Top Banner
EK 307: Electric Circuits Fall 2017 Lecture 8 Sep 28, 2017 Prof. Miloš Popović Departmentof Electrical and Computer Engineering Boston University
53

EK307A1 F17 Lecture08

Feb 25, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: EK307A1 F17 Lecture08

EK  307:Electric  Circuits

Fall  2017

Lecture  8Sep  28,  2017

Prof.  Miloš PopovićDepartment  of  Electrical  and  Computer  Engineering

Boston  University

Page 2: EK307A1 F17 Lecture08

Administrivia

• Homework  1  back

Page 3: EK307A1 F17 Lecture08

Lecture  7  (last  time)  reminder:

1. Mesh  current  analysis  (2  examples)

2. Linearity,  superposition3. Dependent  sources,  transistor  model  circuits

Page 4: EK307A1 F17 Lecture08

Lecture  8  (today): What  you  should  know  at  end  of  this  lecture1. Source  transformations,  Thevenin and  Norton  

theorems2. Equivalent  resistance  (max  power  transfer)

Page 5: EK307A1 F17 Lecture08

Review:Linearity,  superposition,  source  transformation

Page 6: EK307A1 F17 Lecture08

Linearity

• Any  output  is  proportional  to  any  input

Page 7: EK307A1 F17 Lecture08

Superposition

• For  multiple  inputs  (e.g.  sources):• Any  output  is  the  sum  of  outputs  due  to  each  input  turned  on  separately• “Turned  off  input”  means  V=0  for  voltage  sources,  I=0  for  current  sources.• Dependent  sources  stay.

Page 8: EK307A1 F17 Lecture08

Superposition:  example  1• Use  superposition  to  find  v.

• Voltages  and  currents  in  circuit  with  multiple  sources  are  sum  of  those  due  to  each  source  applied  separately.

Page 9: EK307A1 F17 Lecture08

Superposition:  example  2

Page 10: EK307A1 F17 Lecture08

Source  transformations

Page 11: EK307A1 F17 Lecture08

Series  &  Parallel…

6  Ω

Page 12: EK307A1 F17 Lecture08

Series  &  Parallel…

6  Ω

6  Ω

Page 13: EK307A1 F17 Lecture08

Series  &  Parallel…

6  Ω

6  Ω

4  A 6 A

Page 14: EK307A1 F17 Lecture08

Series  &  Parallel…

6  Ω

6  Ω

4  A 6 A

4  A

6 A

Page 15: EK307A1 F17 Lecture08

Series  &  Parallel…

6  Ω

6  Ω

4  A 6 A

4  A

6 A

4  V

6 V

Page 16: EK307A1 F17 Lecture08

Series  &  Parallel…

6  Ω

6  Ω

4  A 6 A

4  A

6 A

4  V 6 V

4  V

6 V

Page 17: EK307A1 F17 Lecture08

Series  &  Parallel…

6  Ω

6  Ω

4  A 6 A

4  A

6 A

4  V 6 V

4  V

6 V

How  can  these  be  impossible?    Can’t  I  just  go  in  the  lab  and  connect  them  up…?

Page 18: EK307A1 F17 Lecture08

Real  sources  have  internal  resistance

For  a  voltage  source,  it  *has*  to  be  in  series.    See  next  few  slides.    A  parallel  resistor  does  nothing.    In  the  limit  where  R  approaches  0  ohms,  we  recover  the  ideal  source.

Page 19: EK307A1 F17 Lecture08
Page 20: EK307A1 F17 Lecture08
Page 21: EK307A1 F17 Lecture08
Page 22: EK307A1 F17 Lecture08
Page 23: EK307A1 F17 Lecture08

Source  transformations:  IV  curve

A  voltage  source  can  be  replaced  by  a  current  source,  with  the  connected  load  circuit  unable  to  tell  the  difference  between  them!    See  next  slide.

Page 24: EK307A1 F17 Lecture08
Page 25: EK307A1 F17 Lecture08

Source  transformations

Page 26: EK307A1 F17 Lecture08

Source  transformations

Page 27: EK307A1 F17 Lecture08

Source  transformations:  exampleFind  vo.

Page 28: EK307A1 F17 Lecture08
Page 29: EK307A1 F17 Lecture08

Maximum  power  transfer

Page 30: EK307A1 F17 Lecture08
Page 31: EK307A1 F17 Lecture08

Let’s  see  what  happens…    (let’s  plot  power  burned   in  RL  vs  load  resistance  RL  in  Mathematica).

At  low  load  resistances  RL,  the  voltage  is  near  zero  and  the  current  is  higher.At  high   load  resistances  RL,  the  voltage  is  equal  to  the  source  voltage,  but   the  current  approaches  zero.In  both  cases,  the  power  P=vi  approaches  zero.In  between  at  some  arbitrary  RL,  both  voltage  and  current  can  be  non-­‐zero,   so  it  seems  there  is  a  sweet  spot:  an  ideal  choice  of  resistance  to  dissipate  the  most  power.

vv

RL

RL

RL

PP

ii

Sweet  spot

Page 32: EK307A1 F17 Lecture08

Thevenin and  Norton  Theorems

Page 33: EK307A1 F17 Lecture08

Thevenin Theorem

Page 34: EK307A1 F17 Lecture08

Thevenin Theorem

Thevenin’s theorem states  that  a  linear  two-­‐terminal  circuit  can  be  replaced  by  an  equivalent  circuit  consisting  of  a  voltage  source  VTh in  series  with  a  resistor  RTh,  where  VTh is  the  open-­‐circuit  voltage  at  the  terminals  and  RTh is  the  input  or  equivalent  resistance  at  the  terminals  when  the  independent   sources  are  turned  off.

Page 35: EK307A1 F17 Lecture08

Thevenin Theorem

Page 36: EK307A1 F17 Lecture08

Thevenin exampleFind   the  Thevenin equivalent  of  the  circuit  to  the  left  of  the  terminals  a-­‐b.  Then  find   the  current  through  RL =  6,  16,  and  36  Ω.

Page 37: EK307A1 F17 Lecture08
Page 38: EK307A1 F17 Lecture08

Thevenin exampleFind   the  Thevenin equivalent  of  the  circuit  to  the  left  of  the  terminals  a-­‐b.  Then  find   the  current  through  RL =  6,  16,  and  36  Ω.

Page 39: EK307A1 F17 Lecture08

Thevenin example  2

Page 40: EK307A1 F17 Lecture08

Norton  Theorem

Page 41: EK307A1 F17 Lecture08

Norton  Theorem

Find  Thevenin resistance  and  short-­‐circuit   current.

Page 42: EK307A1 F17 Lecture08

Source  modeling,  bridge  circuits,  interface  ccts

Page 43: EK307A1 F17 Lecture08

Models  of  real  sources

Page 44: EK307A1 F17 Lecture08

Models  of  real  sources

Page 45: EK307A1 F17 Lecture08

ExampleThe  terminal  voltage  of  a  voltage  source  is  12  V  when  connected  to  a  2-­‐W  load.  When  the  load  is  disconnected,   the  terminal  voltage  rises  to  12.4  V.  (a)  Calculate  the  source  voltage  vs and  internal  resistance  Rs.  (b)  Determine   the  voltage  when  an  8-­‐Ω  load  is  connected  to  the  source.

Page 46: EK307A1 F17 Lecture08

Operational  Amplifiers  (Op-­‐Amps)

Page 47: EK307A1 F17 Lecture08

Op-­‐Amps

Page 48: EK307A1 F17 Lecture08

Op-­‐Amps

Page 49: EK307A1 F17 Lecture08

Op-­‐Amps

Page 50: EK307A1 F17 Lecture08

Op-­‐Amps

Page 51: EK307A1 F17 Lecture08

We  skipped  in  this  lecture…

Page 52: EK307A1 F17 Lecture08

Bridge  circuits:  Wheatstone  bridge

Page 53: EK307A1 F17 Lecture08

Example:  unbalanced  bridge

Find   the  current  through   the  galvanometer.