Top Banner
Spring 2010 1 ELCT 604: Electronic Circuits chapter 5: Differential Amplifiers, Current Mirrors and Active Loads (Continued) Associate Prof. Dr. Soliman Mahmoud Faculty of Information Engineering and Technology Electrical and Electronic Department [email protected] Assistant Prof. Dr. Ahmed H. Madian Faculty of Information Engineering and Technology Electrical and Electronic Department ahmed.madian@guc.edu.eg
33
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ElCT604 Ch04 Diff.amp 2 Ver2

Spring 2010 1

ELCT 604: Electronic Circuitschapter 5:

Differential Amplifiers, Current Mirrors

and Active Loads

(Continued)

Associate Prof. Dr. Soliman Mahmoud

Faculty of Information Engineering and Technology

Electrical and Electronic Department

[email protected]

Assistant Prof. Dr. Ahmed H. Madian

Faculty of Information Engineering and Technology

Electrical and Electronic Department

[email protected]

Page 2: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 2

4. Simple Current Source (or Mirror)

Q3 Q4

VCC

Rref

IREF

+

- -

+

VBE3VBE4

IEE

E

IB3 IB4IC3

IC4

►The simplest form of a current mirror

consists of two transistors. The shown

Figure shows a bipolar version of this

mirror. Transistor Q3 is diode connected,

forcing its collector-base voltage to zero. In

this mode, the collector-base junction is off

and Q3 operates in the active region.

► Assume that Q4 also operates in the

forward-active region. Then IEE= IC4 is

controlled by VBE4, which is equal to VBE3

by KVL. (VBE4 = VBE3)

)ln(4

44

Co

CTBE

I

IVV )ln(

3

33

Co

CTBE

I

IVV =

► If the transistors are identical, ICO3 = ICO4 and from the above equation shows that the current

flowing in the collector of Q3 is mirrored to the collector of Q4 ( IC4=IC3).

Page 3: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 3

4. Simple Current Source (or Mirror)

Q3 Q4

VCC

Rref

IREF

+

- -

+

VBE3VBE4

IEE

E

►By applying KCL at node (1)

IEE/βIEE IEE/β

(1)EE

EEREF

III

2

)2

1(

REFEE

II

Where

ref

CC

ref

BECCREF

R

V

R

VVI

)7.0()( 3

ifREFEE II

Page 4: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 4

Complete Differential Amplifier with

actual Current SourceVCC

RC RC

1iv 2iv

ICMDC VV 1 ICMDC VV 2

Q1 Q2

1ov 2ovRref

Q4Q3

IEE

IREF

Page 5: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 5

5. Active LoadsThe differential mode gain Adm is given by :

)*(1

CC

T

CmBJTdm RIV

RgA

To achieve large voltage gain, the above equations shows that the

product must made large which in turn requires a large power-supply voltage.

Furthermore, large values of resistance are required. As a result the required die

area for the resistors can be large.

To overcome this problem and provide large gain without large power supply

voltages or resistances, the ro of a transistor can be used as a load element.

Since the load element in such a circuit is a transistor instead of a resistor,

the load element is said to be active load.

BJTCC RI )*(

Page 6: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 6

Q1

VCC

vi

vout

Q2Q3

Rref

Rin

Rout

Q1

VCC

vi

vout

Vbias

(DC Voltage)Q2

Rin

Rout

CE with Resistive Load CE with Active Load biased

by a DC voltage

CE with Active Load biased

by a current source

Example: Active load Active loadBiasing of Active load

≡ ro2

Q1

VCC

RL

vi

vout

Rin

Rout

1rRin 1// oLout rRR

1

1)//(

r

rR

v

v oLn

in

out

& 1rRin 12 // ooout rrR

1

12 )//(

r

rr

v

v oon

in

out

& 1rRin 12 // ooout rrR

1

12 )//(

r

rr

v

v oon

in

out

&

Page 7: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 7

Complete Differential Amplifier with Actual

Current Source and Active LoadsVCC

1iv 2iv

ICMV

ICMV

Q1 Q2

1ov 2ovRref1

Q4Q3

IEE

IREF1

Q5Q6Q7

IREF2

Rref2

Circuit Description:

1. Q1 and Q2 :

Differential pair transistors

2. Q3, Q4 and Rref1:

Current source of the

differential pair transistors

3. Q5, Q6, Q7 and Rref2 :

Active loads and the

biasing of the active loads

Page 8: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 8

Differential input- Single ended output Amplifier with

Actual Current Source and Active Loads

VCC

inv

ICMV

Q1 Q2

ovRref1

Q4Q3

IEE

IREF1

Q5 Q6

+

-

Circuit Description:

1. Q1 and Q2 :

Differential pair transistors

2. Q3, Q4 and Rref1:

Current source of the

differential pair transistors

3. Q5 and Q6:

Active loads and the

biasing of the active loads

Page 9: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 9

Example:

For the shown differential input–

single output amplifier, find:

1. The input resistance

2. The output resistance

3. The ac output current

4. The transconductance Gain

5. The voltage Gain

Assumptions:

1. Q1, Q2 are matched

2. Q3, Q4 are matched

3. Q5, Q6 are matched

4. βn and βp are large

Therefore,

2

1

51 62

ref

CCCC

IIIII

refCC III 43

)( 21

21

CC

Anoo

II

Vrr

)( 43

43

CC

Anoo

II

Vrr

)( 65

65

CC

Ap

ooII

Vrr

})(

{ 2121

T

CC

n

V

IIrr

, , and

VCC

inv

ICMV

Q1 Q2

ovRref1

Q4Q3

IEE

IREF1

Q5 Q6

+

-

Rout

Rin

iout

Page 10: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 10

invQ1 Q2

outvRref1

Q4Q3

Q5 Q6

+

-

iout

ro4

Rin

Rout

)1

//()(1( 241

n

onin

rrrR

2121 22 rrrrRin

)})1(

//)(1(//{ 142226

n

oomooout

rrrgrrR

26 2// ooout rrR

1. The input resistance

2. The output resistance

Page 11: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 11

invQ1 Q2

outvRref1

Q4Q3

Q5 Q6

+

-

iout

ib1 βnib1

≈βnib1≈βnib1

≈βnib1

ro4

≈ 0

≈βnib1

≈βnib1

Rin

Rout

3. The ac output current

12 bnout ii

111 2* binbin irRiv

inminn

out vgvr

i 1

1

3. Transconductance gain

1mM

in

out gGv

i

4. Voltage gain

outM

in

outout

in

out RGv

Ri

v

v

Page 12: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 12

Objective:

The objective from this chapter is:

1. Define and characterize MOS differential amplifier.

2. Show the large signal and small signal performance of

MOS differential amplifier.

Outlines(2nd lecture):

1. Large Signal Currents and Voltages Transfer Function

of MOS differential amplifier.

2. Small Signal performance of MOS differential amplifier.

3. Simple MOS Current Source (Or Mirror).

5. MOS Active loads

Differential Amplifiers, Current Mirrors

and Active Loads

Page 13: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 13

1. Large Signal Currents and

Voltages Transfer function of MOS

Differential amplifier

Objectives:

(1)Calculation DC currents ID1 and ID2 as

a function of the biasing current source

ISS and the input differential voltage

Vid=Vi1-Vi2.

(2)Calculation output differential voltage

Vod= Vo1- Vo2 as a function of biasing

current source ISS, drain resistors RD

and input differential voltage Vid=Vi1-

Vi2.

►Consider the following NMOS

differential amplifier (sometimes called an

source-coupled pair)

ISS RSS

ID1 ID2

S

Page 14: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 14

►Assumptions:

1. Assume M1 and M2 are identical and

operating in the saturation region.

Therefore:

2

11 )(2

TGSD VVK

I

KKK 21 TTT VVV 21&

K

IVV DTGS

11

2

&

2

22 )(2

TGSD VVK

I

K

IVV DTGS

22

2

ISS RSS

ID1 ID2

S

Page 15: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 15

The Basic equation of the SCC is :

2211 GSiGSiS VVVVV

Therefore

)(2

212121 DDGSGSidii IIK

VVVVV

Definition:

The currents of M1 and M2 can be written as:

21 DDout III

22

112

)(2

AK

VVK

I TGSD 22

222

)(2

BK

VVK

I TGSD

The output current of the NMOS Differential pair :

&

ISS RSS

ID1 ID2

S

Page 16: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 16

ISS RSS

ID1 ID2

S

Therefore:

))((2

)(2

22 BABAK

BAK

I out

And

SSDD IBAK

II )(2

22

21

idGSGS VVVBA 21

Where

)(2)()( 2222 BABABA

idSS VK

IBA 22 4)(

Note

Therefore:

)/4

1(4)(2

KI

V

K

IBA

SS

idSS )/4

1(2

KI

VVKII

SS

id

idSSout

Page 17: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 17

)/4

1(2

1

2

2

1KI

VVKI

II

SS

id

idSSSS

D

)/4

1(2

1

2

2

2KI

VVKI

II

SS

id

idSSSS

D

Therefore:

)/4

1(2

21KI

VVKIIII

SS

id

idSSDDout

SSDD III 21

and

ISS RSS

ID1 ID2

S

Page 18: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 18

idSSSS

D VKII

I2

1

22

Notes:

The nonlinear term of output current can be neglected and the output

current is given by:

idSSout VKII and

idSSSS

D VKII

I2

1

21

2. If K

IV SSid

2

K

IV SSid

21. At 0& 21 DSSD III

K

IV SSid

2 SSDD III 21 &0

(M1 is ON & M2 Is Off)

(M1 is Off & M2 Is ON)

)/4

1(2

1

2

2

1KI

VVKI

II

SS

id

idSSSS

D )/4

1(2

1

2

2

2KI

VVKI

II

SS

id

idSSSS

D &

Page 19: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 19

Source-coupled pair Drain currents as a function of differential input voltage.

)/4

1(2

1

2

2

1KI

VVKI

II

SS

id

idSSSS

D )/4

1(2

1

2

2

2KI

VVKI

II

SS

id

idSSSS

D &

ID1, ID2

ID1ID2

VK

ISS 1.02

VK

ISS 25.02

VK

ISS 5.02

VK

ISS 1.02

VK

ISS 25.02

VK

ISS 5.02

ISS

0.5 ISS

Page 20: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 20

Notes : 3. We can now compute the output voltages as:

DDDDo RIVV 11

DDDDo RIVV 22 DoutDDDod RIRIIV )( 21

id

SS

id

SSDod VKI

VKIRV ])

/41([

2

If K

IV SSid

2 idSSDod VKIRV

Vod

0

ISS RD

- ISS RD

VK

ISS 1.02

VK

ISS 25.02

VK

ISS 5.02

KIRSlope SSD

Page 21: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 21

Optimum DC operating Point

►From the previous Figure, the optimum DC operating for linear operation

between the output and the input differential voltage is at Vid =0.

► At Vid =0, we have

221

SSDD

III

SSorDmm KIKIgg 2121 2

SSorDor

dsdsII

rr

21

2121

21 ,

Page 22: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 22

2. Small-Signal Analysis of MOS-

Differential Amplifiers

Objectives :

(1)Calculation differential

mode gain (Adm)

(2)Calculation common

mode gain (Acm)

(3)Calculation common

mode rejection ratio

(CMRR)

Using Half Circuit Concept

(HCC)

VDD

VSS

ISS RSS

RD RD

1iv 2iv

ICMDC VV 1 ICMDC VV 2

M1 Q2

1ov 2ov

Page 23: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 23

RSS

RD RD

icid

i vv

v 2

1

M1 M2

icid

i vv

v 2

2

ocod

o vv

v 2

1 ocod

o vv

v 2

2

RD RD

2

idv

M1 M2

2

idv

2

odv

2

odv

RD RD

icv

M1 M2

ocv ocv

icv2 RSS 2 RSS

Differential

mode

circuit

Common

mode

circuit

VDD

VSS

ISS RSS

RD RD

1iv 2iv

ICMDC VV 1 ICMDC VV 2

M1 Q2

1ov 2ov

Page 24: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 24

Differential Mode Gain Adm, Common Mode Gain Acm

and Common Mode Rejection Ratio CMRR

RD

2

idv

M1

2

odvrds is neglected

Dm

id

oddm Rg

v

vA

SSm

Dm

ic

occm

Rg

Rg

v

vA

21

RD

icv

M1

ocv

2 RSS

SSm

cm

dm RgA

ACMRR 21

►Note that increasing the output resistance of

the biasing current source improves the

common-mode-rejection ratio

Page 25: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 25

3. Simple Current Source (or Mirror)

M3 M4

VDD

Rref

IREF

+

- -

+

VGS3VGS4

ISS

S

ID3ID4

►The simplest form of a current mirror

consists of two transistors. The shown

Figure shows a NMOS version of this

mirror. Transistor M3 is diode connected,

forcing its Drain-Gate voltage to zero. In

this mode, M3 operates in the sat. region.

► Assume that M4 also operates in the

saturation region. Then ISS= ID4 is

controlled by VGS4, which is equal to VGS3

by KVL. (VGS4 = VGS3)

4

44

2

K

IVV DSTGS

3

33

2

K

IVV DSTGS =

► If the transistors are identical, K3 = K4 and from the above equation shows that the current

flowing in the Drain of M3 is mirrored to the Drain of M4 ( ID4=ID3=Iref).

Page 26: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 26

Complete Differential Amplifier with

actual Current SourceVDD

RD RD

1iv 2iv

ICMDC VV 1 ICMDC VV 2

M1 M2

1ov 2ovRref

M4M3

ISS

IREF

Page 27: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 27

3. Active LoadsThe differential mode gain Adm is given by :

)*(2DDDmMOSdmRIKRgA

To achieve large voltage gain, the above equations shows that the

product must made large which in turn requires a large power-supply voltage.

Furthermore, large values of resistance are required. As a result the required die

area for the resistors can be large.

To overcome this problem and provide large gain without large power supply

voltages or resistances, the rds of a transistor can be used as a load element.

Since the load element in such a circuit is a transistor instead of a resistor,

the load element is said to be active load.

MOSDDRI )*(

Page 28: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 28

M1

VDD

vi

vout

M2M3

Rref

Rin

Rout

M1

VDD

vi

vout

Vbias

(DC Voltage)M2

Rin

Rout

CS with Resistive Load CS with Active Load biased

by a DC voltage

CS with Active Load biased

by a current source

Example: Active load Active loadBiasing of Active load

≡ rds2

M1

VDD

RL

vi

vout

Rin

Rout

inR 1// dsLout rRR

)//( 11 dsLm

in

out rRgv

v

& inR 12 // dsdsout rrR

)//( 121 dsdsm

in

out rrgv

v

& inR 12 // dsdsout rrR

)//( 121 dsdsm

in

out rrgv

v

&

Page 29: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 29

Complete Differential Amplifier with Actual

Current Source and Active LoadsVDD

1iv 2iv

ICMV

ICMV

M1 M2

1ov 2ovRref1

M4M3

IEE

IREF1

M5M6M7

IREF2

Rref2

Circuit Description:

1. M1 and M2 :

Differential pair transistors

2. M3, M4 and Rref1:

Current source of the

differential pair transistors

3. M5, M6, M7 and Rref2 :

Active loads and the

biasing of the active loads

Page 30: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 30

Differential input- Single ended output Amplifier with

Actual Current Source and Active Loads

Circuit Description:

1. M1 and M2 :

Differential pair transistors

2. M3, M4 and Rref1:

Current source of the

differential pair transistors

3. M5 and M6:

Active loads and the

biasing of the active loads

VDD

inv

ICMV

M1 M2

ovRref1

M4M3

ISS

IREF1

M5 M6

+

-

Rout

Rin

iout

Page 31: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 31

Example:

For the shown differential input–

single output amplifier, find:

1. The input resistance

2. The output resistance

3. The ac output current

4. The transconductance Gain

5. The voltage Gain

Assumptions:

1. M1, M2 are matched

2. M3, M4 are matched

3. M5, M6 are matched

Therefore,

2

1

51 62

ref

DDDD

IIIII

143 refDD III

)(

1

2121

21

DDor

dsdsII

rr

)(

1

4343

43

DDor

dsdsII

rr

)(

1

6565

65

DDor

dsdsII

rr

, and

VDD

inv

ICMV

M1 M2

ovRref1

M4M3

ISS

IREF1

M5 M6

+

-

Rout

Rin

iout

Page 32: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 32

inR

)}1

//)(1(//{1

42226

m

dsdsmdsdsoutg

rrgrrR 26 2// dsdsout rrR

1. The input resistance

2. The output resistance

VDD

inv

ICMV

M1 M2

ovRref1

M4M3

IREF1

M5 M6

+

-

Rout

Rin

iout

rds4

Page 33: ElCT604 Ch04 Diff.amp 2 Ver2

Associate Prof. Dr. Soliman Mahmoud & Dr. Ahmed Madian

Electronics and Electrical Engineering Department

ELCT 604, Electronic Circuits

Spring 2007 33

3. The ac output current

112 gsmout vgi

2211 gsmgsm vgvg

21 gsgs vv

3. Transconductance gain

1mM

in

out gGv

i

4. Voltage gain

outM

in

outout

in

out RGv

Ri

v

v

VDD

inv

M1 M2

ovRref1

M4M3

IREF1

M5 M6

+

-

+ v

gs1 - -

v gs2

+

gm1 vgs1

gm1 vgs1 gm1 vgs1

gm1 vgs1

Rout

Rin

iout

rds4

≈ 0

1211 2 gsgsgsin vvvv

inmout vgi 1