Top Banner
479 HWAHAK KONGHAK Vol. 41, No. 4, August, 2003, pp. 479-484 / * 305-600 100 * 561-756 1 664-14 (2003 1 15 , 2003 3 25 ) Effect of Poly(phenylene oxide) on Cure Behavior and Fracture Toughness of Poly(phenylene oxide)/Epoxy Blends Soo-Jin Park , Hyo-Jin Jeong and Changwoon Nah* Advanced Materials Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Korea *Department of Polymer Science and Engineering, Chonbuk National University, 664-14 1ga Duckjin-dong, Duckjin-gu, Jeonju, Jeonbuk 561-756, Korea (Received 15 January 2003; accepted 25 March 2003) 4 (4EP) Poly (phenylene oxide) (PPO) , . PPO 0, 5, 10, 15, 20 phr . 4EP/PPO , (IDT), (IPDT) . , . , 5 phr , (E a ) 5 phr PPO . PPO PPO . (K IC , G IC ) 5 phr . Abstract - In this work, the effect of poly (phenylene oxide) (PPO) in tetrafunctional epoxy resin (4EP) was investigated in terms of cure kinetics, thermal properties, and mechanical interfacial properties of the blends. The content of PPO was varied within 0, 5, 10, 15, and 20 phr to neat 4EP. The cure kinetics of 4EP/PPO blend system are examined by near-IR and DSC measurements. And the thermal stabilities were determined by initial decomposed temperature (IDT), thermal stability factors, and integral procedural decomposition temperature (IPDT) of the blends. For the mechanical interfacial properties of the casting specimens, the fracture toughness test was performed, and their fractured surfaces were examined by SEM. As a result, the con- version (α) is indicated in high value at 5 phr of PPO and, the cure activation energy (E a ) is decreased at 5 phr PPO, due to the plasticized PPO polymer molecule in epoxy resins. The thermal stabilities were increased, which can be explained by the presence of phenyl group of PPO in intermolecular chains. Also the fracture toughness parameters (K IC , G IC ) show high values at 5 phr PPO. This result is interpreted in the development of interfacial adhesion force between intermolecules of the polymer chains. Key words: Tetrafunctional Epoxy Resin, Poly (Phenylene Oxide), Cure Behavior, Mechanical Interfacial Properties 1. , , , , , [1, 2]. 3 , 1940 , , , , , , , To whom correspondence should be addressed. E-mail: [email protected]
6

Effect of Poly(phenylene oxide) on Cure Behavior and ...cheric.org/PDF/HHKH/HK41/HK41-4-0479.pdfSoo-Jin Park †, Hyo-Jin Jeong ... Advanced Materials Division, Korea Research Institute

May 18, 2018

Download

Documents

nguyentram
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Effect of Poly(phenylene oxide) on Cure Behavior and ...cheric.org/PDF/HHKH/HK41/HK41-4-0479.pdfSoo-Jin Park †, Hyo-Jin Jeong ... Advanced Materials Division, Korea Research Institute

HWAHAK KONGHAK Vol. 41, No. 4, August, 2003, pp. 479-484

rea

��������/�� � ��� ���� � ����� ��������� ��� �

���†� ���� ��*

������� �����305-600 �� ��� �� 100

*����� ������561-756 �� �� ��� ��� 1� 664-14(2003� 1� 15� !, 2003� 3� 25� "#)

Effect of Poly(phenylene oxide) on Cure Behavior and Fracture Toughness of Poly(phenylene oxide)/Epoxy Blends

Soo-Jin Park†, Hyo-Jin Jeong and Changwoon Nah*

Advanced Materials Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Ko*Department of Polymer Science and Engineering, Chonbuk National University,

664-14 1ga Duckjin-dong, Duckjin-gu, Jeonju, Jeonbuk 561-756, Korea(Received 15 January 2003; accepted 25 March 2003)

� �

� ����� 4�� �� � (4EP)� Poly (phenylene oxide) (PPO) ���� ����, � �� ��� ���

� !" #$%&'. PPO� ()� 0, 5, 10, 15, 20 phr* +,'. 4EP/PPO ���-� ����. /�01 234

5 �678�9�: ;< �=+,�, � ��. �2< >�?@(IDT), ��� AB ��� �2 �2< CD?@(IPDT)

� �< �=+,'. �E� ��� � !" �=+� F<� GHA ��" �D+,�, �E� GHI " 78JB

KL�M* 2N+,'. � ��O5, J�P. 5 phr�� Q. R" STUV�, �� W� �X (Ea)� 5 phr�� PPO

� �< ��Y YZ�[\ ]^[� �_" STUV'. ���. 2BU PPO� `a�b� cd* A< PPO� e9f

gYe� hi gY+,'. jk GHA AB(KIC, GIC)� 5 phr�� �2B 8l 2B8f� � Omn� _oM* A

< Yp Q. R" STUV'.

Abstract − In this work, the effect of poly (phenylene oxide) (PPO) in tetrafunctional epoxy resin (4EP) was investigated in

terms of cure kinetics, thermal properties, and mechanical interfacial properties of the blends. The content of PPO was varied

within 0, 5, 10, 15, and 20 phr to neat 4EP. The cure kinetics of 4EP/PPO blend system are examined by near-IR and DSCmeasurements. And the thermal stabilities were determined by initial decomposed temperature (IDT), thermal stability factors,

and integral procedural decomposition temperature (IPDT) of the blends. For the mechanical interfacial properties of the casting

specimens, the fracture toughness test was performed, and their fractured surfaces were examined by SEM. As a result, the con-

version (α) is indicated in high value at 5 phr of PPO and, the cure activation energy (Ea) is decreased at 5 phr PPO, due to the

plasticized PPO polymer molecule in epoxy resins. The thermal stabilities were increased, which can be explained by the presence

of phenyl group of PPO in intermolecular chains. Also the fracture toughness parameters (KIC, GIC) show high values at 5 phr

PPO. This result is interpreted in the development of interfacial adhesion force between intermolecules of the polymer chains.

Key words: Tetrafunctional Epoxy Resin, Poly (Phenylene Oxide), Cure Behavior, Mechanical Interfacial Properties

1. � �

�� ��� ��� � �� ��, ��� ��, �� ���,

���, ��� ��� �� ��� � � !"#, � $� ��%&

�� ��� ��� '(�") *+ ,�-. /� 0 12-� ��

3 45 6��7 � 8 9: ;�<")= > �?� @A�") B

.%� �2� CD8 EF-� !G[1, 2]. > H 3IJ � K�

L�� MN 9O2P� 3QR� SO2P7 T�%U -� VW�@

XK�� )=, 1940YV OZ�� [ \ ]^_, ��� `�, a

���, ��, aX�, a6b� �� %� cdT� �"# K

�efJ 6'`� g�- h�G� i$") @N ]^B, ����,

†To whom correspondence should be addressed.E-mail: [email protected]

479

Page 2: Effect of Poly(phenylene oxide) on Cure Behavior and ...cheric.org/PDF/HHKH/HK41/HK41-4-0479.pdfSoo-Jin Park †, Hyo-Jin Jeong ... Advanced Materials Division, Korea Research Institute

480 ���� ���� ��

jk, lm�� �� Gn� �o3 f�-� !� > pqr s� Y

20%t u�%� !� �(�") H1� Av7 Q %� !� `?�

G[3-5].

we�") 3IJ H �i *+ ,�-� !� xy �z{�

@ diglycidyl ether of bisphenol-A (DGEBA)@|, � DGEBA�

� �}~�� �� ��3=� ��� �? � X��� �� �

. � ��3 ��� �2��y �z{� �G �}� �y �

}~�� � X� ·��� �?� � ,z{� 3IJ @

tetraglycidyl diamine diphenyl methane (TGDDM)� ��{ lm��

� ���� ) ,�%� !G[6-8]. % � ��� � `�3

� �2%� TGDDM�� �y �}~�) @N= ���@ ��3 �

��%� ��/�� ��(hot/wet property)� � �� �$� �

� !. �7 �9%� A�  ¡") �@�B7 ,�N= K�J¢

�  ¡� £1%G� ¤¥¦ !G.

3IJ 7 �@� J¢�  ¡")� 2Q �OO� �§%�  

¡� !�| ,�%� `?3 45 �¨[9, 10], ̈ �K? §�[11], X

�p� [12] �") ©ª !G. �i we�@  ¡y «�¬(­

) ef� �¨)7 3 ;�%� x@| > L�� ®¯�° ef�

�¨� 3IJ � SO2Pa) �.� K�[ a3= O�+

� w.©U -. B2�'O� T�%U -�| �L�") 3IJ S

O2Pa3 �'-. !� «� ±²� ³´� EF�  N%� ²µ

� %U -. 3IJ � �@�� ¶OJ¢U [G. % � �� �

}~�7 ·%J¸ ��� ��� aX�� ·%-� �L� ©¹© �

�{ lm�� ��� B�$") º�%� !G[9, 10]. s� ¨�K?

§�� K �@� »L� � � h"© ��� `�, aX�� ·%

� ¼� i$� � � !. �2� -./G[11]. % � 3IJ� ¨

�K? §�� ½ ~�Q� ��3 ��O .¥¾� !� ¿$� �

� !G[13].

�� �. ÀÀ� XK�� ��� ����3 ��� !� X�p�

�� �'JÁ") �@� »L7 ©¹a�  ¡� �2� E

F H@| ��{ à Ä.Å X�p� Æ+Ç@ polysulfone (PSF) [14],

poly (ether sulfone) (PES) [15], poly (ether imide) (PEI) [16], polyimide

(PI) [17]� ,�-� !G. �@� »L7 AN X�p� 7 ÈÉ

Ê µ K �¨© ¨�K? §�3= �ËÌ ¿$� Íl%� �@�

� ¶O JÎ !.= ­ÏÐ� !�|, > H poly (phenylene oxide)

(PPO)� �Ñ$�� ³� ��3 �T��� �Ò¦ ���y � �

210oC� �y �+����� ��� ��, a���� �� ºy Ó

ÔL ��� �?� %& 3IJ� �@�� ¶OJÎ !�

�Õ� � � !G.

45= Ö �23=� aX�� �y PPO7 ,z{� 3IJ3 <r

×) ÈÉØ%& K�JÙ� � 0 ÈÉØ`� K� ÚÛ � X�Ü�

�� �°��3 PPO� Ýv� ±¶3 VN P,N �ÞG.

2. ���� �

2-1. ��

Ö �23=� ����) tetraglycidyl-4,4'-diamino diphenylmethane

(TGDDM)�� ,z{� 3IJ @ LG��(­)� LER-430 (E.E.W=

110-130 g/eq, $� 14,000 cps, ~� 1.17 g/cm3)� ,�%�, �@�

B) ,�� X�p� ß5�à@ poly (phenylene oxide) (PPO)� GE

Plastics Korea(­)3= B�ÐÞG. K�B)� wÖ ÛK�� BZ@

4,4'-diaminodiphenylmethane (DDM, Ñ$=89-91oC, C� p ár

=49.5)� ,�%� PPO� ��)� tetrahydrofuran (THF)� ,�%

ËG. ,�[ TGDDML PPO >+� DDM� ��2P7 Fig. 13 ©

¹aâG.

2-2. ��� ��

Ö lm��� TGDDM� <r� 100") w�%U � � \, PPO

� <r� TGDDM3 V%& 00 0, 5, 10, 15 >+� 20 phr) d�

J¸ ��@ THF3 ã�8 ä@ \ TGDDML K�B7 åm%ËG.

�7 �á� ��3= }eJæ \ � 80oC) � -� E�çè é3

= êë, ì�J¸ íî%� �� �� � �ï �� BÚJÙG. � 3

IJ ÈÉØ`� Airtec, �TB@ Release #19) ð+� \ 80oC)

ñXJæ ò+ó �¨� �+ô") 2�-. !� �T� õØ3 =

=8 ö÷ \ çè3= 150oC(1 h), 180oC(1 h), 200oC(2 h)� K�

,�ø) Jù� K�Jæ Gú 0 �û3 ,�%ËG.

2-3. �� � �

BP� lm��� XK� ��� �û%� A%& JQ­,Xr�

(Perkin Elmer DSC-6, DSC)7 ,�%ËG. � 10 mg� J�7 stainless

sample pan3 ü� ~ý%& DSC cell a63 AvJæ \ w�þK %

3= òÿ� EFJ¢� A%& òÿ� EF-� Û� DSC cell a6

) ?p��7 30 ml/min� é�) ��%ËG. Û� DSC òÿy 30

-350oC ���A3= 5, 10, 15, >+� 20oC/min� �Xé�) òÿ

%ËG.

2-4. ��� �

K� ef3 �N g�[ g�`� ̀ +� ��� ��y K���3

�N �� . � ��3 K� ��� �û%� �¡� � H1%

G[18]. 45= Ö K�J��3=� �J�9L H���9 ±²(400-

1,400 cm−1) ,�3= ©¹©� Ó�Ø7 ��%� ���9 ��¡

(near-infrared spectroscopy, NIRS)� MN K�ef� Û_�� ��%

ËG. �3 ,�[ ��� Perstorp Analytical NIR system 6,500�# �

�� �) NIR ���57 ,�%& �û%ËG.

2-5. ��� ��

lm��� X���� ��%� AN= XHr �û�(du Pont,

TGA2950)7 ,�%& ?p �A� %3= 30oC6� 850oC 10oC/

min� ��é�7 � %°= ��O�3 4� Hr� êp7 �û%

ËG.

2-6. ��� ���� � ��� ��

BP[ lm��� ��� �°��� ¤Ò�� AN= ��@� @

Fig. 1. Chemical structures of TGDDM, PPO, and DDM.

���� �41� �4� 2003� 8�

Page 3: Effect of Poly(phenylene oxide) on Cure Behavior and ...cheric.org/PDF/HHKH/HK41/HK41-4-0479.pdfSoo-Jin Park †, Hyo-Jin Jeong ... Advanced Materials Division, Korea Research Institute

PPO/Epoxy �� � � ���� 481

�@ ��f_ ��@�(critical stress intensity factor, KIC)� �� d

T3�  �é�(critical strain energy release rate, GIC)7 ��%ËG.

PPO <r×) Jù� 00 BP� \ diamond saw7 ��N= ASTM

D5045-91a3 �%� 52�10�5 mm3� v) Jù� ¿%& 4��

single edge notched bending (SENB) Jù") ��%ËG. V�

Ú+� Jù ���� �(span-to-depth ratio)� 4:1) ��%� cross-

head speed� 1 mm/min") � � ö �{Jÿ ���(#1125, Lloyd

LR 5k, UTM)� ,�%& ��%ËG. ��@� �� \ Jù� �¿

°� z�%� A%& ­,���ÝK(JEOL Model 840A, SEM)� ,

�%& �¿ ��� P,%ËG.

3. � ��

3-1. �� � �

K�ef Û_�� �û%�  ¡")� IR, UV spectroscopy �

chromatography �� ,�%& �¿�7 ��<") q�Ç ��7

�] ��%�  ¡L efrL < z�� !� `+� �?� ��

%& �]�") �û%�  ¡� !G[19, 20]. � � ��-� `+�

�?)� �d�, �����, DSC � DTA3 �� DXr� � !

�|, �H DSC� Od� �� `� d� � w� s� � w� �

� ef� Û_�� �2%�| !1%U ,�-. /G. we�")

DSC� Û� K� Û_� �û3� ¿w Û� òÿ[21]L GH Û� ò

ÿ[22-24] � �  ¡� !�|, � H3= Û� DSC)6� 2NE

"³� �V ef é�J #.E x�5� �� %3= ��[ Kissinger

b�[23] Û� Û_� @��� ��µ � $� ,�%# by nQ e

f �%Ä&� 4'� �T� �Nb3= ��[ x")= �(�")

b (1)L )� ©¹*G.

(1)

� b3= φ� ��é�, Tm� �V DX ��, A� é� O, Ry

�¬ O >+� Ea� K� C�� 3� 7 ©¹*G. Tmy 0� G

� ��é�3= Û� X�û��)6� �] #� !"#, K� C

�� 3� (Ea)� ln[φ/Tm2] 1/Tm >+,� �-�)6� 2µ !G.

Table 1y ln[φ/Tm2 ]L 1/Tm >+,� �-�� �./")6� K�

C�� 3� � O/� 2%& ©¹* x�G. K� C�� 3�

� TGDDM ¿w P��G PPO7 5 phr ;�%Ë� K C�� 3�

� êp%� K¶� ©¹aâG� PPO� <r� u�<3 45 K

� C�� 3� � GJ u�%� K¶� ©¹aâG. �� K� C�

� 3� � K� efé�3 ³U �0%� ��3 pr� PPO� e

f� 1EJ¸ K� C�� 3� � êp%� x") ô¿-#, > \

PPO� åm") @� �}�3 ±¶� ­. K� efé�� �-�

ef`� $�� u�%& 10, 15, 20 phr3=� C�� 3� � GJ

u�%� x") z�-. EG.

3-2. ��� ��

���9 ��¡(NIRS)� ��%& K�ef3 �� z{�� d�

7 2@%Ë�, �x")6� K�ef� ��Ô� �û%ËG. 3IJ

� �Õ �@ "³)� � ��� 2P� z�[ ��7 � � !

� 4,000-4,900 cm−1� finger print ±², �<r ��3 ,�-� "³

� K�ef3 3&% h� �� "³� 0�%� 5,000-6,000 cm−1 ±

² >+� '�� ±²@ 7,000 cm−1� !� x") ¤¥¦ !G[18].

�x� �Ö") Ö �23=� PPO <r3 4� lm��� K�

� ·\� ���9 ���û �L7 Fig. 2� 33 ©¹aâ"#, ���

9 �� �û3= ©¹©� �� "³7 Table 23 ©¹aâG.

Fig. 2� TGDDM/PPO ÈÉØ�� K� � ���9 ���4�

©¹* x")= >53= �� 6� )� 3I,�Ø "³�

4,530 cm−1 ±²3= 2@-â"#, � 3I,�Ø�� �JB� e

f%& �þ-. '�7 g�<")= 3QR SO2P7 T�%U

-� x") ¤¥¦ !G[18]. 45= K� \� "³@ Fig. 33=

©¹* 6� )� K�� EF78 � "³� 9:�") êp%U

-�| � ;.Ø� 3I,�Ø °� d�7 �ûN �( ��Ô�

2µ !G. 3I,�Ø °� d�3 �� �( ��Ôy b (2)�

,�%& 2%ËG.

Conversion(α)(%)= �100 (2)

&�= α� ��Ô, Acure� K�[ <ß� 3I,�Ø °� >+�

Auncure� K�� <ß� 3I,�Ø °��G.

φTm

2------ln AR

Ea

--------lnEa

R----- 1

Tm

------⋅–=

1A cure

Auncure

----------------–

Table 1. Cure activation energies (Ea) of TGDDM/PPO blend system

CompositionsKineticfactor

Heating rate (oC/min) Ea

(kJ/mol)5 10 15 20

Pure 4EP 1/Tm (×103) 1-2.34 1-2.25 1-2.19 1-2.15 52.8ln[Φ/Tm

2] −10.49 −9.88 −9.53 −9.28PPO 5 phr 1/Tm (×103) 1-2.38 1-2.26 1-2.21 1-2.16 45.9

ln[Φ/Tm2] −10.47 −9.87 −9.51 −9.27

PPO 10 phr 1/Tm( ×103) 1-2.35 1-2.25 1-2.20 1-2.15 51.5ln[Φ/Tm

2] −10.49 −9.88 −9.52 −9.27PPO 15 phr 1/Tm (×103) 1-2.33 1-2.26 1-2.22 1-2.15 58.2

ln[Φ/Tm2] −10.51 −9.87 −9.50 −9.27

PPO 20 phr 1/Tm (×103) 1-2.35 1-2.29 1-2.23 1-2.18 59.6ln[Φ/Tm

2] −10.49 −9.84 −9.50 −9.25

Fig. 2. Near-IR spectrum of TGDDM/PPO blend system before curing.

HWAHAK KONGHAK Vol. 41, No. 4, August, 2003

Page 4: Effect of Poly(phenylene oxide) on Cure Behavior and ...cheric.org/PDF/HHKH/HK41/HK41-4-0479.pdfSoo-Jin Park †, Hyo-Jin Jeong ... Advanced Materials Division, Korea Research Institute

482 ���� ���� ��

Table 3y b (2)7 ,�N= PPO <r3 4� ��Ô� ©¹* x�

G. �( ��Ôy PPO7 5 phr ;�%Ë� K TGDDM ¿w P�

�G �y 92%� ��Ô� ©¹aG� PPO� <r� u�%° 89%,

87.7%, 87.1%) ��Ôy GJ êp%%� K¶� ©¹=G. �� 3

IJ� �å��@ PPO7 pr ;�%Ë� K �}�3 ±¶� Ð

Ò 3IJ� PPO� ef%& semi-IPN 2P7 T�%U -. > ��

Ô� O�-� x") ô¿[G. % � > �O") ;�%U -°

PPO ­>2P �3 !� phenyl�) @N ,?�� ÷Û�� ·%J¢

U -� �� �Û�� êp%& ef`� $�� u�%U [G[25].

�L�") 5 phr�O� PPO� K�ef�  N%& ��Ô� êpJ

¢� x") z�-. EG.

3-3. �� �

XHr�û(thermogravimetric analysis, TGA)y P�� �û, �Hm

`� �û, X��� �� ��µ !�  ¡@|, �8 X�N �J

��(initial decomposition temperature, IDT), �� X�N �� (integral

procedural decomposition temperature, IPDT)� X��� ��3 �

��� �r�@ �û �@�G. � H3= �� X�N ��� �r�

@ X���3 VN= A�%� A%& Doyle3 �N B�[ ��)=

TGA3 �N= #.E 0 °��)6� ©¹a� �r�@ /�� �

�3 X���3 VN � ��� !� ��� ��7 B�N �G�

¤¥¦ !G[26, 27].

IPDT(oC)=A*·K*(T f − Ti)+Ti (3)

&�= A*� TGA� �¬ °�3 V� B9� °����, K*� A*

� �, Ti� C� òÿ���� Tf� �( òÿ��7 ©¹a� x�G.

Fig. 4� TGDDM/PPO ÈÉØ�� TGA B9� ©¹* x�#, �)

6� X�N �J��(IDT), X��� (A*·K*) >+� �� X�

N EF ��(IPDT)7 2%& Table 43 ©¹aâG[27]. Fig. 4� �L

PPO� <r� u�<3 45 TGDDM/PPO ÈÉØ`� X�N í0r

y u�<� 2@µ !â"#, Table 43= �� 6� )� PPO�

<r� u�<3 45 IDT� �,� e° A*·K*� IPDT �� X �

�� @��y u�<� ¤ !âG. �� aromatic ring� �E

TGDDML PPO ��a 0�%� DE>F �� 2P�@ ���L �

�� � aX��")@N ÈÉØ�� a6) �§-� X� Ó

%� X�G 2'� B�%& X���� u�-� x") ô¿[G.

3-4. ��� ����

TGDDM/PPO� P�× Jù3 V� ��� �°��� ¤Ò�� A

N= ³´�i ·H(crack growth resistance)� ©¹a� ��f_��

@�(critical stress intensity factor, KIC)� �� dT3�  �é�

(critical strain energy release rate, GIC)7 M%& ¤Ò�ÞG. ��f_

�� @�(KIC)� Jù� TI, ³´� TI >+� ��[ %H/3 4

� ³´ J 6�� f_� OI) =@-� �@� @� H� %©)Â, G

Fig. 3. Near-IR spectrum of TGDDM/PPO after curing.

Table 2. Band assignment for chemical groups from NIR absorptionspectra of cure system

Wavenumber (cm−1) Chemical group

7,000 -OH overtone and combination bands6,067 Firsts overtone of terminal (methylene)

-CH fundamental strtching vibration5,990 Phenyl C-H stretching overtone band5,890 Aromatic CH band5,240 CH2, -CH combination band

Combination band of the conjugated4,682-4,619 C=C stretching with the aromatic

-CH fundamental stretching4,530 Conjugated epoxy CH2 deformation band4,530 Amine group NH2

Table 3. Conversion ratio of TGDDM/PPO blend system

Composites Conversion ratio (%)

0 phr 89.35 phr 92.010 phr 89.015 phr 87.720 phr 87.1

Fig. 4. TGA thermograms of TGDDM/PPO blend system.

Table 4. Thermal stabilities of TGDDM/PPO blend system

Content of PPO IDT [oC]* Tmax [oC] A*·K IPDT [oC] Residual weight [%]

0 phr 375 404.0 0.686 558.7 10.95 phr 378 403.2 0.707 577.7 12.010 phr 378 403.9 0.730 595.1 12.815 phr 376 404.0 0.755 614.8 13.920 phr 376 404.2 0.760 618.4 14.3

���� �41� �4� 2003� 8�

Page 5: Effect of Poly(phenylene oxide) on Cure Behavior and ...cheric.org/PDF/HHKH/HK41/HK41-4-0479.pdfSoo-Jin Park †, Hyo-Jin Jeong ... Advanced Materials Division, Korea Research Institute

PPO/Epoxy �� � � ���� 483

ú b (4))6� > /� 2µ !G[28, 29].

(4)

&�= P� %H, Sy span�� Ú+, B� Jù� ��, w� Jù�

��7 ©¹*G. s� Y� ³´� K�, ³´� Av, %H  ¡3 �

0%� geometric factor�# Gú b (5)� )� ©¹L !G.

(5)

&�= a� ³´� K�7 ©¹*G.

s� GIC� «�3� 3�N ³´")6� M)÷ �¿°� T�7

� ³´� �i�+)6� �G-� ¿AK�3 4� 3� 7 �Ý%#

KIC� ~]� z�� !�| � GIC� Gú b (6)� M%& 2µ !G.

(6)

&�= υ� Poisson’s ratio(υN0.35) >+� E� ��@� �� PO

3=� tensile modulus7 ©¹*G.

Fig. 5� TGDDM/PPO ÈÉØ`� 0 P�× Jù3 V� KIC/�

©¹* x�� Fig. 6y GIC �L7 ©¹* x�G. > �L PPO� <

r� 5 phrw �� �°��� �i �y x") ©¹=G. ��[ 6

3 4'° KIC� GIC� �L� ��Ô3 �0��5� ��-. !G

[30]. 45= � �L� P= K�ÚÛ3= Q�� 6� )� PPO7 5

phr ;�%� K 3IJ� PPO ��� ef%& semi-IPN 2P7

T�N DG[ �}2P7 T�%U R3 45 ��� ,? ��,�

� �° �m_� ¶O-U -. ��� �°��� u�-� x")

z�-. EG. % � > �O") ;�7 J3� KIC, GIC /� êp

-� x� z�-â�| �� O�+ �O") @N= ��� �°�

�� ·%-� x") ô¿[G.

3-5. !"#$%� ��&'

TGDDM/PPO ÈÉ�� ��@� Jÿ \ g�[ �¿°� ­,��

�ÝK") z�� \ Fig. 73= ©¹aâG. � 3IJ� ��¿°

� ©¹* Fig. 7(a)� K7 �° �S�÷ W°� ©¹a� ³´�

�ï� %H  ¶") TX-. !� �T�@ ������� ���

2@µ !âG[31]. e° 5 phr� PPO� ;�[ Fig. 7(b)� �¿J

³´·H� $� ÐÒ �9:%� U� � $y ³´� �ï7 2@

µ !âG. �� P= VW� 6� )� 3IJ� PPO� ��� e

f%& T�[ semi-IPN 2P) @N �¿f_� �'J¸ �����

K ICP S⋅

B w3 2⁄⋅----------------- Y⋅=

Y3 a w⁄( )1 2⁄ 1.99 a w⁄( )– 1 a w⁄–( ) 2.15 3.93 a w⁄( )– 2.7 a w⁄( )2+{ }[ ]

2 1 2 a w⁄( )+{ } 1 a w⁄–( )3 2⁄-------------------------------------------------------------------------------------------------------------------------------------------------------------=

GIC

1 υ2–( )K IC2

E--------------------------=

Fig. 5. Critical stress intensity of TGDDM/PPO blend system. Fig. 6. Critical strain energy release rate of TGDDM/PPO blend system.

Fig. 7. SEM micrograph of TGDDM/PPO blend (a) 0 phr (b) 5 phr (c) 10 phr (d) 20 phr.

HWAHAK KONGHAK Vol. 41, No. 4, August, 2003

Page 6: Effect of Poly(phenylene oxide) on Cure Behavior and ...cheric.org/PDF/HHKH/HK41/HK41-4-0479.pdfSoo-Jin Park †, Hyo-Jin Jeong ... Advanced Materials Division, Korea Research Institute

484 ���� ���� ��

-

y

I.,

y

cts

th

m-

eac-

N-

nc-

.

ns

of

,”

,”

te

e-

nd

e-

of

er-

on

and

sed

xtent

he

er-

r-

co-

�� �@x") ,�[G. % � PPO� <r� 10, 20 phr) u�[

Fig. 7(c), (d)7 �° PPO� 3IJ �3 � w� O�+ �O� D

g%� �3 45 ��� �°�� s� ·%-� x� 2@µ !âG.

4. � �

Ö �23=� � )= *+ ,�-� !� 4z{� 3IJ3

PPO7 <r×) ÈÉØ� \ � ÈÉØ�� K�ÚÛ, X���L �

�� �°��� ��%ËG. > �L GúL )y �X� #� !

âG. ���9 ���ûL DSC7 MN 2@µ �L 5 phr� PPO7

;�� K ef� �p�J¸ C�� 3� /y êp%� ��Ô

y u�<� ©¹aâ� ��� �°�� s� 5 phr3= ��,��

�° �m_� �V� -. �i �y ��� ©¹aâG. e° X� �

�y PPO �� a� DE>F� 0�) @N= X�G 2'� B�<

") @N= PPO� <r� u�<3 45 X���y u�%� x"

) ©¹=G.

����

1. Ellis, B., Chemistry and Technology of Epoxy Resins, Blackie Aca-

demic and Professional, Chapman and Hall, London(1993).

2. Finzel, M. C., Delong, J. and Hawley, M. C., “Effect of Stoichiom-

etry and Diffusion on an Epoxy/Amine Reaction Mechanism,” J.

Polym. Sci. Chem., 33(4), 673-690(1995).

3. May, C. A., Epoxy Resins: Chemistry and Technology, 2nd Ed.,

Marcel Dekker, New York(1988).

4. Park, S. J., Park, W. B. and Lee, J. R., “Roles of Unsaturated Poly-

ester in the Epoxy Matrix System,” Polym. J., 31(1), 28-31(1999).

5. Lee, H. and Nevile, K., Handbook of Epoxy Resins, McGraw-Hill,

New York(1967).

6. Musto, P., Martuscelli, E., Ragosta, G. and Mascia, L., “Cure Kinet-

ics and Ultimate Properties of a Tetrafunctional Epoxy Resin Tough-

ened by a Perfluoro-ether Oligomer,” Polymer, 42(12), 5189-5198(2001).

7. Lopez, J., Ramìrez, C., Torres, A., Abad, M. J., Barral, L., Cano, J.

and Dìez, F. J., “Isothermal Curing by Dynamic Mechanical Analy-

sis of Three Epoxy Resin Systems: Gelation and Vitrification,”J.

Appl. Polym. Sci., 83(1), 78-85(2002).

8. Japon, S., Leterrier, Y. and Månson, J. A. E., “Reactive Processing of

Poly(ethylene terephthalate)modified with Multiunctional Epoxy-Based

Additives,”Polymer, 41(15), 5809-5818(2000).

9. Moschior, S. M., Riccardi, C. C., Williams, R. J. J., Verchere, D.,

Santerean, H. and Pascanit, J. P., “Rubber-Modified Epoxies III. Anal-

ysis of Experimental Trends through a Phase Separation,” J. Appl. Polym.

Sci., 42(3), 717-736(1991).

10. Wu, S. J., Lin, T. K. and Shyn, S. S., “Cure Behavior, Morphology,

and Mechanical Properties of the Melt Blends of Epoxy with

Polyphenylene Oxide,”J. Appl. Polym. Sci., 75(1), 26-34(2000).

11. Ochi, M., Takahashi, R. and Terauchi, A., “Phase Structure and Mechan-

ical and Adhesion Properties of Epoxy/Silica Hybrids,” Polymer, 42(12),

5151-5158(2001).

12. Varley, R. J., Hodgkin, J. H. and Simon, G. P., “Toughening of a Tri-

functional Epoxy System: Part VI. Structure Property Relationships of the

Thermoplastic Toughened System,” Polymer, 42(8), 3847-3858(2001).

13. Chang, S. S., “Temperature Gradient in Differential Scanning Calo-

rimetry,” Thermochim. Acta, 178(12), 195-201(1991).

14. Ito, K. H. and Fugioka, H., “ Improvement of Thermal and Mechan

ical Properties by Control of Morphologies in PES-Modified Epox

Resins,” Polymer, 41(12), 4451-4459(2000).

15. Fernández, B., Corcuera, M. A., Marieta, C. and Mondragon,

“Rheokinetic Variations During Curing of a Tetrafunctional Epox

Resin Modified with Two Thermoplastics,” Eur. Polym. J., 37(9),

1863-1869(2001).

16. Cho, J. B., Hwang, J. W., Cho, K., An, J. H. and Park, C. F., “Effe

of Morphology on Toughning of Tetrafunctional Epoxy Resins wi

Poly(ether imide),”Polymer, 34(23), 4832-4836(1993).

17. Liu, W. B., Kuo, W. F., Chiang, C. J. and Chang, F. C., “In situ Co

patibilization of PBT/PPO Blends,” Eur. Polym. J., 32(1), 91-99(1996).

18. Park, S. J., Kwak, G. H., Masao, S. and Lee, J. R., “Cure and R

tion Kinetics of an Anhydride-Cured Epoxy Resin Catalyzed by

benzylpyrazinium Salts Using Near-Infrared Spectroscopy,” Polym.

Eng. Sci., 40(12), 2569-2576(2000).

19. Oh, J. H., Jang, J. and Lee, S. H., “Curing Behavior of Tetrafu

tional Epoxy Resin/Hyperbranched Polymer System,” Polymer, 42(20),

8339-8347(2001).

20. Apicella, A., Nicolais, L., Nobile, M. R. and Castiglione-Morelli, M

A., “Effect of Processing Variables on the Durability of Epoxy Resi

for Composite Systems,” Compos. Sci. Technol., 24(2), 101-121(1985).

21. Barrett, K. E., “Determination of Rate of Thermal Decomposition

Polymerization Initiators with a Differential Scanning Calorimeter

J. Appl. Polym. Sci., 11(9), 1617-1626(1967).

22. Osawa, T., “A New Method of Analyzing Thermogravimetric Data

Bull. Chem. Soc. Jpn., 38(9), 1881-1886(1965).

23. Kissinger, H. E., “Variation of Peak Temperature with Heating Ra

in Differential Thermal Analysis,”J. Res. Natl. Stand, 57(4), 217-221

(1956).

24. Ojeda, T., Liberman, S., Amorim, R. and Samios, D., “Propylen

Ethylene Copolymers: Ethylene Content Influence on Molecular a

Thermomechanical Properties,” J. Polym. Eng., 16(112), 105-120(1997).

25. Creton, C., Halary, J. L., Monnerie, L., “Plasticity of Polystyren

Poly(2,6 dimethyle, 1,4 phenylene oxide) Blends,”Polymer, 40(1),

199-206(1998).

26. Doyle, C. D., “Kinetics Analysis of Thermogravimetric Data,” J.

Appl Polym Sci., 5(2), 285-291(1961).

27. Park, S. J. and Kim, H. C., “Thermal Stability and Toughening

Epoxy Resin with Polysulfone Resin,” J. Polym. Sci., Polym. Phys.,

39(1), 121-128(2001).

28. Park, S. J., Kim, M. H., Lee, J. R. and Choi, S. W., “Effect of Fib

Polymer Interactions on Fracture Toughness Behavior of Carb

Fiber-Reinforced Epoxy Matrix Composites,”J. Colloid Interface

Sci., 228(2), 287-291(2000).

29. Fdez de Nograro, F., Liaano-ponte, R. and Mondragon, I., “Dynamic

Mechanical Properties of Epoxy Networks Obtained with PPO Ba

Amines/mPDA Mixed Curing Agents,” Polymer, 37(9), 1589-1600(1996).

30. Jordan, C., Galy, J. and Pascault, J. P., “Measurement of the E

of Reaction of an Epoxy-Cycloaliphatic System and Influence of t

Extent of Reaction on Its Dynamic and Static Mechanical Prop

ties,”J. Appl. Polym. Sci., 46(5), 859-872(1992).

31. Zheng, S., Wang, J., Guo, Q., Wei, J. and Li, J., “Miscibility, Mo

phology and Fracture Toughness of Epoxy Resin/Poly(styrene-

acrylonitrile) Blends,”Polymer, 37(21), 4667-4673(1996).

���� �41� �4� 2003� 8�