Top Banner
ELEC 321 Introduction to Semiconductor Materials and Devices
76

ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

May 02, 2018

Download

Documents

truongnga
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

ELEC 321

Introduction to SemiconductorMaterials and Devices

Page 2: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

INTRODUCTION

• The Information Age requires faster, more accurate and less expensive information as the main foundation of new technologies.

• Solid State Electronic and Optoelectronic Devices are designed to receive, process and transmit information, and are the main building blocks to construct the Information Highway.

• Advances could not have been accomplished without semiconductorspresent in all electronic and optoelectronic devices

• The purpose of this course is to provide a good understanding ofphysical properties of semiconductor materials and microelectronic devices which is essential for future electrical engineers

Page 3: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Conductivities in Materials

• Superconductors• Conductors• Semiconductors• Insulators

Page 4: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Why Semiconductors?

• Semiconductors are used in Design and Structures of almost all Solid State Electronics and Optoelectronics Devices.

• These are possible by controlling the electron behavior in solids.

Page 5: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Application of Semiconductors

• Electronic Devices/equipments• Optoelectronic Devices/equipments• MEMS• Nanodevices• NEMS

Page 6: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Classification of Devices

• Combination of Electrics and Mechanics form Micro/Nano-Electro-Mechanical Systems (MEMS/NEMS)

• Combination of Optics, Electrics and Mechanics form Micro/Nano-Opto-Electro-Mechanical Systems (MOEMS/NOEMS)

Optical Electronics

Mechanical

MEMS

MOEMS

Page 7: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Micro/ Nanotechnology

1/4/2005 ECE, Concordia 7

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3

Scale (meters)

Atom DNA

NEMS

Nano manipulation

NanotubeFET

TR on ICBacteria

Human hair

Ant’s eye segment

MEMS

Page 8: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Electronic Devices• Electronics components: logic gates, adders, counters,

multiplexers• Passive: resistors, capacitors, • Active: amplifiers, transistors, diode,• Circuit boards • Analog circuits• Digital circuits• Integrated devices: Microprocessors, Digital signal

processor (DSP), Field programmable gate array (FPGA)• Electronic equipments: Computers. TV, calculators,

Page 9: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Microelectronic ComponentsDiodes

Transistors

Capacitors

Memories

Amplifiers

Switches

Analog & Digital IC

Page 10: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Microelectronics

Page 11: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Schematic illustration of the the structure of a double heterojunction stripecontact laser diode

Oxide insulator

Stripe electrode

SubstrateElectrode

Active region where J > Jth.(Emission region)

p-GaAs (Contacting layer)

n-GaAs (Substrate)

p-GaAs (Active layer)

Currentpaths

L

W

Cleaved reflecting surfaceEllipticallaserbeam

p-AlxGa1-xAs (Confining layer)

n-AlxGa1-xAs (Confining layer) 12 3

Cleaved reflecting surface

Substrate

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

Optical Sources; Laser, LED

Switches

Photodiodes

Photodetectors

Solar Cells

Optoelectronic Devices

Page 12: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

MEMS

Page 13: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

MEMS

Hinged positionable mirror

Page 14: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Surface Micromachining

Page 15: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Integrated MEMS Technology

•Sensors + Actuators + Decision/Control units, all on one chip.

Page 16: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Anisotropic Wet Etching

Page 17: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Wet Etching (cont..)

Isotropic Etching• All Directions are etched at the

same rate

Anisotropic Etching• Different directions are etched at

different etch rates• Different structures can be

fabricated

Page 18: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

• Anisotropic etching of silicon is one of the key technologies for the fabrication of MEMS/microsystems.

• 3D geometric shapes limited by flat surfaces are formed in the bulk of silicon. Examples: cavities, grooves, and channels.

MEMS heater showing an active free standing membrane released by anisotropic etching.

ConnectionsMembrane

Heater

Cavity

fiber optic

clip SiN

cavity

Fiber optics alignment in grooves of silicon

Better control of the technique is necessary to achieve more complex structures.

Page 19: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Nano Devices

Page 20: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information
Page 21: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

The mentioned textured silicon was electrochemically etched using the same anodization conditions as sampl#7 (I=85mA, t=30min (all conditions are kept constant)).

Silicon nano-rods were fabricated on the tip of the pyramidal porous silicon structure with diameter of 200nm and length of 800nm.

Figure 22-a: Cross section of pyramidal PS fabricated on Si surface of high-concentration hillocks-sample#10.

Figure 22-b: Cross section of one pyramid from sample#10. This image is representing a silicon nano-rod.

This structure is of potential for photovoltaic applications. The nano-rods with sharp tips can be also used as AFM probes. 21

Page 22: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Semiconductor NanoparticlesSemiconductor NanowiresQuantum Dots

• They have potential applications in a number of areas:

• Healthcare and Life Science• Information and Communication Technologies,

Energy applications, solar cells.• Fine Chemicals.• Sensors (chemical, biological, mechanical,…)

Page 23: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Type of Semiconductors

• Simple Semiconductors• Compound Semiconductors• Direct Band gap• Indirect Band gap

Page 24: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Some Properties of Some Important Semiconductors

Compound Eg Gap(eV) Transition λ(nm) BandgapDiamond 5.4 230 indirectZnS 3.75 331 direct

ZnO 3.3 376 indirect

TiO2 3 413 indirect

CdS 2.5 496 direct

CdSe 1.8 689 direct

CdTe 1.55 800 direct

GaAs 1.5 827 direct

InP 1.4 886 direct

Si 1.2 1033 indirect

AgCl 0.32 3875 indirect

PbS 0.3 4133 direct

AgI 0.28 4429 direct

PbTe 0.25 4960 indirect

Page 25: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Required Knowledge and Background

• In order to understand the behaviour of electrons in solid state materials and how to control them, we need to study the materials structures, and the physics that describe the states of electrons in semiconductors. For this we will go through,

• An introduction to Crystal Structures• An introduction to Quantum Mechanics• A touch of Statistical Physics• Electrons in Solid State Materials• Carrier Transport in Semiconductors• Semiconductors in Equilibrium/Non-Equilibrium States• Basis Structure of pn Junctions (which is the foundation of

almost all electronic and optoelectronic devices).

Page 26: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Silicon Production

• Produced silicon at this stage is 98% pure and is called Metallurgical Grade Silicon (MGS).

• For electronic purposes very high pure silicon - Electronic Grade Silicon (EGS) is needed.

• To obtain EGS from MGS the following reactions are used:

)()()()()( 180016002 gasCOgasSiOliquidSisolidSiOsolidSiC C ++⎯⎯⎯⎯ →⎯+ °−

heatHgasSiHClgasHClsolidSi C ++⎯⎯ →⎯+ °23

300 )()(3)(

)(6)(2)(2)(2 23 gasHClsolidSigasHgasSiHCl +→+

The above process is called chemical vapour deposition (CVD) and the produced Si is polycrystalline and 99.999% pure.

Page 27: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Silicon Wafer

• Type– n-type (e.g.,As,P, Bi

doping)– P-type (B, Ga, In doping)

• Orientation

– {100}, {111},…

Page 28: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Crystals

• An IDEAL CRYSTAL is constructed by infinite repetition of identical structure units in space.

• A LATTICE represents a set of points in space that form a periodic structure, where each point sees the same environment. A building block of atoms called the BASIS is then attached to each lattice point yielding the crystal structure.

LATTICE + BASIS = CRYSTAL STRUCTURE• Identical structure units that have small volume are called UNIT CELL• The smallest unit cell is called PRIMITIVE CELL and the cell that is

most convenient to study crystal structures is called CONVENTIONAL UNIT CELL.

• Unit cells contain all the structural and physical properties of the crystal and ARE NOT unique entities.

Page 29: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Example of two-dimensional unit cell structure:

A D

CB

a

b

In the 2D lattice above, the unit cell is represented as ABCD and any point in the lattice can be represented using the basis vectors a and b:

R = pa + qb, p, q are integers

For a 3D lattice there are three basis vectors so that:

R = pa + qb + sc, p, q, s are integers

Page 30: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Cubic P Cubic I Cubic F

Tetragonal P Tetragonal I

Orthorhombic P

Orthorhombic C

Orthorhombic I Orthorhombic F

Monoclinic P Monoclinic C Triclinic

Trigonal R Trigonal and Hexagonal R

a

c

b

γ

β

α

Page 31: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Common Planes

• {100} Plane• {110} Plane• {111} Plane

a

aa – Lattice ConstantFor Silicon

a = 5.34 Ao

Two Interpenetrating Face-Centered Cubic LatticesSilicon – Diamond Structure

Page 32: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Principles of Quantum Mechanics

The principle of Energy Quanta:• Experiments which showed inconsistency between

experimental results and classical theories.– Thermal Radiation– Hydrogen Atoms– Photoelectric Effect

Page 33: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Principles of Quantum Physics– Planck’s postulate in 1900 that

radiation from a heated sample is emitted in discrete units of energy, called quanta.

– Einstein in 1905 interpreted the photoelectric results by suggesting that the energy in a light wave is also contained in discrete packets. The particle-like packet of energy is called photon.

(Planck’s Constant)

sJhhE .10625.6 34−×== ν

Page 34: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Wave-Particle Duality Principle:

• Photoelectric Effect• Compton Effect• Diffraction pattern by electrons

Since waves behave as particles, then particles should be expected toshow wave-like properties.

• De Broglie hypothesized that the wavelength of a particle can beexpressed as

• The momentum of a photon is then: p = h/λ

ph

=λλ = de Broglie wavelength

p = momentum of the particle

Page 35: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

The Uncertainty Principle (Heisenberg)

• It is impossible to simultaneously describe with absolute accuracy the position (energy) and momentum (instant of time) of a particle.

• ħ is very small so this principle only applies to very small particles

Quantum Mechanics does not predict a deterministic course of events, but rather the probabilities of various alternative possible events.

sJhxp .10054.12

34−×==≥ΔΔπ

hh

Page 36: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

• Postulate I: (in one-dimensional system)– There exists a state function Ψ(x;t) which contains all the measurable

information about each particle of a physical system. Ψ(x;t) is also called wave function.

• Postulate II:– Every dynamical variable has a corresponding operator. This operator is

operated on the state function to obtain measurable information about the system.

– In a one-dimensional system:

Dynamical Variable Quantum Mechanic OperatorPosition x XX ≡ˆ

Momentum px XJPx ∂

∂≡hˆ

Total Energy E tJE

∂∂

−≡hˆ

Potential Energy V(x) )()(ˆ xVxV ≡

Page 37: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

• Postulate III:– The state function Ψ(x;t) and its space derivative ∂Ψ/∂x must be

continuous finite and single-valued for all values of x.– The state function must be normalized i.e.

– Ψ* is the complex conjugate of Ψ. Obviously Ψ Ψ* is a positive and real number and is equal to /Ψ/².

– Assume a single particle-like electron; then Ψ Ψ* is interpreted as the statistical probability that the particle is found in a distance element dx at any instant of time. Thus Ψ Ψ* represents the probability density.

1=ΨΨ∫∞

∞−

∗dx

For a three dimensional system Ψ Ψ* dτ represents the probability density. dτ is an element of volume about the point where Ψ and Ψ* are determined.

Page 38: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

• The average value ⟨Q⟩ of any variable corresponding to the state function Ψ is given by expectation value:

• ⟨Q⟩ is the expected value of many observations.

• Once the state function corresponding to any particle was found, it was possible to calculate the average position, energy and momentum of the particle within the limit of the uncertainty principle.

∫∞

∞−

∗ ΨΨ= τdQQ ˆ

Page 39: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Principles of QM

• Schrodinger Wave Equation• Physical meaning and its application• Some examples: infinite potential well,

potential step function, potential barrier…• Tunneling Effect

Page 40: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Quantum Well

2

222

2manEn

h π=

Page 41: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

222

4

2)4( n

qmE

o

on

hπε

−=

0/2/3

0100

11 arqa

−⎟⎟⎠

⎞⎜⎜⎝

⎛=

πψ

One Electron Atom

Page 42: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Energy band structure in solids

Page 43: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

1s

2s

2p

1s

2s

2p

1s

2s

2p

1s

2s

2p

1s

The potential wells due to the interactions between 2 atoms (in one molecule). Some

electrons are shared between the atoms. Due to the interactions between electrons-

electrons, nucleons-nucleons, and electrons-nucleons, the energy levels split, creating 1s,

2s, 2p,… doublets.

The potential experienced by an electron due to the coulombinteractions around an atom. 1s, 2s, 2p,… are the energy

levels that the electron can occupy.

Larger molecules, larger splitting.

In Solid with n≈ 1023 atoms, the sublevels are extremely close to each other. They coalesce and form an energy band. 1s, 2s, 2p… energy bands.

Page 44: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information
Page 45: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Periodical Potential

r

r

Non-Periodical Potential

r

r

)(rV

2)(rΨ

)(rV

2)(rΨ

jkrerur ⋅=Ψ )()(

Page 46: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

The Kronig-Penney Model

Page 47: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information
Page 48: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information
Page 49: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information
Page 50: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

The Concepts of:

1) Effective Mass

*2

2

2

11mdk

Ed=

h

2) Negative Mass

3) Positive charge

4) Holes

Page 51: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Atomic Bonding in Semiconductors

Page 52: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information
Page 53: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Concept of positive charges in solids (holes)

Page 54: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information
Page 55: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

EEhm

Eg

EEhmEg

vp

v

cn

c

−=

−=

3

2/3*

3

2/3*

)2(4)(

)2(4)(

π

π

Density of State.

Electrons Distribution.

Page 56: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

⎟⎠⎞

⎜⎝⎛ −

+=

kTEE

EfF

F

exp1

1)(

Fermi-Dirac Distribution:

E EF

0

1/2

1.0

T = 0

T = T1

T = T2 > T1

The Fermi probability function versus energy for differential temperatures.

Page 57: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

nn

⎥⎦⎤

⎢⎣⎡ −−

=kT

EENp vFv

)(exp0

⎥⎦⎤

⎢⎣⎡ −−

=kT

EENn Fccc

)(exp)()()( EfEgEN F=

)()()( EfEgEN F=

Page 58: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

I Intrinsic Semiconductors:A pair of an electron and a hole (EHP) is generated due to the thermal excitation.

Conduction electron+4

Si+4Si

+4Si

+4Si

+4Si

+4Si

+4Si

+4Si

+4Si

Eg

Ec

Ev

Ef

Valance hole

Electron and hole pairs (EHP) are generated due to the thermal excitation. no is the electron density (number of electrons / cm3), po is the hole density (number of holes / cm3) . for intrinsic materials no = po = ni . For silicon ni = 1.5 x 1010 and for GaAsni = 106 .

Page 59: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Extrinsic Semiconductors:

+5As

+4Si

+4Si

+4Si

+4Si

+4Si

+4Si

+4Si

+4Si

Eg

Ec

Ev

Ef

Ed

Conduction electron

N - Type

Page 60: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

+3Al

+4Si

+4Si

+4Si

+4Si

+4Si

+4Si

+4Si

+4Si

Eg

Ec

Ev

Ef

Valence hole

Ea

In Extrinsic Materials, electrons and holes are generated by doping materials with impurities. n is the electron density and p will be hole density in the crystals. For n>p (crystals have electron-majority, hole-minority) the crystal is called n-type. For p>n ( crystals have hole-majority and electron-minority) the crystal is called p-type.

P - Type

Page 61: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

⎥⎦⎤

⎢⎣⎡ −−

=kT

EEnp FiFi

)(exp0 ⎥⎦⎤

⎢⎣⎡ −

=kT

EEnn FiFi

)(exp0

Page 62: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information
Page 63: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information
Page 64: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Concept of donors, acceptors

Page 65: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information
Page 66: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information
Page 67: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information
Page 68: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Carrier Transport:

Current in Semiconductors: (Drift, Diffusion, Carriers Recommendation, Carriers Generation)

Drift Current:

EpnqJ pndrf )( μμ +=

Page 69: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Diffusion current:

dxdpqDJ

dxdnqDJ

ppdif

nndif

−=

=

Page 70: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

)()(dxdpD

dxdnDqEpnqJ pnpntotal −++= μμ

Under Equilibrium Condition J(total) = 0.

qkTDD

p

p

n

n ==μμ

Einstein Relation

kT/q at room temperature = 0.0259 V

Page 71: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

ponopn

tntnRRτδ

τδ )()(

===

Page 72: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information
Page 73: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

tnng

xEn

xnE

xnD

tppg

xEp

xpE

xpD

nnnn

pppp

∂∂

=−+∂∂

+∂∂

+∂∂

∂∂

=−+∂∂

+∂∂

−∂∂

τμ

τμ

)(

)(

2

2

2

2

Continuity Equations

Page 74: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

Surface Effects

Page 75: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

pn Junction, diode structure

Page 76: ELEC 321 - users.encs.concordia.causers.encs.concordia.ca/~mojtaba/ELEC321-overview.pdfELEC 321 Introduction to Semiconductor Materials and Devices INTRODUCTION • The Information

pn junction under biased conditions