Top Banner

of 69

Effect of Thermo Mechanical Processing on Titanium Alloy

Apr 14, 2018

Download

Documents

Tony Lim
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    1/69

    ARMYRESEARCH LABORATORY

    TheEffectof Thermo-mechanicalProcessingontheBallisticLimitVelocityof ExtraLow Interstitial TitaniumAlloyTi-6AL-4V MatthewS .BurkinsJeffreyS .HansenJack I.PaigePaulC .Turner

    ARL-MR-486 ULY2000

    2 0 0 0 0 7 2 76 3 Approvedforpublicrelease;distributionisunlimited.[was Q T M W Y wseaosoD *

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    2/69

    Thefindingsin thisreportar enot tobe construedas an officialDepartmentof theArmypositionunlesssodesignatedby otherauthorized documents.Citationof manufacturer'sor tradenamesdoesno tconstituteanofficialendorsementor approvaloftheus ethereof.

    Destroythisreportwhenitisnolongerneeded.Donot return itto th eoriginator.

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    3/69

    ArmyResearchLaboratoryAberdeenProvingGround,M D1005-5066ARL-MR-486 uly2000

    TheEffectofThermo-mechanicalProcessingon theBallisticLimitVelocityof Extra Low InterstitialTitanium AlloyTi-6AL-4V MatthewS .BurkinsWeapons& MaterialsResearch Directorate,ARLJeffreyS .HansenJackI .PaigePaulC .TurnerU . S .DepartmentofEnergy

    Approvedforpublicrelease;distribution isunlimited.

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    4/69

    AbstractAlthoughitaniumlloysaveee nwidelysedorerospaceapplications,theyhaveeldombeenusedinrmorystems.nnefforttoprovideincreasedinformationtoarmoredvehicledesigners,th eU . S .ArmyResearchLaboratory(ARL)andth eU . S .DepartmentofEnergy'sAlbanyResearchCenter(AR C )performeda jointresearchprogram toevaluateth eeffectofthermo-mechanicalprocessingontheballisticlimitvelocity foranextra-lowinterstitialgradeofth etitaniumalloy i-6A1-4V.RCbtainedMIL-T-9046J,AB-2platesromRMI1itaniumCompany,olledheseplatesoinalhickness,performedth eannealing,andcollectedmechanicalandmicro-structuralinformation.R Lthenevaluatedth eplateswith20-mmfragment-simulating projectilesand12.7-mm armor-piercing M 2 bulletsin ordertoetermineheballisticimitelocityofeachplate.itaniumprocessingndnnealingidavenffectnheallisticimitvelocity,bu tth emagnitudeof theeffectdependedon whichpenetratorw asused.

    1 formerlyRefractoryMetals,Inc.

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    5/69

    TABLEO F ONTENTS P a g e

    ListofFigures vListofTables i i

    1.ntroduction 1 2 .ackground 1 3.rojectiles 3 4.ethodology 5 5.etallographicAnalysis 6 6.esults 7 7.onclusions 4

    References 7 AppendicesA .MetallographicAnalysisandTensileData9 B . allisticData 3 Distribution List 1 ReportDocumentation Page 9

    in

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    6/69

    INTENTIONALLY LEFTB L A N K

    IV

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    7/69

    LISTO FFIGURESFigure age

    1 .rojectiles 5 2 .chematicofSetup 63.50Differencefor VariousProcessingConditions10 4.rossSection ofImpactCrater From20-mmF S P forBeta-Processed Plate N o. 315,TypeC 5 ,S h o tNo. 4065 1 1 5.rossSection ofImpactCrater From20-mmF S PforAlpha-Beta-ProcessedPlateN o.317 ,TypeCl,Shot N o. 43191 1 6.ea rSurfaceofBeta-ProcessedPlateN o. 302,TypeS 2,ShotN o. 5472 Aftera NearlyPerforatingImpact by a12 .7-mmA P M 2Projectile. 1 3 7.earSurfaceofAlpha-Beta-ProcessedPlateN o.312,TypeS 1 ,S h o tN o.5450 Aftera NearlyPerforatingImpactby a12.7-mmA P M 2 Projectile 1 3 8.ffectofSurfaceFinishon V50Differenceforth e20-mmF S P14

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    8/69

    INTENTIONALLY LEFTB L A N K

    VI

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    9/69

    L I STOFTABLES Table age

    1 .hemicalCompositionof TitaniumPlatesbyWeightPercent22.inimum TransverseMechanicalPropertiesRequiredfor25.4-mm-ThickTitanium Plates 23.ransverseMechanicalPropertiesObtainedfor 25.4-mm-Thick TitaniumPlates44.50BallisticLimitResultsforth e20-mm FS P8 5.50BallisticLimitResultsfo rth e12.7-mmAPM2 96.ffectof SurfaceFinish on V 5 0 BallisticLimit for the20-mm FS P...4

    Vll

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    10/69

    IN T E N T IO N A L L YLEFTBLANK

    Vlll

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    11/69

    TH EE F F E C T O F T H E R M O - M E C H A N I C A LP R O C E S S I N G O N TH EB A L L I S TI C LIMIT VE L O CI TYO F EXTR A LO W IN TER STIT IAL TI TA NI U M A L L O YTi-6AL-4V

    1.ntroductionAlthoughtitaniumalloyshavebeenusedsuccessfullyinaircraftfo rmanyyears,th erelatively highcostoftitanium,coupledwithth esparseinformationaboutits ballisticproperties,hasprevented widespreaduseoftitaniumingroundvehicles.Asearlyas950,PitlerandHurlich[1 ]notedthattitaniumshowedpromiseasa structuralarmoragainstsmallarmsprojectiles.y1964,Ti-6A1-4Valloy,extra-lownterstitialELI)rade,adecomehematerialfhoiceorrmorapplications.allistictestinghadindicated thatreductionsininterstitialelements suchascarbon,oxygen,nitrogen,andhydrogenimprovedtheductilityandthus,th eballisticprotectionofth eplate. [2 ]onsequently,heMIL-A-46077rmorspecificationw asevelopedforELIgradeTi-6A1-4V.owever,withtitanium productionmethodologytillntsnfancy,heffectfhermo-mechanicalprocessing on ballisticperformancew asnevercompletelyexplored.Innfforttorovidencreasedinformationormoredehicleesigners,heU . S .ArmyResearchLaboratoryARL)ndheU . S .DepartmentofEnergy'sAlbanyResearchCenter( A R C )performedajointresearchprogramtoevaluateth effectfthermo-mechanicalprocessingnheballisticimitelocityofanELIgradeofTi-6A1-4V.RC obtainedMIL-T-9046J,AB-2platesro mR M I 1 Titaniumompany,olledheselatesoinalhickness,erformedheannealing,ndollectedmechanicalndmicro-structuralnformation.IL-T-9046J, Navypecificationnommonsebyheerospaceommunity,assimilarchemicalcompositionrequirementsasMIL-A-46077bu thasnoballistic requirements.R Lthenvaluatedth eplateswith20-mmfragment-simulatingprojectilesF S P s )nd2.7-mmrmor-piercingAP)M 2ulletsnrderodetermineth eballisticlimitvelocityofeachplate.heballisticlimitvelocities werethencomparedtoassessth eeffectofchangesin rolling andheattreatment. 2.Background Titaniumca nexistinahexagonalcloselypackedcrystaltructureknownshealphaphase)nd body-centeredcubictructureknownshebetaphase) .nunalloyedtitanium,th ealphaphaseisstableata lltemperaturesashighas883C ,whereittransformstoth ebetaphase.histransformation temperatureisknownas'formerlyRefractory Metals ,Inc.

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    12/69

    th ebetat ransustemperature.hebetaphaseisstablefrom883C tothemeltingpoint.slloyingelementsreaddedtopuretitanium,hephasetransformationtemperaturendhemountofeachhasehange.lloydditionsoitanium,excepttinandzirconium,tendtostabilizeeitherth ealphaorbetaphase.i-6A1-4V,th emostcommontitaniumalloy,ontainsmixturesofalphaandbetaphasesandshereforelassifiedsnlpha-betalloy.heluminumsnlpha stabilizer,hichtabilizeshelphahaseoigheremperatures,ndhevanadium isabetastabilizer,whichstabilizes thebetaphasetolowertemperatures. Thedditionfheselloyinglementsaisesheetaransusemperatureoapproximately996 .lpha-betalloys,uchasTi-6A1-4V,refinterestforarmorpplicationsecauseheyreenerallyweldable,aneea treated,ndoffermoderatetohighstrength. [3 ]Ti-6A1-4Vlloyanerderedomeet arietyofcommercialndmilitaryspecifications.LIradelates,with hemicalompositionimultaneously conformingtoth eMIL-T-9046J,AB-2aerospace)andMIL-A-46077D(armor)specifications,wereelectedorthisnalysisbecausehisshenlyoff-the-shelfrmoralloy.hespecificationsefinealloychemistryranges,minimum mechanicalproperties,and,in th ecaseofMIL-A-46077D,ballisticrequirements.ThehemicalompositionndminimummechanicalropertiesreistednTables nd2 ,respectively.ransversepropertiesaredeterminedfromsamples takenperpendiculartothefinalrolling direction.

    Table1 . hemicalCompositionof TitaniumPlatesbyWeightPercentA l V C O N H Fe Other Ti

    MIL-A-46077D 5.5-6.5 3.5-4.5 0.04 0.14 0.02 0.0125 0.25 0.40 Balancemax. max. max. max. max. max.MIL-T-9046J 5.5-6.5 3.5-4.5 0.08 0.13 0.05 0.0125 0.25 0.30 BalanceAB-2 max. max. max. max. max. . max.As Delivered 6.12 4.02 0.01 0.12 0.008 0 .0014 0.19

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    13/69

    Thestartingmaterialw ascommerciallyproduced,27-mm-thickTi-6A1-4VELI alloyplateproductmanufactured by th eR M I Titanium Company.ach platew ascoatedwithasilica-basedmaterialtoreduceoxygencontamination,placedintoth efurnace,ndsoakedfor2hoursateither,066 (beta)r954 alpha-beta),ndstepforgedto08mmfirstandthen9mm.hetepforgingw asdonewithoutre-heating.Uponcompletion,th eplateswerereturnedtoth efurnaceande-heatedor0minutes.helates er ehenithernidirectionally(straight)olledrrossolledtheameemperaturesednheorgingoperation(1,066C or 954C ).herollingscheduleconsistedoftw opassesat12%eductionnhickness,w oassest5%eductionnhickness,hreepassesat20%reductionin thickness,andon efinalpassatth efinalmillsetting of25 .4mm.achlatew ase-heatedor0minutesfterveryecondassthroughth emill.ollowingth efinalpass,th eplateswereplacedon arackandair cooledtoroom temperature.Fourdifferentnnealingheattreatmentswereusedatth ecompletionofrolling andircooling:1) betaannealt,038 or30minuteswithnircool(AC) ;2)abetaplusalpha-betaannealat,038C fo r30 minuteswithanAC ,followedby 788C fo r30minuteswithanA C ;(3 )analpha-betaannealat788C fo r30minuteswithanA C ;nd(4) solutiontreatmentandagingS T A )t927Cfo r30 minuteswithawaterquenching(WQ),followedby538 fo r6hours ithnAC .snxperimentalontrol,.th einalea treatmentw asomittedforsomeof th eplates.ollowingheattreatment,allth eplatesweresandblastedtoremoveanyremainingprotectivecoating.Tw oplateswereproducedfo reachof1 1 processingconditions.able3liststh eprocessingconditionsndhemechanicalropertiesbtainedbyveragingheresultsfrom fourspecimens takenfromeach condition.inceth eMIL-A-46077Darmorspecificationhasminimumrequirementsforth etransversedirectiononly,ultimateensiletrength,ieldtrength,longation,ndreductionnreawereobtainedfo ronlyth etransversedirection.otethatonlyplatetypeC 4metth eminimumelongationrequirementsof MIL-A-46077D.lso,inmanycases,th eplatesailedomeetheieldtrengthndeductionnreaequirements. Charpyimpacttesting,lthoughnotarequirementofMIL-A-46077D,w asls oconductedinth etransverselongitudinaldirection. 3.rojectiles The20-mmF S Pandth e2.7-mmAPM 2projectiles,howninFigure,wereselectedfo rthistudybecausebothprojectilesreistedinMIL-A-46077Dsappropriatefo rth egivenplatethickness.The0-mmF S P ,whichsimulateshesteelragmentsjectedro mhigh-explosivertilleryounds,w asmanufacturedfrom4340H steelinaccordancewithspecificationMIL-P-46593A.

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    14/69

    C /3 4c 3

    C

    o1 c H

    wo C N

    -a C O C'X)O00aoC u "w u'c03 SZoc/3 >CC O

    co

    c oa,Uc2so cUDO3- oa *oo w ooso N O so\\ o NN-^~CO CN C Nq C No CN-*

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    15/69

    The12.7-mmAP M 2isastandardmachinegunbullet thathasbeenin servicefo rmanyecadeshroughoutheworld.heA PM 2as opperjacketve rhardened(R e60-65)teelcore.ach projectilew asfiredfromth eappropriate rifledM a n nbarrel,andthepropellantloadw asvariedinordertoadjustvelocity. Forbothrojectiles,teast0mmfundisturbedmaterialw asmaintainedbetweenadjacentprojectileimpacts on th eplate.

    20.9m

    0.9m

    20-mmS P Steel,e9-31Mass:3.812.7-mmP2oreSteel,e0-65Mass:5.4

    Figure1 .rojectiles.4.MethodologyProjectileelocitieseremeasured ithnrthogonallash-rayystem developedbyGrabarekandHerr.[4]hetitanium plateswereplacedsothatth eprojectileimpactednormaltoth eplate(0 obliquity).heorthogonalpairofx- ra yubesermittedhemeasurementfprojectileelocity,erticalitch,ndhorizontalawjustbeforeheprojectileimpactedheitaniumplate.inglepairofx-raytubesw asusedtomeasureth evelocityandlengthofanyprojectile orargetragmentsjectedro mheea rurfacefheargetlate.heperforationofapaperbreakscreeninitiatedth eflashx-rays.Wheneverpossible,th eresidualpenetratorandtargetmaterialejectedfromth eplatewerecollected fo ranalysis . schematicofth etargetsetupiss how ninFigure2.Evaluationaserformedobtain 5oallisticimitelocity,ereafterreferredtoasaV 5 0 .hemethodologyfo robtainingaV50isexplainedinU . S . ArmyTestandEvaluation Command(ATEC)testoperationsprocedure(TOP)2-2-710[5 ]bu tissummarizedhere.heV 5 0 isobtainedby holdingtargetthickness andobliquityconstantwhilevaryingprojectilevelocitybyadjustingth eweightofpropellant.hen rojectilempacts target,heesultsither ompletepenetration(CP)or apartialpenetration(PP).orthisinvestigation,aC Poccurs

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    16/69

    wheneverapieceof penetrator or targetmaterialperforatesth erearbreakscreenandsubsequentlyappearsinth ex-rayimage. PPisanyimpactthatisno taC P .F orth e20-mmS P ,nyPPresultwhenheotalawvectorumofverticalpitch andhorizontalyaw)w asgreaterthan5w asexcludedfrom analysisinordertokeepprojectileorientationfrominfluencingtheresults.orth e2.7-mmA P M 2,PPresultswhenth etotalya ww asreaterthan3wereexcludedfromth eanalysisfor thesamereason.

    X-Royubes

    G un Tube._U.'Line-of-Fire

    STRIKING i.o meters-

    RESIDUAL

    ^argetFigure2.chematicof Setup.

    A srojectileelocitysncreased,herojectilempacthouldroducetransitionromPPstoC Pstsomecriticalelocity.ssumingthatthetarget-penetratornteractionanemodeledy umulativeormalGaussian)distribution,thenamean(V 50)andstandarddeviation(SD)ca nbedetermined ifasufficientumberfhotser eired.he50w asetermined ithqua lnumbersofPPandC Presultsoveradesignatedvelocityr angepecifiedbyth eMIL-A-46077titaniumarmorspecification.5.MetallographicAnalysisAample asakenromachfhe1lateypesnrderoerform metallographicnalysesndmechanicaltensiletesting.hoto-micrographsndtensileestinga tarerovidednAppendixA.lllatesorged,olled,rannealednheet aegionad ypicaltructurefplate-likelphandintergranular betawithalphaatth epriorbetagrainboundaries. llplatesforged,rolled,ndannealedinth ealpha-beta regionhadatypicaltructureofequiaxedalphagrainsandintergranularbeta.

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    17/69

    6.ResultsOfth e22platesprovided,half of th eplateswereevaluatedwithth e20-mmFSPandth eotherhalfwereevaluatedwithth e2.7-mmAPM 2.50limitvelocitieswerebtainedorlllates.able4istsherocesses,platehicknesses,V50limitelocities,ndtandardeviationsorinvestigationwithhe0-mmF S P . Table5providesth esameinformationfo rth e12.7-mm A P M 2. etailed ballistictestdataarepresentedinAppendixB.inceth ethicknessofth elatesariedslightly,th eV50resultshadtobe normalized toasinglereference. Themechanismfo rnormalizingth edataw asouseth edifferencebetweenhelimitelocitybtainedhroughestingndheimitelocityorheamethicknessplatebtainedro mheMIL-A-46077Dpecification.quation1)showsth ecalculationfo rth eV50difference:

    V50Difference=TestV50 -RequiredV501)in whichrequiredV50isderivedfromth eMIL-A-46077Dspecification.Normalization isachievedbecauseth erequiredV5o termchangesasafunction ofthickness,thuspreventing th eresultsfromfavoringth ethickerplates. positivenumberobtainedfo rth eV5o differenceisthemarginby whichth eplateexceedsth epecificationminimum.lateshatxceedhepecificationminimumre listedinboldin Tables4and5.onversely,anegativevalueforV50difference indicatesth emarginby whichth eplatefailedth especification.igure3howsgraphicallytheV50differencefo r th e1 1 plateconditions.Regardlessofth epenetrator used,onlythreeplatetypes(SI,Cl,andC 4)passed th eballisticequirementsofMIL-A-46077D.otethattw oofthesethreeplatetypeslsoailedtomeetth elongationrequirementsofMIL-A-46077D.riordata[6 ]seemedtoshowsomecorrelationbetweenreductioninareaandballisticperformance,utlateypeIrovidedoo dallisticerformance ithrelativelypooreductionnrea.orhisrogram,herew asoorrelationbetweendequateallisticerformanceasequirednMIL-A-46077D)ndultimatetensilestrength,yieldstrength,longation,reductioninrea,rCharpy impactenergy. Beta-processedlatesthosehatwereeitherrolledrannealedttemperatures aboveth ebetatransus)h adlowerV 5o ballisticlimitvelocitiesforboth th e20-mm F S P andth e2.7-mmA PM 2.hemagnitudeofth eeffectw asmuch greaterforth e20-mmFSP(-200m/s)thanfo rth eA P M 2 (

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    18/69

    (X o n PH E io

    3tnU

    P Q

    IS-oc c>

    o>

    c.S E

    K J 3< uaCx

    UO ^ ~ a.oO S E Hco , 4ro (1 ) O S u

    C ) oa, < l) a > a a,> > a - H

    fto \oTI Ifi IT ) VO fttN O N i" HO t" ~ \0 C O V O I/ O " tf Tf TfOv\ O N O N O Ns

    noft eoC 4 oo< ^ r^on/>~-~*fttr-- TtJ -Offt-~-- N Oo

    r^moon/inn~- N OOJN | ;innT !nnC 4NSNN CS eo >nn

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    19/69

    e sOH

    0 0o

    H

    e s( D3cuCS< fU

    zz ao E 0)Hco_ fo ( ! ) e s s_

    z' S&O HH

    l - tTfNO" t f00000000vvvoNOSOONO00xr ~ o o o o t - ~v o O V O OO ONt-~ V O O

    o00ONVO VO r ~ < o o r -

    oo o r *CNu o - 3 -t ^v o v o v o OMonoo^ont^oooo co/ovOoT3j=oca > 3

    in>oo o nMn- omn ro mmmo CO C O U

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    20/69

    -250 S 1 C 1234523456PlateType 12.7-mmAP g20-mmFSP

    Figure3.V50 Differencefor VariousProcessingConditions.(ClndS2 ) .orth eAPM 2valuations,crossollingprovidednoignificantdifferencein V50ascomparedto straightrolling(S IversusClandC 5versusS2) . F or th e20-mmF S P evaluations,crossrollingseemedtoprovideaslightlyhigherV50thanstraightrolling inth ealpha-betaregion(S IversusCl);however,straightrollingseemedtobeslightlybetterthancrossrolling inth ebetaregion(C 5versus S2) . F orth e20-mmF S P ,th elargedifferenceinth eV50limitvelocitiesbetweenthebeta-processedndalpha-beta-processedplatestendsondicatethatthefailuremechanismswereinsomew aydifferent.bservationofth eea rplateurfacefailuresuponperforatingandnear-perforating impactsshowedthistobe th ecase.Theeta-processedlatesailedy rocessfdiabatichearlugging,sshownn igure.h islugging, ownergyailuremodehatausedtitaniumlu goejectedromheea rurfacefhelatefterheSPpenetratedpproximately mmntohelate,asee nescribednreviouswork. [6,7,8]heplatesthatwerealpha-beta processedfailedbyamixedprocessofbulging,delaminating,shear ing,andspalling,asshowninFigure5.owever,thisfailureoccurredonlyafterth eF S Phadpenetratedapproximately15mmintoth eplate,requiring theF S P toburrow significantlydeeper intoth earmorthanforth ebeta-processedplates.

    1 0

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    21/69

    . r--v;v

    Figure4. CrossectionofImpactCraterFrom20-mmF S Pfo rBeta-ProcessedPlateNo. 315,TypeC 5 ,S h ot No. 4065 .

    V

    0I 6JScale,cm

    Figure5. CrossectionofImpactCraterFrom20-mmF S Pfo rAlpha-Beta-Processed PlateN o. 317,TypeCl,ShotNo. 4319.

    1 1

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    22/69

    Conversely,orhe2.7-mmAPM 2,heelativelymallifferencesnV50performanceetweenhebeta-ndlpha-beta-processedlateswouldeemoindicateittleifferencenheailuremechanisms.gain,bservationofrearplateurfaceailuresuponnearlyperforatingimpactsconfirmedthis.herearsurfacefailureofabeta-processedplate(seeFigure6)looksremarkablysimilarto th eearurfaceailureofnlpha-beta-processedlatesee igure).hefailuremodeforboth th ebeta-andth ealpha-beta-processed platesappearedtobe acombination ofbulging,petaling,andspalling. Afterthisbatteryofevaluationshadbeenperformed,someconcernsaroseaboutwhetherth esurfaceoxidelayer(alphacase)ofth etitanium platew asresponsiblefo rth elargeperformancedifferencebetweenth ealpha-beta-andbeta-processed plates.odetermineifthealphacasecausedth elowerperformancefo rth ebeta-processedplates,fourplates(onealpha-betaprocessedandthreebetaprocessed)wereelectedndeturnedoA R Coehemicallymilledchem-milled)oremoveth ealphacase.hem-millingisthecontrolleddissolutionofamaterialthroughontactwith tronghemicaleagent .heartoerocessedscleanedandthencoveredwithastrippable,chemicallyresistantmask.hemask istrippedromreaswherehemicalctionsesired,ndhenheartssubmergedin th echemicalreagenttodissolveth eexposedmaterial .[3]Sincehesea tahowedthatprocessinghangesnitaniumproduce reaterchangeinV50forth eF S P thanforth eAP M 2 ,thefourplates(No.303,311,315 ,and322)werechosenfromth eplatepopulationthathadbeentestedwith th eF S P . Afterchem-milling,helatesweressignedewdentificationumbers377,378,379,and380,respectively)byA R C .heseplateswerethenevaluatedonceagainwithhe0-mmF S P ,ndV50ballisticimitelocitieswereetermined. ThedataaregiveninTable6.otethatchem-millingreducedth ethicknessofth eplatesndthereforealsoreducedtherequiredV 5odeterminedfromMI L -A -46077D.heV50differences,calculatedwithEquation(1),areplottedinFigure8. Threefheou rlateonditionsvaluatedC 4,5 ,nd2)howednapproximately25-m/sincreaseinth eV50differenceafterchem-milling.orth efourthonditionS6) ,herew asotatisticallyignificanthangenheV50difference.inceheerformancemprovementccurredorothlpha-beta- andeta-processedlatesC 4nd5 ,espectively),helphaasesot responsibleorheargeifferencesnV50sbtainedetweenlpha-beta-ndbeta-processedplates.asedontheseresults,chem-millingappearstoprovidea slightperformanceimprovementoversandblasting.tisbeyondth escopeofthisreporttodiscusstheeconomicsofsandblastingversuschem-milling.

    12

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    23/69

    Figure6.ea rSurfaceofBeta-ProcessedPlateNo.302,TypeS 2,Sho tN o. 5472 AfteraNearlyPerforatingImpactbya12.7-mmA P M 2 Projectile.

    H4Wa

    CO .

    P~lDl

    FJ5HftZsSiiJ

    E= p=O 1 2p

    Figure7.ea rSurfaceofAlpha-Beta-Processed PlateNo.312,TypeSI,S h o tN o. 5450 AfteraNearlyPerforatingImpactbya12.7-mmA P M 2 Projectile.

    13

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    24/69

    Table6. ffectof SurfaceFinishonV50 BallisticLimitfor the20-mmFS P A sReceived Chem-m liedPlate Thickness TestedV50 S D Required V50 ThicknessestedV50 S D RequiredType (mm) (m/s) (m/s) (m/s) (mm) (m/s) (m/s) V50(m/s)

    S 2 25 . 27 757 7 94 7 24.89 78 3 9 92 8 S 6 25 .43 78 4 4 95 3 24.94 75 6 18 930C 5 25 .35 73 4 15 95 0 24.77 74 2 20 922C 4 25 .60 98 4 7 96 1 25 .25 995 10 945

    w AsReceivedChem-milled-250 C4 C5 S2 S6PlateType

    Figure8.ffectof SurfaceFinishon V50 Differenceforthe20-mmFSP .7. onclusions Rolling orannealing attemperaturesaboveth ebetatransusreducesth eV50ballisticlimitvelocity forboth th e20-mmF S Pandth e2.7-mmA P M 2.hemagnitudeofth eeffectw asmuchreaterfo rth e20-mmF S P-200m/s)hanortheA PM2(

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    25/69

    requirementsofMIL-A-46077D,tw ofailedtomeetth eelongationrequirementsofMIL-A-46077D.neneral,hereasoorrelationetweendequate ballisticperformanceasrequiredinMEL-A-46077Dandultimatetensilestrength,yieldstrength,elongation,reductionin area,or Charpyimpactenergy.heplates thatreceivednoadditionalannealingtreatment(C 4andS 5)gaveaperformance comparableoimilarlyrocessedlateshateceivednlpha-betannealtreatment(ClndS2) .dditionally,crossrollingversusstraightrollingshowedasmalldifferenceinV50fo rth eF S PbutnosignificantdifferenceinV50forth eAPM2.Thefailuremodebetweenth ebeta-andalpha-beta-processed platesw asdifferentfo rth e20-rnmF S P .hebeta-processedplatesfailedby processofadiabaticshearlugging.h islugging, ownergyailuremodeha tccurredapproximately6mmintoth eplate,asbeendescribedinpreviouswork. [6,7,8]Thelpha-beta-processedlatesailedyixedrocessfulging,delaminating,hearing,ndpalling,whichequiredmorenergyecauseheF S Padourrowmucheeper-15mm)ntohermorlateeforeearsurfaceailureccurred.heailuremodeorbeta-ndlpha-beta-processedplatesppearedoeheameorhe2.7-mmA PM 2.h isbservationsconsistentwithth erelativelysmallifferencesnV 5operformancebetweenth ebeta-andalpha-beta-processed plates.Theemovalofsurfacexideayeralphacase)yhem-millingidaveneffecton th eV 5o ballisticlimitofth eplateswhentestedagainstth e20-mmF S P . N oevaluationw asperformedwithth e2.7-mmAPM 2inceth eatashowedthatprocessingchangesintitaniumproduceagreaterchangeinV50fo rth eFSPthanfo rth eA P M 2. f th efourplatetypesthatwerechem-milled(C4,C 5 ,S 2 ,andS6) ,threeplates(C4,C 5,andS 2)showedaV50increaseofapproximately25 m/s.hefourth plate(S6)didnot show anystatisticallysignificantchangeinV 5o .Sinceheerformancemprovementccurredorothlpha-beta-ndeta-processedplates(C 4andC 5,respectively),thealphacaseisnotresponsibleforthelargedifferencesinV5o dataobtained betweenalpha-beta-andbeta-processedplates.asedontheseresults,hem-millingmayprovide slightperformance improvementoversand blasting.

    1 5

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    26/69

    INTE NTIONA L L YLEFT B L A N K

    1 6

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    27/69

    References 1 .itler, . ,ndA.urlich,S o m eMechanicalndBallisticropertiesfTitaniumnditanium lloys."AL-TR-401/17,Water townrsenalLaboratory,M A ,Ma rch1950.2.liney,. ,StatusndotentialofTitaniumArmor."roceedingsofth e MetallurgicalAdvisoryommitteenRolledArmor.M R AM S4-04,U .S .A rmyMaterials Research Agency,January1964.3.onachie,M .,Titanium:TechnicalGuide."S M International,Metals Park,O H ,989.4.rabarek,C,andE.L.Herr,"X-RayMulti-Flash Systemfo rMeasurementofProjectileerformancetheTarget."BRL-TN-1634,U . S .ArmyBallisticResearchLaboratory,AberdeenProvingGround,M D,September1966.5..S .rmyes tndvaluationommand,Ballisticestsf rmorMaterials."TOP-2-2-710 (A DA137873) ,AberdeenProvingGround,M D,July1993.6.urkins,M . S . ,W . W .Love,andJ .R .Wood,"Effect ofAnnealingTemperature on th eBallisticLimitVelocityof Ti-6A1-4VELI."ARL-MR-359 ,U . S .ArmyResearchLaboratory,August1997.7.orrigan,D.,"MetallurgicalStudyofTitaniumAlloyArmor,PartI-Ti-4A1-4V."WAL-TR-710 .6 /2t.,Water townArsenalLaboratory,M A ,anuary1961.8.oepke,. ,MetallurgicaltudyfBackpallormationni-6A1-4VArmorlate."AL-TN-710.6/3,atertownrsenalaboratory,A ,February1963.

    17

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    28/69

    INTE NTIONA L L Y LEFT B L A N K

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    29/69

    A P P E N D I XA M E T A L L O G R A P H I C A NA L Y S I S A N DTENSILE T E S T I N G DATA

    19

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    30/69

    INTE NTIONA L L Y LEFT B L A NK

    2 0

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    31/69

    METALLOGRAPHICANALYSISANDTENSILEDATATableA-l.MetallographicAnalysisandTensileTestingDataforPlateNos.302and303,TypeS 2

    PLATEPROCESSINGInitialMaterial Forging Rolling Annealing FinishingR M I Titanium H T854209/11 Annealed5 . 062/5 . 125"thickStepForged@ 1950F 5"-4.25"-3.5"

    1950F@300in/minStart:3.5"thick;End:.0 "thickStraight Rolledin8 passes(12% for2passes;5% fo r2passes;20% for3 passes;1as sforfinalhickness)Alpha-Beta 1450F fo r30 min,A irCool Sand-Blasted 30 0B H N Re30 M E C H A N I C A LPROPERTIESDirection U TS (ksi) YS (ksi) Elong(%) R A (%)Transverse 130.9 120.5 11.0 12.5Transverse 131.5 121.5 10.8 12.5 Transverse 131.4 121.5 11.4 13.8TransverseAvg 131.3 121.2 11.1 12.9C H A R P YIMPACTDirection TestTemperature(C) ImpactVelocity(fps) Energy(ft-lb)TL -40 12.02 21.42 TLTLTL A va

    K-

    -40

    50X

    12.02 21.42 ^

    |&^//"//;vS

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    32/69

    TableA-2 .MetallographicAnalysisand TensileTestingDatafo rPlateNos.30 4and 305,TypeS 3

    50X 500X

    2 2

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    33/69

    TableA-3.MetallographicAnalysisandTensileTestingDataforPlateNos.306and307,TypeS 4 PLATE PROCESSING InitialMateria l Forging Rolling Annealing FinishingR M I TitaniumH T854209/11Annealed5.062/5 .125"thick

    StepForged@ 1950F 5"-4.25"-3.5"

    1950F @ 30 0in/minStart:3.5"thick;End:1.0"thickStraightRolledin8 passes (12% for2passes;15 %for 2passes;2 0% fo r3 passes;1passfo rfinalhickness)Beta +Alpha-Beta 1900Ffor30min,A irCool+1450Ffor30min,A irCool Sand-Blasted30 5B H N Re30 MECHANICAL PROPERTIES Direction UTS(ksi) YS(ksi) Elong(%) RA (%)Transverse 131.8 122.3 8.4 17.8Transverse 131.7 122.5 8. 9 17.9Transverse 130.4 121.8 N oData 16.2TransverseA vg 131.3 122.2 8.7 17.3CHARPY IMPACT Direction TestTempera ture(C)mpactVeloci ty(fps) Energy(ft-lb)TL -40 12 .04 21.62 TL -40 12.03 19 .16TL -40 12.03 20.94TLAvg -40 12.03 20 .57A ' " ^ * ; ^ '

    ?*U

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    34/69

    TableA-4.MetallographicAnalysisandTensileTestingDataforPlateNos.30 8and309,TypeS 5 PLATEPROCESSINGInitialMaterial Forging Rolling Annealing FinishingRM ITitaniumH T854209/11Annealed 5 . 062/5 . 125"thick

    StepForged@ 1950F 5"-4.25"-3.5"

    1950F@300in/minStart:3.5"thick;End:.0 "thickStraightRolledin8 passes(12%fo r2passes;15%fo r 2passes; 20% fo r3 passes;1 passfo rfinalhickness)None Sand-Blasted30 1BH N Rc30 MECHANICALPROPERTIESDirection U TS (ksi) YS (ksi) Elong (%) R A (%)Transverse 132 .7 118.8 10.3 21.1 Transverse 132.6 118.8 10.3 22.7 Transverse 133.0 118.9 9. 8 22.8TransverseA vg 132.8 118.8 10.1 22.2CHARPYIMPACT24

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    35/69

    TableA-5.MetallographicAnalysisandTensileTestingDataforPlateNos.310and311 ,TypeS 6PLATEPROCESSINGInitialMaterial Forging Rolling Annealing FinishingR M I Titanium H T854209/11

    Annealed5.062/5.125" thick

    StepForged@ 1950F 5"-4.25"-3.5"

    1950F@300in/minStart:3 .5"thick;End:.0 "thick StraightRolledin8 passes(12% for2passes;15%for2passes;20% for3 passes;1passforfinalhickness)S TA 1700Ffor30min,WaterQuench+1000Ffor6hrs,A irCool Sand-Blasted 32 7B H N R e33 MECHANICAL PROPERTIESDirection U T S (ksi) YS (ksi) Elong(%) R A (%)Transverse 145.8 135.9 8.1 14.3Transverse 142.0 132.5 8.7 17.1Transverse 145.2 135.0 8. 6 16.0 TransverseAvg 144.3 134.5 8. 5 15.8CHARPYIMPACTDirection TestTern perature(C)m pact Velocity (fps) Energy(ft-lb)TL -40 12.03 21 .96TL -40 12.02 22 .15TL -40 12.01 22.83TL Avg 12.02 22.31

    25

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    36/69

    TableA-6.MetallographicAnalysisandTensileTestingDataforPlate Nos.312and313,TypeSIPLATEPROCESSING

    InitialMaterial Forging Rolling Annealing FinishingRM I TitaniumH T854209/11 Annealed5.062/5.125" thick StepForged@ 1750F 5"-4.25"-3.5"

    1750F@300in/minStart:3.5"thick;End:.0 "thickStraightRolledin8 passes( 12% for2passes;5% fo r2passes;20 % for3 passes;1passforfinalhickness)Alpha-Beta 1450F for30 min,A irCool Sand-Blasted292 B H N Rc29MECHAN ICAL PROPERT IESDirect ion UT S(ksi) YS (ksi) Elong(%) RA (%)Transverse 141.4 134.5 12.3 14.3Transverse 140.6 133.6 12.9 17.1Transverse 140.9 133.9 12.0 16.0 TransverseA vg 141.0 134.0 12.4 15.8CHARPY IMPACT TestTempera t u r e( C) Impac tVeloci ty(fps)

    12.03Energy(ft-lb)26.21 12.02 23 . 15 12.01 22.9012.02 24.09

    26

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    37/69

    TableA-7.MetallographicAnalysisandTensileTestingDataforPlateNos.314and315 ,TypeC 5 PLATE PROCESSING InitialMateria l Forg ing Rolling Annealing FinishingR M ITitanium H T854209/11Annealed5.062/5.125" thick

    StepForged@ 1950F 5 "- 4.25"-3.5"

    1950F@300in/minStart:3.5"thick;End:1.0"thickCrossRolledin8 passes(12%fo r 2passes;5%for 2passes;20% fo r3 passes; passforfinalhickness)Alpha-Beta1450Ffor30min,A ir Cool Sand-B lasted30 4B H N Re30 MECHAN ICALPROPERTIESDirect ion UT S(ksi) YS(ksi) Elong(%) RA(%)Transverse 128.7 117.4 11.5 20.0Transverse 128.4 117.6 11.9 22.6Transverse 128.7 117.4 11.7 24.3 TransverseAvg 128.6 117.5 11.7 22.3CHARPY IMPACT

    mmmm IRKSWmmie

    .\"0y-"r-* - /f'-

    50X

    '." -5S;? ---:.-

    500X

    27

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    38/69

    TableA-8.MetallographicAnalysisand TensileTesting Data fo rPlateNos.31 6and317,TypeCl

    28

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    39/69

    TableA-9.MetallographicAnalysisand TensileTestingData forPlateNos.318and319,TypeC 2 PLATEPROCESSINGInitialMaterial Forging Rolling Annealing FinishingR M ITitaniumH T854209/11 Annealed 5.062/5.125" thick

    StepForged(2 1750F 5"-4.25"-3.5"

    1750F@300in/minStart:3.5"thick;End:.0 "thickCrossRolledin8 passes (12%for 2passes;15%fo r 2passes;20% for 3 passes; passfo rfinalhickness)Beta 1900F fo r30 min,AirCool Sand-Blasted 296 B H N Rc29MECHANICAL PROPERTIESDirection UTS(ksi) YS (ksi) Elong (%) R A (%)Transverse 133.5 118.8 10.3 18.8Transverse 132 .7 117.6 10.5 23.4Transverse 133.5 118.9 10.4 16.6TransverseA vg 133.2 118.4 10.4 19.6C H A R P Y IMPACTfcm^^h&MwwS?? ''-av^cs

    i* ..- ,__. IP-HHSfH0(29

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    40/69

    TableA-10.MetallographicAnalysisandTensileTestingDataforPlate Nos.320and321,TypeC3PLATEPROCESSING

    InitialMaterial Forging Rolling Annealing FinishingRM ITitanium H T854209/11Annealed5.062/5 .125"thick StepForged@ 1750F 5"-4.25"-3.5"

    1750F@300in/minStart:3.5"thick;End:1.0"thickCrossRolledin8passes (12% fo r2passes;15%fo r2passes;20% fo r3 passes;1passfo rinalthickness)Beta+Alpha-Beta 1900Ffor30min,A irCool+1450Ffor30min,A irCool Sand-Blasted2 97 B H N Rc29MECHANICALPROPERTIESDirection U TS (ksi) YS (ksi) Elong(%) R A (%)Transverse 132.3 122.8 10.4 21 .6 Transverse 131.5 121.7 10.9 20 .9 Transverse 131.9 121.9 10.3 19.2TransverseA vg 131.9 122.1 10.5 20 .6CHARPYIMPACTDirection TestTemperature( C) ImpactVelocity(fps) Energy(ft-lb)

    TL -40 12.03 18.65 TL -40 12.02 19.65TL -40 12.04 18.58TLAvc -40 12.03 18.96J.' * . * & > ^ ;f*ilirJ'5.

    50X

    :/ " " o -'* :. ip^v

    500X

    30

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    41/69

    TableA-l1.MetallographicAnalysisandTensileTestingDataforPlate Nos.322and323,TypeC4PLATE PROCESSINGInitialMateria l Forging Rolling Annealing FinishingR M ITitanium H T854209/11Annealed5.062/5 .125"thick

    StepForged@ 1750F5"-4.25"-3.5"

    1750F@300in/minStart:3.5"thick;End:1.0"thickCrossRolledin8 passes(12% fo r2passes;15% for 2passes;20% fo r3passes;1passfo rfinalhickness)None Sand-Blasted310BHNRe34 MECHAN ICALPROPERTIES Direction UT S(ksi) YS(ksi) Elong(%) RA (%)Transverse 142.9 135.8 13.4 34.4Transverse 144.0 136.6 13.9 28 .9Transverse 143.3 136.1 15.3 29 .3TransverseA vg 143.4 136.2 14.2 30.9CHARPY IMPACT Direction Impact Veloci ty(fps) Energy(ft - lb)12.03 33.0812.03 32.46 12.03 35.7912.03 33.78xJ^Z-10- * m w&

    500X

    31

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    42/69

    INTENTIONALLYLEFTB L A NK.

    32

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    43/69

    APPEN DIX B BALLISTIC DATA

    33

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    44/69

    INTENTIONALLY LEFTB L A NK.

    34

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    45/69

    Listof AbbreviationsUsedin ThisAppendix Notapplicable.C P Completepenetration;penetratoror targetmaterialexitstherearsurfaceof thetarget.Asterisks* C P * )indicateshotsthatwereusedtocalculatetheV50 .AW Th emasslossin aplatecausedbyashot.Massof platepriortoshotminusth emassofplateafterth eshot.LR Residuallength;thelengthof residualpenetratoror thethicknessof a targetmaterialforaC Presult.M R Residualmass;themassof residualpenetrator or targetmaterialfor aC Presult.NM Notmeasured.PIP Penetratorin plate;penetratorlodgedin impactcrater.PP Partialpenetration;thepenetratorisdefeated by thetarget.Asterisks*PP*)indicateshotsthatwereusedtocalculatetheV 5 0 .PR Penetrationintoplate;theimpactcraterdepth. RES Resultofshot;C Por PP.VR Residualvelocity;thevelocitymeasured behind thetargetwhenaC Presultoccurs.he"COMMENTS"columndefineswhether thisvelocityisforpenetratoror targetmaterial. Vs Strikingvelocityof projectile justprior toimpacting thetarget.YAWotalyaw;th evectorsu mof verticalpitchan dhorizontalya w for theprojectile.

    3 5

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    46/69

    INTENTIONALLY LEFTB L A NK.

    36

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    47/69

    TableB-l.iring Datafor12.7-mmAP M 2VersusPlateNo.302,TypeS 2,at0Obliquity(Str.Roll@1,066 C ;Anneal@788 C ,30 min.,AC ;25.27mmthick;302-BHNhardness)Sho tN o. Vs (m/s) YA W () R ES VR (m/s) LR (mm) MR(g ) PR (mm) AW Comments5468 661 1.50 *pp* 29.5 3. 7 5-mmbulgew/cracks 5469 665 0.71 *pp* 31 4. 5 4-mmbulgew/cracks 5470 67 6 1.60 *cp* 47 3 N M 9.5 Spal l5472 67 7 0 .56 *pp* 32 6. 8 7-mmbulgew/cracks 5467 685 1.25 * C P * 44 3 N M 6. 2 Spal l5471 68 8 0.35 *pp* 56 3. 9 1 . 1 PIP -17.8 Spal l5466 70 1 0 .56 C P 15 485 47.2 4.9 25.4 3. 6 15.9 PenetratorSpal l

    TableB-2.iring Data fo r20-mmF S P VersusPlateNo. 303,TypeS 2,at0Obliquity(Str.Roll@1,066 C ;Anneal@788C,30 min.,AC ;25.27mmthick;302-BHNhardness)Sho tN o. Vs (m/s) YA W ( ) R ES VR (m/s) LR (mm)

    MR(g ) PR (mm) AW

    Comments4095 745 1.12 PP 6 6 6. 9 3-mmbulge4089 74 8 0.71 *pp* 6. 5 6. 5 2 .6 4-mmbulgew/cracks 4094 75 0 0.79 *pp* 8 8 4.0 5-mmbulge/plugformed4093 75 5 0.75 * C P * 79 2 N M 5 .6 4x5-mmChip4096 75 6 1.52 *pp* 8 9 3. 4 5-mmbulge/plugformed 4098 761 2.30 * C P * 48 3 N M -1.6 10x5-mmChip4097 77 0 1.80 *p* 75 2 N M 3. 5 6x5-mmChip 4092 77 4 0 .56 C P 79 2 .6 0. 1 4.1 6x5-mmChip 4091 799 0.75 C P 2755 16.424.1 48.858.8 63.5 PenetratorPlug 4090 84 8 0 .50 C P 55 11 9 15.920.5 46.135.4 61.5 PenetratorPlug 4088 1,153 0 .56 C P 293 36 9 17.423.2 NM N M 95.8 PenetratorPlug

    37

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    48/69

    TableB-3.iringDatafor12.7-mmAPM 2VersusPlateN o.304,TypeS 3,at0Obliquity(Str .Roll@1,066 C ;Anneal@1,038 C ,30 min,AC ;25.35mmthick;302-B H N hardness)Sho tNo. Vs(m/s) YA W ( ) RES VR (m/s) LR (mm)

    M R (g ) P R (mm)AW Comments

    5509 64 0 0.5 PP 27 6. 4 4-mmbulgew/cracks5512 65 3 0 .25 *pp* 29 4. 3 7-mmbulgew/cracks5510 655 2.46 *pp* 27 4. 3 5-mmbulgew/cracks5507 65 7 0.75 *pp* 31 5. 1 2.2 29 7. 4 Spall5511 65 9 2 .55 *pp* 26 4. 9 5-mmbulgew/crack5514 676 0.71 * C P * 14 8 4. 9 1.9 PIP -13.2 Spall5513 677 0 .25 *p* 33 6. 0 4.1 8. 8 Spall5506 698 1.12 C P 70 10 6 47.34 25.3N M 10.6 PenetratorSpall

    TableB-4.iringDatafor20-mmF S P VersusPlateNo.305,TypeS 3,at0Obliquity(Str.Roll@1,066 C ;Anneal@1,038C ,30min.,AC ;25.25mmthick;311-BHN hardness)Sho tN o. Vs(m/s) YA W ( ) RES VR (m/s) LR (mm)

    M R (g ) PR (mm) AW (g) Comments 4352 69 8 0.00 PP 6 4.2 4-mmbulgew/cracks4356 71 3 2.24 PP 7 2 .6 4-mmbulgew/cracks4357 71 5 1.03 PP 6 2 .7 4-mmbulgew/cracks4355 71 5 1.68 PP 6 2 .9 3-mmbulgew/cracks4358 72 2 1.68 PP 6 2.3 3-mmbulgew/cracks4354 722 1.35 * C P * 82 1. 8

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    49/69

    TableB-5 .iringDatafor20-mmF S P Versus PlateNo.306,TypeS 4,at 0Obliquity(Str.Roll@1,066C;Anneal@1,038C ,30min.,AC ,followedbyAnneal@788C,30min,AC ;25.17mmthick;311-BHNhardness)ShotNo. Vs(m/s) YAW( )

    RES VR(m/s) LR(mm)MR(g ) PR(mm)

    AW(B )

    Comments4364 706 1 . 00 PP 5 .5 2.9 2-mmbulgew/cracks4366 721 1 .12 *pp# 6 3.4 4-mmbulgew/cracks4367 725 1.46 *pp* 6 6.5 4-mmbulgew/cracks4370 732 1.25 *pp* 18 1 NM 8 3.0 6x4-mmchip4368 734 1.46 *cp* 47 2 NM 7 3.6 7x4-mmchip4369 742 0.79 *pp* 9 3.5 Plugpushedout4mm4365 749 1.60 *QP* 90 2.7 0 . 13 8 4.0 6x4-mmchip4379 762 1.77 CP 135 1 NM 9 3.7 7x2-mmchip4363 905 2.80 CP 127

    22416.3 21.0

    44.239.9 67.4 PenetratorPlug

    TableB-6.iringData for12.7-mmA PM 2VersusPlateN o. 307,TypeS 4,at0Obliquity(Str.Roll@1,066C ;Anneal@1,038C,30min.,AC ,followedbyAnneal@788C,30min,AC ;25.17mmthick;302-BHNhardness)ShotNo. Vs(m/s) YAW( )

    RES VR(m/s) LR(mm)MR(g ) PR(mm)

    AW(g)

    Comments5521 618 0 .25 PP 24 17 . 2 3-mmbulgew/cracks5522 637 1 .03 *pp* 28 5.4 5-mmbulgew/crack5525 640 0 .25 *pp* 29.0 5.2 7-mmbulgew/cracks5523 641 1.03 *pp* 27 3.9 4-mmbulgew/cracks5520 660 2.50 *CP* 42 4.8 1.4 N/A -18.9 Spa l l5524 660 1 .03 *CP* 88 4.5 1 .0 N/A 6.9 Spa l l5519 661 1.77 * C P * 113 5 NM N/A 6.9 Spa l l5517 665 0.35 CP 35 5.1 1.9 N/A 7.4 Spa l l5518 696 4.24 CP 45 15 8 47.3 4 25.4NM N/A 12 . 2 PenetratorSpall5515 699 3.76 C P >163 4. 7 2 .9 N/A -13.8 Spall

    39

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    50/69

    TableB-7.iringDatafor12.7-mmAPM 2VersusPlateNo.308,TypeS 5 ,at0Obliquity(Str.Roll@1,066C ;NoAnneal;25.22mmthick;302-BHNhardness)Sho tNo. Vs (m/s) YA W ( )

    R ES VR (m/s) LR (mm) MR(g ) PR (mm) AW (g )Comments

    5474 66 0 2.14 *pp* 29 5 .0 4-mmbulgew/cracks5478 66 8 0.75 *CP* 50 5 N M 6. 8 Spal l5476 671 1.52 *pp* 27.5 3. 9 6-mmbulgew/cracks5479 67 2 0.56 *pp* 31 4.2 Spal lpushedou t3m m5477 68 0 2.02 *P* 36 5. 0 4. 7 PIP -14.1 Spal l5475 68 5 0.71 *CP* 57 4. 8 3. 8 14.3 Spal l5473 69 9 1.46 C P 21 5. 9 1.8 PIP -17.5 Spal l

    TableB-8.iringDatafor20-mmF S PVersusPlateNo.309,TypeS 5,at0Obliquity (Str.Roll@1,066C ;No Anneal;25.27mmthick;311-BHNhardness)Sho tNo. Vs (m/s) YA W ( )

    R ES VR (m/s) LR (mm) MR(g ) PR (mm) AW ( g ) Comments 4372 70 3 1.46 P P 5 3. 0 3-mmbulgew/cracks4382 73 5 0.56 P P 7 3. 4 3.5-mmbulgew/cracks4373 75 3 0.90 *pp* 7 4. 3 4-mm bulgew/cracks4378 75 7 2.02 *pp* 7 4. 9 5-mmbulgew/cracks4375 76 3 2.15 *pp* 8 3. 8 Plugpushedou t2mm4376 76 7 1.46 *CP* 79 3. 5 0.45 9 4. 3 14x7-mmchip4377 76 8 2.02 * C P * 141 1 N M 7.5 3. 2 3x3-mmchip4374 77 9 2.02 *CP* 12 2 3.1 0.38 9 4. 3 10x8-mmchip4384 78 1 1.77 *pp* 9 1. 9 5-mmbulgew/cracks4383 78 3 0.71 *CP* 60 1 N M 10 7.1 llx5-mmchip4387 79 9 1.00 *cp* 77 2.7 0 .16 1 1 7. 3 8x-7mm chip4381 803 1.12 *pp* 14.5 3. 6 Plugpushedou t10mm4371 94 7 0.71 C P 15 5235 15.516.2 47.2 37.9 86.0 PenetratorPlug

    40

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    51/69

    TableB-9.iringDatafor12.7-mmAP M 2VersusPlateN o. 310,TypeS 6,at0Obliquity(Str.Roll@1,066 C ;S TA @927C ,30min,W Q,followedby Anneal@538 C ,6 hrs,AC ;25.12mm thick;321-BHNhardness)ShotNo. Vs(m/s) YAW( ) RES VR(m/s) LR(mm) MR(g) PR(mm) AW(g) Comments5426 63 2 0.56 PP 24.5 3.6 3-mmbulgew/cracks5425 633 1.00 *pp* 25.5 5.2 3-mmbulgew/cracks5414 64 7 2.85 *pp* 27.0 5.0 4.5-mmbulgew/cracks5429 64 9 3.16 * C P * 89 4.9 2 .3 N/A -3.2 Spall5428 65 0 2.70 *pp* Lost 4.4 1. 7 N/A -1.6 Spall5427 66 1 1.75 CP 15 4.2 1. 7 N/A 5.8 Spall5413 67 1 0.50 CP 88 4.0 2 .6 N/A -14.9 Spall5417 675 1.77 CP 56 4.0 1. 8 N/A 10 .2 Spall5418 67 6 3.76 CP 158 4.6 1. 2 N/A -1.3 Spall5424 69 0 0.75 CP 75 47.1 25 .5 N/A 11 .3 Penetrator5412 71 3 5.35 CP 139 4.9 1. 8 N/A 5.4 Spall5410 718 1.46 CP 145 47.3 25 .3 N/A 12 .8 Penetrator

    TableB-10 .iring Datafor 20-mmF S P VersusPlateN o. 311,TypeS 6,at0Obliquity (Str.Roll@1,066 C ;S TA @927C,3 0 min,W Q,followed by Anneal@538C ,6 hrs,AC ;25.43mmthick;321-BHNhardness)ShotNo. Vs(m/s) YA W () RES VR(m/s) LR(mm)

    MR(g ) PR(mm)

    AW(g)

    Comments4082 746 0.79 PP 6 1 .9 3-mmbulgew/plugformed4083 778 0.71 *pp* 7 -2.6 4-mmbulgew/plugformed4099 78 1 1.27 *CP* 36 1 NM 8.0 4x2-mmspall4087 782 0.35 *cp* 69 3 NM 5.2 20x8-mmspall4085 78 5 0.71 *pp* 9 14.2 5-mmbulgew/plugformed4101 788 1.80 *pp* 8 6.8 4-mmbulgew/cracks4100 791 2.36 *CP* LOST 18 .8 38.5 41.9 Plug4084 79 9 0.56 CP 80 1 NM 16.8 8x3-mmspall4086 80 8 0.90 CP 97 2 NM -5.5 8x9-mmspall4081 85 9 0.71 CP 75 134 16.1 19.8 46.956.8 83.0 PenetratorPlug4080 1,164 1.27 CP 309388 14.9 23 30.9NM 117.8 PenetratorPlug

    4 1

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    52/69

    TableB-l1 .iringDatafo r12.7-mmAPM 2VersusPlate No. 312,TypeSI,at0Obliquity (Str.Roll@954C ;Anneal@788C ,30min,AC ;25.35mmthick;302-BHNhardness)ShotNo. Vs(m/s) YA W O R ES VR(m/s) LR (mm) MR(g ) PR (mm) A W (R ) Comments5453 68 2 2.30 P P 33 3. 7 8-mmbulgew/cracks 5444 689 1.52 *pp* PIP -20.2 Tipprotruding4m m5450 69 3 1.58 *pp* 32 4. 3 6-mmbulgew/cracks5455 696 3.88 * C P * 39 4. 6 1. 7 -18.6 Spal l5452 70 1 1.35 * C P * 82 44 47.03.5 25.42 .0 7. 2 PenetratorSpal l5449 70 8 1.95 * C P * 87 25 47.26.1 25.4 2 .7 8. 6 PenetratorSpal l5446 71 1 2.61 *pp* PIP -20.9 Tipprotruding4m m5448 71 8 2.15 C P 13540 46.94.1 25 .32 .6 11.2 PenetratorSpal l5451 71 8 2.61 C P 65 47 47.44. 0 25 .32. 1 7. 8 PenetratorSpal l5447 72 4 0.75 C P 20610 9 47.2 3. 9 25.31. 8 9.5 PenetratorSpal l

    TableB-l2.iringDatafo r20-mmF S PVersusPlateNo.313,TypeSI,at0Obliquity(Str.Roll@954 C ;Anneal@788C,30min,AC ;25.32mm thick;302-BHNhardness)ShotN o. Vs (m/s) YAW ( ) R ES VR(m/s) LR (mm) M R(g ) PR (mm) A W

    Comments 4304 89 5 1.12 PP 1 1 8. 9 11-mmbulgew/spalldisk 90 % formed 4308 931 0.75 PP 12.5 11.7 6-mmbulgew/cracks4307 93 9 1.03 P P 14 27.1 9-mmbulgew/spalldisk 75% formed4311 94 8 0.75 *pp* 20 18.2 Spal ldisk formed& pushedou t16mm 4306 95 0 0 .56 * C P * 46 21.8 117.6 137.1 Spal l4312 95 2 0 .50 * C P * 43 16.5 76.6 213.7 Spal l4313 96 2 0.35 *pp* 23 23.0 Spal ldiskformed& pushedou t13mm4314 96 2 2.55 *pp* 14 16.8 7-mmbulgew/cracks 4315 96 8 1.41 * C P * 92 15.8 50 .3 89.9 Spal l4305 1,017 0.71 C P 99 16.6 59.1 108.8 Spal l4303 1,145 0.56 C P 278

    30 0 14.017.0

    37.0 26.6

    107.3 PenetratorSpal l

    42

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    53/69

    TableB-13.iringDatafor12.7-mmAPM 2VersusPlate No.314,TypeC 5,at 0Obliquity(CrossRoll@1,066C ;Anneal@788C ,30min,AC ;25.25mmthick;302-BHNhardness)Sho tNo. Vs (m/s) YA W () RES V R (m/s) LR (mm) M R (g ) PR (mm) AW (g ) Comments5406 593 0.56 PP 22 4.1 2-mmbulgew/cracks5404 61 2 1.25 PP 24 4. 6 3-mmbulgew/cracks5407 62 3 1.06 PP 24 3.1 3-mmbulgew/cracks5403 63 7 1.25 PP 26.5 4. 4 4.5-mm bulgew/cracks5432 65 7 1.25 *pp* 22.5 3. 4 4-mmbulgew/cracks5430 66 4 1.25 *pp* 27 2 .8 5-mmbulgew/cracks5431 67 2 1.35 *CP* 78 6. 6 4. 0 -17.6 Spall5433 67 5 3.01 *cp* 70 4. 8 1.3 5 .6 Spall5401 68 7 4.25 C P 121 8 N M 9.1 Spall5409 69 8 3.75 C P 74 5.9 4. 1 9.3 Spall5402 70 2 3.95 C P 49 24.2 9.8 8.9 Penetrator5405 70 5 2.02 C P 14 7 26.4 13.0 -0.3 Penetrator5408 72 9 1 .52 C P 20 1 47 N M 10.8 Penetrator

    TableB-14.iringDatafor20-mmF S PVersusPlate N o. 315,TypeC 5,at 0Obliquity(CrossRoll@1,066C;Anneal@788 C ,30min,AC ;25.35mm thick;321-BHNhardness)ShotN o. Vs(m/s) YA W ( ) RES VR (m/s) LR (mm) M R (g ) PR (mm) AW (g )

    Comments4114 71 1 1.80 *pp* 5.5 -0.8 3-mmbulge/plugformed4113 71 3 2.30 *pp* 6. 5 10.7 4-mmbulge/plugformed4112 71 9 0.90 *cp* 83 2 N M 4. 9 4x4-mmchip4111 72 6 1.80 *CP* 22 3 N M 0.1 9xl0-mmchip4107 73 6 1.25 *pp* 7. 5 -2.6 4-mmbulge/plugformed4106 74 0 2 . 12 *CP* 48 2.7 0. 3 7. 7 12x5-mmchip 4110 743 0.90 *pp* 7. 5 -0.3 4m mbulge/plugformed4108 745 0 .56 *CP* 79 36 3. 32. 3 0. 10 .2 7. 4 7x2-mmchip10x5-mmchip4065 748 0.75 *pp* 8 3. 8 4-mmbulge/plugformed4109 75 6 1.12 *CP* 43 2 .9 0.40 0 .7 14x7-mmchip4070 75 8 1.52 C P 35 22 .4 63.3 64.1 Plug 4105 76 0 1.12 C P 74 2 N M 8. 0 llx3-mmchip4071 76 2 1.25 C P 47 3 N M 11.4 12x7-mmchip4069 78 4 1.75 C P 62 21.1 63.8 66.4 Plug 4068 812 1.58 C P L O S T 18.1 32.8 35.1 Plug 4067 85 6 0.90 C P 46 13 7 16.419.5 46.838.0 66.7 PenetratorPlug4066 96 0 0.90 C P 16 8248 15.318.6 43.620.7 81.0 PenetratorPlug4064 1,140 0 .25 C P 336 42 4 15.429 36.1NM 99.0 PenetratorPlug

    43

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    54/69

    TableB-15.iring Datafor12.7-mmAPM 2VersusPlateNo. 316,TypeCl,at0Obliquity (CrossRoll@954C ;Anneal@788C ,30min,AC ;25.53mmthick;302-BHNhardness)ShotNo. Vs(m/s)

    YAW() RES VR(m/s) LR(mm) MR(g) PR(mm) AW

    Comments

    5458 68 1 1 . 50 PP 29.5 5 .9 8-mmbulgew/crack5460 682 1 . 52 PP 35 5 .8 9-mmbulgew/crack5463 686 1.46 *pp* PIP -21.0 7-mmbulgew/crack5462 689 2.75 *pp* 35 5 .3 9-mmbulgew/crack5464 697 0.56 *pp* PIP -4.8 Tipprotruding28mm5465 699 0.75 *pp* 32 47.1 25 . 1 7.2 Penetrator5461 706 1 . 50 *Qp* 116116 47.2 5 .2 25.32.2 7. 1

    PenetratorSpall

    5459 712 2.76 *Qp* 96 47.2 25.2 7.0 Penetrator5457 717 4.04 CP 4950 47.23.6 25.31 .9

    7.2 PenetratorSpall

    TableB-16.iringDatafo r20-mmF S PVersusPlate No.317,TypeCl,at0Obliquity(CrossRoll@954C ;Anneal@788 C ,3 0 min,AC ;25.55mm thick;286-BHN hardness)ShotNo. Vs(m/s)

    YAW() RES VR(m/s) LR(mm) MR(g) PR(mm)

    A W Comments4317 910 0.71 PP 11 14.4 6-mmbulge4325 944 0.56 PP 13.5 12 .9 6-mtnbulgew/cracks4319 96 1 0.75 *pp* 15 27.4 9-mmbulgew/cracks4320 970 0.35 *pp* 17 11.2 11-mmbulgew/spalldisk80%formed4322 980 0.56 *pp* 14.5 14.7 8-mmbulgew/cracks4323 984 0.50 * C P * 29 15 .4 87.0 108 .7 Spall4324 985 0.79 * C P * 105 2 .7 0 .3 26.8 llx6-mmspall4321 987 0.90 *pp* 41 6.8 39.0 63.6 Spall4318 1,002 0.79 CP 63 12 .3 70.9 100 .3 Spall4316 1,099 1.03 CP 207237 14.5 16.3 41.026.9 91.9

    PenetratorPlug

    44

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    55/69

    TableB-17 .iring Datafo r20-mmF S PVersusPlate No. 318,TypeC 2,at0Obliquity (CrossRoll@954C;Anneal@1,038C ,30 min,AC ;25.55mm thick;302-BHN hardness)ShotN o. Vs(m/s) YAW() RES VR (m/s) LR (mm) MR(g ) PR (mm) A W (8 )

    Comments

    4328 685 0.71 PP 5 2.0 2-mmbulgew/cracks4332 74 1 1.00 PP 7 3. 3 4-mmbulgew/cracks4330 749 0.90 PP 7 6. 1 4-mmbulgew/cracks4338 754 1.25 *pp* 7 2.7 Plugpushedout2mm4337 75 8 2.14 *pp* 154 2 NM 7 6.0 10x6-mmchip4333 765 2.46 *pp* 7.5 4.0 4-mmbulgew/cracks4331 768 1.46 *pp* 129 2 NM 7 5 .4 8x4-mmchip4334 780 0.79 *CP* 132 2 .1 0.07 7 5.4 7x5-mmchip4335 787 0.75 *pp* 10 5.0 Plugpushedout5mm4336 793 1.25 CP 132 6.0 0.4 7. 5 8.9 12x4-mmspall4329 797 1.25 CP 49 8 .7 5 .3 8 11 .5 Spall4327 910 0.50 CP 138

    23415.916.5

    44.620.0

    69.1 PenetratorPlug4326 1 ,050 0.56 CP 251 349 15.8 22 . 1 43.515 . 0 73.9 PenetratorPlug

    TableB-18.iring Datafo r12.7-mmAP M 2VersusPlate No.319,Type02,at 0Obliquity (CrossRoll@ 954 C ;Anneal@1,038C ,30min,AC ;25.63mmthick;302-BHNhardness)ShotNo. Vs (m/s) YAW() R ES VR(m/s) LR(mm) MR(g ) PR (mm) A W Comments 5482 635 1.41 PP 28 5.6 5-mmbulgew/cracks5491 646 1.25 *Qp* 128 4.7 2 .3 PIP -13.7 Spall5488 648 0.75 PP 31 5.6 Spallpushedout4mm5483 650 1.27 PP 2 7 3. 3 3-mmbulgew/cracks5485 650 2.26 *pp* 2 7 6. 3 3-mmbulgew/cracks5489 653 0.75 *pp* 27.5 1 .6 4-mmbulgew/cracks5484 655 0.00 *pp* 2 6 1 .4 4-mmbulgew/cracks5487 667 2.02 *CP* 128 8 NM 11 .7 Spall5486 673 1.82 *QJ>* 37 9. 2 2.4 3.8 Spall5481 682 0.79 CP 125 6 NM PIP -11.3 Spall5490 688 0.35 CP 144 4.6 1 .2 PIP -12.8 Spall5480 70 7 0.79 CP 121 181 47.2NM 25.2NM 11 .3 PenetratorSpall

    45

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    56/69

    TableB-19.iringDatafor12.7-mmAPM 2VersusPlate No.320,TypeC3,at0Obliquity(CrossRoll@ 954C;Anneal@ 1,038C,30 min.,AC ,followedby Anneal@ 7 8 8 C ,30 min,A C ;25 . 53mm thick;302-B H N hardness)ShotNo. Vs(m/s)

    YAW()

    RES VR(m/s) LR(mm) M R(g )PR(mm) A W g)

    Comments5497 596 0.56 PP 22 2 .7 2-mmbulgew/cracks5498 61 3 2.47 PP 22 .5 15.1 3-mmbulgew/cracks5496 61 3 0.90 PP 24.0 3. 5 3-mmbulgew/cracks5 5 0 3 61 8 1 . 25 PP 25 14.8 3-mmbulgew/cracks5504 63 2 0.90 PP 26 5.0 5-mmbulgew/cracks5499 63 9 0.79 *pp* PIP -7.0 3-mmbulgew/cracks5495 639 1.03 *CP* 30 1 NM 29 3. 9 Chip5 5 0 5 643 0.71 *pp* 26 8. 2 3-mmbulgew/cracks5502 653 0.56 *CP* 110 5. 1 2. 5 PIP -16.0 Spall5500 67 0 3.34 C P 152 4 NM 8. 2 Spall5493 68 2 0.56 C P 58 4. 8 1.2 PIP -19.0 Spall5492 70 1 2.70 C P 96 4. 8 3.3 PIP -15.2 Spall

    TableB-20.iringDatafor20-mmFSPVersusPlate No.321,TypeC3,at0Obliquity(CrossRoll@ 954C ;Anneal@1,038 C ,30 min.,AC ,followedby Anneal@ 7 8 8 C ,30 min,A C ;25 . 58mm thick;302-BHNhardness)ShotNo. Vs(m/s) YAW()

    RES VR(m/s) LR(mm) M R(g ) PR(mm)AW Comments

    4341 694 1.35 PP 5 0 .9 3-mmbulgew/cracks4344 72 7 0.56 PP 6 3.5 3-mmbulgew/cracks4348 731 2.06 PP 6. 5 3. 8 3.5-mmbulgew/cracks4345 73 4 1.82 *pp* 7 3.1 Plugpushedout2mm4346 73 4 1 . 50 *CP* 145 3 NM 8 3. 8 llx5-mmchip4347 74 0 1.82 *pp* 7. 5 2.6 Plugpushedout2mm4343 74 8 2.06 *CP* 37 2 NM 7. 5 4. 8 6x4-mmchip4349 76 0 1.60 C P 94 3.7 0. 5 5.8 Chip4342 810 1.35 C P 116 21.0 34.4 54.4 Plug4340 892 0.25 C P 194 21.6 20 .7 53.6 Plug4339 1,063 0.35 C P 2 71 363 13.5 21.4 41.731.1 83.4 PenetratorPlug

    46

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    57/69

    TableB-21 .iringData fo r20-mm F S P VersusPlate N o. 322,TypeC 4,at0Obliquity(CrossRoll@954C ;NoAnneal;25.60mmthick;302-BHNhardness)Sho tNo. Vs(m/s) YA W ( ) RES VR(m/s) LR (mm) MR(g) PR (mm) AW Comments4073 74 8 1.27 PP 6 2.3 3-mmbulge4074 855 0.35 PP 9 15.5 4-mmbulge4075 95 1 1.25 PP 17.5 15.4 7-mmbulgew/cracks4115 96 4 2 .50 PP 15 15.4 11-mmbulgew/cracks4116 96 8 0.90 PP 16 22 .0 9-mmbulgew/spalldisk75% formed4102 97 2 1.75 *QP* 42 12.0 88.7 103.1 Spall4117 97 9 0.35 *pp* 15.5 10.0 9-mmbulgew/spalldisk75% formed4118 98 4 1.00 *p* 34 15.7 86.5 118.0 Spall4077 98 7 1.27 *pp* 16 14.2 10-mmbulgew/spalldisk50% formed4119 99 0 1.12 *P* 48 16.1 74.6 88.7 Spall4078 991 1.12 *pp* 21 17.2 9-mmbulgew/spalldisk90 % formed4104 99 6 0.75 C P 87 6.6 46.6 54.5 Spall4076 1,009 1.27 C P 87 15.9 51.0 91.9 Spall4079 1,060 0.79 C P 12 1166 14.910.6 42.966.6 129.9 Penetrator Spall4072 1,159 0.71 C P 30 5 33 3 12.714.6 36.625.2 101.8 Penetrator Spall

    TableB-22 .iringDatafor12.7-mmA PM 2VersusPlate No.323,TypeC 4,at0 Obliquity (CrossRoll@954 C ;NoAnneal;25.60mm thick;302-BHN hardness)Sho tN o. Vs(m/s) YA W () RES vR (m/s) LR (mm) MR(g ) PR (mm) AW (8 ) Comments 5438 63 1 1.52 PP 27 5.2 5-mmbulgew/cracks5439 684 2.14 PP PIP -20 .4 10-mmbulgew/cracks5440 69 3 1.25 *pp* PIP -2.2 10-mmbulgew/cracks5443 696 0 *pp* -22.3 Tipprotruding3m m5441 70 1 0.71 *CP* 22 1 NM -20 .4 Chip5442 709 3.35 *CP* 48 48 21.64. 4 6. 70.9 -8.0 Penetrator Spall5437 722 2.75 C P 11846 47.33. 6 25.31. 4 7. 6 Penetrator Spall

    47

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    58/69

    TableB-23.iringDatafor 20-mmF S P VersusPlateNo.37 7at0Obliquity(PlateNo.30 3withChem-mill;24.89mmthick;302-BHNhardness)ShotNo. Vs(m/s) YAW() RES VR(m/s) LR(mm) MR(g) PR(mm)

    A W Comments

    6718 772 0.56 *pp* 9 NM Plugpushedout4mm6719 777 0 *pp* 9 NM Plugpushedout5mm6721 780 0.25 *pp* 13 NM Plugpushedout3mm6720 780 0.56 * C P * 3672 15 . 2 21.8 47.1 56.7 NM

    PenetratorPlug

    6722 792 0.56 * C P * 115 98 1 2 NMNM 10 NM5x4-mmchip10x6-mmchip

    6717 798 1 . 25 * C P * 63 127 15 .420.9 47.765.9 NMPenetratorPlug

    TableB-24.iringDatafor 20-mmFSPVersusPlateNo.37 8at0Obliquity(PlateNo.311withChem-mill;24.94mmthick;302-BHNhardness)ShotNo. Vs(m/s) YAW() RES VR(m/s) LR(mm)

    MR(g)

    PR(mm) A W Comments5310 714 1 . 25 PP 5 .5 2.8 3-mmbulgew/cracks5306 735 0.90 * C P * 83 2 NM 6 3.4 7x9-mmchip5307 740 0.56 *pp* 6 3.4 3-mmbulgew/cracks5308 743 1 . 12 *pp* 6 3.9 3.5-mmbulgew .cracks5311 746 0.79 *pp* 7 2.0 3-mmbulgew/cracks5305 747 1 . 12 * C P * 87 2 NM 7 6.3 10x3-mmchip5302 748 0.50 * C P * 72 2 NM 7 13.2 10x4-mmchip5309 753 0.71 *pp* 6 3.7 3-mmbulgew/cracks5304 77 1 1 . 52 * C P * LOST 2 NM 16 1. 1 10x8-mmchip5312 782 0.50 * C P * 130 1 NM 8.5 4.2 4x2-mmchip5303 79 1 0.25 *pp* 12 5 .2 Plugpushedout7mm

    48

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    59/69

    TableB-25.iringDatafor20-mmF S PVersusPlate N o. 37 9at0 Obliquity (PlateNo.315 withChem-mill;24.77mm thick;302-BHNhardness)Sho tNo. Vs(m/s) YA W () RES VR(m/s) LR (mm) M R (g ) P R (mm) AW (8 )

    Comments 5326 70 9 1.00 PP 6 2 .8 3-mmbulgew/cracks5324 70 9 0 .56 *Qp* 67 2 NM 5. 5 2 .4 5x4-mmchip5327 71 0 0.71 PP 7 2 .7 Plug pushedou t2mm 5325 713 0.56 *pp* 5 2 .3 2-mmbulgew/cracks5322 723 0.71 *pp* 7. 5 5.0 Plug pushedou t4mm 5329 742 0 .9 *pp* 6. 5 2 .7 3.5-mmbulgew/cracks 5323 74 6 0 .56 *CP* 13 2 3 N M 10 6. 0 12x12-mmchip5321 74 8 0.25 *Qp* 46 46 16.721.5 46.2 51.7 56.9 PenetratorPlug 5328 754 0.35 *pp* 1 1 3.3 Plug pushedou t5 mm5330 756 0.25 *pp* 10 4. 1 Plug pushedou t5mm 5331 76 3 1.80 *QJ>* 141 2.3 0. 5 9 5.8 10x9-mmchip5332 770 0 *QJ>* 124 1 NM 9 3. 4 5x2-mmchip

    TableB-26.iringDatafo r20-mmF S PVersusPlate No.38 0at0Obliquity(PlateNo.322withChem-mill;25.25mmthick;302-BHNhardness)ShotNo. Vs(m/s) YA W O RES VR (m/s) LR (mm) M R (g ) PR (mm) AW Comments5314 97 2 1.03 PP 17 17.8 Spallpushedou t10mm5316 98 5 0.25 *pp* 16 23.0 Spallpushedou t4mm5317 98 7 1.06 *pp* 16 66.9 10-mmbulgew/cracks5320 98 8 0.25 *pp* 17 18.4 8-mmbulgew/cracks5318 99 2 0 .56 *P* 66 10 N M 68.5 Spall5319 1,005 0 *QP* 90 16.4 62.9 86.3 Spall5315 1,012 0 .50 *Qp* 97 14.9 62.1 48.6 Spall5313 1,013 1.52 C P 93 134 15.715.2 41.6 71.7 108.7 PenetratorSpall

    49

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    60/69

    INTENTIONALLYLEFTB L A NK.

    50

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    61/69

    NO .O F C O P I E S O R GA N IZ A T IO N NO .O F C O P I E S O R G A N I Z A T I O N 1 A D M IN IS T R A T O R D E F E N S ET E C H N I C A L IN F O C TR

    ATTNDTICOCA8725J O H NJK I N G M A N R D S TE 0944 FTBELVOIRVA2060-62181 D IR E C T O R U S A R M Y R S C H L A B O R A T O R YATTNA M S R LC IAIR EC M G M T2800P O W D E R MILLRDADELPHIMD0783-1197 1 D IR E C T O R U S A R M YR S C H L A B O R A T O R Y

    ATTNA M S R LC ILL T E C H LI B 2800P O W D E R MILLR DADELPHIMD07830-1197 1I R E C T O RU S A R M Y R S C H L A B O R A T O R YATTNM S R LD DS M I T H 2800P O W D E R MILLRDADELPHIMD0783-1197 8 C DR U S A R M YT A C O M ATTNAMSTATRSFURMANIAKS G O O D M A N DH A N S E N LP R O K U R A TF R A N K S DT H O M A S JT H O M P S O N AMSTATREMATLBR O O P C H A N DA M S T A TR S TI JC A R I EW A R R E N M I8397-5000 2R O J E C TM A N A G E RG R O U N DSYSTEM IN T E GR A T IO N ATTNS F A EG C S S W G S I T DEAN JR O W E W A R R E N M I8397-5000 3DR U S A R M YR E S E A R C H O F F I C E

    ATTN JBAILEY KIYER KLOGANPO B O X12211R E S E A R C HTRIANGLEP A R KNC 27709-22112 CDRNGICATTN JCRIDERW GS T A T T E N B A U E R 220SEVENTH AVE C H A R L O T T E S V IL L EVA2901-5391

    1 C IA ATTNO S W R DS DW W A L T M A N ROOM5P0110NHBW A S H I N G T O NDC 20505 DIRARPA3701N O R T H F A I R F A XDR A R L IN GT O NVA 22203-1714 PM BFVS ATTNS F A EG C S S W B V S DAVIS W A R R E N M I48397-5000 C DR C A R D E R O C K DI VNSWCC O D E28(R PETERSO N)9500M A C A R T H U R BLVDW BETHESDA M D20817-5700 DEPTO F TH ENAVYO F C DIR REPORTING P R O G M G R A D V A N C E DA M P H I B I O U S A S S A U L TATTN DEREKERDLEY W A S H I N G T O N DC 20380-0001L A W R E N C EL IV E R M O R EN A T LAB ATTNR G O G O L E W S K I M S L290 R LANDINGHAM L369JR E A U G H L32 PO B O X80 8L IV E R M O R EC A4550LO S A L A M O S NATLL A B O R A T O R Y ATTN FADDESS IO M B UR K E T T LO S A L A M O S NM 87545S A N D I A NATLLA B ATTN JA S A YM S 0548 R B R A N N O NM S 08 20 LCHHABILDAS M S 0821 DC R A W F O R DO R G 0821 M F O R R E S T A LDIV1551PO B O X5800 A L B U Q U E R Q U EN M 87185-0307 N A V A LR S C H L A B O R A T O R YC O D E66844555O V E R L O O KAVES W W A S H I N G T O N DC0375 A IR F O R C EA R M A M E N TLA B ATTNA F A T LDLJW W COOKEGLIN AF BFL32542

    51

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    62/69

    N O .O F C O P I E S O R GA N IZ A T IO N NO .O F C O P I E S O R G A N I Z A T I O N I N S TF O R A D V N C DT E C H ATTNSBLESS HFAIRTKIEHNE DLITTLEFIELD

    RS U B R A M A N I A N PO B O X202797 A U S T I N TX8720-2797 U N I VO F D A Y T O NR S C H I N S T KLA14ATTNNBRAR A P I E K U T O W S K I 30 0C O L L E G EP A R K DAYTON O H5469-0182 S O U T H W E S TR S C H IN S T ATTN C A N D E R S O N JRIEGEL JW A L K E R 6220C U L E B R A R DS ANA N T O N I O TX 78238U S DEPT O F ENERGY ALBANY R S C H CENTER ATTN JH A N S E N (2C Y S )PTURNER (2C Y S )1450QUEENA V E N U ES W ALBANY O R7321-2198 B R O W N U N I VDIVO FENGINEERINGATTN R C L I F T O N P R O V I D E N C ER I 02912 U N I VO F C AS AN DIEGO DEPT O F APPLM E C H & E N G R S V C S R 0 1 1 ATTNS N E M A T N A S S E R M MEYERS LAJOLLACA2093-0411A R M O R W O R K S ATTN W PERCIBALLI 91 0EM O U N T A I NS KYA VEP H O E N IXA Z85048A E R O N A U T I C A LR S C H A S S O C ATTN RC O N T IL IA N O JWALKER PO B O X222950W A S H I N G T O NRDP R I N C E T O N N J8540ALLIANTT E C H S Y S T E M SINC ATTN TH O L M Q U I S TG J O H N S O N60 0S E C O N DSTREET N EH O P K I N S M N5343

    1 ALMEAN DA S S O C ATTNM A L M E PO B O X1388LO S A L A M O S N M7544-1388

    1 APPLIEDR S R C HA S S O C I A T E S INC ATTN JYATTEAU 5941 MIDDLEFIELDRDTE 10 0LITTLETONC O01231 APPLIEDR S C H A S S O C INC ATTNDG R A D Y4300S ANM A T E O BLVDN ES TEA 220 A L B U Q U E R Q U ENM7110 1 B R I G G S C O M P A N Y

    ATTN JB A C K O F E N2668P E T E R S B O R O U G HS THERNDON VA 222071-24431 CENTURYD Y N A M I C SINC ATTN NB IR N B A U M 2333S ANR A M O NVALLEYBLVD S ANR A M O N C A 94583-16133 C E R C O M INC ATTNRP A L IC K AGN E L S O N BCHEN1960W A T S O NW AYVISTA C A 920831 CYPRESS IN T E R N A T IO N A LATTNAC A P O N E C C H I1201EABINGDONDRALEXANDRIA VA22314 1 R JEICHELBERGER 40 9W C A T H E R IN ES TB EL AIR M D2101436131PSTEINA NDA S S O C ATTNKEPSTEIN 2716WEMBERLY DRIVE

    B E L M O N T C A4002 2ALT ALLOYS INC ATTNS F E L L O W S S GIA N GIO R D A N O 12 2C E N T R A LPLAZA N C A N T O NO H4702

    52

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    63/69

    N O .O F C O P I E S O R GA N IZ A T IO N NO .O F COPIES O R GA N IZ A T IO N GDLS ATTN W B U R K EMZ4362124G C A M P B E L LMZ43630 44

    DD E B U S S C H E RMZ43620 29JERIDONMZ4362124W H E R M A NMZ4350124SP E N T E S C UMZ436212438500M O U N DRDS T E R L IN GH TS M I8310-3200GE N E R A LR S C H C O R P PO B O X6770 S A N T AB A R B A R A C A3160-6770IN T E R N A T LR S C H A S S O C ATTN DO R P H A L 4450B L A C KAVEP L E A S A N T O N C A4566JETP R O P U L S I O NL A B O R A T O R Y I M P A C TP H Y S I C SG R O U P ATTN M A D A M S 4800OAK G R O V EDRIVEP A S A D E N A C A1109-8099 K A M A NS C I E N C E S C O R P 1500GA R D E N O F TH EGODS R DC O L O R A D O S P R I N G S C O 80907O ' GA R A H E S S A NDEISENHARDT ATTNG ALLEN DMALONE T R U S S E L L 9113LES A I N TDR .FAIRFIELDOH5014O R E M E T W A H C H A N G ATTN YK O S A K A PO B O X580 A L B A N YO R7321 P O U L T E R L A B O R A T O R Y S R IIN T E R N A T IO N A LATTNDCURRAN R K L O O P

    LS E A M A N D S H O C K E Y33 3R A V E N S W O O D AVEM E N L O P A R K C A94025R M I T IT A N IU M C O M P A N YATTNW L O V E2950B I R C HS TBREACA92621

    6 R M IT IT A N IU M C O M P A N YATTN JBENNETT EC H R I S T FJANOWSKI WPALLANTES R O B E R T S O N O YU 1000W A R R E N A V E N U ENILES O H4446

    2 T IM E T ATTNPB A N I A JF A N N IN G PO B O X2128 H E N D E R S O N N V890092 T IM E T ATTN JB A R B E R1999B R O A D W A YS TE 4300 DENVERC O02021 S A I C ATTN JF U R L O N G M S 2641710GO O D R ID GE DR M C L E A NVA 22102 1O BS K A G G S RT11BOX81ES A N T A F ENM7501 2I M U L A INC ATTNR W O L F F E 10016S O U T H 51 S TS T R E E T P H O E N IX A Z50448 UNITED DEFENSELP ATTN JD O R S C H VH O R V A T I C H BKARIYA MMIDDIONEJM O R R O W RMUSANTERR A J A G O P A LDS C H A D E PO B O X36 7 S A N T A C L A R A C A951033NITEDDEFENSE LP ATTN EBRADY RJENKINS JJ O H N S O N PO B O X15512

    Y O R K PA7405-1512 1 Z E R N O W T E C H S V C S INC ATTN LZERNOW 42 5W B O N I T A AVES U I T E208 S A NDIM A S C A91773

    53

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    64/69

    NO .O F C O P I E S 1

    O R GA N IZ A T IO N E M B A S S Y O F A U S T R A L I A C O U N S E L L O R DEFENCE S C I E N C E 1601M A S S A C H U S E T T S A VENWW A S H I N G T O NDC0036-2273ABERDEEN PROVING G R O U N D D I R E C T O R U S A R M Y R S C HL A B O R A T O R Y ATTNA M S R LC IPT E C H LIB)BLDG305P G A A DIR U S A E B C C ATTNC B R D R T 5183BLACKHAWKRDAPG-EAM D1010-5424 C DR U S A S B C C O M ATTNAMSCBCII5183BLACKHAWKRDAPG-EAM D1010-5424 DIR U S A M S A A ATTN AMXSYDA M X S YM PH C O H E NBLDG 39 2 C D R ' U S A T E C ATTNAMSTETCR Y A N BLDG C DR U S A A T C ATTNTEACLILVES A N D E R S O N M S I M O N(2C Y S )BLDG 400 D I R E C T O R U S A R M YR S C H L A B O R A T O R Y ATTNM S R LS LI BLDG 32 8 D I R E C T O R U S A R M YR S C H L A B O R A T O R Y A T T NM S R LW M M DV IE C H N IC K I BLDG 4600 DIRECTORU S A R M YR S C H L A B O R A T O R Y A T T NM S R LW M M EBEATTY BLDG 4600

    N O .O F C O P I E S O R GA N IZ A T IO N 1 D IR E C T O R U S A R M YR S C HL A B O R A T O R Y ATTNA M S R LW M T B U R N S

    BLDG 4600 29 D IR E C T O R U S A R M YR S C H L A B O R A T O R Y ATTNA M S R LW M TAW B R U C H E Y MBURKINS(15CYS) GFILBY WGILLICHWGOOCH(2CYS) THAVELDH A C K B A R T H EH O R W A T H YH U A N G DKLEPONISHMEYER M N O R M A N D I A JRUNYEON MZOLTOSKIBLDG 39 37 D IR E C T O R U S A R M YR S C H L A B O R A T O R Y ATTNA M S R LW M TCK K I M S E Y M L A M P S O N M A G N E S S DS C H E F F L E RGS IL S B Y RS U M M E R S W W A L T E R S BLDG 30 914 D IR E C T O R U S A R M YR S C H L A B O R A T O R Y ATTNA M S R LW M TDAD IE T R IC H TF A R R A N DDDANDEKAR KF R A N K AG U P T A MRAFTENBERGR A JE N D R A N ERAPACKI NR U P E R T MS C H E ID L E R SS C H O E N F E L D SSEGLETES W E E R A S O O R I Y ATW R I G H T BLDG 30 912 DIRUSARLATTNA M S R LW M TEANIILERBLDG20

    A B S T R A C TO N L Y1 D IR E C T O RU S A R M YR S C HL A B O R A T O R Y ATTNA M S R LC IA PEC H PU BB R 2800P O W D E R M IL LRD ADELPHIMD0783-1197

    54

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    65/69

    N O .O F N O .O F C O P I E S O R G A N I Z A T I O N C O P I E S O R G A N I Z A T I O N 3 A E R O N A U T IC A L& M A R I T I M E 1 C O N D A T R S C H L A B O R A T O R Y ATTN N B U R M A N

    S C I M P O E R U DPAULATTN JKIERMEIR M A X IL L A N S T R 28 8069S C H E Y E R N F E R N H A G PO B O X4331M E L B O U R N E VIC 3001 GERMANY A U S T R A L I A 2 DEFENCEP R O C U R E M E N T A G C YATTNGLAUBE W OD E R M A T T

    1 A R M S C O RATTNLDU PLESS IS PRIVATEB A G X337P R E T O R I A0001S O U T H A F R I C A 1

    BALLISTICSW P N S & C O M B A TVEHICLET E S T C TR C H 3602T H U N SWITZERLAND TD W

    BATTELLEINGENIEURTECHNIK GMBHATTNW F U C K ED U E S S E L D O R F F E RS TR 9D65760 E S C H B O R N G E R M A N Y D E F E N C ER S C H A G E N C YF O R THALSTEAD SEVENO A K S K E N T T N 1 47B P UNITED K I N G D O M C A R L O S II IU N IV O F M A D R I D ATTN C N A V A R R O E S C U E L A POLITEENICA S U P E R I O R C/.BUTARQUE1528911LEGANES M A D R IDS P A I NC E L S I U S MATERIALTEKNIK K A R L S K O G A AB ATTN LHELLNER S6 910K A R L S K O G A S W E D E NC E N T R ED'ETUDES G R A M A T ATTN JC A G N O U XC GALLIC JTRANCHETG R A M A T 46500 F R A N C EM I N I S T R YO F DEFENCE DGA/DSP/STTC ATTN G B R A U L T4RU EDE LA P O R T ED'ISSY00460ARMEES F75015PARIS F R A N C E

    ATTN M HELD P O S T F A C H1340 D86523S C H R O B E N H A U S E N GERMANY DEFENCER S C H A G E N C Y ATTNWCARSON IC R O U C H CFREW T H A W K IN S BJ A M E S BSHRUBSALLC H O B H A M LANE CHERTEYU R R E YKT160EEUNITEDK IN GD O M DEFENCER S C H E S T A BS U F F I E L DATTNC W E IC K E R TB O X4000 MEDICINEH A T ALBERTA TIA 8K 6CANADA DEFENCERS HESTABVALCARTIER ARMAMENTS DIVISION ATTNRDELAGRAVE2459PI EXIBLVDNPO BO X8800CORCELETTE QUEBEC GOA 1ROCANADAD E U T S C HF R A N Z S I S C H E SF O R S C H U N G S I N S T I T U TS TL O U I S ATTN HE R N S T KHOOG HLERRCEDEX5UEDU GENERALC AS S AGNOUF68301AINTL O U I S F R A N C EDIEHLG M B H A N DC O ATTN M S C H IL D K N E C H T F I S C H B A C H S T R A S S E16 D90552R T B E N B A C H A D PEGNITZ GERMANY

    5 5

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    66/69

    N O .O F C O P I E S 1

    O R G A N I Z A T I O N D Y N A M E C R S C H AB ATTN AP E R S S O N PO B O X201 S5123SDERTLJE S W E D E N ETBS D S T I ATTNPBARNIER M SALLES BGAILLY R O U T EDEGU E R A Y B O I T EP O S T A L E71 2 18015BOURGESCEDEXF R A N C EF E D E R A LM I N I S T R YO F D E F E N C EDI R O F EQPT& T E C H LAND RV2ATTNDHAUG LREPPERP O S T F A C H 132853003B O N N G E R M A N Y F R A N H O F E R IN S T IT U T F R K U R Z Z E IT D Y N A M IK E R N S TM A C H IN S T IT U TATTN VH OH L E R ES T R A S S B U R G E RRTHAM KTHOMAE C K E R S T R A S S E4D79104 F R E IB U R G G E R M A N Y M I N I S T R Y O F DEFENCED G A /SP A R T ATTN C C A N N A V O 10 P L A C EGE O R GE S C L E M E N C E A U BP19F92211A I N T C L O U DCEDEX F R A N C EH I G H E N E R G YDENSITYR S C H C TR ATTNVFORTOV G KANELI Z H O R S K A Y AS TR13/19M O S C O W27412 R U S S I A N R E P U B L IC IN GE N IE U R B R O D E I S E N R O T HATTN FD E IS E N R O T H AU F DEHARDT3335 D5204L O H M A R1 G E R M A N Y

    N O .O F C O P I E S 1

    O R G A N I Z A T I O NI N S TO F C H E M I C A LP H Y S I C S ATTN S R A Z O R E N O V142432C H E R N O G O L O V K A M O S C O W R E GIO N R U S S I A N R E P U B L IC I N S TF O R P R O B L E M S IN M A T E R IA L SS C I E N C EATTNSF I R S T O V BG A L A N O V O G R I G O R I E VVK A R T U Z O VVK O V T U N YM I L M A N VT R E F IL O V3R H Y Z H A N O V S K Y S TR 252142 IEV 14 2KRAINE I N S TF O R P R O B L E M S O FS T R E S S ATTN GS T E P A N O VT IM IR Y A Z E V S K A Y AS TR 2252014KIEV U K R A IN EI N S TO F M E C H ENGINEERING P R O B L E M S ATTNVBULATOV I N D E I T SE VYM E S C H E R Y A K O V B O L S H O Y1O S TP E T E R S B U R G99178R U S S I A N R E P U B L IC I O F F EP H Y S I C O T E C H I N S TATTNED R O B Y S H E V S K I A K O Z H U S H K O S TP E T E R S B U R G 194021R U S S I A N R E P U B L IC K&WTHUNATTN W LANZ A L L M E N D S S T R A S S E86 C H 3602T H U N S W IT Z E R L A N DRO G O R K I E W I C Z18TEMPLES H E E N L O N D O N S W 147R P UNITEDK IN GD O M M AXP L A N C KIN S T IT U TF U R E I S E N F O R S C H U N G G M B H ATTNC DERDER M AXP L A N C KS T R A S S E40237D S S E L D O R F GE R M A N Y

    56

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    67/69

    N O .O F C O P I E S NO .O F O R GA N IZ A T IO N C O P I E S O R G A N I Z A T I O N N A T LD E F E N C EHEADQUARTERS 3 S W E D I S H DEFENCER S C H ESTAB ATTN PM O M R C VM AJM P A C E Y ATTN LH O L M B E R G BJ A N Z O N PM O LA V A H O D A K I M E L L G A R DO T T O W A O N T A R I O KIA O K2 B O X55 1C A N A D A S147 25T U M B A S W E D E N O TO BREDA ATTN M G U A L C O 1 T E C H N I O N I N S TO F T E C H VIAVALDIOCCHI15 F A C U L T YO F M E C H ENGINEERING I19136LA SPEZIA ATTN S B O D N E R ITALY T E C H N IO N CITYH A IF A 32000R A P H A E LBALLISTICS C E N T E R I S R A E LATTNM MAYSELESS YPARTOM G R O S E N B E R G 3 T E C H N I S C H EU N IV E R S IT TZR O S E N B E R G Y Y E S H U R U N C H E M N IT ZZ W IC K A U B O X2250 ATTN A S C H R O E D T E R H A IF A 31021 1 LKRUEGER LM E Y E R I S R A E LR S C H I N S TO F M E C H A N I C S N IZ H N IYN O V G O R O DS T A T EUN IV ATTN ASADYRIN P R G A Y A R I N A23K O R P 6N IZ H N IYN O V G O R O D603600 R U S S I A NREPUBLIC R O Y A LMILITARYA C A D E M YATTNECELENS R E N A I S S A N C EAVE30 B040 B R U S S E L S B E L GIU M R O Y A LNETHERLANDSA R M Y ATTNJHOENEVELDVDBURCHLAAN31PO B O X908222509LS TH EH A G U ENETHERLANDS D E F E N C EMATERIELA D M IN IS T R N W E A P O N S D I R E C T O R A T EATTNA BERG S11588S T O C K H O L M S W E D E N

    P O S T F A C H D09107C H E M N I T ZG E R M A N Y TN O PRINS M A U R I T S LA B ATTN.H PESKES RIJSSELSTEINLANGEKLEIWEG13 7PO B O X45 2280A A R I J S W I J K TH ENETHERLANDS C E N T R EDE R E C H E R C H E S ETD'ETUDES D ' A R C U E ILATTN D B O U V A R T C C O T T E N N O T

    S J O N N E A U X H O R S I N I SS E R R O R FTARDIVAL 16BIS AVENUEPRIEUR DE LA C O T ED'OR F94114ARCUEILCEDEXF R A N C EC DREUROPEAN R S C H O F F I C EU S A R D S G (UK)ATTNSSAMPATH JILLINGERPSC802BOX15FPOAE9499-1500

    S W E D I S H DEFENCER S C H ESTAB D IV IS IO N O F MATERIALS ATTNS JS A V A G E JE R IK S O N S720T O C K H O L M S W E D E N

    57

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    68/69

    INTENTIONALLY LEFTBLANK.

    58

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    69/69

    REPORT DOCUMENTAT IONPAGE Form ApprovedOMB No.704-0188Publicreporting burdenfo rthis collectionof informationisestimatedtoaverage1 hourpe rresponse,including the time for reviewinginstructions, searchingexisting datasources,gathering an dmaintainingthedataneeded,an d completing an dreviewingthe collectionof information.end commentsregardingthisburdenestimateor an y otheraspectof thiscollectionof information,including suggestionsfor reducingthisburden,toWashingtonHeadquartersServices,Directoratefor InformationOperationsan dReports,1215JeffersonDavisHighway,Suite1204,Arlington, VA2202-4302,an dtothe Office of ManagementandBudget,Paperwork ReductionProject(0704-0188), Washington, DC0503.

    1.AGENCYUSEONLY(Leaveblank) 2.EPORTDA TEJuly2000

    3 .EPORTTYPEANDDATESCOVEREDFinal4.ITLEANDSUBTITLETheEffectofThermo-mechanicalProcessingon th eBallisticLimitVelocityof ExtraLow

    InterstitialTitaniumAlloyTi-6AL-4V 6.UTHOR(S)Burkins,M . S .ARL);Hansen,J .S . ;Paige,J . I . ;Turner,P. C . ( D O E )

    5.UNDINGNUMBERSPR:22601D C 05

    7.ERFORMNGORGANIZATIONNAME(S)ANDADDRESS(ES)U . S .ArmyResearch LaboratoryWeapons& MaterialsResearch Directorate Aberdeen ProvingGround,M D1005-5066

    8.ERFORMNGORGANIZATIONREPORTNUMBER

    9.P O N S O R I N G / M O N I T O R I N GAGENCYN A M E ( S )AN DADDRESS(ES)U . S .ArmyResearch LaboratoryWeapons& Materials Research Directorate AberdeenProving Ground,M D1005-5066

    10.PONSORING/MONITORINGAGENCYREPORTNUMBERARL-MR-486

    11.SUPPLEMENTARYOTES12a.DISTRIBUTION/AVAILABILITYSTATEMENT

    Approvedfo rpublicrelease;distributionisunlimited.12b.ISTRIBUTIONCODE

    13 .ABSTRACTMaximum200words)Althoughtitanium alloyshavebeenwidelyusedfo raerospaceapplications,theyhaveseldom beenusedinarmorsystems.nan efforttoprovideincreasedinformationtoarmoredvehicledesigners,th eU . S .ArmyResearchLaboratory(ARL)an dth eU . S .DepartmentofEnergy'sAlbanyResearchCenter( A R C )performeda jointresearchprogramtoevaluateth eeffectofthermo-mechanicalprocessingon th eballisticlimitvelocityfo ranextra-lowinterstitialgradeof th etitaniumalloyTi-6A1-4V.AR C obtainedMIL-T-9046J,AB-2 platesfromRMI1TitaniumCompany,rolledtheseplatestofinalthickness,performed th eannealing,andcollectedmechanicalandmicro-structuralinformation.R Lthenevaluatedtheplateswith20-mmfragment-simulatingprojectilesand2.7-mmarmor-piercingM 2bulletsinorder todetermineth eballisticlimitvelocityofeach plate. Titaniumprocessingandannealingdidhaveaneffectonth eballisticlimitvelocity,bu tth emagnitudeof th eeffectdependedon whichpenetrator w asused.