Top Banner
ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: [email protected]
49

ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: [email protected].

Dec 25, 2015

Download

Documents

Nathan Thornton
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

ELECTRICAL PROPERTIES OF THE HEART

Sandor Gyorke, Ph.D.Office: DHLRI 507

Telephone: 292-3969Email: [email protected]

Page 2: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Learning Objectives• Differentiate pacemaker cells from myocardial cells by

action potential characteristics and ion transport during depolarization and repolarization and response to sympathetic and parasympathetic stimulation.

• Describe the sequence of activation of the heart and relate to the components of the electrocardiogram.

• Identify the components of the conduction system of the heart.

At the end of this module, you will learn to

Page 3: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Learning Resources

Pathophysiology of Heart Disease. Fifth Edition, Ed. L.S. Lilly, Lippincott Williams & Wilkins, Baltimore, MD, 2011 (pp. 12-23; 75-112)

D.E. Mohrman & L.J. Heller. Cardiovascular Physiology, 8th edition, McGraw-Hill, New York 2014.

Page 4: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Topics• Membrane excitability • Cardiac resting potential • Cardiac action potentials• Heart rhythm • The sequence of electrical activation of the heart• Cardiac electrocardiogram (ECG)

Page 5: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Electrical excitation

Contraction

• Cardiac myocytes are electrically excitable cellscapable of generating and conducting action potentials

• Disturbances in normal periodic electrical activity result in cardiac arrhythmia.

• All electrical phenomena in the heart rely on movement of ions across membranes

• The heart is composed of cardiac muscle cells, cardiomyocytes.

• There are two types of cardiac cells: “working” cardiomyocytes with fast action potential (in ventricles and atria) and cardiac pacemaker cells with slow action potential.

Introduction

Page 6: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Internal External[Na+] 15 mM 150 mM[K+] 150 mM 5 mM[Cl-] 5 mM 120 mM [Ca2+] 10-7 M 2 mM

Ca2+Na+

K+

Na+ Ca2+Ca2+

Na+

sarcolemmaChannels

Pumps

Sarcolemma:• Phospholipid bilayer• Pumps/transporters • Ion channels

K+

Transport and Distribution of Ions in Cardiac Myocytes

Page 7: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Background (IKr) Responsible for generation Kir2.1K+ current of the resting potential

Diastolic pacemaker (If) Responsible for spontaneous HCN2 current depolarization in pacemaker cells

Fast Depolarizing (INa) Initial depolarization SCN5A Na+ current of cardiac action potentials

Delayed repolarizing (IK) Helps to terminate action HERG K+ current potential plateau

Slow Ca2+ current (ICa) Important for plateau phase α 1C of action potential

Current Abbreviation Role Gene

Major Cardiac Voltage-gated Membrane Currents

Page 8: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

PP

ATP ADP

Na+

K+

K+

Na+

2 K+

3 Na+ATPase

3 Na+

2 K+

• 3Na+/2K+• 150 cycles/sec• Maintenance of Na+ and K+

gradients requires ~20% of total ATP produced by the cell

in/out: 15/150 mM

in/out: 150/5 mM

inside

outside

Na - K ATPase (The Sodium-Potassium ATPase pump)

Page 9: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

[K+]i

(150 mM) [K+]o

(5 mM)

K+

+ -+ -

+ -

K+

Na+

V

VM = -90 mV

Polarized state that makes possible generation of electrical signals

IKr

12

3

1) The Na/K-ATPase generates a K+ gradient by utilizing energy stored in ATP;

2) K+ flows out of the cell through K+ channels leaving behind anions; 3) K+ moves back attracted by the negative charge at the inner membrane face;

The Resting Membrane Potential

Page 10: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

• Basis for signal-carrying ability of cardiac myocytes

• Allows large areas of the heart to contract almost simultaneously

• Drives cardiac rhythm

• Two main types: fast (non-pacemaker) and slow (pacemaker)

The Cardiac Action Potential

Page 11: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Mem

bran

e po

tent

ial

(m

V)

-100

0

+50

-100

0

+50

Nerve and skeletal muscle

Cardiac myocyte

• Can be recorded throughout most of the heart except the pacemaker and conduction regions

• The cardiac AP is much longer than the nerve and skeletal AP and is composed of a fast upstroke and a slow plateau

Upstroke Plateau

The Fast Action Potential

Page 12: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

-100

0

+50Membrane potential (mV)

1 (Initial Repolarization)

2 (Plateau) 3

(Repolarization)

4 (Resting Potential)

4

gNa

gCa

gK

0 (Depolarization)

ION

CO

ND

UC

TAN

CE

S INa

ICa

IK IKrIKr

Phases of the Fast Action Potential

Page 13: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

-100

0

+50Membrane potential (mV)

1 (Initial Repolarization)

2 (Plateau) 3

(Repolarization)

4 (Resting Potential)

4

gNa

gCa

gK

0 (Depolarization)

ION

CO

ND

UC

TAN

CE

S INa

ICa

IK IKrIKr

Phase 4 (Resting Potential )

Outside

Inside

K+

Outside

Inside

OutsideIKr IK

Inside

K+

Phases of the Fast Action Potential

Page 14: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

-100

0

+50Membrane potential (mV)

1 (Initial Repolarization)

2 (Plateau) 3

(Repolarization)

4 (Resting Potential)

4

gNa

gCa

gK

0 (Depolarization)

ION

CO

ND

UC

TAN

CE

S INa

ICa

IK IKrIKr

Phase 0 (Depolarization )

Outside

Inside

Outside

Inside

OutsideIKr IK

Inside

Na+

Phases of the Fast Action Potential

Page 15: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

-100

0

+50Membrane potential (mV)

1 (Initial Repolarization)

2 (Plateau) 3

(Repolarization)

4 (Resting Potential)

4

gNa

gCa

gK

0 (Depolarization)

ION

CO

ND

UC

TAN

CE

S INa

ICa

IK IKrIKr

Phase 0 (Depolarization )

Outside

Inside

Outside

Inside

OutsideIKr IK

Inside

Na+

Na+

Phases of the Fast Action Potential

Page 16: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

-100

0

+50Membrane potential (mV)

1 (Initial Repolarization)

2 (Plateau) 3

(Repolarization)

4 (Resting Potential)

4

gNa

gCa

gK

0 (Depolarization)

ION

CO

ND

UC

TAN

CE

S INa

ICa

IK IKrIKr

Phase 1 (Initial Repolarization )

Outside

Inside

Outside

Inside

OutsideIKr IK

Inside

Phases of the Fast Action Potential

Page 17: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

-100

0

+50Membrane potential (mV)

1 (Initial Repolarization)

2 (Plateau) 3

(Repolarization)

4 (Resting Potential)

4

gNa

gCa

gK

0 (Depolarization)

ION

CO

ND

UC

TAN

CE

S INa

ICa

IK IKrIKr

Phase 2 (Plateau)

Outside

Inside

K+

Outside

Inside

OutsideIKr IK

Inside

Ca2+

Phases of the Fast Action Potential

Page 18: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

-100

0

+50Membrane potential (mV)

1 (Initial Repolarization)

2 (Plateau) 3

(Repolarization)

4 (Resting Potential)

4

gNa

gCa

gK

0 (Depolarization)

ION

CO

ND

UC

TAN

CE

S INa

ICa

IK IKrIKr

Phase 3 (Repolarization)

Outside

Inside

K+

Outside

Inside

OutsideIKr IK

InsideK+

Phases of the Fast Action Potential

Page 19: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Action Potential Contraction

Absoluterefractory period

Relative refractory period

Skeletal muscle fiber Cardiac myocyte

refractory period

• Inability to respond to further stimulation • Allows the ventricles sufficient time to empty their

content and refill before the next cardiac contraction

Refractory Periods

Page 20: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Me

mbr

an

e p

ote

ntia

l

(m

V)

-70

0

gNa

gCa

gK

ION

CO

ND

UC

TAN

CE

S If

ICa

IK

SA Node

AV Node

RepolarizationDepolarization

Pacemaker potential

4

0 3

4Threshold

The Pacemaker Action Potential

Page 21: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

• Conducts both K+ and Na+

• Opens (inward current) at hyperpolarized potentials

• cAMP accelerates activation kinetics

• Responsible for initial phase of spontaneous depolarization in the nodal tissue

Properties of If

Page 22: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Vagal Symp

50Intrinsic Rate(60-100 bpm)

200 bpm

+ Norepinephrine+ Acetylcholine

Threshold

Positive chronotropic effect

Negativechronotropic effect

ACH NE

ACH

Vagal Symp

SA Node

Modulation of Pacemaker Activity

Page 23: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Gsb-R

b-Agonist

cAMPP

Ca2+ Channel

AC

ATP

ATP ADPCR

PKA

C

P

Na+/K+ Channel

Molecular Mechanisms of Positive Chronotropic Effects of β-AGONISTS

Page 24: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Gi

AchR

cAMP

Ca2+Channel

AC

ATP

Ach

P P

Na+/K+ Channel

Molecular Mechanisms of Negative Chronotropic Effects of Acetylcholine

Page 25: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

• Electrical coupling of myocytes via gap junctions

• Cardiac conduction system

Conduction of Action Potentials Through the Heart

Page 26: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Gap junctions

Connexons

- - - - - - + + + + + + ++ + + + + + - - - - - -

• Large-conductance pores permeable for ions and small molecules

• Consist of two sets of six subunits (connexons)

• Responsible for electrical coupling of myocytes

Propagation of the Action Potential Along Cardiac Cells

Page 27: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Gap junctions

- - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + - - - - - -

Connexons

• Large-conductance pores permeable for ions and small molecules

• Consist of two sets of six subunits (connexons)

• Responsible for electrical coupling of myocytes

Propagation of the Action Potential Along Cardiac Cells

Page 28: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

SA Node

AV Node

Purkinjefibers

RV LV

LARA

Bundle of His

Left Bundle Branch

Right Bundle Branch

The Cardiac Conduction System

Page 29: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

SA Node

AV Node

The Cardiac Conduction System

Page 30: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

SA Node

AV Node

Conduction velocity ~0.5-1 m/sec Atrium activation occurs within ~100 ms nearly synchronously

The Cardiac Conduction System

Page 31: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

AV Node Conduction velocity slows to ~0.2 m/sec This permits atrial relaxation occur before ventricularContraction begins

The Cardiac Conduction System

Page 32: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Bundle of His

Left Bundle Branch

Right Bundle Branch

Conduction velocity is fast ~4 m/sec so the entire ventricle is activated simultaneously

The Cardiac Conduction System

Page 33: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Purkinjefibers

Conduction velocity is fast ~4 m/sec so the entire ventricle is activated nearly simultaneously

The Cardiac Conduction System

Page 34: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

The Electrocardiogram

ECG is a noninvasive recording of electrical activity of the working heart

A most commonly used diagnostic tool that provides information on:

• Anatomical orientation of the heart• Relative sizes of chambers• Disturbances of rhythm and conduction• Extent, location of ischemic damage

Represents the sum of action potentials occurring simultaneously in many individual cells

Page 35: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

- - - - - - - - -+ + + + + + + + +

- - - - - - - - -+ + + + + + + + +

- - - - - - - - -+ + + + + + + + +

- - - - - - - - -+ + + + + + + + +

- - - - - - - - -+ + + + + + + + + - - - - - - - - -

+ + + + + + + + +

Depolarization- - - - - - - - -+ + + + + + + + +

- - - - - - - - -+ + + + + + + + +

(+) (-)

Extracellular Recording of Depolarization and Repolarization in a Strip of Cardiac Muscle

Page 36: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

RA(-)

Polarity: When LL becomes positive with respect to RA an upward deflection is recorded

+ +

+

+- ---

+

-

LL (+)

ECG Recording as a Wave of Depolarization Along the Longitudinal Axis of Heart

Page 37: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

P

Q

R

S

T

PR interval<0.2 s

QT interval~0.4 s

P w

ave

PR

se

gm

en

t

ST

se

gm

en

t

T w

ave

QR

S c

om

ple

x

Polarity: When LL becomes positive with respect to RA an upward deflection is recorded

P wave – atrial depolarization

QRS complex – ventricular depolarization

T wave – ventricular repolarization

PR interval – passage through the AV conduction system

QT interval – period of electrical systole

RA(-)

LL (+)

Components of a Typical ECG Recording

Page 38: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

P

Q

R

S

T

PR interval<0.2 s

QT interval~0.4 s

P w

ave

PR

se

gm

en

t

ST

se

gm

en

t

T w

ave

QR

S c

om

ple

x

P wave – atrial depolarization

QRS complex – ventricular depolarization

T wave – ventricular repolarization

PR interval – passage through the AV conduction system

QT interval – period of electrical systole

RA(-)

LL (+)

Polarity: When LL becomes positive with respect to RA an upward deflection is recorded

Components of a Typical ECG Recording

Page 39: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

SA Node

AV Node

P QRS T

+

_

The Sequence of Activation of Heart in Relation to ECG

Page 40: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

SA Node

AV Node

P QRS T

Atrial depolarization

+

_

The Sequence of Activation of Heart in Relation to ECG

Page 41: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

SA Node

AV Node

P QRS T

Depolarization of theintraventricular septum

+

_

The Sequence of Activation of Heart in Relation to ECG

Page 42: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

SA Node

AV Node

P QRS T

Depolarization of large part of ventricular myocardium

+

_

The Sequence of Activation of Heart in Relation to ECG

Page 43: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

SA Node

AV Node

P QRS T

Depolarization of a small portion of ventricular myocardiumnear the base

+

_

The Sequence of Activation of Heart in Relation to ECG

Page 44: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

SA Node

AV Node

P QRS T

Depolarization of whole ventricular myocardium

+

_

The Sequence of Activation of Heart in Relation to ECG

Page 45: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

SA Node

AV Node

P QRS T

Ventricular repolarization (progresses from the apex to the base)

+

_

The Sequence of Activation of Heart in Relation to ECG

Page 46: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Summary• For contraction to occur cardiac cells rely on action potentials (APs).

The rapid upstroke of APs of atrial and ventricular cells is due to a Na+ current (INa). The prolonged plateau phase of these APs is due to a Ca2+ current (ICa), repolarization to potassium currents (IK), and the resting potential is due to another potassium current called IK1.

• APs in pacemaker cells rely on ICa for their upstroke, IK to repolarize, and on a funny current (If) to provide the diastolic pacemaker potential which slowly depolarizes the membrane between APs.

• Normally APs are generated in the SA node. The impulse propagates from the SA node to both atria and to the AV node, where a delay occurs. The impulse then passes into the bundles of His, right and left bundle branches, Purkinje fibers, and working ventricular myocytes.

• The electrocardiogram (ECG) is recorded from the surface of the body and traces the conduction of the cardiac impulse through the heart.

Page 47: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Electrical Properties of the Heart Quiz

Page 48: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Thank you for completing this module

Questions? [email protected]

Page 49: ELECTRICAL PROPERTIES OF THE HEART Sandor Gyorke, Ph.D. Office: DHLRI 507 Telephone: 292-3969 Email: sandor.gyorke@osumc.edu.

Survey

We would appreciate your feedback on this module. Click on the button below to complete a brief survey. Your responses and comments will be shared with the module’s author, the LSI EdTech team, and LSI curriculum leaders. We will use your feedback to improve future versions of the module.

The survey is both optional and anonymous and should take less than 5 minutes to complete.

Survey