Top Banner
Electric Forces and Fields Section 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric Charge Section 2 Electric Force Section 3 The Electric Field
48

Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Jan 12, 2016

Download

Documents

Jonah Casey
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Preview

Section 1 Electric Charge

Section 2 Electric Force

Section 3 The Electric Field

Page 2: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

The student is expected to:TEKS

5E characterize materials as conductors or insulators

based on their electrical properties

Page 3: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

What do you think?

• In the top picture, the girl has rubbed the balloon on her hair, and now there is a force of attraction between them. Normally, a balloon and hair would not attract each other. • What happened to each to produce this

force?

• In the lower picture, the two balloons are repelling each other. • How was this force of repulsion produced?

Page 4: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

What do you think?

• Suppose that after this balloon is rubbed against the girl’s hair, it is held against the wall. It will be attracted to the wall and stick to it. • Explain why the balloon is

attracted to the wall.• Why does it eventually fall?

Page 5: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Electric Charge

• There are two types of charge, positive and negative.

• Like charges repel.– Positive and positive– Negative and negative– The two balloons

• Opposite charges attract.– Positive and negative– The balloon and the hair.

Page 6: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Transferring Electric Charge• Atoms have smaller particles called protons

(+ charge), neutrons, and electrons (- charge).– Number of protons = number of electrons

• Atoms are neutral (no net charge).

– Electrons are easily transferred from one atom to another.

• Protons and neutrons remain in nearly fixed positions.

• When rubbing a balloon on your hair, electrons are attracted to the balloon and transfer.– The balloon is left with excess electrons (- charge).– The hair is left with an equal excess of protons (+

charge).

Page 7: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Millikan Oil Drop Experiment

• Millikan sprayed oil drops between charged metal plates.• The oil drops were negatively charged by friction.• By adjusting the voltage on the plates, he could make

the drops rise and fall.

Page 8: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Millikan’s Results• Millikan found that the amount of charge on objects was

always a multiple of some fundamental charge (e).• In other words, charge is quantized.

– e turned out to be the amount of charge on an electron.• e = 1.602176 10-19 coulombs• Coulomb is the SI unit of charge.

Page 9: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Click below to watch the Visual Concept.

Visual Concept

Millikan's Oil Drop Experiment

Page 10: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Coulombs and Electrons

• -1.60 10-19 C/electron

• 6.25 1018 electrons/C

• 5.69 10-12 kg– about 5 billionths of a gram

• What amount of charge does a single electron carry?

• How many electrons are needed to produce an amount of charge equal to -1.00 C?

• What is the mass of this number of electrons?

Page 11: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Conductors and Insulators

• What is meant by the term electrical conductor?– Provide a few examples.

• What is meant by the term electrical insulator?– Provide a few examples.

• Why do conductors and insulators behave differently?

• Conductors allow electrons to flow freely through them.– Silver, copper, aluminum, and

other metals

• Electrons do not flow freely though insulators.– Plastic, rubber, glass

• Outer electrons in metals are loosely bound to the nucleus and relatively free to move.

Page 12: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Charging by Contact

• Both insulators and conductors can be charged by contact.– Rubbing two materials together results in a transfer of

electrons.– When charging metal, the charge may move through

your body into the ground.• The metal and your body are conductors, so the charge

moves through them.• You must hold the conductor with an insulating material, such

as rubber gloves, to keep the charge on the metal.

Page 13: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Charging by Induction

• A charged rod is held near a metal sphere. Why do the charges in the metal arrange themselves as shown?

• The metal sphere is connected to the ground with a conductor. Why did some of the electrons move off the sphere?

Page 14: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Charging by Induction

• The conductor connecting the sphere to ground is removed. What type of net charge does the sphere now possess?

• The negatively charged rod is removed. Why do the charges move into the positions shown?

Page 15: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Surface Charges• Why does a charged balloon stick

to the wall?• A positive surface charge is

induced on the wall by the negatively-charged balloon.– Electrons shift within atoms due to

attraction or repulsion.– The insulator does not have a net

charge. • The diagram shows the opposite

case.• Why can a charged comb pick up

little pieces of paper?

Page 16: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Now what do you think?

• In the top picture, the girl has rubbed the balloon on her hair, and now there is a force of attraction between them. Normally, a balloon and hair would not attract each other. • What happened to each to produce this

force?

• In the lower picture, the two balloons are repelling each other. • How was this force of repulsion produced?

Page 17: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 1

© Houghton Mifflin Harcourt Publishing Company

Now what do you think?

• Suppose that after this balloon is rubbed against the girl’s hair, it is held against the wall. It will be attracted to the wall and stick to it. • Explain why the balloon is

attracted to the wall.• Why does it eventually fall?

Page 18: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 2

© Houghton Mifflin Harcourt Publishing Company

The student is expected to:TEKS

5A research and describe the historical development

of the concepts of gravitational, electromagnetic,

weak nuclear, and strong nuclear forces

5C describe and calculate how the magnitude of the

electrical force between two objects depends on their

charges and the distance between them

5D identify examples of electric and magnetic forces

in everyday life

Page 19: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 2

© Houghton Mifflin Harcourt Publishing Company

What do you think?

• Electric forces and gravitational forces are both field forces. Two charged particles would feel the effects of both fields. Imagine two electrons attracting each other due to the gravitational force and repelling each other due to the electrostatic force. • Which force is greater?

• Is one slightly greater or much greater than the other, or are they about the same?

• What evidence exists to support your answer?

Page 20: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 2

© Houghton Mifflin Harcourt Publishing Company

Coulomb’s Law

• The force between two charged particles depends on the amount of charge and on the distance between them.– Force has a direct relationship with both charges.– Force has an inverse square relationship with distance.

Page 21: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 2

© Houghton Mifflin Harcourt Publishing Company

Coulomb’s Law

• Use the known units for q, r, and F to determine the units of kc.

– kc = 8.99 109 N•m2/C2

• The distance (r) is measured from center to center for spherical charge distributions.

Page 22: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 2

© Houghton Mifflin Harcourt Publishing Company

Classroom Practice Problem

• The electron and proton in a hydrogen atom are separated, on the average, a distance of about 5.3 10-11 m. Find the magnitude of both the gravitational force and the electric force acting between them.– Answer: Fe = 8.2 10-8 N, Fg = 3.6 10-47 N

• The electric force is more than 1039 times greater than the gravitational force. – Atoms and molecules are held together by electric

forces. Gravity has little effect.

Page 23: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 2

© Houghton Mifflin Harcourt Publishing Company

Classroom Practice Problem

• A balloon is rubbed against a small piece of wool and receives a charge of -0.60 C while the wool receives an equal positive charge. Assume the charges are located at a single point on each object and they are 3.0 cm apart. What is the force between the balloon and wool?

• Answer: 3.6 N attractive

Page 24: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 2

© Houghton Mifflin Harcourt Publishing Company

Superposition Principle

• The net force on a charged object is the sum of all of the forces due to other charged objects.

• Charge q3 shown has two forces acting on it.– q2 pulls to the left.

– q1 pushes up and to the right.

• The vector sum is shown in the lower diagram.

Page 25: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 2

© Houghton Mifflin Harcourt Publishing Company

Classroom Practice Problem

• Two charges, q1 and q2, lie on the x-axis. The first charge is at the origin and the second charge is at x = 1.0 m. Determine the force on a third charge, q3, placed at x = 0.75 m. The charges are as follows:

q1 = +10.0C , q2 = +7.5C, q3 = -5.0C

• Answer: Fleft = 0.80 N and Fright= 5.4 N, so Fnet

= 4.6 N to the right

Page 26: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 2

© Houghton Mifflin Harcourt Publishing Company

Electric Force

• Like gravity, the electric force is a field force.• Similarities

– Both forces are related to distance in the same way.

• Differences– Two types of charge and only one type of mass– Electric forces can attract or repel while gravity only

attracts.– Electric forces are far stronger than gravitational

forces.

Page 27: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 2

© Houghton Mifflin Harcourt Publishing Company

Coulomb’s Apparatus

• Coulomb developed his law using a torsion balance like that shown.

• He measured the force between the two charged spheres by the amount of twisting in the wire.

Page 28: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 2

© Houghton Mifflin Harcourt Publishing Company

Now what do you think?

• Electric forces and gravitational forces are both field forces. Two charged particles would feel the effects of both fields. Imagine two electrons attracting each other due to the gravitational force and repelling each other due to the electrostatic force. – Which force is greater?

• Is one slightly greater or much greater than the other, or are they about the same?

• What evidence exists to support your answer?

Page 29: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

The student is expected to:TEKS

5C describe and calculate how the magnitude of the

electrical force between two objects depends on their

charges and the distance between them

5E characterize materials as conductors or insulators

based on their electrical properties

Page 30: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

What do you think?• In the chapter “Circular Motion and

Gravitation,” you learned about the gravitational field (g). The diagram shows the “g” field around Earth.

• In this section, we will study the electric field (E) around charged particles. On the next slide are three different diagrams. Make a sketch of the “E” field for each charge or combination of charges.

Page 31: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

What do you think?

• Make a sketch of the “E” field for each charge or combination of charges.– How are your sketches

similar?– How are they different? – Explain.

Page 32: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Electric Field Strength• Electric fields (E) have magnitude and direction.

– The direction is defined as the direction of the force on a small, positive test charge (q0) placed in the field caused by Q.

– The magnitude of the field is defined as the force per unit charge on q0.

0

electricFE

q

Page 33: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Click below to watch the Visual Concept.

Visual Concept

Electric Fields and Test Charges

Page 34: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Test Charges

• A small test charge will not significantly affect the field.

• Test charges will always be considered small enough to have no effect on the field.

• If the test charge (q0) is large, it will affect the way the charges are distributed on the charged conductor.

– This would change the field around the conductor.

Page 35: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Electric Field Strength• Combine Coulomb’s law with

the definition of electric fieldto derive an equation for Edue to a point charge.

• SI unit: N/C• The field strength does not depend on the test charge.

02

0 0

electricC

F qqE k

q r q

Page 36: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Sample Electric Field Strengths

Page 37: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Classroom Practice Problems

• An electric field around a charged object is 5.95 106 N/C at a distance of 0.100 m. Find the charge on the object.– Answer: 6.62 10-6 C or 6.62 C

• Suppose a small test charge of 0.200 C was placed at the point that is 0.100 m from the charged object. What force would be exerted on the test charge and on the object?– Answer: 1.19 N for both test charge and object

Page 38: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Classroom Practice Problems

• A charge q1 = 4.50 C experiences an attractive force of 1.35 N at a distance of 0.150 m from a charged object, q2. Find the strength of the electric field due to q2 at a distance of 0.150 m from q2.– Answer: 3.00 105 N/C

• Find the charge, q2.– Answer: 0.751 C

Page 39: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Electric Field Lines - Rules

• Apply the above rules and sketch the E field around the charge shown.

Page 40: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Electric Field Lines - Rules

• Apply the above rules and sketch the E field around the charge shown.

Page 41: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Electric Field Lines - Rules

• Apply the above rules and sketch the E field around the charge combination shown.

Page 42: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Electric Field Lines - Rules

Page 43: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Electric Field Lines - Rules

• Apply the above rules and sketch the E field around the charge combination shown.

Page 44: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Electric Field Lines - Rules

Page 45: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Click below to watch the Visual Concept.

Visual Concept

Rules for Drawing Electric Field Lines

Page 46: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Click below to watch the Visual Concept.

Visual Concept

Rules for Sketching Fields Created by Several Charges

Page 47: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Electrostatic Equilibrium

• Electrostatic equilibrium occurs in conductors when no net motion of charges exists within the conductor.

• Charges in a conductor are free to move, but are not moving when equilibrium exists.– The rules below result from this fact.

Page 48: Electric Forces and FieldsSection 1 © Houghton Mifflin Harcourt Publishing Company Preview Section 1 Electric ChargeElectric Charge Section 2 Electric.

Electric Forces and Fields Section 3

© Houghton Mifflin Harcourt Publishing Company

Now what do you think?

• What is an electric field?• When sketching electric fields, what information

is conveyed by the direction of the field lines?• When sketching electric fields, what information

is conveyed by the density of the field lines?• Why must electric field lines just outside a

conductor be perpendicular to the conductor?