Top Banner
Elasticity required when studying plasticity Youngung Jeong
25

Elasticity required when studying plasticity

Mar 15, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Elasticity required when studying plasticity

Elasticity required when studying plasticity

Youngung Jeong

Page 2: Elasticity required when studying plasticity

Constitutive description on elasticity

Elastic constitutive law:π”Όπœ€ = 𝜎 (elastic stiffness 𝔼 = 200 [GPa] )

Elastic constitutive law:𝔼!"#$πœ€#$ = 𝜎!"

Apply it to FORTRAN, (or Python or Excel)

-Exercise 1. [3x1] = [3x3] [3x1]

-Exercise 2. [nx1] = [nxn] [nx1]- (hint): use 𝐴 ! = 𝐡 !" 𝐢 "

Page 3: Elasticity required when studying plasticity

Kronecker delta may appear in formula

π‘Ž = πœ€#$𝛿#$ =1#

1$

πœ€#$𝛿#$ =1$

πœ€%$𝛿%$ +1$

πœ€&$𝛿&$ +1$

πœ€'$𝛿'$

= πœ€%%𝛿%% + πœ€&&𝛿&& + πœ€''𝛿'' =1#

πœ€## =1!

πœ€!! =1$

πœ€$$

= πœ€%% + πœ€&& + πœ€''

Page 4: Elasticity required when studying plasticity

Linear isotropic elasticity

Elastic constitutive law (Hooke’s law):𝔼!"#$πœ€#$ = 𝜎!" (π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘’π‘™π‘Žπ‘ π‘‘π‘–π‘π‘–π‘‘π‘¦)

𝔼!"#$ = πœ†π›Ώ!"𝛿#$ + πœ‡ 𝛿!#𝛿"$ + 𝛿!$𝛿"# (π‘–π‘ π‘œπ‘‘π‘Ÿπ‘œπ‘π‘–π‘ π‘’π‘™π‘Žπ‘ π‘‘π‘–π‘π‘–π‘‘π‘¦; π‘‘π‘€π‘œ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘  πœ†, πœ‡)

Replacing 𝔼!"#$ to the Hooke’s law𝜎!" = 𝔼!"#$πœ€#$ = πœ†π›Ώ!"𝛿#$πœ€#$ + πœ‡ 𝛿!#𝛿"$ + 𝛿!$𝛿"# πœ€#$= πœ†π›Ώ!"πœ€## + πœ‡ 𝛿!#𝛿"$πœ€#$ + 𝛿!$𝛿"#πœ€#$ = πœ†π›Ώ!"πœ€## + πœ‡ 𝛿!#πœ€#" + 𝛿!$πœ€"$= πœ†π›Ώ!"πœ€## + πœ‡ πœ€!" + πœ€"! = πœ†π›Ώ!"πœ€## + 2πœ‡πœ€!"

Page 5: Elasticity required when studying plasticity

Demonstration with Excel

Page 6: Elasticity required when studying plasticity

Examplesβ€’ In order for a material (with πœ† = 115.384 GPa, πœ‡ =76.923 GPa) to exhibit below elastic strain, what stress should be given?

πœ€ =0.002 0 00 βˆ’0.0006 00 0 βˆ’0.0006

β€’ Hint: use β€œπœŽEF = πœ†π›ΏEFπœ€GG + 2πœ‡πœ€EF”

Page 7: Elasticity required when studying plasticity

Linear isotropic elasticity (Young, Poisson)

Elastic constitutive law (Hooke’s law):

πœ€!" =1𝐸 𝜎!" βˆ’ 𝜈 𝜎##𝛿!" βˆ’ 𝜎!"

β€’ If you apply below stress to a material (with 𝐸 = 200 GPa, 𝜈 = 0.3), in what strain tensor will the material exhibit?

𝜎 =200 0 00 0 00 0 0

, the unit of stress is MPa

Notice that a material with 𝐸 = 200 GPa, 𝜈 = 0.3 behaves equivalently with a material with πœ† = 115.384 GPa, πœ‡ = 76.923 GPa

Page 8: Elasticity required when studying plasticity

Demonstration with Excel

Page 9: Elasticity required when studying plasticity

Symmetries; why only two parameters?

β€’ 𝜎!" = 𝜎"! gives 𝔼!"#$ = 𝔼"!#$ thus, the required number of elastic constants reduces from 3x3x3x3 to 6x3x3.

β€’ Similarly, πœ€!" = πœ€"! gives 𝔼!"#$ = 𝔼!"$# so that we have the required of number of constants 6x6=36

The required number of constants can be further reduced. Consider the elastic energy:πœ™ = ∫ 𝜎!"π‘‘πœ€!"

𝜎!" =πœ•πœ™πœ•πœ€!"

= 𝔼!"#$πœ€#$

If we apply partial derivative once again, we have(!)

(*"#(*$%= (

(*"#𝔼!"#$πœ€#$ since 𝔼 is β€˜constant’, we have

πœ•&πœ™πœ•πœ€+,πœ•πœ€!"

= 𝔼!"#$πœ•πœ€#$πœ•πœ€+,

= 𝔼!"#$𝛿#+𝛿$, = 𝔼!"+,

Page 10: Elasticity required when studying plasticity

Symmetries; why only two parameters?

β€’ πœ™ = ∫ 𝜎!"π‘‘πœ€!"

β€’ 𝜎!" =#$#%!"

= 𝔼!"&'πœ€&'

β€’ If we apply partial derivative once again, we haveβ€’ ##$

#%$%#%!"= #

#%$%𝔼!"&'πœ€&' since 𝔼 is β€˜constant’, we have

β€’ !!"!#"#!#$%

= 𝔼$%&'!#&'!#"#

= 𝔼$%&'𝛿&(𝛿') = 𝔼$%()

β€’ We could do the 2nd order derivative in a different way (say, instead of !!"!#"#!#$%

we could have done !!"!#$%!#"#

= !!#$%

!"!#"#

= !!#$%

!"!#"#

= 𝔼()$%β€’ The two cases (regardless of the order of derivative) should give equivalent result

so thatβ€’ 𝔼$%() = 𝔼()$%

β€’ This summarizes our finding on the symmetries in elastic tensor:

Page 11: Elasticity required when studying plasticity

Reduction to Voigt notationβ€’ 𝜎!" = 𝔼&%%%πœ€%% + 𝔼&%%&πœ€%& + 𝔼&%%'πœ€%' + 𝔼&%&%πœ€&% + 𝔼&%&&πœ€&& + 𝔼&%&'πœ€&' +𝔼&%'%πœ€'% + 𝔼&%'&πœ€'& + 𝔼&%&'πœ€''

β€’ 𝜎!" =

𝔼&%%%𝔼&%%&𝔼&%%'𝔼&%&%𝔼&%&&𝔼&%&'𝔼&%'%𝔼&%'&𝔼&%''

πœ€%%πœ€%&πœ€%'πœ€&%πœ€&&πœ€&'πœ€'%πœ€'&πœ€''

=

𝔼&%%%2𝔼&%%&2𝔼&%%'βˆ’π”Ό&%&&2𝔼&%&'βˆ’βˆ’

𝔼&%''

πœ€%%πœ€%&πœ€%'βˆ’πœ€&&πœ€&'βˆ’βˆ’πœ€''

=

𝔼&%%%𝔼&%&&𝔼&%''2𝔼&%&'2𝔼&%%'2𝔼&%%&

πœ€%%πœ€&&πœ€''πœ€&'πœ€%'πœ€%&

β€’

π‘œπ‘Ÿ =

𝔼&%%%𝔼&%&&𝔼&%''𝔼&%&'𝔼&%%'𝔼&%%&

πœ€%%πœ€&&πœ€''𝛾&'𝛾%'𝛾%&

with 𝛾%& = 2πœ€%& and so forth𝜎() =

𝔼(),)𝔼(),(𝔼(),+𝔼(),,𝔼(),-𝔼(),.

πœ€)πœ€(πœ€+𝛾,𝛾-𝛾.

with 1,1 β†’ 1 , 2,2 β†’ 2 , 3,3 β†’ (3)2,3 β†’ 4 , 1,3 β†’ 5 , 1,2 β†’ (6)

Page 12: Elasticity required when studying plasticity

Reduction to Voigt notation

𝜎&% =

𝔼&%,%𝔼&%,&𝔼&%,'𝔼&%,0𝔼&%,1𝔼&%,2

πœ€%πœ€&πœ€'𝛾0𝛾1𝛾2

with 1,1 β†’ 1 , 2,2 β†’ 2 , 3,3 β†’ (3)2,3 β†’ 4 , 1,3 β†’ 5 , 1,2 β†’ (6)

𝜎&% =

𝔼&%,%𝔼&%,&𝔼&%,'𝔼&%,0𝔼&%,1𝔼&%,2

πœ€%πœ€&πœ€'πœ€0πœ€1πœ€2

with 1,2 β†’ (2,1) β†’ (6)

𝜎2 =

𝔼2,%𝔼2,&𝔼2,'𝔼2,0𝔼2,1𝔼2,2

πœ€%πœ€&πœ€'πœ€0πœ€1πœ€2

with 1,2 β†’ (2,1) β†’ (6)

Page 13: Elasticity required when studying plasticity

Reduction to Voigt notation𝜎!" = 𝔼!"#$πœ€#$

𝜎! = 𝔼!"πœ€"

𝜎%%𝜎&&𝜎''𝜎&'𝜎%'𝜎%&

=

𝔼%%%%𝔼&&%%𝔼''%%𝔼&'%%𝔼%'%%𝔼%&%%

𝔼%%&&𝔼&&&&𝔼''&&𝔼&'&&𝔼%'&&𝔼%&&&

𝔼%%''𝔼&&''𝔼''''𝔼&'''𝔼%'''𝔼%&''

𝔼%%&'𝔼&&&'𝔼''&'𝔼&'&'𝔼%'&'𝔼%&&'

𝔼%%%'𝔼&&%'𝔼''%'𝔼&'%'𝔼%'%'𝔼%&%'

𝔼%%%&𝔼&&%&𝔼''%&𝔼&'%&𝔼%'%&𝔼%&%&

πœ€%%πœ€&&πœ€''2πœ€&'2πœ€%'2πœ€%&

𝜎%𝜎&𝜎'𝜎0𝜎1𝜎2

=

𝔼%%𝔼&%𝔼'%𝔼0%𝔼1%𝔼2%

𝔼%&𝔼&&𝔼'&𝔼0&𝔼1&𝔼2&

𝔼%'𝔼&'𝔼''𝔼0'𝔼1'𝔼2'

𝔼%0𝔼&0𝔼'0𝔼00𝔼10𝔼20

𝔼%1𝔼&1𝔼'1𝔼01𝔼11𝔼21

𝔼%2𝔼&2𝔼'2𝔼02𝔼12𝔼22

πœ–%πœ–&πœ–'πœ–0πœ–1πœ–2

Page 14: Elasticity required when studying plasticity

How many constants are required?

𝜎%%𝜎&&𝜎''𝜎&'𝜎%'𝜎%&

=

𝔼%%%%𝔼&&%%𝔼''%%𝔼&'%%𝔼%'%%𝔼%&%%

𝔼%%&&𝔼&&&&𝔼''&&𝔼&'&&𝔼%'&&𝔼%&&&

𝔼%%''𝔼&&''𝔼''''𝔼&'''𝔼%'''𝔼%&''

𝔼%%&'𝔼&&&'𝔼''&'𝔼&'&'𝔼%'&'𝔼%&&'

𝔼%%%'𝔼&&%'𝔼''%'𝔼&'%'𝔼%'%'𝔼%&%'

𝔼%%%&𝔼&&%&𝔼''%&𝔼&'%&𝔼%'%&𝔼%&%&

πœ€%%πœ€&&πœ€''2πœ€&'2πœ€%'2πœ€%&

Page 15: Elasticity required when studying plasticity

How many constants do we need?

𝜎!!𝜎""𝜎##

=𝔼!!!! 𝔼!!""

𝔼""""𝔼!!##𝔼"""#𝔼####

πœ€!!πœ€""πœ€##

If the coordinate system happens to give strain and stress all principal values:

Page 16: Elasticity required when studying plasticity

exampleβ€’ Fe(1-0.025)-Al(0.025) alloyμ˜νƒ„μ„±κ³„μˆ˜λŠ”λ‹€μŒκ³Όκ°™μ΄μ£Όμ–΄μ§„λ‹€.

β€’ 𝔼)) = 270.71, 𝔼%& = 128.03, 𝔼00 = 108.77

β€’ Fe-Al alloyλŠ” Body-centered cubic 결정ꡬ쑰λ₯Όκ°€μ§€κ³ , κ²°μ •λŒ€μΉ­μ„±μ—μ˜ν•΄λ‹€μŒκ³Όκ°™μ€νƒ„μ„±κ±°λ™μ„ν•œλ‹€.

β€’ λΏλ§Œμ•„λ‹ˆλΌ, cubic κ²°μ •κ΅¬μ‘°μ˜λŒ€μΉ­μ„±μœΌλ‘œμΈν•΄ 𝔼)) = 𝔼(( = 𝔼'', 𝔼00 =𝔼11 = 𝔼22, 𝔼%& = 𝔼%' = 𝔼&'

𝜎%𝜎&𝜎'𝜎0𝜎1𝜎2

=

𝔼%%𝔼&%𝔼'%000

𝔼%&𝔼&&𝔼'&000

𝔼%'𝔼&'𝔼''000

000𝔼0000

0000𝔼110

00000𝔼22

πœ–%πœ–&πœ–'πœ–0πœ–1πœ–2

Page 17: Elasticity required when studying plasticity

Example

β€’ Fe(1-0.025)-Al(0.025) alloyμ˜λ‹¨κ²°μ •μ—λ‹€μŒκ³Όκ°™μ€νƒ„μ„±λ³€ν˜•λ₯ μ΄λ‚˜νƒ€λ‚˜κΈ°μœ„ν•΄ν•„μš”ν•œμ‘λ ₯μƒνƒœλŠ”?

0.000100

000

000

Page 18: Elasticity required when studying plasticity

Voigt notation

Page 19: Elasticity required when studying plasticity

Cartesian <-> Voigt (cheat sheet)

Page 20: Elasticity required when studying plasticity

Convert from Cartesian to Voigt

β€’ 𝔼ff(ghijk) = 𝔼ffff

lmnkopimq , 𝔼rs(ghijk) = 𝔼rrss

lmnkopimq , 𝔼tf(ghijk) = 𝔼rsff

lmnkopimq

β€’ Material anisotropyβ€’ Symmetry can be represented by an orthogonal second order tensor, β€’ 𝑸 = 𝑄EF𝐞iβŠ—πžu, such that 𝑸vf = 𝑸w

β€’ The invariance of the stiffness tensor under these transformations (due to symmetry) is:β€’ 𝔼(xyz) = 𝑸 β‹… 𝑸 β‹… 𝔼 {|} β‹… 𝑸w β‹… 𝑸w due to symmetry the resulting

tensor should be equivalent with the original one: 𝔼(xyz) ≑ 𝔼 {|}

http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf

Page 21: Elasticity required when studying plasticity

Convert from Cartesian to Voigt

β€’ 𝔼ff(ghijk) = 𝔼ffff

lmnkopimq , 𝔼rs(ghijk) = 𝔼rrss

lmnkopimq , 𝔼tf(ghijk) = 𝔼rsff

lmnkopimq

β€’ Material anisotropyβ€’ Symmetry can be represented by an orthogonal second order tensor, β€’ 𝑸 = 𝑄EF𝐞iβŠ—πžu, such that 𝑸vf = 𝑸w

β€’ The invariance of the stiffness tensor under these transformations (due to symmetry) is:

β€’ 𝔼(xyz) = 𝑸 β‹… 𝑸 β‹… 𝔼 {|} β‹… 𝑸w β‹… 𝑸w due to symmetry the resulting tensor should be equivalent with the original one: 𝔼(xyz) ≑ 𝔼 {|}

http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf

Page 22: Elasticity required when studying plasticity

Triclinic (no symmetry)

Page 23: Elasticity required when studying plasticity

monoclinic (one symmetry plane)

Page 24: Elasticity required when studying plasticity

β€’ For the case of Monoclinic:

β€’ 𝑸 = 𝑄&'𝐞(βŠ—πž) =1 0 00 1 00 0 βˆ’1

β€’ Let’s take a look at the invariance due to symmetry

β€’ 𝔼(+,-) = 𝑸 β‹… 𝑸 β‹… 𝔼 /01 β‹… 𝑸2 β‹… 𝑸2 due to symmetry the resulting tensor should be equivalent with the original one: 𝔼(+,-) ≑ 𝔼 /01

β€’ In its matrix form:β€’ 𝔼#$%&

'() = 𝑄#*𝑄$'𝑄%+𝑄&,𝔼*'+,+&-

β€’ Ex: 𝔼"".+#/0 = 𝔼"""" = 𝑄"*𝑄"'𝑄"+𝑄",𝔼*'+,

+&-

β€’ If you look at the matrix form of symmetry operator Q in the above, only diagonal components are non-zero. Therefore, 𝑄&' = 0 if 𝑖 β‰  𝑗.

β€’ 𝔼(()*&+, = 𝔼(((( = 𝑄((𝑄((𝑄((𝑄((𝔼((((

*-. = 𝔼((((*-.

β€’ Therefore, 𝔼(()*&+, = 𝔼((((

β€’ Ex: 𝔼"1.+#/0 = 𝔼""!2 = 𝑄"*𝑄"'𝑄!+𝑄2,𝔼*'+,

+&- = 𝑄""𝑄""𝑄!!𝑄22𝔼""!2+&- = 1Γ—1Γ—1Γ— βˆ’1 ×𝔼""!2

+&- = βˆ’π”Ό""!2+&-

β€’ Therefore, in order to satisfy 𝔼((/0 = βˆ’π”Ό((/0, 𝔼((/0 should be zero.

monoclinic (one symmetry plane)

Page 25: Elasticity required when studying plasticity

Cubic