Top Banner
ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar ECE Dept., Rice University September 29, 2009
21

ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

Dec 28, 2015

Download

Documents

Emily Lamb
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

ELEC 303 – Random Signals

Lecture 11 – Derived distributions, covariance, correlation and convolution

Dr. Farinaz KoushanfarECE Dept., Rice University

September 29, 2009

Page 2: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

Lecture outline

• Reading: 4.1-4.2• Derived distributions• Sum of independent random variables• Covariance and correlations

Page 3: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

Derived distributions

• Consider the function Y=g(X) of a continuous RV X

• Given PDF of X, we want to compute the PDF of Y

• The method– Calculate CDF FY(y) by the formula

– Differentiate to find PDF of Y

Page 4: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

Example 1

• Let X be uniform on [0,1]• Y=sqrt(X)• FY(y) = P(Yy) = P(Xy2) = y2

• fY(y) = dF(y)/dy = d(y2)/dy = 2y 0 y1

Page 5: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

Example 2

• John is driving a distance of 180 miles with a constant speed, whose value is ~U[30,60] miles/hr

• Find the PDF of the trip duration?• Plot the PDF and CDFs

Page 6: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

Example 3

• Y=g(X)=X2, where X is a RV with known PDF• Find the CDF and PDF of Y?

Page 7: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

The linear case

• If Y=aX+b, for a and b scalars and a0

• Example 1: Linear transform of an exponential RV (X): Y=aX+b– fX(x) = e-x, for x0, and otherwise fX(x)=0

• Example 2: Linear transform of normal RV

Page 8: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

The strictly monotonic case

• X is a continuous RV and its range in contained in an interval I

• Assume that g is a strictly monotonic function in the interval I

• Thus, g can be inverted: Y=g(X) iff X=h(Y)• Assume that h is differentiable• The PDF of Y in the region where fY(y)>0 is:

)())(()( ydy

dhyhfyf XY

Page 9: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

More on strictly monotonic case

Page 10: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

Example 4

• Two archers shoot at a target• The distance of each shot is ~U[0,1],

independent of the other shots• What is the PDF for the distance of the losing

shot from the center?

Page 11: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

Example 5

• Let X and Y be independent RVs that are uniformly distributed on the interval [0,1]

• Find the PDF of the RV Z?

Page 12: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

Sum of independent RVs - convolution

Page 13: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

X+Y: Independent integer valued

Page 14: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

X+Y: Independent continuous

Page 15: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

X+Y Example: Independent Uniform

Page 16: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

X+Y Example: Independent Uniform

Page 17: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

Two independent normal RVs

Page 18: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

Sum of two independent normal RVs

Page 19: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

Covariance

• Covariance of two RVs is defined as follows

• An alternate formula: Cov(X,Y) = E[XY] – E[X]E[Y]

• Properties– Cov(X,X) = Var(X)– Cov(X,aY+b) = a Cov(X,Y)– Cov(X,Y+Z) = Cov(X,Y) + Cov (Y,Z)

Page 20: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

Covariance and correlation

• If X and Y are independent E[XY]=E[X]E[Y]• So, the cov(X,Y)=0• The converse is not generally true!!• The correlation coefficient of two RVs is

defined as

• The range of values is between [-1,1]

Page 21: ELEC 303, Koushanfar, Fall’09 ELEC 303 – Random Signals Lecture 11 – Derived distributions, covariance, correlation and convolution Dr. Farinaz Koushanfar.

ELEC 303, Koushanfar, Fall’09

Variance of the sum of RVs

• Two RVs:

• Multiple RVs