Top Banner
Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations A. Amine Benzerga Aerospace Engineering, Texas A&M University R. Talreja, K. Chowdhury, X. Poulain, A. DeCastro and B. Burgess
22

Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

Feb 24, 2016

Download

Documents

demi

Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations. A. Amine Benzerga Aerospace Engineering, Texas A&M University. With: R. Talreja , K. Chowdhury , X. Poulain , A. DeCastro and B. Burgess. Background/ Motivation. Experiments. Polymer Model. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

A. Amine Benzerga

Aerospace Engineering, Texas A&M University

With: R. Talreja, K. Chowdhury, X. Poulain, A. DeCastro and B. Burgess

Page 2: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

Background & Motivation

2

Example: Composite blade containment casing for jet engines

Wide range of temperatures (service conditions)

Wide range of strain-rates (design for impact applications)

Ideal for implementing a multiscale modeling strategy:

(i) the material is heterogeneous at various scales;

(ii) the physical processes of damage occur at various scales

Li et al. (JAE, July 2009)

Goal: Develop a strategy aimed at predicting durability of structural components

Basic ingredient: Reliable physics-based inelastic constitutive models

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

July 23rd 2009

Page 3: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

Background & Motivation

3

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

July 23rd 2009

Page 4: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

Typical Response of a Polymer

4

elastic

hardening

softening

rehardening

T=298K

Compression

510 / s

Epon 862Littel et al (2008)

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

July 23rd 2009

Page 5: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

Temperature & Rate sensitivity

5

Effect of Temperature (Epon 862)

The behavior of polymers is temperature and strain-rate dependent

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

July 23rd 2009

Tension -3ε=10 /s

298K

323K

353K

Littel et al (2008)CompressionLittel et al (2008)

- 5ε=10 /s - 3ε=10 /s

- 1ε=10 /s

ε=700/sε=1600/s

Strain-rate effects (Epon 862)

Page 6: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

Specification of plastic flow:

e pD D DAssume additive decomposition

5/6

0 exp 1kk e

kk

A sT s

2

:3

p pD D

3

2 de

p

3

:2e d d d b

where and

1 :eD L pD p

Pointwise tensor of elastic moduli Jaumann rate of Cauchy stress

Effective strain rate:

(define direction of plastic flow)

Flow rule:

3

2p

de

D

Effective stress: Deviatoric part of driving stress:

Back stress tensor

Strain rate effects

Material parameters

Describe pressure sensitivity

Internal variable

6

Polymer model

July 2009

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

Modified Macromolecular Model (Chowdhury et al. CMAME 2008)

Page 7: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

7

1-ss

ss hs

Nota Bene: Original law(Boyce et al. 1988 )

p

3 ch 8 ch:

1

b R DR R R

Evolution of back stress:

1 21 2

( ) 1 ( ) 1

s ss h hs s

Evolution of athermal shear

strength s :

Polymer Model

July 2009

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

8

2 12

13 ( )

1. , ( ), , 3 1 csch

i j klijkl R ik jl jl ikc c cch

c c

T c cc c c

c c

B BR C N g B g Btr BN

B F F tr BN

L

Page 8: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

Material parameter identification

8

• Material parameters :

Elastic constants : ,E

Temperaturesensitivity

Strain-ratesensitivity

Pressuresensitivity

Small strainsoftening

Large strain hardening,

cyclic response

Pre-peak hardening

1 0 , 00 2 3,, , , ,, ,,, , , pR s s hA C Nm s f h Related to inelasticity :

E, n

s0

pεs1

s2

f

h0

CR

N

A, 0ε

h3

Littell et al. (2008)

Reverse flow stress

Forward flow stress

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

July 18th 2009

Page 9: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

9

1- Uniaxial tension, compression and torsion tests at fixed strain-rate :

2- Tensile data at various temperatures and strain-rates :

3- s0 is determined from :

4- s1 is determined from : (at lowest temperature at given strain-rate)

5- s2 is determined from : (at lowest temperature at given strain-rate)

6- Large strain compressive response and/or unloading response at fixed strain-rate and temperature :

7- Specific shape of stress-strain curve around peak :

Material parameter identification

0,A

( )( )2(1 )E TT

0 0.077

(1 )s

log

( )ref

ref

ET T

E T

1

0

( )( )

p p

y y

ss

1

2

( )( )

p p

d d

ss

,RC N

0 , ,h f

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

July 18th 2009

Page 10: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

10

Model validation

Tension at T=323K

10-1/s

10-3/s

620/s

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

July 18th 2009

Page 11: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

11

Model validation

Tension at 10-1/s

T=298KT=323K

T=353K

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

July 18th 2009

Page 12: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

12

Model validation

Compression at T=298K

700/s

10-1/s

10-3/s

10-5/s

1600/s

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

July 18th 2009

Page 13: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

Numerical Homogenization

13

• Principles of Numerical Simulations :

Unit cell composed of Epon 862 matrix (not optimized set), interface of fixed thickness and carbon fiber

Plane strain conditionsDamage not included

• Objectives :

Investigate evolution of mechanical fields (strains, stresses) in unit-cells

Relate micro/macroscopic behaviors Input for understanding of

onset/propagation of fracture

x1

x2

a

bEpon 862

C fiber

interface

02 1 1

220

220

1 ( , )

ln

a

T x b dxabEb

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

July 18th 2009

Page 14: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

14

• Geometries :

Height: b= 100Cell aspect ratio: Ac= 2Fiber volume ratio: Vw =0.1Fiber aspect ratio: Aw=variable

Numerical HomogenizationModel Validation Damage ProgressionNumerical

HomogenizationMaterial Parameter

IdentificationPolymer ModelExperimentsBackground/

Motivation

July 18th 2009

Page 15: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

Numerical Homogenization

15

2

2

UM Ft

• Numerical implementation :

Convective representation of finite deformations (Needleman, 1989)

Dynamic principle of Virtual Work:

FEM : Linear displacement triangular elts arranged in quadrilaterals of 4 crossed triangles.

Equations of Motions :

They are integrated numerically by Newmark-B method (Belytshko,1976) in an explicit FE code.

Constitutive updating is based on the rate tangent modulus method of Pierce et al (1984)

2 i

2

ud dS - dt

ij iij i

V S V

V T u V

Kirchhoff stress

Green-Lagrange strain

Surface traction

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

July 18th 2009

Page 16: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

16

• Calculations at E22=0.10:

TensionFiber : AS4 (sim. To T700)• Et= 14 GPa• t=0.25

• Geometries :

Height: b= 100Cell aspect ratio: Ac= 2Fiber volume ratio: Vw =0.2 Fiber aspect ratio: Aw=1 (cyl.)

• Dramatic effect of fiber volume ratio on strengthening at all fiber aspect ratios

Numerical HomogenizationModel Validation Damage ProgressionNumerical

HomogenizationMaterial Parameter

IdentificationPolymer ModelExperimentsBackground/

Motivation

July 18th 2009

Page 17: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

17

• Calculations at E22=0.10:

CompressionFiber : AS4 (sim. To T700)• Et= 14 GPa• t=0.25

• Geometries :

Height: b= 100Cell aspect ratio: Ac= 2Fiber volume ratio: Vw =0.2 Fiber aspect ratio: Aw=1 (cyl.)

• Plastic strains: Localization and maxima : same as in tension

• Hydrostatic stresses : Building-up in thin ligament between fiber and

edge Aw=6 : proximity of fiber to top surface where

stresses are computed may explain strengthening?

Numerical HomogenizationModel Validation Damage ProgressionNumerical

HomogenizationMaterial Parameter

IdentificationPolymer ModelExperimentsBackground/

Motivation

July 18th 2009

Page 18: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

18

Damage ProgressionModel Validation Damage ProgressionNumerical

HomogenizationMaterial Parameter

IdentificationPolymer ModelExperimentsBackground/

Motivation

July 18th 2009

Objective: Develop an experimentally-valided matrix cracking model for use in mesoscale analyses

Page 19: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

19

Damage ProgressionModel Validation Damage ProgressionNumerical

HomogenizationMaterial Parameter

IdentificationPolymer ModelExperimentsBackground/

Motivation

July 18th 2009

Finding: Irrespective of the microscopic damage mechanisms, the fracture locus of the polymer matrix is pressure dependent and is temperature-dependent

-5 0 5 10 15 20 25 30 35

-20

0

20

40

60

80

100

120

StrainRate_10e-1eng

StrainRate_10e-3eng

StrainRate_10e-5eng

Maximum local Strain (%)

F/So

(MPa

)

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.70

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

f(x) = NaN x + NaN

Room Temperature; strain rate 10e-3/s

Notched Bars

Linear (Notched Bars)

Smooth Bars

Stress Triaxiality Ratio

Page 20: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

20

TENSION (PMMA)

Benzerga et al. (JAE, 2009)

DEBONDING : 0crit kv v kU U

Asp et al., 1996

Damage ProgressionModel Validation Damage ProgressionNumerical

HomogenizationMaterial Parameter

IdentificationPolymer ModelExperimentsBackground/

Motivation

July 18th 2009

Page 21: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

21

COMPRESSION (PMMA) DEBONDING : 0crit kv v kU U

Asp et al., 1996

No debonding :

0kk

Damage ProgressionModel Validation Damage ProgressionNumerical

HomogenizationMaterial Parameter

IdentificationPolymer ModelExperimentsBackground/

Motivation

July 18th 2009

Page 22: Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations

Polymer Fracture Model

22

2 1

, 0

,

c k kI k k

c kk k

k

T

c TT c T

Sternstein et al, 1979Gearing et Anand, 2004

Initiation:micro-void nucleation

fC

Propagation:Drawing of new polymer from active zone

1/

02(1 ( ) )

m

p cr II I

crc

D e es

Gearing et Anand, 2004

1f

Breakdown:Chain scission and disentanglement

c

Element Vanish Tech. of Tvergaard, 1981

Model Validation Damage ProgressionNumerical Homogenization

Material Parameter Identification

Polymer ModelExperimentsBackground/Motivation

July 18th 2009