Top Banner
EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES AND ELECTROCHEMICAL BEHAVIOR OF STAINLESS STEEL NUR HASMISHA BINTI HASLAN A thesis submitted in partial fulfillment of the requirements for the award of degree of Master of Engineering (Mechanical-Materials) Faculty of Mechanical Engineering Universiti Teknologi Malaysia JANUARY 2013
29

EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

Aug 29, 2019

Download

Documents

buithien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES AND ELECTROCHEMICAL BEHAVIOR OF STAINLESS STEEL

NUR HASMISHA BINTI HASLAN

A thesis submitted in partial fulfillment of the requirements for the award of degree of

Master of Engineering (Mechanical-Materials)

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

JANUARY 2013

Page 2: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

v

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my supervisor, Professor Dr

Esah Hamzah for her constant guidance and advice comments throughout the

completion of this work.

Thanks a lot to all the technicians of Material Science Lab in Faculty of

Mechanical Engineering for their willingness to guide and help me to do my thesis

experiments using all available facilities.

Very special thanks go to my mother Mrs. Ruslina Binti Dollah, my father

Haslan Bin H.Abdullah and my husband Mohd Hafiz Bin Harun for their support and

dedication.

Finally, I would like to thank all for their encouragement and constructive

advice.

Page 3: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

vi

ABSTRACT

The objective of this project is to investigate the effects of heat treatment

parameters on corrosion resistance and phase transformation in relation to the

microstructures and electrochemical behaviors of austenitic 304 and martensitic 420

stainlesssteel. In this project, there are several heat treatment parameters under

investigation namely annealing at temperature 900 °C and 1000°C and normalizing with

difference soaking times. Other heat treatment process carried out on martensitic

stainless steel only is quench and temper. Corrosion test was conducted on non-treated

and heat treated samples according to British Standard (BS ISO 17475:2005) for

electrochemical test (Tafel test). Hardness test was also carried out on the non-treated

and heat treated samples using Vickers hardness test. Microstructure analysis was

performed on the samples using characterization equipment such as Glow Discharge

Spectroscope (GDS), Optical Microscope (OM), Scanning Electron Microscope (SEM),

Energy Dispersive X-ray (EDX) and X-ray Diffraction (XRD). The results shows that

heat treatment affect the microstructures and electrochemical behaviors of stainless

steel. It was also found that higher temperature gives lower hardness. From the corrosion

test results, it can be concluded that higher austenization temperatures and higher

normalizing soaking times improved the corrosion resistance of stainless steel due to

increase in grain size and less in formation of carbides. These carbides will contribute to

the corrosion whereby it provides sites for anodic and cathodic reaction to occur

between the carbide and the matrix phases.

Page 4: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

vii

ABSTRAK

Objektif projek ini adalah untuk mengkaji kesan parameter rawatan haba ke atas

rintangan kakisan dan penjelmaan fasa dalam hubungan dengan mikrostruktur dan

tingkah laku elektrokimia 304 austenit dan martensit 420 keluli tahan karat. Di dalam

projek ini, terdapat dua parameter rawatan haba yang dikaji iaitu suhu austenit bersuhu

900°C dan 1000 °C dan menormalkan dengan perbezaan masa merendam. Lain-lain

proses rawatan haba yang dijalankan pada keluli tahan karat martensit sahaja iaitu

pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke atas sampel-sampel yang

belum dirawat dan telah dirawat haba berdasarkan Piawaian British (BS ISO

17475:2005) untuk ujian elektrokimia. Ujian kekerasan juga telah dilakukan ke atas

sampel-sampel belum dirawat dan yang telah dirawat haba menggunakan ujian

kekerasan Vickers. Analisis mikrostruktur telah dilakukan ke atas sampel-sampel

menggunakan peralatan pencirian seperti Spektroskopi Nyahcas Bara (GDS),Mikroskop

Optik (OM), Mikroskop Imbasan Elektron (SEM), Sinar-X Serakan Tenaga (EDX) dan

Pembelauan Sinar-X (XRD). Keputusan kajian menunjukkan rawatan haba menjejaskan

mikrostruktur dan tingkah laku elektrokimia keluli tahan karat. Ia juga didapati bahawa

suhu yang lebih tinggi memberikan kekerasan yang lebih rendah. Daripada hasil ujian

kakisan, dapat disimpulkan bahawa suhu austenit dan lebih tinggi masa rendaman

penormalan meningkatkan rintangan kakisan keluli tahan karat disebabkan oleh

peningkatan dalam saiz bijian dan pengurangan pembentukan karbida.. Karbida ini akan

Page 5: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

viii

menyumbang kepada kakisan di mana ia menyediakan laman untuk reaksi anodic dan

katod berlaku antara karbida dan fasa matriks.

Page 6: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

viii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

TITLE PAGE i

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABCTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xiii

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xxi

1 INTRODUCTION 1

1.1 Background 1

1.2 Objectives of The Research 3

1.3 Statement of Research Problems 3

1.4 Scopes of Study 4

2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Stainless Steel 5

2.3 Basic elements in Stainless steel 6

2.4 Types of Stainless steel 8

2.4.1 Austenitic Stainless Steel 10

2.4.2 Martensitic Stainless Steel 11

Page 7: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

ix

CHAPTER TITLE PAGE

2.5 Heat Treatment 11

2.5.1 Heat Treatment Process for

Austenitic Stainless Steel 12

2.5.1.1 Annealing 12

2.5.1.2 Normalizing 14

2.5.1.3 Effect of Microstructure and

Mechanical Properties after

Annealing and Normalizing 14

2.5.2 Heat Treatment Process for

Martensitic Stainless Steel. 17

2.5.2.1 Effect of Microstructure and

Mechanical Properties after

Annealing and Normalizing 18

2.5.2.2 Effect of Microstructure and

Mechanical Properties after

Quenched and Tempered 19

2.5.2.3 Effect of Hardness on

Martensitic Stainless Steel

after Heat Treatment 23

2.6 Electrochemical Behavior of Stainless Steel 26

2.6.1 Electrochemical test 27

2.6.2 Effect of Heat Treatment on the

Electrochemical Behavior on

Martensitic Stainless Steel 29

3 RESEARCH METHODOLOGY 33

3.1 Introduction 33

3.2 Materials 35

3.2.1 Samples preparation 36

Page 8: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

x

CHAPTER TITLE PAGE

3.3 Heat Treatment Processes 40

3.4 Metallographic Investigation 42

3.4.1 Determination of Grain Size 42

3.4.2 Microstructure Observation by

Using Optical Microscope 43

3.4.3 Microstructure Observation by

Using Scanning Electron

Microscope (SEM) 44

3.5 Materials Characterization 45

3.5.1 Energy Dispersive X-Ray Analysis

(EDX) 45

3.5.2 X-Ray Diffraction (XRD) 47

3.6 Hardness Test 48

3.7 Electrochemical Test 49

4 RESULTS AND DISCUSSION 53

4.1 Introduction 53

4.2 Microstructural Characterization of

As-Received Materials 53

4.2.1 Chemical Composition of AISI 304

Austenitic Stainless Steel and AISI 420

Martensitic Stainless Steel. 54

4.2.2 Microstructure Analysis of Austenitic

Stainless Steel 54

4.2.2.1 Optical Microscopy Analysis 54

4.2.2.2 Scanning Electron Microscope

and Energy Dipersive X-Ray

Analysis of As-received Sample 55

4.2.2.3 X-Ray Diffraction Analysis of

As-received sample 57

Page 9: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

xi

CHAPTER TITLE PAGE

4.2.3 Microstructure Analysis of Martensitic

Stainless Steel 57

4.2.3.1 Optical Microscopy Analysis 58

4.2.3.2 Scanning Electron Microscope

and Energy Dipersive X-Ray

Analysis of As-received Sample 58

4.2.3.3 X-Ray Diffraction Analysis of

As-received Martensitic

Stainless Steel Sample. 60

4.3 Microstructural Characterization of

Heat Treated Samples 61

4.3.1 Austenitic Stainless Steel after

Annealing Process 61

4.3.2 Austenitic Stainless Steel after

Normalizing Process 63

4.3.3 Martensitic Stainless Steel after

Annealing Process 66

4.3.4 Martensitic Stainless Steel after

Normalizing Process 67

4.3.5 Martensitic Stainless Steel after

Quench and Temper Process 70

4.3.6 Effect of Grain Size on Heat

Treated Austenitic Stainless Steel 71

4.3.7 XRD Analysis on Heat Treated

Stainless Steel 73

4.3.7.1 Austenitic Stainless Steel after

Annealing Process 73

4.3.7.2 Austenitic Stainless Steel after

Normalizing Process 74

4.3.7.3 Martensitic Stainless Steel after

Annealing Process 76

Page 10: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

xii

CHAPTER TITLE PAGE

4.3.7.4 Martensitic Stainless Steel after

Normalizing Process 77

4.3.7.5 Martensitic Stainless Steel after

Quench and Temper Process 78

4.4 Mechanical Property – Hardness 80

4.5 Electrochemical Behavior after Heat Treatment 82

5 CONCLUSIONS 89

5.1 Conclusions 89

5.2 Recommendation for future work 90

REFERENCES 91

APPENDICES 97

Page 11: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

xiii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Allotropes of Iron (Rivlin and Raynor, 1980) 6

2.2 Atomic sizes of Fe, Cr and Ni (Rivlin and Raynor, 1980) 7

2.3 304 stainless steel chemical compositions [wt%] 10

2.4 Grain sizes of austenite crystal at different quenching

temperatures (Liu Yu-rong, 2011) 19

3.1 Chemical Composition (wt%) of materials used 35

3.2 Parameters for X-Ray Diffraction (XRD) Measurement 47

4.1 Results of chemical composition of the as-received

stainless steel 54

Page 12: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

xiv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Three dimentional view of the Fe-Cr-Ni equilibrium 8

diagram. (H.J.Eckstein, 1990)

2.2 Equilibrium diagram for Fe-Cr alloys (without carbon

content) (L. Colombier and J. Hochman, 1967). 9

2.3 900 °C isotherm of Cr-Fe-Ni system. (Rivlin, V.G.

and Raynor, G.V.1980) 13

2.4 1000 °C isotherm of Cr-Fe-Ni system. (Rivlin, V.G.

and Raynor, G.V.1980) 13

2.5 Optical micrograph of the solution annealed material

consisting of equiaxed austenite grains

(J. Ka¨llqvist, 1999) 15

2.6 Grain boundary M23C6 precipitates in a austenitic

stainless steel observed using transmission electron

microscopy (A. F. Padilha and P.R.Rios, 2006) 15

2.7 Optical micrographs paired with representative maps

of the modified 316LN alloy in the (a and d)

as-received, (b and e) 20 hours and (c and f) 100 hours

annealed conditions, respectively

(S. Downey II, P.N. Kalu, K. Han, 2008) 16

Page 13: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

xv

2.8 SEM micrographs of M316LN in the (a) 100 hours

annealed and (b) as-received conditions (S. Downey

II, P.N. Kalu, K. Han, 2008) 17

2.9 Microstructure of tested steel quenched at 1050 °C

(a) Steel 1, (b) Steel 2 (Liu Yu-rong, 2011) 20

2.10 Microstructure of the heat treated AISI 420,

(a) 1050 °C, (b) 1015 °C, (c) 980 °C

(A. N. Isfahany, 2011) 21

2.11 EDS analysis of specimens tempered at (a) 200 °C,

(b) 500 °C, (c) 700 °C. (A. N. Isfahany, 2011) 22

2.12 The relationship between the carbon content and

the hardness of martensite (Wei Du, 2011) 24

2.13 Effect of austenitizing time and temperature on

Hardness (A. N. Isfahany, 2011) 25

2.14 Hardness versus tempering temperature

(A. N. Isfahany, 2011) 26

2.15 Potentiodynamic plot of austenitic stainless steel

sample at different tempering times and tempering

temperature of (a) 150 °C and (b) 250 °C

(Ayo Afolabi, 2011) 30

2.16 Comparison between 980◦C and 1050◦C potensiostatic

curves in AISI 420 (A. N. Isfahany, 2011) 32

3.1 Research Methodology 34

Page 14: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

xvi

3.2 LECO GDS850A Glow Discharge Atomic

Spectrometer (GDS) 35

3.3 Schematic drawings of shapes and dimensions of the

(a) Austenitic and (b) Martensitic stainless steel

were sectioned respectively 37

3.4 Mecatome T255/300 Cutter Machine 38

3.5 Buehler Rool Grinder 38

3.6 Metaserv Polishing Machine 39

3.7 Buehler Electromet 4 Electro Etching Machine 39

3.8 Schematic heat treatment path for annealing process 41

3.9 Schematic heat treatment path for normalizing process 41

3.10 Schematic heat treatment path for quench and

temper process 42

3.11 Research Microscope (manufactured by Nikon in 1995) 44

3.12 Phillips XL40 scanning electron microscope 45

3.13 Schematic Drawing of X-Ray Detector for

EDX Analysis 46

3.14 X-Ray Diffractometer 47

3.15 Matsuzawa Seiki Vickers Hardness 48

3.16 The samples cold mounted in plastic moulds 50

Page 15: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

xvii

3.17 Working electrode (mounted samples and

copper wire enclosed in glass tube) 50

3.18 Potentiostat/ galvanostat Corrosion Test Machine

(Parstat-2263) 51

3.19 Sample in all-glass cell of (a) an actual preparation

and (b) schematic drawing according to

ASTM Standard G-5 51

3.20 The anodic and cathodic polarization curves in

E vs. I / (A/cm2) 52

4.1 Optical micrograph of as-received austenitic

stainless steel (etched with oxalic acid solution, 200x) 55

4.2 (a) Scanning Electron Micrograph of as-received

austenitic stainless steel at magnification 2000x;

(b), (c), (d), and (e) EDX results to verify element

content on microstructure 56

4.3 XRD results of as-received austenitic stainless steel 57

4.4 Optical micrograph of as-received martensitic

stainless steel (etched with oxalic acid solution, 200x) 58

4.5 SEM micrograph of as-received martensitic

stainless steel (etched with oxalic acid solution, 2000x) 59

4.6 (a) SEM micrograph of as-received martensitic

stainless steel at magnification 2000x, (b), (c), (d),

and (e) EDX results to verify element content

on microstructure 59

Page 16: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

xviii

4.7 XRD results of as-received martensitic stainless steel 61

4.8 Optical micrographs of the annealed austenitic

stainless steel at (a) 900 ° C and (b) 1000 °C

consisting of equiaxed austenite grains (etched with

oxalic acid solution, 200x) 62

4.9 Optical micrographs of the austenitic stainless steel

normalized at 900 ° C for (a) 1 hour and (b) 2 hours

consisting of equiaxed austenite grains (etched with

oxalic acid solution, 200x) 63

4.10 SEM micrograph of the austenitic stainless steel

normalized at 900 ° C for (a) 1 hour and (b) 2 hours

(c) 8 hours consisting of equiaxed austenite grains,

Spot A = at dark area, Spot B = at grain boundary,

Spot C = at matrix of the surface 65

4.11 Optical micrographs of the martensitic stainless steel

annealed at (a) 900 ° C and (b) 1000 °C

(etched with oxalic acid solution, 200x) 67

4.12 Optical micrographs of the martensitic stainless steel

normalized at 900 ° C for (a) 1 hour, (b) 2 hours and

(c) 8 hours (etched with oxalic acid solution, 200x) 68

4.13 Scanning electron micrographs of the martensitic

Stainless steel normalized at 900 ° C for (a) 1 hour

and (b) 2 hours (1000x) and (c) 8 hours (1000x) 69

4.14 Optical micrographs of the martensitic stainless steel

austenizing at 980 °C for (a) 1 hour and (b) 2 hours

and tempered at 200 °C for 1 hour (etched with oxalic

acid solution, 200x) 70

Page 17: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

xix

4.15 Result of hardness (grain size vs temperature and

soaking time) on (a) annealed samples and

(b) normalized samples respectively 71

4.16 XRD Analysis on the Austenitic Stainless Steel

Annealed at (a) 900°C and (b) 1000°C 72

4.17 XRD Analysis on the Austenitic Stainless Steel

Normalized at 900°C for (a) 1hour, (b) 2 hours

and (c) 8 hours soaking times 74

4.18 XRD Analysis on the Martensitic Stainless Steel

Annealed at (a) 900°C and (b) 1000°C 75

4.19 XRD Analysis on the Martensitic Stainless Steel

Normalized at 900°C for (a) 1hour ,

(b) 2 hours and (c) 8 hours soaking times 76

4.20 XRD Analysis on the Martensitic Stainless Steel

Austenized at 980°C for (a) 1hour and (b) 2 hours

soaking times 78

4.21 Hardness (Hv) of Annealed Stainless Steel 79

4.22 Hardness (Hv) of Normalized Stainless Steel 79

4.23 Hardness (Hv) of Quenched and Tempered Stainless Steel 80

4.24 Tafel graph E vs A/cm2 results in water medium for

Annealed 304 Stainless Steel at (a) 900°C, (b) 1000°C 81

Page 18: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

xx

4.25 Tefal graph E vs log (I) results in water medium on

the Austenitic Stainless Steel Normalized at 900°C

for (a) 1hour, and (b) 2 hours soaking times and

(c) 8 hours soaking times 82

4.26 Tafel graph E vs log (I) results in 3.5% NaCl solution

as a medium for Annealed 304 Stainless Steel at

(a) 900°C and (b) 1000°C 84

4.27 Tefal graph E vs log (I) results in 3.5% NaCl medium

on the Austenitic Stainless Steel Normalized at 900°C

for (a) 1hour, and (b) 2 hours soaking times and

(c) 8 hours soaking times 85

4.28 The corrosion rate (mpy) of annealed austenitic

stainless steel in water medium and 3.5% NaCl solution 87

4.29 The corrosion rate (mpy) of normalized austenitic

stainless steel in water medium and 3.5% NaCl solution 87

4.30 Tefal graph E vs log (I) results in water medium on

the Martensitic Stainless Steel Quench and Temper

for (a) 1hour and (b) hours soaking times 88

Page 19: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

xxi

LIST OF ABBREVIATIONS

Page 20: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

1

CHAPTER 1

INTRODUCTION

1.1 Background

Stainless steels form part of the great section cut through history by the

development of iron alloys, beginning about 1400 B.C. with the first man-made iron.

The so-called industrial revolution was made possible only through Cort’s improvement

in iron making methods and his introduction of mills to produced rolled sections (J.

Gordon Parr, 1971). As a class of materials, stainless steels stand apart and are

considered the backbone of modern industry since they find wide applications in

chemicals, petrochemicals, off-shore, power generation, allied industries (Maurer E. and

Strauss B, 1920).

With the mass production of steel came a scientific interest in the material. Of

course, there were brilliant examples of earlier research. But it is not until about 1890

that the constitution and properties of steels were methodically investigated. By 1920

Page 21: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

2

metallurgist were applying methods of x-rays diffraction to the study of metallic

properties (J. Gordon Parr, 1971).

Satisfactory and economical heat treatment plays and important role in the

selection and development of engineering materials, and stainless steel are no exception.

Such steels are normally favored for engineering applications requiring good strength at

moderate temperatures and high corrosion resistance. Most grades of stainless steels are

usually low in carbon (0.05 to 0.20%) but contain 4 to 18% chromium along with other

alloying elements (M. I. Qureshi and M. Mujahid, 2000). In the industry, the component

that used stainless steel will expose to the high temperature environment and at the long

time exposure. That will result in changing mechanical properties or microstructures of

the stainless steel due to the failure. Many researches had been conducted to investigate

the effect of the heat treatment on the stainless steels.

Besides the favorable corrosion properties of stainless steels, the good

mechanical properties make these materials very interesting for mechanical engineering

applications. They are used in demanding applications as, for instance, in the processing

and power industry (Henrik Sieurin, 2006).

Austenitic stainless steels of the AISI 304 and 316 types, amongst other hundred

types of stainless steels available in the market, are the most frequently used ones

worldwide. They are selected for numerous applications due to their favorable

combination of characteristics such as low price, moderate to good corrosion resistance,

excellent ductility and toughness along with good weldability (C.Herrera, 2007).

Page 22: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

3

Martensitic stainless steels are commonly used to manufacturing components

with excellent mechanical properties and moderate corrosion resistance, so that they can

work under high and low temperatures. Unlike other stainless steel, their properties

could be changed by heat treatments hence these steels usually are used for a wide range

of applications such as steam generators, pressure vessels, cutting tools, and offshore

platforms for oil extraction (J.-Y. Park and Y.-S. Park, 2006).

1.2 Objectives of The Research

The objectives of the research are as follows:

1. To characterize the microstructures of stainless steels after various heat

treatments.

2. To determine the electrochemical behavior of heat treated stainless steels.

1.3 Statement of Research Problems

Microstructures of stainless steel can be varied by heat treatment. Variation in

microstructures is expected to affect the mechanical properties and electrochemical

behavior of the steels. The heat treatment may enhance the steel properties but it may

also gives poor performance. Therefore, selection of correct heat treatment is paramount

in order to have stainless steel with better mechanical and electrochemical properties.

Page 23: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

4

1.4 Scopes of Study

The scopes of the study are as follows:

a) Initial investigation on as-received martensitic and austenitic stainless

steels in terms of chemical composition, microstructures and properties

b) Selection of heat treatment methods that can vary the microstructures and

properties: Annealing, normalizing, quench and temper.

c) Detail investigation on the heat treated samples by using optical

microscope, SEM, EDX and XRD.

d) Electrochemical test (Tafel) on heat treated samples to relate between

variation in microstructures due to heat treatment and the corrosion

resistance of the steels.

Page 24: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

91

REFERENCES

A.Bjarbo and M. Hatterstrand (2001). Complex Carbides Growth, Dissolution, and

Coarsening in a Modified 12 Pct Chromium Steel—An Experimental and Theoretical

Study, Metallurgy Materials Trans. A, 32A, p 19–27.

A.F. Candelaria (2003). Journal of Material Science, Vol. 22, pp 1151–1153.

A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina (2008),

Corrosion Science, Vol. 50, p 780.

Ardagh, E.G.R., R.M.B. Roome, and H.W. Owens (1933), Mechanism of Corrosion of

Iron in Sodium Chloride Solution. Industrial & Engineering Chemistry, 25(10): p. 1116-

1121.

ASTM International Standard (E112 – 10), Standard Test Methods for Determining

Average Grain Size.

ASTM International Standard (G102 − 89), Standard Practice for Calculation of

Corrosion Rates and Related Information from Electrochemical Measurements.

Ayo Afolabi and Najeem Peleowo (2011). Effect of Heat Treatment on Corrosion

Behaviour of Austenitic Stainless Steel in Mild Acid Medium, International Conference

on Chemical, Ecology and Environmental Sciences (ICCEES'2011) Pattaya.

Page 25: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

92

Bain, E.C. and Griffiths, W.E. (1927). Trans. AIME, Vol.75, pp 166-213.

Calliari, M. Zanesco, M. Dabala, K. Brunelli, E. Ramous (2006). Material & Design,

pp.1–5.

C. Garcı´a de Andres, G. Caruana, L.F. Alvarez (1998). Control of M23C6 carbides in

0.45C–13Cr martensitic stainless steel by means of three representative heat treatment

parameters. Materials Science and Engineering A241, 211–215.

Charlie R.Brook (1979). Heat treatment of Ferrous Alloys, Mc Grow Hill, Washington,

New York.

C. Herrera, R.L. Plaut and A.F. Padilha (2007). Microstructural Refinement during

Annealing of Plastically Deformed Austenitic Stainless Steel, Materials Science Forum,

Vol. 550, pp 423-428.

Conolly, T.F. and Copenhover, E.D (1972). Bibliography of magnetic materials and

tabulation of magnetic transition temperatures, New York, I.F.I. Plenum Press.

D.H. Mesa, A. Torb, A. Sinatora, A.P. Tschiptschin (2003), Wear 255. pp 139.

D.R. Barraclough, D.J. Gooch (1985). Materials Science Technology. 1. Pp 961.

F. Mansfeld (1976). The Polarization Resistance Technique for Measuring Corrosion

Currents, in: M.G.Fontana, R.W. Staehle (Eds.), Advances in Corrosion Science and

Technology, Vol. 7, p. 163.

Florian Mansfeld (2005). Tafel slopes and corrosion rates obtained in the pre-Tafel

region of polarization curves, Corrosion Science, Vol. 47, pp 3178–3186

Page 26: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

93

Hasabe, M. and Nishizawa, T. (1978). Applications of phase diagrams in metallurgy and

ceramics, Vol. 2, NBS Special Publication 496, pp.910-54, Washington, National

Bureau of Standards.

Harvey J. Flitt, D. Paul Schweinsberg (2005). Corrosion Science, Volume 47, Issue 12,

pp 3034–3052

H.S Khatak and Baldev Raj (2002). Corrosion of Austenitic Stainless Steels, Delhi

Medical Association Road, New Delhi, India, p. 1.

Jee-Yong Park and Yong-Soo Park (2007). The effects of heat treatment parameters on

corrosion resistance and phase transformations of 14Cr.3Mo martensitic stainless steel,

Volumes 449-451, pp 1131-1134.

J.G. Gonzalez-Rodriguez, G. Bahena-Martinez, V.M. Salinas-Bravo (2000), Material

Letters, Vol. 43, pp.208–214.

J. Ka¨llqvist, H.-O. Andre´n (1999). Microanalysis of a stabilised austenitic stainless

steel after long term ageing. Materials Science and Engineering A270 p. 27–32.

J.L. Pandey, Inder Singh, M.N. Singh, (1997). Electrochemical corrosion behaviour of

heat-treated AISI 304 austenitic stainless steel in inorganic acid mixture, Anti-Corrosion

Methods and Materials, Vol. 44 Iss: 1, pp.6 – 9.

J.S. Dubey, S.A. Vadekar, J.K. Chakravatry (1998), Journal of Nuclear Materials 254,

pp. 271–274.

K.P. Balan, A. Venugopal Reddy, D.S. Sarma (1999), Met. Material Process. Vol. 11.

pp 61.

Page 27: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

94

L. Colombier and J. Hochman (1967). Stainless and Heat Resisting Steels, Edward

Arnold (Publishers) Ltd.

L.D. Barlow and M. Du Toit (2012). Effect of Austenitizing Heat Treatment on the

Microstructure and Hardness of Martensitic Stainless Steel AISI 420. Journal of

Materials Engineering and Performance vol. 21. p. 1327 – 1336.

Levin, L.A. (2002). Deep-ocean life where oxygen is scarce: oxygen-deprived zones are

common and might become more so with climate change. Here life hangs on, with some

unusual adaptations. American Scientist, 90(5): p. 436(9).

L.F. Alvarez, C. Garcia, V. Lopez (1994), ISIJ Int. 34. pp 516.

Liu Yu-rong, YE Dong, Yong Qi-long, SU Jie, Zhao Kun-yu, Jiang Wen (2011). Effect

of Heat Treatment on Microstructure and Property of Cr13 Super Martensitic Stainless

Steel. Journal of Iron and Steel Research, International, 18(11): 6C-66.

Maurer E. and Strauss B. (1920). Kruppshe Monatsch, p. 120

M.G. Fontana, N.D. Greene (1967), Corrosion Engineering, McGraw-Hill, New York,

51.

Muhammad Iqbal Qureshi and Mohammad Mujahid (2000). An Optimal Heat

Treatment Cycle for a 26Cr, 2Mo Stainless Steel, Materials Engineering and

Performance, Vol. 9, pp 261-264

Nasery Isfahany, H. Saghan, G. Borhani (2011). The effect of heat treatment on

mechanical properties and corrosion behavior of AISI420 martensitic stainless steel,

Alloys and Compounds , Vol. 509, pp. 3931-3936.

Page 28: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

95

O. Vedat Akgfin, Mustafa Urgen, Ali Fuatakir (1995). The effect of heat treatment on

corrosion behavior of laser surface melted 304L stainless steel. Materials Science and

Engineering A203, pp. 324-331.

P. Atanda, A. Fatudimu and O.Oluwole (2010). Sensisation Study of Normalized 316L

Stainless Steel, Minerals and Materials Characterization & Engineering, Vol. 9, 1, pp.

13-23.

P.M. Unterweiser, H.E. Boyer and J.J. Kubbs (1982). American Society for Metals,

Metals Park, Ohio, p.401.

P.R.Rios, R.L. Plaut and A. F. Padilha (2006). Steel Heat Treatment Handbook, Second

Edition, Metallurgy and Technologies, Japan. Taylor and Francis Group, LLC.

Rivlin, V.G. and Raynor, G.V. (1980). International Metals Reviews, 1, pp. 21-38

S. Salem (1993). Alloyed Steel Intended for Hot Rolling Mill Rolls, Met. Sci. Heat

Treatment, 35(11), p 657–659.

Seifedine Kadry (2008). Corrosion Analysis of Stainless Steel, Corrosion Analysis of

Stainless Steel, ISSN 1450-216X Vol.22 No.4, pp.508-516.

S. Downey II, P.N. Kalu, K. Han (2008). The effect of heat treatment on the

microstructure stability ofmodified 316LN stainless steel. Materials Science and

Engineering A 480, pp. 96–100.

Walter J. Sperko (2009). Rust on Stainless Steel, USA, P.E.Sperko Engineering

Services, Inc.

Page 29: EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURES …eprints.utm.my/id/eprint/48191/1/NurHasmishaHaslanMFKM2013.pdf · pelinkejutan dan pembajaan. Ujian kakisan telah dilakukan ke

96

Wei Du,Zhuang Chu,Cheng Bin Li and Xiang Deng (2011). Effect of Chemical

Composition on Quenching Hardness of 1Cr17Ni2 Stainless Steel. Advanced Materials

Research Vols. 311-313, pp 1008-1011.

Xin Liu (2012). The Influence of Heat Treatment on Microstructure and Mechanical

Properties of Cr15 Super Martensitic Stainless Steel. Advanced Materials Research

Vols. 393-395, pp 440-443.

Y. Ait Albrimi, A. Eddib, J. Douch, Y. Berghoute, M. Hamdani, R.M. Souto (2011),

Electrochemical Behaviour of AISI 316 Austenitic Stainless Steel in Acidic Media

Containing Chloride Ions, International Journal of Electrochemical Science, Vol. 6, pp

4614 – 4627.

Y.K. Song, L. Speckert, F. Mansfeld (2004), Corrosion protection of different types of

galvanized steel using treatments based on cerium salt solutions, Research in Progress

Symp., NACE, New Orleans, LA.

Yoon-Seok Choi, Jung-Gu Kim, Yong-Soo Park, Jee-Yong Park (2007). Austenitizing

treatment influence on the electrochemical corrosion behavior of 0.3C–14Cr–3Mo

martensitic stainless steel. Materials Letters 61. pp 244–247.

Yuli Lin, Chih-Chung Lin, Tsung-Hsien Tsai and Hong-Jen Lai (2008). Microstructure

and Mechanical Properties of 0.63C-12.7Cr MartensiticStainless Steel During Various

Tempering Treatments. Advanced Materials Research Vols. 47-50, pp 274-277.

Z. Szlarska-Smialowska (1986). Pitting Corrosion of Metals, NACE, Houston, TX,

1986, pp. 69-97.