Top Banner

of 50

Eigen,Diag,Sumetrix

Apr 06, 2018

Download

Documents

Ria Dwi Agustin
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/3/2019 Eigen,Diag,Sumetrix

    1/50

    Eigenvalues and Eigenvectors

  • 8/3/2019 Eigen,Diag,Sumetrix

    2/50

    16- 2

    Eigenvalues and Eigenvectors

    Eigenvalues and Eigenvectors

    Diagonalization

    Symmetric Matrices and Orthogonal Diagonalization

  • 8/3/2019 Eigen,Diag,Sumetrix

    3/50

    7.1 Eigenvalues and Eigenvectors

    Eigenvalue problem:

    IfA is an nvn matrix, do there exist nonzero vectors x in Rn

    such thatAx is a scalar multiple ofx

    Eigenvalue and eigenvector:Aan nvn matrix

    Pa scalar

    x a nonzero vector in Rn

    xAx P!

    Eigenvalue

    Eigenvector

    Geometrical Interpretation

    16- 3

  • 8/3/2019 Eigen,Diag,Sumetrix

    4/50

    Ex 1: (Verifying eigenvalues and eigenvectors)

    -

    !

    10

    02A

    -

    !

    0

    11x

    11 2012

    02

    01

    1002 xAx !

    -!

    -!

    --

    !

    Eigenvalue

    22 )1(1

    01

    1

    0

    1

    0

    10

    02xAx !

    -

    !

    -

    !

    -

    -

    !

    Eigenvalue

    Eigenvector

    Eigenvector

    -

    !

    1

    02

    x

    16- 4

  • 8/3/2019 Eigen,Diag,Sumetrix

    5/50

    Ex 2: (An example of eigenspaces in the plane)

    Find the eigenvalues and corresponding eigenspaces of

    -

    !

    10

    01A

    -

    !

    -

    -

    !

    y

    x

    y

    xA

    10

    01v

    If ),(v yx!

    -

    !

    -

    !

    -

    -

    01

    00

    10

    01 xxx

    For a vector on thex-axis Eigenvalue 11!P

    Sol:

    16- 5

  • 8/3/2019 Eigen,Diag,Sumetrix

    6/50

    For a vector on they-axis

    -

    !

    -

    !

    -

    -

    yyy

    01

    00

    10

    01

    Eigenvalue 12!P

    Geometrically, multiplying a vector (x, y)in R2by the matrixA corresponds to a

    reflection in they-axis.

    The eigenspace corresponding to is thex-axis.

    The eigenspace corresponding to is they-axis.

    11 !P

    12 !P

    16- 6

  • 8/3/2019 Eigen,Diag,Sumetrix

    7/50

    Thm 7.2: (Finding eigenvalues and eigenvectors of a matrixAMnvn )

    0)Idet( !AP(1) An eigenvalue ofA is a scalarP such that .

    (2) The eigenvectors ofA corresponding to P are the nonzero

    solutions of .

    Characteristic polynomial ofAMnvn:

    01

    1

    1)I()Idet( cccAAn

    n

    n!! PPPPP .

    Characteristic equation ofA:

    0)Idet( !AP

    0)I( ! xAP

    LetA is an nvn matrix.

    If has nonzero solutions iff .0)I( ! xAP 0)Idet( !AP

    0)I( !! xAxAx PP Note:

    (homogeneous system)

    16- 7

  • 8/3/2019 Eigen,Diag,Sumetrix

    8/50

    Ex 4: (Finding eigenvalues and eigenvectors)

    -

    !

    51

    122A

    Sol: Characteristic equation:

    0)2)(1(23

    51

    122)I(

    2 !!!

    !

    PPPP

    P

    PP A

    Eigenvalue: 2,1 21 !! PP

    2,1 ! P

    16- 8

  • 8/3/2019 Eigen,Diag,Sumetrix

    9/50

    2)2( 2 !P

    0,1

    33

    0

    0

    31

    124)I(

    2

    1

    2

    1

    2

    {

    -

    !

    -

    !

    -

    -

    !

    -

    -

    !

    ttt

    t

    x

    x

    x

    xxAP

    1)1( 1 !P

    0,1

    44

    0

    0

    41

    123

    )I(

    2

    1

    2

    1

    1

    {

    -

    !

    -

    !

    -

    -

    !

    -

    -

    !

    ttt

    t

    x

    x

    x

    x

    xAP

    16- 9

  • 8/3/2019 Eigen,Diag,Sumetrix

    10/50

    -

    !200

    020012

    A

    Sol: Characteristic equation:

    0)2(

    200

    020012

    I 3 !!

    ! PP

    PP

    P A

    Eigenvalue: 2!P

    Ex 5: (Finding eigenvalues and eigenvectors)

    Find the eigenvalues and corresponding eigenvectors for

    the matrixA. What is the dimension of the eigenspace of

    each eigenvalue?

    16- 10

  • 8/3/2019 Eigen,Diag,Sumetrix

    11/50

    The eigenspace of A corresponding to :2!P

    -

    !

    -

    -

    !

    0

    0

    0

    000

    000

    010

    )I(

    3

    2

    1

    x

    x

    x

    xAP

    0,,

    1

    00

    0

    01

    0

    3

    2

    1

    {

    -

    -

    !

    -

    !

    -

    tsts

    t

    s

    x

    xx

    2toingcorrespondAofeigenspacethe:,

    1

    0

    0

    0

    0

    1

    !

    -

    -

    PRtsts

    Thus, the dimension of its eigenspace is 2.

    16- 11

  • 8/3/2019 Eigen,Diag,Sumetrix

    12/50

    Notes:

    (1) If an eigenvalue P1occurs as a multiple root (ktimes)for

    the characteristic polynominal, then P1has multiplicity k.

    (2) The multiplicity of an eigenvalue is greater than or equal

    to the dimension of its eigenspace.

    16- 12

  • 8/3/2019 Eigen,Diag,Sumetrix

    13/50

    Ex 6Find the eigenvalues of the matrixA and find a basis

    for each of the corresponding eigenspaces.

    -

    !

    3001

    0201

    10510

    0001

    A

    Sol: Characteristic equation:

    0)3)(2()1(

    3001

    0201

    10510

    0001

    I

    2 !!

    !

    PPP

    PP

    PP

    P A

    Eigenvalue:3,2,1

    321

    !!! PPP16- 13

  • 8/3/2019 Eigen,Diag,Sumetrix

    14/50

    1)1( 1 !P

    -

    !

    -

    -

    !

    0

    0

    0

    0

    2001

    0101

    10500

    0000

    )I(

    4

    3

    2

    1

    1

    x

    x

    x

    x

    xAP

    0,,

    1

    2

    02

    0

    0

    10

    2

    2

    4

    3

    2

    1

    {

    -

    -

    !

    -

    !

    -

    tsts

    t

    t

    st

    x

    x

    xx

    1

    2

    0

    2

    ,

    0

    0

    1

    0

    -

    -

    is a basis for the eigenspaceof A corresponding to 1!P

    16- 14

  • 8/3/2019 Eigen,Diag,Sumetrix

    15/50

    2)2( 2 !P

    -

    !

    -

    -

    !

    0

    0

    0

    0

    1001

    0001

    10510

    0001

    )I(

    4

    3

    2

    1

    2

    x

    x

    x

    x

    xAP

    0,

    0

    1

    5

    0

    0

    5

    0

    4

    3

    2

    1

    {

    -

    !

    -

    !

    -

    ttt

    t

    x

    x

    x

    x

    0

    1

    5

    0

    -

    is a basis for the eigenspaceof A corresponding to 2!P

    16- 15

  • 8/3/2019 Eigen,Diag,Sumetrix

    16/50

    3)3( 3 !P

    -

    !

    -

    -

    !

    0

    0

    0

    0

    0001

    0101

    10520

    0002

    )I(

    4

    3

    2

    1

    3

    x

    x

    x

    x

    xAP

    0,

    1

    0

    5

    0

    0

    5

    0

    4

    3

    2

    1

    {

    -

    !

    -

    !

    -

    tt

    t

    t

    x

    x

    x

    x

    1

    0

    5

    0

    -

    is a basis for the eigenspace

    of A corresponding to 3!P

    16- 16

  • 8/3/2019 Eigen,Diag,Sumetrix

    17/50

    Thm 7.3: (Eigenvalues for triangular matrices)

    IfA is an nvn triangular matrix, then its eigenvalues arethe entries on its main diagonal.

    Ex 7: (Finding eigenvalues for diagonal and triangular matrices)

    -

    !

    335

    011002

    )( Aa

    -

    !

    30000040000000000020

    00001

    )( Ab

    Sol:

    )3)(1)(2(

    335

    011

    002

    I)( !

    ! PPPP

    P

    P

    P Aa

    3,1,2 321 !!! PPP

    3,4,0,2,1)( 54321 !!!!! PPPPPb

    16- 17

  • 8/3/2019 Eigen,Diag,Sumetrix

    18/50

    Eigenvalues and eigenvectors of linear transformations:

    .ofeigenspacethecalled

    isvector)zero(with theofrseigenvectoallsetoftheand

    ,toingcorrespondofreigenvectoancalledisvectorThe

    .)(such thatvectornonzeroaisthereif:

    nnsformatiolinear traaofeigenvalueancalledisnumberA

    P

    P

    P

    P

    P

    T

    TVVT

    x

    xxx !p

    16- 18

  • 8/3/2019 Eigen,Diag,Sumetrix

    19/50

    Keywords in Section 7.1:

    eigenvalue problem:

    eigenvalue:

    eigenvector:

    characteristic polynomial:

    characteristic equation:

    eigenspace:

    multiplicity:

    16- 19

  • 8/3/2019 Eigen,Diag,Sumetrix

    20/50

    16- 20

    Lecture 16: Eigenvalues and Eigenvectors

    Today

    Eigenvalues and Eigenvectors

    Diagonalization

    Symmetric Matrices and Orthogonal Diagonalization

  • 8/3/2019 Eigen,Diag,Sumetrix

    21/50

    7.2 Diagonalization

    Diagonalization problem:

    For a square matrixA, does there exist an invertible matrixP

    such thatP-1APis diagonal?

    Diagonalizable matrix:

    A square matrixA is called diagonalizable if there exists an

    invertible matrixPsuch thatP-1APis a diagonal matrix.

    (PdiagonalizesA) Notes:

    (1) If there exists an invertible matrixPsuch that ,then two square matricesA andB are called similar.

    (2) The eigenvalue problem is related closely to the

    diagonalization problem.

    APPB 1

    !

    16- 21

  • 8/3/2019 Eigen,Diag,Sumetrix

    22/50

    Thm 7.4: (Similar matrices have the same eigenvalues)

    IfA andB are similarnvn matrices, then they have the

    same eigenvalues.

    Pf:

    APPBBA1

    similarareand

    !

    A

    APPAPPPAP

    PAPAPPPPAPPB

    !

    !!!

    !!!

    I

    III

    )I(III

    111

    1111

    P

    PPP

    PPPP

    ThusA andB have the same eigenvalues.

    16- 22

  • 8/3/2019 Eigen,Diag,Sumetrix

    23/50

    Ex 1: (A diagonalizable matrix)

    -

    !

    200

    013

    031

    A

    Sol: Characteristic equation:

    0)2)(4(

    200

    013

    031

    I 2 !!

    ! PPP

    PP

    P A

    2,2,4seigenvalueThe 321 !!! PPP

    reigenvectothe4)1( !P

    -

    !

    0

    1

    1

    1p

    16- 23

  • 8/3/2019 Eigen,Diag,Sumetrix

    24/50

    reigenvectothe2)2( !P

    -

    !

    -

    !10

    0

    ,01

    1

    32 pp

    -

    !

    -

    !!

    200

    020

    004

    such that

    100

    011

    011

    ][

    1

    321

    APP

    pppP

    -

    !

    -

    !

    !

    200

    040

    002

    100

    011

    011

    ][

    1

    312

    APP

    pppP Note: If

    16- 24

  • 8/3/2019 Eigen,Diag,Sumetrix

    25/50

    Thm 7.5: (Condition for diagonalization)

    An nvn matrixA is diagonalizable if and only if it has n

    linearly independent eigenvectors.

    Pf:

    ablediagonalizis)( A

    ),,,(and][Let

    diagonaliss.t.invertibleanexiststhere

    2121

    1

    nn diagDpppP

    APPDP

    PPP .. !!

    !

    ][

    00

    00

    00

    ][

    2211

    2

    1

    21

    nn

    n

    n

    ppp

    pppPD

    PPP

    P

    P

    P

    .

    .

    /1//

    .

    .

    .

    !

    -

    !

    16- 25

  • 8/3/2019 Eigen,Diag,Sumetrix

    26/50

    PDAP

    ApApApAP n

    !@

    ! ][ 21 .3

    )ofrseigenvectoareoftorcolumn vecthe..(

    ,,2,1,

    APpei

    nipAp

    i

    iii -!! P

    t.independenlinearlyare,,,invertibleis21 n

    pppP .3

    rs.eigenvectotindependenlinearlyhas nA@

    n

    npppnA

    PPP .

    .

    ,,seigenvalueingcorrespondhwit

    ,,rseigenvectotindependenlinearlyhas)(

    21

    21

    nipAp iii ,,2,1, -!! P

    ][Let 21 npppP .!

    16- 26

  • 8/3/2019 Eigen,Diag,Sumetrix

    27/50

    PDppp

    pppApApAppppAAP

    n

    n

    nn

    nn

    !

    -

    !

    !!!

    P

    PP

    PPP

    ./1//

    .

    .

    .

    .

    ..

    00

    00

    00

    ][

    ][][][

    2

    1

    21

    2211

    2121

    ablediagonalizis

    invertibleistindependenlinearlyare,,,

    1

    11

    A

    DAPP

    Pppp n

    !@

    .3

    16- 27

  • 8/3/2019 Eigen,Diag,Sumetrix

    28/50

    Ex 4: (A matrix that is not diagonalizable)

    -

    !

    10

    21

    able.diagonaliznotismatrixfollowingthat theShow

    A

    Sol: Characteristic equation:

    0)1(10

    21I 2 !!

    ! PP

    PP A

    1eigenvalueThe 1 !P

    -

    !

    -

    -

    !!0

    1reigenvecto

    00

    10~

    00

    20I 1pAIAP

    A does not have two linearly independent eigenvectors,

    soA is not diagonalizable.

    16- 28

  • 8/3/2019 Eigen,Diag,Sumetrix

    29/50

    Steps for diagonalizing an nvn square matrix:

    Step 2: Let ][ 21 npppP .!

    Step 1: Find n linearly independent eigenvectors

    for A with corresponding eigenvalues.nppp .,, 21

    Step 3:

    -

    !!

    n

    DAPP

    P

    PP

    .

    /1//

    .

    .

    00

    00

    00

    2

    1

    1

    nipAp iii ,,2,1,where, -!! P

    16- 29

  • 8/3/2019 Eigen,Diag,Sumetrix

    30/50

    Ex 5: (Diagonalizing a matrix)

    diagonal.issuch thatmatrixaFind

    113

    131

    111

    1APPP

    A

    -

    !

    Sol: Characteristic equation:

    0)3)(2)(2(

    113

    131

    111

    I !!

    ! PPP

    P

    PP

    P A

    3,2,2seigenvalueThe 321 !!! PPP

    16- 30

  • 8/3/2019 Eigen,Diag,Sumetrix

    31/50

    21 !P

    -

    -

    !

    000

    010

    101

    ~

    313

    111

    111

    I1 AP

    -

    !

    -

    !

    -

    1

    0

    1

    reigenvecto0 1

    3

    2

    1

    p

    t

    t

    x

    x

    x

    22 !P

    -

    -

    !

    000

    10

    01

    ~

    113

    151

    113

    I41

    41

    2 AP

    -

    !

    -

    !

    -

    4

    1

    1

    reigenvecto 241

    41

    3

    2

    1

    p

    t

    t

    t

    x

    x

    x

    16- 31

  • 8/3/2019 Eigen,Diag,Sumetrix

    32/50

    33 !P

    -

    -

    !

    000

    110

    101

    ~

    413

    101

    112

    I3 AP

    -

    !

    -

    !

    -

    1

    1

    1

    reigenvecto 3

    3

    2

    1

    p

    t

    t

    t

    x

    x

    x

    -

    !

    -

    !!

    300

    020

    002

    s.t.

    141

    110

    111

    ][

    1

    321

    APP

    pppP

    16- 32

  • 8/3/2019 Eigen,Diag,Sumetrix

    33/50

    Notes:

    -

    !

    -

    !

    k

    n

    k

    k

    k

    n d

    d

    d

    D

    d

    d

    d

    D

    .

    /1//

    .

    .

    .

    /1//

    .

    .

    00

    00

    00

    00

    00

    00

    )1( 2

    1

    2

    1

    1

    11

    )2(

    !

    !!

    PPDA

    PAPDAPPD

    kk

    kk

    16- 33

  • 8/3/2019 Eigen,Diag,Sumetrix

    34/50

    Thm 7.6: (Sufficient conditions for diagonalization)

    If an nvn matrixA has n distinct eigenvalues, then the

    corresponding eigenvectors are linearly independent and

    A is diagonalizable.

    Ex 7: (Determining whether a matrix is diagonalizable)

    -

    !

    300

    100

    121

    A

    Sol: BecauseA is a triangular matrix, its eigenvalues are

    3,0,1 321 !!! PPP

    These three values are distinct, so A is diagonalizable.

    16- 34

  • 8/3/2019 Eigen,Diag,Sumetrix

    35/50

    Ex 8: (Finding a diagonalizing matrix for a linear transformation)

    diagonal.istorelative

    formatrixthesuch thatforbasisaFind

    )33()(

    bygivennnsformatiolinear trathebeLet

    3

    321321321321

    33

    B

    TRB

    xxx,xx, xxxx,x,xxT

    RT:R

    !

    p

    Sol:

    -

    !

    113

    131

    111

    bygivenisformatrixstandardThe

    A

    T

    From Ex.5 you know thatA is diagonalizable.Thus, the three

    linearly independent eigenvectors found in Ex.5 can be used

    to form the basisB.That is16- 35

  • 8/3/2019 Eigen,Diag,Sumetrix

    36/50

    )}1,1,1(),4,1,1(),1,0,1{( !B

    ? A

    ? A

    -

    !

    !

    !

    300

    020

    002][][][

    ][][][

    321

    321

    BBB

    BBB

    AvAvAv

    vTvTvTD

    The matrix forTrelative to this basis is

    16- 36

  • 8/3/2019 Eigen,Diag,Sumetrix

    37/50

    Keywords in Section 7.2:

    diagonalization problem:

    diagonalization:

    diagonalizable matrix:

    16- 37

  • 8/3/2019 Eigen,Diag,Sumetrix

    38/50

    Lecture 16: Eigenvalues and Eigenvectors

    Today

    Eigenvalues and Eigenvectors

    Diagonalization

    Symmetric Matrices and Orthogonal Diagonalization

    16- 38

  • 8/3/2019 Eigen,Diag,Sumetrix

    39/50

    7.3 Symmetric Matrices and Orthogonal Diagonalization

    Symmetric matrix:

    A square matrixA is symmetric if it is equal to its transpose:

    TAA !

    Ex 1: (Symmetric matrices and nonsymetric

    matrices)

    -

    !

    502

    031210

    A

    -

    !

    13

    34B

    -

    !

    501

    041

    123

    C

    (symmetric)

    (symmetric)

    (nonsymmetric)

    16- 39

  • 8/3/2019 Eigen,Diag,Sumetrix

    40/50

    Thm 7.7: (Eigenvalues of symmetric matrices)

    IfA is an nvn symmetric matrix, then the following properties

    are true.

    (1)A is diagonalizable.

    (2) All eigenvalues ofA are real.

    (3) IfP is an eigenvalue ofA with multiplicity k, then P has k

    linearly independent eigenvectors.That is, the eigenspace

    ofP has dimension k.

    16- 40

  • 8/3/2019 Eigen,Diag,Sumetrix

    41/50

    Ex 2:

    Prove that a symmetric matrix is diagonalizable.

    -

    !

    bc

    caA

    Pf: Characteristic equation:

    0)( 22 !!

    ! cabba

    bc

    caAI PP

    PP

    P

    0u22

    222

    22222

    4)(

    42

    442)(4)(

    cba

    cbaba

    cabbabacabba

    !

    !

    !

    As a quadratic in P, this polynomial has a discriminant of

    16- 41

  • 8/3/2019 Eigen,Diag,Sumetrix

    42/50

    04)((1) 22 ! cba

    0, !! cba

    diagonal.ofmatrixais0

    0

    -

    !

    a

    aA

    04)()2( 22 " cba

    The characteristic polynomial ofA has two distinct real roots,

    which implies thatA has two distinct real eigenvalues.Thus,

    A is diagonalizable.

    16- 42

  • 8/3/2019 Eigen,Diag,Sumetrix

    43/50

    A square matrix P is called orthogonal if it is invertible and

    Orthogonal matrix:

    TPP !1

    Thm 7.9: (Properties of symmetric matrices)

    LetAbe an nvn symmetric matrix. IfP1and P2 are distinct

    eigenvalues ofA, then their corresponding eigenvectorsx1

    andx2 are orthogonal.

    Thm 7.8: (Properties of orthogonal matrices)

    An nvn matrixPis orthogonal if and only if its column vectors

    form an orthogonal set.

    16- 43

  • 8/3/2019 Eigen,Diag,Sumetrix

    44/50

    Ex 5: (An orthogonal matrix)

    -

    !

    53

    5

    53

    4

    53

    2

    5

    1

    5

    2

    32

    32

    31

    0P

    Sol: IfPis a orthogonal matrix, then I1 !!TT PPPP

    I

    100

    010

    001

    0

    0

    53

    5

    3

    253

    4

    5

    132

    53

    2

    5

    231

    53

    5

    53

    4

    53

    25

    1

    5

    232

    32

    31

    !

    -

    !

    -

    -

    !

    TPP

    -

    !

    -

    !

    -

    !

    535

    32

    3

    534

    51

    32

    2

    532

    52

    31

    1 0,,Let ppp

    16- 44

  • 8/3/2019 Eigen,Diag,Sumetrix

    45/50

    1

    0

    roducesp

    321

    323121

    !!!

    !!!

    ppp

    pppppp

    set.lorthonormaanis},,{ 321 ppp

    16- 45

  • 8/3/2019 Eigen,Diag,Sumetrix

    46/50

    Thm 7.10: (Fundamental theorem of symmetric matrices)

    LetAbe an nvn matrix.ThenA is orthogonally diagonalizable

    and has real eigenvalue if and only ifA is symmetric.

    Orthogonal diagonalization of a symmetric matrix:

    LetAbe an nvn symmetric matrix.(1) Find all eigenvalues ofA and determine the multiplicity of each.

    (2) For each eigenvalue of multiplicity 1, choose a unit eigenvector.

    (3) For each eigenvalue of multiplicity ku2, find a set ofk linearly

    independent eigenvectors. If this set is not orthonormal, apply Gram-

    Schmidt orthonormalization process.

    (4) The composite of steps 2 and 3 produces an orthonormal set ofn

    eigenvectors. Use these eigenvectors to form the columns ofP.The

    matrix will be diagonal.DAPPAPPT

    !!1

    16- 46

  • 8/3/2019 Eigen,Diag,Sumetrix

    47/50

    Ex 7: (Determining whether a matrix is orthogonally diagonalizable)

    -

    !

    111

    101

    111

    1A

    -

    !

    081

    812

    125

    2A

    -! 1020233A

    -

    !20

    004A

    Orthogonally

    diagonalizable

    Symmetric

    matrix

    16- 47

  • 8/3/2019 Eigen,Diag,Sumetrix

    48/50

    Ex 9: (Orthogonal diagonalization)

    -

    !

    142

    412

    222

    A.esdiagonalizthatmatrixorthogonalanFind

    A

    P

    Sol:

    0)6()3()1( 2 !! PPP AI

    )2oftymultipliciahas(3,6 21 !! PP

    ),,()2,2,1(,6)2( 32

    3

    2

    3

    1

    1

    1

    111

    !!!! v

    v

    uvP

    )1,0,2(),0,1,2(,3)3( 322 !!! vvP

    Linear Independent

    16- 48

  • 8/3/2019 Eigen,Diag,Sumetrix

    49/50

    Gram-Schmidt Process:

    )1,,(),0,1,2(54

    52

    2

    22

    233322

    !

    !!! w

    ww

    wvvwvw

    ),,(),0,,(53

    5

    53

    4

    53

    2

    3

    335

    1

    5

    2

    2

    22

    !!!!w

    wu

    w

    wu

    -

    !

    53

    532

    53

    4

    5

    132

    53

    2

    5

    231

    0

    P

    -

    !

    300

    030

    006

    1APP

    16- 49

  • 8/3/2019 Eigen,Diag,Sumetrix

    50/50

    Keywords in Section 7.3:

    symmetric matrix:

    orthogonal matrix:

    orthonormal set:

    orthogonal diagonalization:

    16 50