually the same.- The total emitted energy increases linearly with the number of grooves.

1 2LZ =

0.00

0.01

0.02

0.03

0.04

0.05

0 10 20 30 40 50

|Re[

S(Ω

)]| /

N

Ω

Rb= 0.50

∆z = 0.25

δ = 0.10

γ = 104N=4,6,8,10

0

1

3

4

5

0 2 4 6 8 10

WN

Rb = 0.50

∆z = 0.25

δ = 0.10

γ = 104

Number of GroovesNumber of GroovesNumber of Grooves

Page 55: Electromagnetic Wake-Fields in Optical Accelerator

55

0

Re ( )W d SΩ Ω∞

≡ ∫

0.0

0.2

0.3

0.5

0.6

0.8

0 10 20 30 40 50

|Re[

S(Ω

)]|

Ω

∆z = 0.15

∆z = 0.20

∆z = 0.25

∆z = 0.30

Rb= 0.50

δ = 0.10

γ = 104

0.0

0.2

0.3

0.5

0.6

0.8

0 10 20 30 40 50Ω

Rb= 0.50

∆z= 0.30

δ = 0.10

γ = 104

maxavg+stdavgavg-stdmin

1 2LZ =SpectrumSpectrumSpectrum

- The main peak of the spectrum isalmost independent.

- The spectrum width decreases with the increase of . z∆

z∆

- At low freq. Significant difference between average and min or max spectrum

- At high freq. all curves coincide.

Page 56: Electromagnetic Wake-Fields in Optical Accelerator

56

0.0

0.2

0.3

0.5

0.6

0.8

0 10 20 30 40 50

|Re[

S(Ω

)]|

Ω

δ = 0.20δ = 0.15δ = 0.10δ = 0.05

Rb = 0.50

∆z = 0.25

γ = 103

0.0

0.2

0.3

0.5

0.6

0.8

0 10 20 30 40 50Ω

γ = 103, δ = 0.15

γ = 101, δ = 0.15

Rb = 0.50

∆z = 0.25

γ = 103, δ = 0.05

γ = 101, δ = 0.05

1 2LZ =SpectrumSpectrumSpectrum

- The spectrum is weakly dependent

on .γ- Average spectrum increases with . - Main contribution from .20Ω <

δ

Page 57: Electromagnetic Wake-Fields in Optical Accelerator

57

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.04 0.08 0.12 0.16 0.20δ

Rb= 0.50

∆z = 0.25

γ > 50γ = 10

2

0 int4QW W

Rπε≡

- Average energy per groove increases with .- More energy generated by shorter bunch.- The impact of is almost negligible.

δ

γ

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.04 0.08 0.12 0.16 0.20

W /

N

δ

Rb= 0.5

γ = 104∆

z = 0.15

∆z = 0.20

∆z = 0.25

∆z = 0.30

1 2LZ =Emitted EnergyEmitted EnergyEmitted Energy

Page 58: Electromagnetic Wake-Fields in Optical Accelerator

58

0.00

0.03

0.06

0.09

0.12

0.15

∆z = 0.15

∆z = 0.20

∆z = 0.25

Approx.

0.00 0.04 0.08 0.12 0.16 0.20

∆W /

δ0.25

δ

Rb= 0.5

γ = 104

- Energy spread per groove increases weakly

with average .0.25δ

22i i

i

W WW

W

−∆ ≡

0.00

0.03

0.06

0.09

0.12

0.15

γ = 101

γ = 102

γ = 103

Approx.

0.00 0.04 0.08 0.12 0.16 0.20δ

Rb = 0.50

∆z = 0.25

1 2LZ =Emitted Energy: Standard-DeviationEmitted Energy: StandardEmitted Energy: Standard--DeviationDeviation

Page 59: Electromagnetic Wake-Fields in Optical Accelerator

59

Number of modes - Using a single mode is sufficient for all practical

purposes.- Use of many modes introduces numerical noise.

0.00

0.01

0.02

0.04

0.05

0.06

0 10 20 30 40 50

|Re[

S(Ω

)]| /

Ν

Ω

Rb = 0.5

∆z = 0.3

γ = 104

M = 2,3,4

M = 1

Single Mode ApproximationSingle Mode ApproximationSingle Mode Approximation

Page 60: Electromagnetic Wake-Fields in Optical Accelerator

60

Summary: Scaling-LawsSummary: ScalingSummary: Scaling--Laws

22 0.25

2int int

0 int

int

int int

0.15 tanh 121.2

4

451.4290.57 tanh

1 20.72 1 20.72z z

W W g gR RQ N

R

gR

R R

πε

∆ ∆

∆ ∆

− ×

× +

+ +

int2

int int0 int

451.4290.57 tanh

1 20.72 1 20.724

z z

gW R

Q NR RRπε∆ ∆

+

+ +×

Average Energy

average roughnessLaws

roughness std.Standard Deviation

Page 61: Electromagnetic Wake-Fields in Optical Accelerator

61

Summary: Scaling-LawsSummary: ScalingSummary: Scaling--LawsLaws

2

0 int

24

W QN Rπε

×

Average EnergyPoint-Charge0z∆ =

Standard Deviation

22 0.252

0 int int

0.34

W W Q gN R Rπε

− ∆×

- Point-charge moving in a cylinder of radius Rint boredin a dielectric or metallic medium

- Point-charge moving in a cylindrical wave-guide withperiodic wall of arbitrary but azimuthally symmetric geometry.